
Managing the Complexity of Large Free and Open Source Package-Based

Software Distributions∗

Fabio Mancinelli, Jaap Boender, Roberto di Cosmo, Jérôme Vouillon

PPS - Université Paris VII, France

FirstName.LastName@pps.jussieu.fr†

Berke Durak, Xavier Leroy

INRIA Rocquencourt

France

FirstName.LastName@inria.fr‡

Ralf Treinen

LSV, ENS de Cachan, CNRS UMR 8643

& INRIA Futurs, France

treinen@lsv.ens-cachan.fr

ASE ’06: Proceedings of the 21st IEEE/ACM International Conference on Automated Software Engineering, pp 199–208.

c©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising

or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any

copyrighted component of this work in other works must be obtained from the IEEE.

Abstract

The widespread adoption of Free and Open Source Soft-

ware (FOSS) in many strategic contexts of the information

technology society has drawn the attention on the issues re-

garding how to handle the complexity of assembling and

managing a huge number of (packaged) components in a

consistent and effective way. FOSS distributions (and in

particular GNU/Linux-based ones) have always provided

tools for managing the tasks of installing, removing and

upgrading the (packaged) components they were made of.

While these tools provide a (not always effective) way to

handle these tasks on the client side, there is still a lack of

tools that could help the distribution editors to maintain, on

the server side, large and high-quality distributions. In this

paper we present our research whose main goal is to fill this

gap: we show our approach, the tools we have developed

and their application with experimental results. Our contri-

bution provides an effective and automatic way to support

distribution editors in handling those issues that were, un-

til now, mostly addressed using ad-hoc tools and manual

techniques.

1 Introduction

Component based software development [21] has been a

very discussed topic in the Software Engineering domain

∗This work was supported by the EDOS Specific Targeted Research

Project of the 6th European Union Framework Programme.
†{Fabio.Mancinelli,Jaap.Boender, Roberto.Dicosmo,

Jerome.Vouillon}@pps.jusseiu.fr
‡{Berke.Durak, Xavier.Leroy}@inria.fr

for a long time. Assembling complex systems by inte-

grating independently developed components has become

a common practice nowadays. Components are either de-

veloped in-house or collected from a common marketplace

where third-party organizations offer their products (e.g,

commercial-off-the-shelf, COTS, components)

Maintaining a component based system and handling its

evolution have always been a difficult task. The main dif-

ficulty resides in the fact that a complex system has many

relationships, implicit or explicit, among components (i.e.

dependencies). These relationships could be easily broken

when performing standard life cycle management opera-

tions on components (i.e., component installation, removal

and upgrading), leading to unusable and corrupted systems.

The widespread adoption of Free and Open Source Soft-

ware (FOSS), in some way, has emphasized these problems.

The traditional, centralized and closed way in which soft-

ware components were developed has changed radically.

Now they are developed by heterogeneous entities or in-

dividuals, not belonging to any company, who are sharing

their work thanks to fast Internet connections and communi-

cation services. These components, that are licensed under

all sorts of FOSS licenses [15], can be reused and redis-

tributed without any formal agreements between companies

and can be adapted to different contexts more easily, be-

cause of the fact that their source-code is available. The re-

sult is a more free and agile marketplace (i.e., the so-called

Bazaar [16]) where there is a higher number of usable com-

ponents that can be used to build systems in many original

and often unforeseen ways.

The most manifest examples of complex systems built

with FOSS components are GNU/Linux-based distributions.

They provide complete UNIX-like operating systems by se-

lecting and assembling a limited set of suitable components,

1



retrieved from the FOSS bazaar. Currently, there are more

than 100 such distributions [3], each one targeted for a par-

ticular audience (e.g. end-users, server administrators, de-

velopers) or tailored in order to meet a given set of require-

ments (e.g., user-friendliness, smallest footprint, server-side

optimizations)

GNU/Linux-based distributions are created and managed

by a novel figure, whose role has no comparable counterpart

in the traditional software development model: the distri-

bution editor. She is an entity that takes care of collect-

ing available FOSS components and builds from them a co-

herent and usable system. Typically, she monitors compo-

nents at their original source (upstream tracking), recom-

piles and tests them against the distribution (integration),

resolves and keeps track of all the needed relationships (de-

pendency management)

Despite the heterogeneity of the large number of avail-

able distributions, many of them share the same basic foun-

dations: they are package-based. They use a basic deploy-

ment unit for component distribution (i.e., the package) and

a tool, the package manager, that is able to handle these

packages and to correctly manage their life cycle (i.e., in-

stallation, removal and upgrade).

While package managers provide a (not always effec-

tive) way to handle these tasks on the user side, and could

be used to help the distribution editors in tracking prob-

lems when assembling their products, there is still a lack

of specific tools that could help them in maintaining large

and high-quality distributions.

This is a big issue because a typical GNU/Linux-based

distribution is made of several thousands of packages that

have even more dependency relationships among them [12].

Until now, the maintenance and the evolution of the

package repository underlying a distribution (i.e., the col-

lection of all the packages that are available and can be

“used” with a given distribution) have been done by ad-hoc

techniques, relying on semi-automatic tools and, above all,

bug reports filed by distribution users. Of course, this is

clearly insufficient when dealing with huge package bases.

In this paper we present some of the results of our on-

going research that aims at providing a set of tools for the

distribution editor that helps him in maintaining huge pack-

age bases and improving the quality of software distribu-

tions built on them, by detecting errors and inconsistencies

in an effective, fast and automatic way.

The paper is structured as follows: in Section 2 we

present and detail some package formats and their associ-

ated metadata that, for historical reasons, have become a

“de facto” standard and are the basis of many GNU/Linux-

based distributions. In particular we detail the information

relevant to this paper explaining the relationships that can

be specified among packages. In Section 3 we present the

formalization of our model for package bases and the tech-

niques we have used to reason on it. In Section 4 we de-

scribe our framework and its tools, and in Section 5 we

show the results we have gathered from the analysis of

some very popular GNU/Linux-based distributions. Finally

in Section 6 we discuss related work and in Section 7 we

draw conclusions and we sketch a road-map for the future

work.

2 Package Metadata Overview

In this section we briefly introduce some package for-

mats. In particular we focus on the ones that have been rec-

ognized as the “de facto” standard with respect to package-

based GNU/Linux distributions: the DEB [23] and the RPM

[6] formats. Though the actual (binary) formats of DEB and

RPM packages are different, they have a lot of commonal-

ities. In the following we describe the features that are rel-

evant with respect to topic of this paper, i.e., dependency

specification. Where not explicitly stated, these features are

to be intended the same in both DEB and RPM package

systems.

A package is a binary bundle that contains a component1,

all the data needed to its correct functioning and some meta-

data which describe its attributes and its requirements with

respect to the environment in which it will be deployed.

Both DEB and RPM packages are actually compressed

archives. However, while RPM is actually an ad-hoc format

explicitly conceived for this purpose, DEB packages can be

produced using standard tools (i.e., ar and tar), so they

can be easily managed. Nevertheless, the most relevant dif-

ference between DEB and RPM package format concerns

their metadata specification. While RPM packages encode

it in a binary form as a part of its ad-hoc archive format,

DEB packages use a textual representation for it. This fact

makes its processing easier. Figure 1 shows an excerpt of

the metadata taken from the firefox2 DEB package.

Every package has a version that is used to give a tem-

poral order to the packaged component release. Though the

version structure of RPM and DEB packages is the same

(i.e., epoch number, version id and revision id), the

comparison algorithm is slightly different. Version informa-

tion is central when specifying relationships between pack-

ages.

The kinds of relationships that can be expressed in

RPM and DEB package metadata are almost the same,

except some very specialized ones that are seldom used

or processed (e.g., obsoletes, replaces, suggests,

enhances)

1Packages not always contain “executable” components. Often docu-

mentation and non-executable artifacts are packaged as well. However, to

our purposes, this distinction is not relevant because the package format is

agnostic with respect to its actual content type
2firefox 1.5.dfsg+1.5.0.1-2 i386.deb

2



Package: firefox

Version: 1.5.dfsg+1.5.0.1-2 ...

Depends: fontconfig, psmisc,

libatk1.0-0 (>= 1.9.0), libc6 (>= 2.3.5-1) ...

Suggests: xprint, firefox-gnome-support

(= 1.5.dfsg+1.5.0.1-2), latex-xft-fonts

Conflicts: mozilla-firefox (<< 1.5.dfsg-1)

Replaces: mozilla-firefox

Provides: www-browser...

Figure 1. Excerpt of a DEB package metadata

In this paper we have taken into account only the three

main relationships that are used with the same semantics in

both RPM and DEB packages:

• Depends (DEB), Requires (RPM): used to establish

a requirement on the packages that must be present in

the system in order to make the current packaged com-

ponent fully functional.

• Conflicts (DEB, RPM): used to establish a require-

ment on the packages that cannot be present at the

same time in the system with the current one. A suc-

cessful installation can be performed only if no con-

flicting packages are already present in the system.

• Pre-Depends (DEB), PreReq (RPM): similar to the

Depends relationships but used to establish a re-

quirement on the packages that must be already

present in the system in order to successfully deploy

the packaged component. The difference between

Pre-Depends and Depends is that while Depends

package might not be present in the system when de-

ploying the packaged component (but only after, so

they can be deployed together with the current com-

ponent), Pre-Depends packages must be already in-

stalled even before attempting to deploy the current

packaged component.

Relationships are specified by using a list of package

names, optionally with version constraints. Each element

in the list represents a requirement for the given relation-

ship, and all these requirements must be met (i.e., they are

a conjunction) in order to satisfy the dependency relation-

ship. Actually, the DEB package format allows an element

of the list to be a disjunction of requirements. This is done

by using the | operator. In this case, in order to meet the

(disjunctive) requirement it is sufficient that at least one of

the constituting requirements is met.

Figure 1 shows that the package firefox version

1.5.dfsg+1.5.0.1-2 has, among the others, a Depends

requirement on the package fontconfig and on a pack-

age debianutils with a version >= 1.16. This means

that once the packaged component firefox is deployed, in

order to correctly function, it will need the debianutils

component with a version greater than or equal to 1.16 to

be deployed as well. When no version constraint is speci-

fied, then any packaged component version will do.

The allowed version constraints can be specified by us-

ing only the standard comparison operators with their stan-

dard semantics: <, <=, =, >= and =.

Depends: libc6 (>= 2.0),

xlibs (>= 4.0) | xlib6g (>= 3.3.3.1), ...

Figure 2. DEB disjunctive dependency re-

quirement

Figure 2, on the other hand, shows an example of a

disjunctive dependency requirement. In order to correctly

function, the current packaged component needs libc6

with a version >= 2.0 and either xlibs with a version >=
4.0 or xlib6g with a version >= 3.3.3.1.

Another essential information is given by the Provides

metadata. When specified it allows to declare an identifier

that can be used to reference the package. Such an iden-

tifier is often called either virtual package or feature. For

instance, in Figure 1 the firefox package Provides the

identifier web-browser. It is important to point out that

this identifier can be used when specifying dependency re-

lationships. So, for example, another package could declare

a dependency requirement by specifying web-browser. In

this case this requirement should be considered as a dis-

junctive requirement whose elements are all the packages

that provide web-browser.

In RPM metadata, these features are the only way of

declaring a relationship between packages; it is not possible

to declare a relationship directly between packages, only by

way of features. Also, it is worth noting that while RPM

does not allow disjunctive dependencies per se, they can be

emulated by declaring a dependency on a feature that is pro-

vided by two or more packages.

DEB also allows virtual packages, but their usage is

strictly limited to a few cases (there is an explicitly main-

tained list of virtual packages) and using direct relations be-

tween packages is the standard practice.

3 Formalization

In this section we formalize the definitions we have de-

scribed in Section 2 and we introduce the notion of pack-

age installation that identify the central property we want

to guarantee for each package present in a package reposi-

tory.

3



Definition 1 (Package, unit) A package is a pair (u, v)
where u is a unit and v is a version. Units are arbitrary

strings, and we assume that versions are non-negative inte-

gers.

Now we have two choices: either we try to represent

formally the version constraints used in the different pack-

age formats, and then our model will need to take into ac-

count relationships between versions like the >=,=, >>

, <<,<= found in the Figure 1; or we keep our model sim-

ple and eliminate all version constraints but one, equality

(==), by replacing all the other version constraints with the

explicitly listing of all packages versions that satisfy the ver-

sion constraints (we call such replacement an expansion).

This second choice has the additional advantage that the

model becomes independent on the specific version com-

parison operators, present and future, of any given package

format, but of course such expansions are relative to a given

repository, so any change to the repository will make it nec-

essary to perform the expansion phase again.

As an example, consider a repository containing versions

0.9, 1.0 and 1.1 of mozilla-firefox. Then the conflict re-

lationship in Figure 1 would expand as shown in Figure 3.

Package: firefox

Version: 1.5.dfsg+1.5.0.1-2

Conflicts: mozilla-firefox (==0.9),

mozilla-firefox (== 1.0),

mozilla-firefox (== 1.1)...

Figure 3. Dependencies expansion

Once this expansion has been performed, we are left only

with direct dependency or conflict relationships among ac-

tual packages, i.e. (unit, version) pairs, and we can then

straightfowardly encode them it into a graph.

In the following we will hence assume that the distribu-

tion is fixed, and that the version comparison operators have

been expanded. Notice that, due to this assumption, we can

also get rid of all the details concerning the particular order-

ing over version strings used in common FOSS packages:

we use the specific version comparison algorithm only to

expand the dependencies, and then we can use any set of

unique identifiers for representing each version3.

For instance, if the repository of our Debian distribution

contains the versions 2.15-6, 2.16.1cvs20051117-1

and 2.16.1cvs20051206-1 of the unit binutils, we

may encode these versions respectively as 0,1 and 2,

giving the packages (binutils, 0), (binutils, 1), and

(binutils, 2).

3Notice, for example, that the version numbering schemas used in DEB

and RPM packages are not discrete (i.e., for any two version strings v1

and v2 such that v1 < v2, there exists v3 such that v1 < v3 < v2), and

representing such property explicitly would be cumbersome.

Definition 2 (Repository) A repository is a tuple R =
(P,D, C) where P is a set of packages, D : P →
P(P(P )) is the dependency function4, and C ⊆ P ×P is

the conflict relation. The repository must satisfy the follow-

ing conditions:

• The relation C is symmetric, i.e., (π1, π2) ∈ C if and

only if (π2, π1) ∈ C for all π1, π2 ∈ P .

• Two packages with the same unit but different versions

conflict5, that is, if π1 = (u, v1) and π2 = (u, v2) with

v1 6= v2, then (π1, π2) ∈ C.

In a repository R = (P,D, C), the dependencies of each

package p are given by D(p) = {d1, . . . , dk} which is a

set of sets of packages, interpreted as follows. If p is to be

installed, then all its k dependency requirements must be

satisfied. For di to be satisfied, at least one of the packages

of di must be available. In particular, if one of the di is the

empty set, it will never be satisfied, and the package p is not

installable.

The attentive reader might have noticed that we do

not have a separate dependency function for modeling

Pre-Depends relationships. In fact, we consider them as

if they were normal Depends relationships. This is reason-

able because we put ourselves on the distribution editor-

side where we have a package repository (and not an in-

stalled system). At this level, the two kinds of relationships

can be considered equivalent.

Example 1 Let R = (P,D, C) be the repository given by

P = {a, b, c, d, e, f, g, h, i, j}
D(a) =

{

{b}, {c, d}, {d, e}, {d, f}
}

D(b) =
{

{g}
}

D(c) =
{

{g, h, i}
}

D(d) =
{

{h, i}
}

D(e) = D(f) =
{

{j}
}

C = {(c, e), (e, c), (e, i), (i, e), (g, h), (h, g)}

where a = (ua, 0), b = (ub, 0), c = (uc, 0) and so on. The

repository R is represented in Figure 4. For the package a

to be installed, the following packages must be installed: b,

either c or d, either d or e, and either d or f . Packages c

and e, e and i, and g and h cannot be installed at the same

time.

As described in Section 2, dependencies are usually con-

junctive, that is they are of the form

a → b1 ∧ b2 ∧ · · · ∧ bs

where a is the target and b1, b2, . . . are its requirements.

However, more complex dependencies can be specified,

4We write P(X) for the set of subsets of X .
5This requirement is present in some package management systems,

notably Debian’s, but not all. For instance, RPM-based distributions allow

simultaneous installation of several versions of the same unit, at least in

principle(if, for example, they do not install files in the same location).

4



Figure 4. The repository of Example 1.

with name disjunctive requirements. So the general form

for a dependency specification is a conjunction of disjunc-

tions:

a → (b1
1 ∨ · · · ∨ br1

1 ) ∧ · · · ∧ (b1
s ∨ · · · ∨ brs

s ). (1)

For a to be installed, each term of the right-hand side of the

implication 1 must be satisfied. In turn, the term b1
i ∨· · ·∨bri

i

when 1 ≤ i ≤ s is satisfied when at least one of the b
j
i with

1 ≤ j ≤ ri is satisfied. If a is a package in our repository,

we therefore have

D(a) = {{b1
1, . . . , b

r1

1 }, · · · , {b1
s, . . . , b

rs

s }}.

In particular, if one of the terms is empty (if ∅ ∈ D(a)),
then a cannot be satisfied. This side-effect is useful for

modeling repositories containing packages mentioning an-

other package b that is not in that repository. Such a situa-

tion may occur because of an error in the metadata, because

the package b has been removed, or b is in another reposi-

tory, maybe for licensing reasons.

Concerning the relation C, two packages π1 =
(u1, v1), π2 = (u2, v2) ∈ P conflict when (π1, π2) ∈ C.

Since conflicts are a function of presence and not of instal-

lation order, the relation C is symmetric.

Definition 3 (Installation) An installation of a repository

R = (P,D, C) is a subset I of P , giving the set of packages

installed on a system. An installation is healthy when the

following conditions hold:

• Abundance: Every package has what it needs. For-

mally, for every π ∈ I , and for every dependency

d ∈ D(π) we have I ∩ d 6= ∅.

• Peace: No two packages conflict. Formally, (I × I) ∩
C = ∅.

Definition 4 (Installability and co-installability) A pack-

age π of a repository R is installable if there exists a healthy

installation I such that π ∈ I . Similarly, a set of packages

Π of R is co-installable if there exists a healthy installation

I such that Π ⊆ I .

Note that because of conflicts, every member of a set

X ⊆ P may be installable without the set X being co-

installable.

Example 2 Assume a depends on c, b depends on d, and

c and d conflict. Then, the set {a, b} is not co-installable,

despite each of a and b being installable and not conflicting

directly.

Definition 5 (Dependency closure) The dependency clo-

sure ∆(Π) of a set of packages Π of a repository R is

the smallest set of packages included in R that contains

Π and is closed under the immediate dependency function

D : P(P ) → P(P ) defined as

D(Π) =
⋃

π∈Π

d∈D(π)

d.

In simpler words, ∆(Π) contains Π, then all packages

that appear as immediate dependencies of Π, then all pack-

ages that appear as immediate dependencies of immediate

dependencies of Π, and so on. Since the domain of D is a

complete lattice, and D is clearly a continuous function, we

immediately get (by Tarski’s theorem) that such a smallest

set exists and can be actually computed as follows:

The dependency closure ∆(Π) of Π is:

∆(Π) =
⋃

n≥0

D
n
(Π).

The notion of dependency closure is useful to extract the

part of a repository that pertains to a package or to a set of

packages.

Definition 6 (Generated subrepository) Let R =
(P,D, C) be a repository and Π ⊆ P be a set of

packages. The subrepository generated by Π is the

repository R|Π = (P ′, D′, C ′) whose set of packages

is the dependency closure of Π and whose dependency

and conflict relations are those of R restricted to that

set of packages. More formally we have P ′ = ∆(Π),
D′ : P ′ → P(P(P ′)), π 7→ {d ∩ P ′ | d ∈ D(π)} and

C ′ = C ∩ (P ′ × P ′).

Figure 5 shows the subrepository generated by the pack-

age c of example 1. The dependency closure of c is the set

of package nodes of that subrepository.

We then have the following property, which allows to

consider only the relevant subrepositories when answering

questions of installability.

5



Figure 5. The subrepository generated by

package c. The dependency closure is

{c, g, h, i}.

Proposition 1 (Completeness of subrepositories) A

package π is installable w.r.t. R if and only if it is

installable w.r.t. R|π .

The desirable property that we want to ensure over a

repository R is the following:

Definition 7 (Trimmed repository) A repository R is

trimmed if every package π ∈ R is installable with respect

to R itself.

The intuition is that if a repository is not trimmed, then

it contains packages that cannot be installed in any config-

uration: these packages behave as if they were not part of

the repository. This means that either they should not be

actually there or there is some a problem in their metadata

specification that should be corrected.

In the following sections we show how we have formal-

ized the Installability problem using two approaches: Con-

straint Programming and SAT.

3.1 Encoding the Installability problem as
a SAT problem

The formalization of installability provided above leads

quite naturally to an encoding as a boolean satisfiability

problem. Each package becomes directly a boolean variable

whose value indicates whether that particular version of a

unit is installed or not. The constraint relationships become

immediately boolean formulae over the package variables,

using just the logical connectives →,∧,∨. A package is in-

stallable if and only if the corresponding boolean formula is

satisfiable, as can be checked using any SAT solver.

3.2 Encoding the Installability problem as
a CP problem

We can also formulate the installability problem for a

given package in a Debian repository R as a CP problem

over finite domains, but in this case we must start from the

repository before expanding the version relationships.

To simplify the problem by getting rid of the inessen-

tial details related to version comparison algorithms in DEB

or RPM formats, we first preprocess the repository and re-

place version strings by integer as follows: for each unit

u, collect all of its mentioned version strings v, and order

them accordingly to the appropriate, format specific, com-

parison algorithm; then replace each occurrence of u op v

by u opnv , where nv is the position of v in the increasingly

ordered sequence of versions of u. In other terms, we sim-

ply project over an initial segment of the integers starting at

1 the order structure of the versions of each package. This

does not change the nature of the constaint problem, but re-

duces it to a problem over the Integer domain, for which

solvers are more easily available.

We then build a constraint satisfaction problem over a

finite domain by constructing a set of constraints Rc out of

R as follows:

Variables and domains: For each unit u in the repository

R, we introduce a finite domain variable, with domain

equal to the set of available versions of the unit present

in the repository, plus one special value 0 denoting the

fact that no version of the unit is installed. We add the

constraint Xu ∈ {0, v1, . . . , vk} to Rc.

Constraints We add constraints to Rc that encode the de-

pendency information associated to each package π =
(u, v) ∈ R as follows. If R contains a dependency for

π = (u, v) of the form

Depends : (u1
1 op1

1 v1
1 ∨ · · · ∨ ur1

1 opr1

1 vr1

1 )
∧ · · · ∧ (u1

s op1
s v1

s ∨ · · · ∨ urs

s oprs

s vrs

s ).

we introduce the constraint

(Xu = v) ⇒ (Xu1

1

op1
1 v1

1 ∨ · · · ∨ Xr1

u1
opr1

1 vr1

1 )

∧ · · · ∧ (Xu1
s

op1
s v1

s ∨ · · · ∨ Xu
rs
s

oprs

s vrs

s )

If R contains a conflict for π = (u, v) of the form

Conflicts : (u1
1 op1

1 v1
1 ∨ · · · ∨ ur1

1 opr1

1 vr1

1 )
∧ · · · ∧ (u1

s op1
s v1

s ∨ · · · ∨ urs

s oprs

s vrs

s ).

we introduce the constraint

(Xu = v) ⇒
(Xu1

1

compl(op1
1) v1

1 ∧ · · · ∧ Xr1

u1
compl(opr1

1 ) vr1

1 )

∨ · · · ∧ (Xu1
s

compl(op1
s) v1

s ∧ · · · ∧ Xu
rs
s

compl(oprs

s ) vrs

s )

where compl(op) is the operation opposite to op (e.g.,

compl(>>) is <=, etc.)

Notice that, in the encoding above, if we encounter a

package name with no version constraint (so we find just u

instead of u >> 3, for example), we simply produce Xu >

0 as the encoding. It is now possible to prove the following:

6



Proposition 2 A package π = (u, v) is installable in the

repository R if and only if the constraint Xu == v is com-

patible with Rc.

Hence, to check installability of a package u, v in a

repository R, we can pass the constraint set Rc to any CP

solver and ask whether Xu = v is satisfiable. We can also

simply ask whether there exist a version of a unit that is

installable, by asking whether Xu > 0 is satisfiable.

4 The framework

We have developed a framework that can be used by a

distribution editor to asses the quality of its distribution

and to track problems concerning the underlying package

repository (i.e., broken packages in non trimmed reposito-

ries). Actually we have two distinct sets of tools (Figure

6): a set of independent elements (i.e.,the toolchain) that

executes the analysis by incrementally processing the data

collected from a repository; and A very specialized tool that

does the analysis in one step.

The rationale for having these two sets of tools is that

we want to be able to use the data for other kind of analy-

ses as well. Having a modularized toolchain enables us to

reuse part of it even for other purposes. On the other hand,

having a specialized, small and efficient tool that performs

this particular kind of analysis is good for those distribution

editors that do not need other kind of features.

Moreover, having plenty of independent tools that exe-

cute the same kind of analysis allowed us to validate the

whole approach by comparing the results obtained from

these different sources.

In the following we describe each element of our frame-

work.

4.1 Ceve

Ceve, the first element of the toolchain, is a generalized

package parser. It can read several package formats (most

importantly RPM and DEB packages and distributions), but

also the XML rpm-metadata format [24]), and output their

metadata in several different formats, of which the most im-

portant is the EGraph format described in the next section.

Ceve is written in OCaml, and it uses the CDuce [22] lan-

guage for XML input and output.

The function of Ceve in the toolchain is that of parsing

package metadata from all sorts of formats into one com-

mon format (the EGraph format). Since there are many dif-

ferences between the various package formats, Ceve can-

not simply read metadata and output them; the data has to

be manipulated. The most notable example of this is RPM

dependencies; RPM cannot declare dependencies on other

packages directly, but only by way of features, as explained

in section 2. Ceve can resolve these indirect dependencies,

so that if package A declares a dependency on feature F ,

and feature F is provided by packages B and C, in the out-

put package A will need either package B or package C.

Also, packages that install different files in the same loca-

tion conflict with each other, but this is not explicitly de-

clared; Ceve can explicitly add these conflicts to the output.

4.2 The EGraph file format

The EGraph file format is a package-format agnostic

representation of the information that is encoded in the

packages stored in a package repository. It is based on the

XML [9] language and in particular it complies with the

GraphML [8] specification. This intermediate format has

been conceived in order to have a common and uniform rep-

resentation of the metadata that can be used as input by all

the tools of our framework, without having to develop a fil-

ter for each package format.

The GraphML format is well suited for this purpose be-

cause the dependency relationships among packages are

easily represented by using graphs and, moreover, it can be

extended in order to accommodate other significant meta-

data.

The EGraph format is an effort for proposing a new

metadata format that can complement and extend the ex-

isting metadata specified at the package level in order to

perform more complicated and effective checking on pack-

age repositories [10].

4.3 EDOSLib

EDOSLib is a library which provides the foundation of

some tools that are used in the framework. In particu-

lar EDOSLib implements: an object model for represent-

ing package repositories information and their structure; a

set of functionalities to explore manage the package repos-

itory struture (e.g., extracting subrepositories and depen-

dency closures); EGraph input/output functionalities.

4.3.1 ProblemGenerator

ProblemGenerator is an EDOSLib-based preprocessor that

takes as input the EGraph format representing a package

repository and gives an encoding of the installability prob-

lem in order to verify if the repository is trimmed or not. In

particular ProblemGenerator performs three steps: i) Ex-

tract the package subrepository underlying the dependency

closure for each package that has to be analyzed. ii) Map

the standard package version numbers to integers, as men-

tioned in Section 3; iii) Expands all the reference to virtual

packages by substituting them with actual package names

and versions.

7



Figure 6. The framework

The output is in the format suitable to be processed by

the solvers that will perform the actual verification.

4.3.2 Explorer, Statistics and Visualizer

These are three complementary tools that can be useful for

exploring the package repository, giving a help in navigat-

ing through the intrinsic complexity of it. In particular Ex-

plorer offers a command line interface to the functionali-

ties provided by EDOSLib (e.g., dependency closures ex-

traction, package metadata exploration, etc.). Statistics ex-

tract some useful metric with respect to the complexity of

the package repository (e.g., number of dependencies, aver-

age closure sizes, etc.). Finally, Visualizer is a graph visu-

alization tool that allows the distribution editor to visually

navigate the package repository through its graphical repre-

sentation. Even though these tools are not really part of the

analysis engine, they provide a useful aid when it comes to

navigate the package repository in order to track down the

problems discovered by the actual analysis.

4.4 SAT/FGrasp Solver

The SAT/FGrasp solver takes as input the encoding of

an installability problem as produced by ProblemGenera-

tor and translates it to a boolean formula as outlined in

section 3.1. After conversion to conjunctive normal form,

the formula is fed through the FGrasp SAT solver from

T. U. Lisbon. This solver can return a minimal set of as-

signments that satisfy the formula, which the SAT/FGrasp

tool translates back into minimal lists of packages that need

to be installed to enable the installation of the initial pack-

age. The SAT solving is reasonably efficient, taking less

than 1 second on the hardest installability problems.

4.5 CP/Mozart-Oz Solver

The CP/Mozart-Oz Solver translates the output of Prob-

lemGenerator to a CP problem as described in section 3.2,

then solves it using a solver written in the Mozart-Oz lan-

guage [5] . The solver uses a custom branch-and-bound

strategy programmed in Oz itself. While effective on small

to medium-sized installability problems, the solver tends to

exhibit exponential divergence on large problems.

4.6 DEB/RPMCheck

The debcheck and rpmcheck utilities are separate from

the toolchain. They take as input a package repository and

check whether one, several or all packages in the repository

are installable with respect to that repository. Both utili-

ties are based on the SAT encoding of section 3.1 and ex-

ploit a customized Davis-Putnam SAT solver [11]. Since

all computations are performed in-memory and some of the

encoding work is shared between all packages considered,

the debcheck and rpmcheck are significantly faster than

the SAT/FGrasp tool for checking the installability of all

packages of a repository.

5 Experimental results

In this section we show some experimental results that

we have gathered by analyzing with our tools two of

the most famous GNU/Linux-based distributions: Debian

GNU/Linux [2] and Mandriva Linux [4].

The reference package repositories are a snapshot of the

complete Debian pool located at http://ftp.debian.

org/pool and the packages distributed with the Mandriva

2006 Edition.

Out of the 4211 packages in the main part of

the Mandriva 2006 distribution, 42 are not instal-

lable. In 38 cases, this is due to a dependency

that is not available; in the case of four packages,

mozilla-thunderbird-enigmail-{de,es,fr,it}, the

problem is a simultaneous dependency and conflict with the

package mozilla-thunderbird-enigmail.

The Debian pool snapshot contains 34701 packages, de-

scribed in a Debian Control File [23] of almost 30Mb

of metadata defining, among other things, almost 200.000

package relationships (dependencies and conflicts). Insert-

ing new information that can possibly break the consistency

8



of the pool and finding what is the source of the problem

that lead to that is a difficult task if not supported by auto-

matic tools for the analysis.

Figure 7 shows an excerpt of the output generated by

our debcheck tool after the analysis of the previously de-

scribed Debian pool snapshot. The result of this analysis is

that for 123 packages there are no possible way to install

them. In particular, 111 of them are not installable because

of a missing dependency (i.e., there is no package available

in the pool that could satisfy a dependency relationship).

The other 12 are more interesting: they are not installable

because the specified dependency relationships induce an

unavoidable conflict.

For example, the package cacti-cactid version

0.8.6e-2 depends on libsnmp5, version 5.2.1.2 or greater;

but the only appropriate version of libsnmp5 in the pool,

5.2.1.2-2, conflicts with all versions of cacti-cactid up

to and including 0.8.6e-2. In this case either there is some

problem in the specification of the package relationships or

there are some packages that have been removed from the

pool (e.g., other versions of libsnmp5) leaving it in an in-

consistent state.

Such kind of information gives the distribution editor a

better understanding of what is going on when performing

operations on the package metadata or on the repositories.

cacti-cactid (= 0.8.6e-2): FAILED

The following constraints cannot be satisfied:

cacti-cactid (= 0.8.6e-2)

conflicts with libsnmp5 (= 5.2.1.2-2)

cacti-cactid (= 0.8.6e-2)

depends on libsnmp5 (>= 5.2.1.2)

{libsnmp5 (= 5.2.1.2-2)}

Figure 7. Excerpt of the debcheck output on

the Debian pool packages

The processing speed6 is very encouraging and this

makes the tools a valid and effective aid to the distribution

editor. Checking the Mandriva package repository took 55

seconds with the SAT solver and 8 seconds with the stan-

dalone rpmcheck tool. Checking the Debian pool snapshot

took 18 minutes and 13 seconds with the SAT solver and

43 seconds with the standalone debcheck tool. The tim-

ing difference is largely due to the fact the rpmcheck and

debcheck tools parse the package metadata only once and

produce the constraints associated to all the package satis-

fiability problems in a single run, while the toolchain gen-

erate one distinct subproblem, and calls the generic SAT

solver, for each package.

6The machine used for the tests is a single-processor Intel Xeon 3.4

GHz machine running Mandriva Linux

6 Related work

Our work is related to what has been called Software

Release Management [25], i.e., the process through which

software is made available and obtained by the final users.

While our goal was not to address the problem pertaining

to physical distribution7 our efforts have been directed in

providing tools that can improve the quality of the Software

Release Management.

There is a significant literature on the problem of man-

aging dependencies between components: [20, 19] propose

techniques that are actually implemented in tools like [18].

But most of these approaches are targeted at designing

component systems, with a clear top-down process typi-

cal of a software architecture viewpoint, while the compo-

nent systems we have to handle come from the huge pre-

existing infrastructures and legacy systems (e.g. well estab-

lished GNU/Linux distributions) that have been conceived

without having such a kind of architectural specifications in

mind.

Our long term goal is to integrate these systems by

abstracting and enriching their features while maintaining

backward compatibility. For example by proposing ex-

tensions to the dependency specification that enables the

checking of more sophisticated properties as in [27, 28]

On the algorithmic side, an interesting work is [7], that

uses adjacency matrices to represent different kinds of de-

pendency graphs. By performing operation on these matri-

ces it is possible to verify some kinds of properties related to

the evolution of the system (e.g., the number of components

that are required if a given component has to be reused).

Notice though that in all the approaches just mentioned,

the notion of conflict is not taken into account, as we do in

ours. This makes all these approaches not suitable in a con-

text, like the one we have analyzed, where conflicts are an

essential (and complex) part of the dependency requirement

specification.

A more similar work is [26] that uses feature diagrams

to model dependencies and configurations, and BDD algo-

rithms to perform automated checking of model properties.

Finally, there is a wealth of largely used tools in the

Free Software Community, known as meta-package man-

agers [17, 14, 13] that are clearly the most similar in spirit

to what we have developed here, as they are able to explore

the dependency requirements of a given package and per-

form all the steps needed to correctly install it by automat-

ically finding the missing dependent packages, download-

ing and, finally, installing them, taking into acocunt depen-

dencies and conflicts. The essential difference between our

tools and those meta-package manager is that meta-package

manager try to optimize the installation of packages on a

7Notice though that this is a problem addressed by other workpackages

of the EDOS Project.

9



user machine, which is a task radically different, and in

principle much more difficult than veryfying that a repos-

itory does not contain broken packages. As a consequence,

many of these tools contain specific heuristics that make

them incomplete (some packages are actually reported bro-

ken while they are installable), while those tools, like Smart,

that strive to be complete are unacceptably inefficient when

used to verify installability. And none of them has a formal

basis.

7 Conclusions

In this paper we have presented our approach and the

framework we have developed for managing the complex-

ity and improving the quality of large package based FOSS

systems. The approach has been validated by implement-

ing two different set of tools that report the same results.

By applying our automatic analysis on two of the most pop-

ular Linux-based distributions (i.e., Debian and Mandriva)

we have been able to spot several problems in their pack-

age repositories that, otherwise, could have been ignored

for longtime. Having this kind of (previously unavailable)

tools is a great help for distribution editors that can use them

in order to track problems in their package bases and, hence,

improve the quality of their distributions.

Our tools are successfully used at Caixa Magica (an

RPM-based distribution editor [1]) and Mandriva in paral-

lel with their standard distribution life cycle phases. Future

work concerns the integration of these tools into their pro-

duction chain, and in other distributions as well. Moreover,

some other work will concern the improvement of the cur-

rent framework, for example, by refactoring it in a more in-

tegrated and user friendly tool and by providing more com-

plex and active analysis.

References

[1] Caixa Magica Linux. http://www.caixamagica.pt.

[2] Debian GNU/Linux. http://www.debian.org.

[3] Distrowatch. http://www.distrowatch.com.

[4] Mandriva Linux. http://www.mandriva.com.

[5] The mozart programming system. http://www.

mozart-oz.org.

[6] E. C. Bailey. Maximum rpm. http://www.rpm.org/

max-rpm.

[7] L. Bixin. Managing dependencies in component-based sys-

tems based on matrix model. In Proceedings of NETObject-

Days’03, 2003.

[8] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and

M. Marshall. Graphml specification, 2002. http://

graphml.graphdrawing.org/specification.html.

[9] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. M. F.

Yergeau. Extensible markup language (xml) 1.0 (third edi-

tion), 2004. http://www.w3.org/TR/REC-xml.

[10] EDOS Project Workpackage 2 Team. Deliverable 1,

2005. http://www.edos-project.org/xwiki/bin/

Main/Deliverables.

[11] N. Eén and N. Sörensson. An extensible SAT-solver. In

E. Giunchiglia and A. Tacchella, editors, Theory and Ap-

plications of Satisfiability Testing, 6th International Con-

ference, SAT 2003. Santa Margherita Ligure, Italy, May 5-

8, 2003 Selected Revised Papers, volume 2919 of Lecture

Notes in Computer Science, pages 502–518. Springer, 2004.

[12] N. LaBelle and E. Wallingford. Inter-package dependency

networks in open-source software. Submitted to Journal of

Theoretical Computer Science, 2005.

[13] Mandriva. URPMI. http://www.urpmi.org, 2005.

[14] G. Niemeyer. Smart package manager. http://labix.

org/smart, 2005.

[15] Opensource.org. Opensource licenses. http://www.

opensource.org/licenses.

[16] E. S. Raymond. The cathedral and the bazaar. http://

www.catb.org/~esr/writings/cathedral-bazaar.

[17] G. N. Silva. Apt-howto. http://www.debian.org/doc/

manuals/apt-howto, 2004.

[18] J. Stafford, D. Richardson, and A. Wolf. Aladdin: A tool for

architecture-level dependence analysis of software systems.

Technical Report CU-CS-858-98, Department of Computer

Science, University of Colorado, 1997.

[19] J. Stafford, D. Richardson, and A. Wolf. Chaining: A soft-

ware architecture dependence analysis technique. Technical

Report CU-CS-845-97, Department of Computer Science,

University of Colorado, 1997.

[20] J. A. Stafford and A. L. Wolf. Architecture-level dependence

analysis in support of software maintenance. In ISAW ’98:

Proceedings of the third international workshop on Software

architecture, pages 129–132. ACM Press, 1998.

[21] C. Szyperski. Component Software: Beyond Object-

Oriented Programming. Addison Wesley Professional,

1997.

[22] The CDuce Team. Cduce. http://www.cduce.org.

[23] The Debian Project. Debian policy manual. http://www.

debian.org/doc/debian-policy/index.html.

[24] The RPM-Metadata Project. Xml package metadata. http:

//linux.duke.edu/projects/metadata.

[25] A. van der Hoek, R. S. Hall, D. Heimbigner, and A. L. Wolf.

Software release management. In ESEC ’97/FSE-5: Pro-

ceedings of the 6th European conference held jointly with

the 5th ACM SIGSOFT international symposium on Foun-

dations of software engineering, pages 159–175. Springer-

Verlag New York, Inc., 1997.

[26] T. van der Storm. Variability and component composition.

In ICSR, pages 157–166, 2004.

[27] M. Vieira and D. Richardson. Analyzing dependencies in

large component-based systems. In ASE’02: Proceedings of

the International Conference of Automated Software Engi-

neering, pages 241–244, 2002.

[28] M. Vieira and D. Richardson. The role of dependencies in

component-based systems evolution. In IWPSE ’02: Pro-

ceedings of the International Workshop on Principles of

Software Evolution, pages 62–65. ACM Press, 2002.

10


