
1/26

Parsing [S]hell

Yann Régis-Gianas and Ralf Treinen

in collaboration with Nicolas Jeannerod

Minidebconf Hamburg, May 18, 2018

2/26

CoLiS : Verification of Debian maintainer scripts

▶ preinst, postinst, prerm, postrm
▶ Executed as root during package installation/removal/upgrade
▶ Must work correctly in different contexts (installed packages)
▶ May modify files in directories created by other packages: emacs,

texlive, . . .
▶ We need automated tools that can analyze these scripts.

3/26

Why Testing May Not Be Enough

Date: Sun, 18 Mar 2018 14:43:45 -0400
Subject: Bug#893424: Cannot uninstall package

...
Removing sendmail-base (8.15.2-10) ...
rm: cannot remove '/etc/mail/m4': Is a directory

▶ version 8.15.2-10 of sendmail accepted in sid on 2018-01-19
▶ popcon number of sendmail-base: 2953
▶ why wasn’t this bug observed before?

4/26

The origin of bug#893424

▶ The postrm contains
find /etc/mail -maxdepth 1 -size 0 | xargs -r rm

▶ The maintainer has probably assumed that directories cannot have
size 0.

▶ However, the unfortunate user had /etc on a btrfs filesystem, where
directories may have size 0.

▶ Obvious fix: add -type f to the invocation of find.

5/26

So let’s analyze scripts!

▶ Sid, 2016-11-29, amd64, all three areas: 31.832 maintainer scripts:
▶ 296 bash scripts,
▶ 14 perl scripts,
▶ 1 ELF executable,
▶ 31.521 POSIX shell scripts.

▶ So. let us focus on POSIX shell scripts.
▶ The first step of our toolchain: a parser for POSIX shell scripts.

6/26

This talk

How to write a POSIX Shell parser you can trust?

All hope abandon ye who enter here.
– Dante’s Divine Comedy

7/26

Compiler Construction 101

Lexer Parser
TokensCharacters Parse tree

Figure: Parsing “as in the textbook”.

From informal specifications to high-level formal ones

▶ Rewrite the lexical conventions into a Lex specification.
▶ Rewrite the BNF grammar into a Yacc specification.
▶ Being declarative, these specifications are trustworthy.
▶ Code generators, like compilers, are trustworthy too.

8/26

[S]hell specification deciphering
The POSIX Shell specification

▶ POSIX Shell is specified by the Open Group and IEEE.
▶ There is a Yacc grammar in the specification! Hurray!
▶ …but it is “annotated” by side-conditions out of reach of LR(1) parsers.
▶ Besides, the specification is low-level, unconventional and informal…

Horror!

After careful analysis, we understood that the [S]hell language “enjoys”:

▶ a parsing-dependent, “shell nesting”-dependent lexical analysis ;
▶ an ambiguous and even undecidable problem (if alias is used) ;
▶ a lot of irregularities.

The forthcoming examples illustrate (very few of) these problems.

9/26

Token recognition

Unconventional lexical conventions

▶ In usual specifications, regular expressions with a longest-match
strategy describe how to recognize the next lexeme in the input.

▶ The Shell specification uses a state machine which explains instead
how tokens must be delimited in the input.

▶ The Shell specification tells us how the delimited chunks of input must
be classified into two categories of “pretokens”: words and operators.

▶ The meaning of newline characters depends on the parsing context.
▶ The meaning of escaping sequences depends on the nesting of

subshells and double-quotes.

10/26

Example of token recognition

1 BAR='foo'"ba"r
2 X=0 echo x$BAR" "$(echo $(date)) && true

▶ Line 1 contains only one word.
▶ Line 2 contains four words and one operator.

This token recognition logic impacts the style of Lex specifications.

11/26

What does this newline mean?
Newline has four different meanings

1 $ for i in 0 1
2 > # Some interesting numbers
3 > do echo $i \
4 > + $i
5 > done

▶ On Lines 1 and 4, \n is a token.
▶ On Line 2, \n is ignored as part of a comment.
▶ On Line 3, \n is a line-continuation.
▶ On Line 5, \n is a end-of-phrase marker.

Some newline characters - but not all - occur in grammar rules.

12/26

Do you want to escape?
Quiz
In dash, which is the command that outputs \\?

1 echo "\\\"
2 echo "\\\\"
3 echo "\\\\\\"

Six backslashes are needed to achieve proper escaping! and what about:

1 echo `echo "\\\\\\"`

?
dash: 1: Syntax error: Unterminated quoted string

Escaping depends on the nesting of subshells and double quotes.

13/26

Which exact token is that?

Promotion of words

▶ The grammar specification is not defined in terms of words and
operators, which are actually pretokens, but with respect to a more
refined set of tokens.

▶ Hence, words must sometimes be promoted into:
▶ Assignment words, e.g. X=foo.
▶ Reserved words, e.g. if, for, etc.

▶ This promotion depends on the parsing context.

14/26

Promotion of a word to a reserved word

1 for do in for do in echo done; do echo $do; done

▶ The first for is a reserved word, the second one is a word.
▶ The first and second do are words, the third one is a reserved word.
▶ The first in is a reserved word, the second one is a word.

A word is promoted to a reserved word if the parser expects it here.

15/26

Forbidden positions for specific reserved words

1 else echo foo

▶ else is not allowed here, even as a regular word!
▶ Thus, /bin/else is not a good naming choice for your next tool…

These irregularities constrain the parser with adhoc side-conditions.

16/26

alias aka “decidability breaker”

Icing on the cake

1 if ./foo; then
2 alias mystery="for"
3 else
4 alias mystery=""
5 fi
6 mystery i in a b; do echo $i; done

▶ This script has a syntax error, or not! ./foo decides!

This makes static parsing of script files undecidable!
(Yes, parsing depends on evaluation!)

17/26

Does this talk even exist?

How to write a POSIX Shell parser you can trust?

18/26

Forget your textbooks! This is real world!

Existing implementations

▶ Existing implementations are not following the textbook architecture.
▶ The parser of Dash is made of∼ 1600 lines of hand-crafted C.
▶ The parser of Bash is based on a Yacc grammar (entirely different from

the standard) extended with an extra∼ 5000 lines of C.

19/26

Just a glimpse of Dash parser
1 case TFOR:
2 if (readtoken() != TWORD || quoteflag || ! goodname(wordtext))
3 synerror("Bad for loop variable");
4 n1 = (union node *)stalloc(sizeof (struct nfor));
5 n1->type = NFOR;
6 n1->nfor.linno = savelinno;
7 n1->nfor.var = wordtext;
8 checkkwd = CHKNL | CHKKWD | CHKALIAS;
9 if (readtoken() == TIN) {
10 app = ≈
11 while (readtoken() == TWORD) {
12 n2 = (union node *)stalloc(sizeof (struct narg));
13 n2->type = NARG;
14 n2->narg.text = wordtext;
15 n2->narg.backquote = backquotelist;
16 *app = n2;
17 app = &n2->narg.next;
18 }
19 *app = NULL;
20 n1->nfor.args = ap;
21 if (lasttoken != TNL && lasttoken != TSEMI)
22 synexpect(-1);
23 } else {
24 [...]
25 }
26 checkkwd = CHKNL | CHKKWD | CHKALIAS;
27 if (readtoken() != TDO)
28 synexpect(TDO);
29 n1->nfor.body = list(0);
30 t = TDONE;
31 break;

20/26

My feelings

Not the kind of code I would like to maintain (and to trust)

21/26

Open your (advanced) textbooks again!

Lexer Parser
Tokens

LexerPrelexer Parser
Pretokens

Tokens

State

Figure: Another modular architecture for parsing.

22/26

Morbig, amodular parser for POSIX Shell scripts written in OCaml

Key implementation aspects

▶ Yacc grammar is a cut-and-paste from the standard.
(minus 5 shift/reduce conflicts)

▶ Our prelexer is generated by a ”standard” ocamllex specification.
▶ We crucially rely on the purely functional and incremental parsers

produced by Menhir, an LR(1) parser generator for OCaml.

Key parsing techniques (thanks to Menhir)

▶ Speculative parsing to promote words to reserved words.
▶ Longest-prefix parsing to handle nesting subshell parsing.
▶ Parameterized lexers to deal with contextual-depencencies.
▶ Parser state introspection to handle irregularities modularly.

23/26

Menhir functional and incremental parsing interface

▶ Usually, parser generators produce a function of type:

1 parse : lexer -> ast

▶ Menhir has an alternative signature, roughly speaking of type:

1 parse : unit -> 'a checkpoint

where

1 type 'a checkpoint = private
2 | InputNeeded of 'a env
3 | Shifting of 'a env * 'a env * bool
4 | AboutToReduce of 'a env * production
5 | HandlingError of 'a env
6 | Accepted of 'a
7 | Rejected

24/26

Menhir functional and incremental parsing interface

▶ The incremental interaction with the parser is done through:

1 val offer:
2 'a checkpoint
3 -> token * position * position
4 -> 'a checkpoint

to provide the parser with only one token at a time ; and

1 val resume: 'a checkpoint -> 'a checkpoint

to let the parser realizes a single step of analysis.
▶ The entire parser state is encapsulated in the checkpoint.
▶ Backtracking is transparent: it is a mere restart from a checkpoint.

25/26

Conclusion

Morbig

▶ A standalone program morbig and a library.
▶ Turn a shell script into a syntax tree, represented in JSON.
▶ Successful parsing of 31521 Debian scripts (≃9s on my laptop)

Do we trust Morbig (yet)?

▶ Of course NO!
▶ Our goal is to reach a state where:

▶ there is a as-clearest-as-possible mapping between spec. and code ;
▶ our understanding of POSIX Shell is made explicit by a readable code.

26/26

Thank you for your attention
and sorry for the nightmares!

Wait for the release in June, then be brave enough to try it:

https://github.com/colis-anr/morbig

“If you are going through [s]hell, keep going.” – Winston S. Churchill

https://github.com/colis-anr/morbig

27/26

Other tricks
Here-documents

▶ Switching between two lexers is easy in incremental mode.
▶ We ”back-patch” semantic values of WORDs once here-documents are

entirely parsed. (Yes, using references.)

Newlines

▶ Our lexer may produce one or more tokens at each (pre)lexing step.
▶ A buffer synchronizes prelexer and parser.
▶ Some newlines are manually ignored depending on parsing context.

Alias

▶ No magic bullet about alias since we refuse to embed an interpreter.
▶ We only accept toplevel aliases.

28/26

What I did not talk about, the secret monsters

Escaping

▶ Shell escaping sequences are ”interesting”.
▶ A well-chosen nesting of $(...) and `...` requires an exponential

number of backslashes.

Parsing a script

▶ EOF in the grammar does not mean end-of-file.
▶ It means end-of-phrase.
▶ The specification forgets to say something about empty scripts.

29/26

More monsters

The syntax of the shell command language has an ambiguity for
expansions beginning with ”$((”, which can introduce an
arithmetic expansion or a command substitution that starts with
a subshell. Arithmetic expansion has precedence; that is, the shell
shall first determine whether it can parse the expansion as an
arithmetic expansion and shall only parse the expansion as a
command substitution if it determines that it cannot parse the
expansion as an arithmetic expansion.

Arithmetic expressions

This is not yet implemented.

30/26

1 let accepted_token checkpoint token =
2 match checkpoint with
3 | InputNeeded _ ->
4 close (offer checkpoint token)
5 | _ ->
6 false
7

8 let rec close checkpoint = match checkpoint with
9 | AboutToReduce _ -> close (resume checkpoint)
10 | Rejected | HandlingError _ -> false
11 | Accepted _ | InputNeeded _ | Shifting _ -> true

31/26

Comments

Recognition of comments

▶ # is not a delimiter.
▶ Therefore, there is no comment in the following phrase:

1 ls foo#bar

▶ but there is one here:

1 ls foo #bar

32/26

Here documents

Here-documents recognition is non-local

1 cat > notifications << EOF
2 Hi $USER,
3 Enjoy your day!
4 EOF
5 cat > toJohn << EOF1 ; cat > toJane << EOF2
6 Hi John!
7 EOF1
8 Hi Jane!
9 EOF2

▶ The word related to EOF1 is recognized several tokens after the
location of EOF1.

33/26

Promotion of a word to an assignment word

1 CC=gcc make
2 make CC=cc
3 ln -s /bin/ls "X=1"
4 "./X"=1 echo

34/26

Speculative parsing

1 let recognize_reserved_word_if_relevant =
2 fun checkpoint pstart pstop w ->
3 try
4 let kwd = keyword_of_string w in
5 let kwd' = (kwd, pstart, pstop) in
6 if accepted_token checkpoint kwd' then
7 return kwd
8 else
9 raise Not_found
10 with Not_found ->
11 if is_name w then
12 return (NAME (CST.Name w))
13 else
14 return (WORD (CST.Word w))

35/26

Constrained parsing
1 | AboutToReduce (env, production) -> begin try
2 if lhs production = X (N N_cmd_word)
3 || lhs production = X (N N_cmd_name) then
4 match top env with
5 | Some (Element (state, v, _, _)) ->
6 let analyse_top = function
7 | T T_NAME, Name w when is_reserved_word w
8 | T T_WORD, Word w when is_reserved_word w ->
9 raise ParseError
10 | _ -> assert false
11 in
12 analyse_top (incoming_symbol state, v)
13 | _ -> assert false
14 else
15 raise Not_found
16 with Not_found -> parse (resume checkpoint)
17 end

	Appendix

