Simulateur du logiciel embarqué sur le nano-satellite IGOsat

Projet du module
« Programmation Synchrone »
À rendre le 12 décembre 2014

_

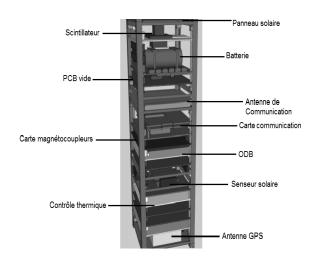
Projet IGOsat

Objectifs:

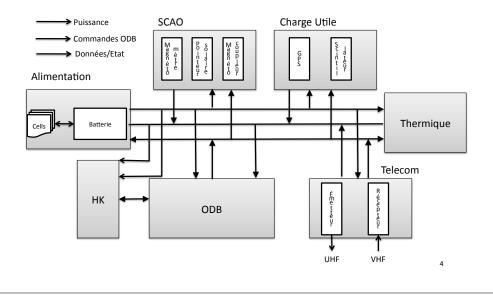
- Concevoir un nano-satellite capable de réaliser des mesures et de les communiquer à la Terre.
- Former les étudiants en sciences à la problématique du spatial.

Calendrier:

2012-2013 : phase « faisabilité technique »
2013-2014 : phase « conception préliminaire »


2014-2016 : phase « conception détaillée »2016-2017 : modèles de qualification et test

– 2018 : lancementRéférence : igosat.fr


2

Architecture physique

Architecture logicielle

Objectif de ce projet

- Modéliser le module d'alimentation.
 - Batterie
 - Panneaux solaires (cells)
- Modéliser des parties de l'environnement hardware et logiciel pour simuler et vérifier ce module
 - ≡ clore l'environnement du module
 - ODB (dpdv alimentation)
 - Autre modules (dpdv alimentation)
- Compléter la spécification détaillée existante

MODULE ORDINATEUR DE BORD

6

Module ODB+HK

- Ordinateur de bord (ODB) assure les tâches :
 - 1. Gestion des modes de fonctionnement
 - off, cailloux, sécurité, survie, plateforme, mission
 - 2. Contrôle des données HouseKeeping (HK)
 - Pour détecter alarmes et avaries
 - 3. Mémorise les données des charges utiles
 - Mesure des électrons et des photons gamma au niveau de l'orbite du satellite, en fonction de l'activité solaire, en utilisant 2 scintillateurs et 1 photo-x
 - Estimation de la densité des électrons libres en utilisant un récepteur GPS
 - 4. Interprète les données SCAO pour contrôle attitude (= orientation du satellite sur son orbite)

Modes de fonctionnement

- Mode OFF (au lancement)
- Mode cailloux (MC)
 - Récupérer de l'énergie
- Mode sécurité (MD)
 - Préparation fonctionnement nominal
- Mode survie (MS)
 - Récupérer de l'énergie
 - Correction d'attitude
- Mode plateforme (MP)
 - Récupérer de l'énergie
 - Correction d'attitude
 - Emission des données vers la station au sol
- Modes mission (MM1, MM2, MM3)
 - Récupérer de l'énergie
 - Correction d'attitude
 - Emission des données vers la station au sol
 - Mesures réalisées par la charge utile (scintillateur et/ou GPS)

Diagramme modes hors mission

Mode OFF

- Au lancement, aucune activité

Mode Caillou (MC)

- Après lancement ou si besoin de consommation limitée
- Recharge batterie
- ⇒Vers MD si état nominal

Mode sécurité (MD)

- Préparation fonctionnement normal
- Sans recharge batterie
- ➤ Vers MS si batterie basse
- → Vers MP si batterie chargée

Mode survie (MS)

- Recharge batterie
- → Vers MP si attitude correcte (SCAO)
- ⇒Vers MD si alarme batterie ou commande sol toMD
- ⇒Vers MC si problème SCAO
- ⇒Vers MM; si commande sol toMMi

Mode plateforme (MP)

- Entre deux zones de mesures
- Recharge batterie
- ⇒Vers MD si problème émetteur (Télecom)
- ⇒Vers MC si problème SCAO
- ⇒Vers MS si batterie basse
- ⇒ Vers MM, si commande sol toMMi

Diagramme modes mission

Mode Mission i (MMi)

- Scintillateur en marche (i=1 ou i=3)
- GPS en marche (i=2 ou i=3)
- Recharge batterie
- ⇒ Vers MD si problème émetteur (Télécom) ou commande sol toMD
- ⇒Vers MS si batterie basse
- → Vers MP si problème mémoire pleine (ODB)
- Vers MM_i (j≠i) si commande sol toMM_i

10

Modes et Modules

Module	Sous-module	МС	MD	MS	MP	MM1	MM2	ммз
ODB+HK		ON						
Alim		ON						
SCAO		OFF	ON	ON	ON	ON	ON	ON
Thermique		ON						
Telecom	Emetteur	OFF	OFF	OFF	ON	ON	ON	ON
	Récepteur	ON						
Charge Utile	Scintillateur	OFF	OFF	OFF	OFF	ON	OFF	ON
	GPS	OFF	OFF	OFF	OFF	OFF	ON	OFF

Opérateur ODB (1/2)

• En entrée :

- « status » un tableau de 6 booléens, indexé par les modules (ODB, Alim, SCAO, Therm, Telecom, CHU) et qui indique, pour chaque module, si état nominal (true) ou problème (false)
 - pour la batterie, le problème indique une batterie avec capacité basse
- « powLoad » un entier indiquant la puissance disponible de la batterie, déclenche une alarme batterie si < PowMinAlarm (voir opérateur Batterie)
- « cmdSol », de type énuméré, ayant 4 valeurs (toMD, toM1, toM2, toM3) qui correspondent aux commandes que la station au sol communique au satellite

• En sortie :

- « mode », de type énuméré ayant comme valeurs MOFF, MC, MD, MS, MP, MM1, MM2, MM3

Opérateur ODB (2/2)

- 1 Développer l'opérateur « ODB ».
- 2 Valider cet opérateur par simulation.
- 3 Ecrire l'observateur de la propriété :

Prop-ODB-1: après une alarme batterie, le système passe en mode MD.

4 Ecrire l'observateur de la propriété :

Prop-ODB-2: après un problème émetteur et si la batterie est chargée, le système passe en mode MS.

5 Vérifier ces deux propriétés sur votre opérateur.

MODULE ALIMENTATION

14

Module Alimentation

- Batterie
 - Délivre à la demande de chaque module, à chaque cycle, une certaine puissance (u.p. = 125 mW)
 - Caractéristiques :
 - Puissance max PowMax = 720 u.p.
 - Puissance min à plat PowMinPlat = 1/2 PowMax
 - Puissance min alarme PowMinAlarm = 1/3 PowMax
 - Puissance max livrable = PowMax PowMinPlat
 - Quand la PowMinPlat est atteint, mode survie
 - Se charge grâce à 14 panneaux solaires
 - Se décharge suite aux demandes et si événement aléatoire
- Panneau solaire
 - Charge en fonction de l'attitude du satellite par rapport au soleil et du mode, CellN = 8 u.p. à chaque u.t.

Opérateur Batterie (1/3)

- Une batterie délivre à la demande un nombre d'u.p. pour alimenter plusieurs modules.
- En entrée :
 - « reqPower » de type tableau de 6 entiers, indexé par les modules (ODB,Alim,SCAO,Therm,Telecom,CHU), correspondant au nombre d'u.p. à délivrer pour chaque module
 - « cellsPower » de type tableaux de 14 entiers, correspondant au nombre d'u.p. chargées à partir de chaque panneau
 - « lostPower » de type entier, correspondant au nombre d'u.p. qui peuvent être perdues à cause de conditions de température ou d'un événement aléatoire
- En sortie:
 - « delPower » de type tableau de 6 entiers qui indique la puissance délivrée pour chaque module
 - « powLoad » de type entier indique la puissance disponible

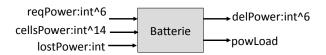
16

15

Opérateur Batterie (2/3)

- A chaque cycle :
 - les panneaux solaires chargent la batterie
 - Si la puissance requise est disponible tout en restant ≥ PowMinAlarm, la batterie délivre les puissances requises et la batterie se décharge d'autant.
 - Sinon, la puissance délivrée est nulle pour tous les modules sauf l'ODB et Alim.
 - La batterie peut être déchargée instantanément de lostPower.
 - La nouvelle puissance disponible est calculée en sortie powLoad.
- Au lacement, i.e., mode OFF, la batterie est complètement chargée.

17

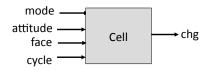

Opérateur Cell (1/2)

- Les 14 panneaux solaires sont identiques :
 - 3 cellules sur chaque face « longue »
 - 2 cellules sur la face « étroite », opposée à l'antenne
- En entrée :
 - « attitude » un booléen qui indique si le satellite est exposé au soleil ou non
 - « mode » une valeur de type énumérée
 - « face » un entier entre 0..4 qui indique la face (longue 0..3, étroite
 4) sur laquelle le panneau se trouve
 - « cycle » un entier qui prends des valeurs de 0..3
- En sortie :
 - « chg » un entier qui est
 - soit 0 : si attitude en éclipse de soleil soleil (false) ou mode sans charge ou face entre 0..3 et face<>cycle
 - soit CellN = 8 u.p.: si attitude au soleil (true), mode avec charge et (cycle = face ou face=4)

Opérateur Batterie (3/3)

- 6 Développer l'opérateur « Batterie ».
- 7 Valider cet opérateur par simulation.
- 8 Ecrire l'observateur de la propriété :

 *Prop-pow-1 : la charge de la batterie est entre PowMinAlarm et PowMax u.p.
- 9 Vérifier cette propriété sur votre opérateur.
- 10 Quelle assertion sur les entrées assure la satisfaction de cette propriété sur votre opérateur ?


18

Opérateur Cell (2/2)

- 11 Développer l'opérateur « Cell ».
- 12 Valider cet opérateur par simulation.
- 13 Ecrire l'observateur de la propriété :

Prop-pow-2: la charge délivrée par Cell est nulle en MC.

14 Vérifier cette propriété sur votre opérateur.

Ferme solaire

- 15 Développer l'opérateur générique « CellFarm » qui regroupe n = 4 * k + 2 cellules solaires sur les 5 faces.
- 16 Valider cet opérateur par simulation pour n=14 (k=3).
- 17 Ecrire l'observateur de la propriété :

Prop-pow-3: la charge délivrée par CellFarm est nulle en MC.

18 Vérifier cette propriété sur votre opérateur.

21

Opérateur Environnement (1/2)

- Opérateur utilisé pour clore le système (ODB+HK, Batterie, CellFarm), donc une abstraction des modules non modélisés.
- En entrée :
 - « mode » qui lui indique l'état du système au cycle précédent
 - « delPow » un tableau de 6 booléens qui indique la puissance délivrée à chaque module (ODB, Alim, SCAO, Therm, Telecom, CHU) au cycle précédent
- En sortie:
 - « reqPow » un tableau de 6 entiers qui indique la puissance demandée pour chaque module (ODB, Alim, SCAO, Therm, Telecom, CHU) calculé cf. tableau suivant
 - « status » un tableau de 6 booléens qui indique l'état de chaque module (ODB, Alim, SCAO, Therm, Telecom, CHU) – nominal (true) ou problème (false)

ENVIRONNEMENT

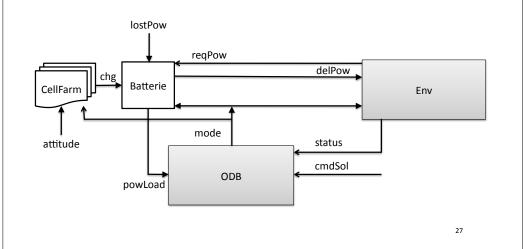
22

Consommation Modules

Module	Sous-module	Consommation reqPow u.p. en ON
ODB+HK		4 u.p. ≅ 450 mW
Alim		1 u.p. = 125 mW
SCAO		10 u.p. ≈ 1,5 W
Thermique		10 u.p. ≈ 1,5 W
Telecom	Emetteur	4 u.p. ≈ 500 mW
	Récepteur	1 u.p. = 125 mW
Charge Utile	Scintillateur	4 u.p. ≅ 500 mW
	GPS	10 u.p. ≈ 1,1 W
TOTAL		44 u.p.

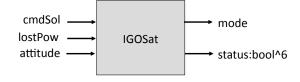
Environnement (2/2)

- 19 Développer l'opérateur «Env».
- 20 Valider cet opérateur par simulation.



25

SYSTÈME FINAL IGOSAT


26

Architecture modélisée

Système final

- 21 Développer l'opérateur «IGOSat».
- 22 Valider cet opérateur par simulation.

