

Games are continuation models!

On Blass phenomenon, duality and polarized linear logic

(work in progress)

Paul-André Melliès

CNRS — Université Paris 7 Jussieu

in collaboration with Peter Selinger (Stanford U.)

http://www.pps.jussieu.fr/~mellies

Explain Blass phenomenon Understand the duality of control Linearize Hyland-Ong games

How? by bridging three lines of research:

- \star Game models.
- $\lambda\mu$ -categories by L. Ong,
- the family construction by S. Abramsky and G. McCusker.
- \star Continuation models.
- continuation categories by Y. Lafont, B. Reus and T. Streicher.
- $\otimes \neg$ -categories by H. Thielecke,
- control categories by P. Selinger.
- ★ Linear logic.
- LC by J-Y. Girard,
- Polarized linear logic by O. Laurent.

Polarized linear logic = logic of continuations

I. Polarized games.

Polarization (Blass, Girard, Laurent)

Separate games in two dual classes.

- (1) positive games starting by a Player move (=values),
- (2) negative games starting by an Opponent move (=functions).

The connectives \oplus and \otimes and units 0 and 1 are positive.

Dually, the connectives & and \mathbf{a} and units \top and \perp are negative.

The modality ! transforms negative into positive.

Dually, the modality ? transforms positive into negative.

Eg. $!(A \& B) \cong !A \otimes !B$

Hyland-Ong games (arenas)

An arena is a triple $(M_A, \vdash_A, \lambda_A)$ where

- M_A is a set of moves,
- λ_A is a polarity function $M_A \longrightarrow \{+, -\}$,

— \vdash_A is a justification relation defining a forest of alternated moves.

Hyland-Ong games (plays)

 \bigstar A justification sequence s over an arena A is a couple (f, j) such that

-1-f is a finite sequence of moves,

-2- j is a partial decreasing function (for all i in the domain of j: j(i) < i) over the domain of f, what is called the justification.

The i^{th} move of a justification sequence s is justified when,

$$-j(i) = \bot$$
 and $f(i)$ is a root of the arena A,

$$-j(i) = k$$
 and $f(k) \vdash_A f(i)$;

- \bigstar A justification sequence s is
- justified when all its moves are justified.
- well-opened when the first move is its only root move.
- player when its last move is of polarity +,
- opponent when its last move is of polarity -.

Linear Hyland-Ong games (definition)

A linear HO-game is a 4-tuple

$$A = (M_A, \vdash_A, \lambda_A, P_A)$$

where

— $(M_A, \lambda_A, \vdash_A)$ is a positive arena,

— P_A is a prefix-closed set of plays, ie. justified alternated and well-opened justification sequences.

A linear HO-game is

- positive when its arena has all roots positive,
- negative when its arena has all roots negative.

Strategies (definition)

- A strategy is a set σ of plays such that:
- all plays of σ are player,
- σ is closed by "player" prefix:

 $\forall s \cdot a \cdot b \in P_A, \qquad s \cdot a \cdot b \in \sigma \implies s \in \sigma$

— σ is deterministic:

 $\forall s \cdot a \cdot b \in P_A, s \cdot a \cdot c \in P_A, \qquad s \cdot a \cdot b \in \sigma \text{ et } s \cdot a \cdot c \in \sigma \implies b = c$

Sum (of positive games)

Given two positive games A and B, the game $A \oplus B$ has

- the sum of forests $(M_A, \vdash_A, \lambda_A)$ and $(M_B, \vdash_B, \lambda_B)$ as arena,
- the sum of forests P_A and P_B as set of plays,

The unit 0 is the empty positive arena.

Tensor (of positive games) by distributivity

A game is simple when its arena has a root at most.

Here, we restrict to semi-simple games, that is finite sums of simple games:

$$A = \bigoplus_{i=0}^{n} B_i$$

Defining $A \otimes B$ over semi-simple games reduces to defining $A \otimes B$ over simple games, and applying the distributivity equality (??).

$$A \otimes (B \oplus C) = (A \otimes B) \otimes (A \otimes C)$$

The tensor product of two simple games A and B has

- the "coalesced sum" of trees $(M_A, \vdash_A, \lambda_A)$ and $(M_B, \vdash_B, \lambda_B)$ as arena,
- the "interleaved product" of P_A and P_B as set of plays $P_{A\otimes B}$.

The **a**-product (of negative games) and lift operators

Given two negative games A and B, define

$$A * B = (A^{\perp} \otimes B^{\perp})^{\perp}$$

and given a positive game A and a negative game B, define:

$$A \multimap B = A^{\perp} \mathbf{a} B$$

Remark: the first move of $A \multimap B$ is a pair of a move in A and a move in B.

A lift \downarrow from - to + and a lift \uparrow from + to -.

Remark: the positive game $\downarrow A$ and negative game $\uparrow A$ are simple.

II. Polar categories

Two dual categories: $\mathcal{G}[n]$ and $\mathcal{G}[v]$

Negative games form a category $\mathcal{G}[n]$:

— its morphisms $A \longrightarrow B$ are the strategies of A - nB,

where the negative game A - nB is defined as:

$$A - nB = \downarrow A - B$$

for negative games A and B.

Positive games form a category $\mathcal{G}[v]$:

— its morphisms $A \longrightarrow B$ are the strategies of $A \longrightarrow B$.

where the negative game A - vB is defined as:

$$A \longrightarrow vB = A \multimap \uparrow B$$

for positive games A and B.

Property: The categories $\mathcal{G}[v]$ and $\mathcal{G}[n]$ are dual.

Two dual categories: \mathfrak{P} and \mathfrak{N} of transverse strategies.

In order to have a better grip on control...

Definition: A strategy of $A \rightarrow \uparrow B$ is transverse (from A to B) if for every root a in A, there exists a root b in B such that $a \cdot b$ is a play of σ .

- ★ The category \mathfrak{P} has - positive games as objects, - transverse strategies of $\mathcal{G}[v]$ as maps $A \xrightarrow{+} B$.
- ★ The category \mathfrak{N} has - negative games as objects, - transverse strategies of $\mathcal{G}[n]$ as maps $A \xrightarrow{-} B$.

Two remarks:

- The categories $\mathfrak P$ and $\mathfrak N$ are dual.
- The category \mathfrak{P} is monoidal (\otimes , 1) and has sums (\oplus , 0).

A remarkable adjunction

Two functors

$$\uparrow:\mathfrak{P}\longrightarrow\mathfrak{N}\qquad \downarrow:\mathfrak{N}\longrightarrow\mathfrak{P}$$

and an adjunction

$$\frac{\uparrow A \quad \stackrel{-}{\longrightarrow} \quad B}{A \quad \stackrel{+}{\longrightarrow} \quad \downarrow B}$$

Intuitively, the two hom-sets

$$\uparrow A \xrightarrow{-} B \qquad \qquad A \xrightarrow{+} \downarrow B$$

describe, each one in its own paradigm (call-by-name or call-by-value) the strategies of

$$A \multimap B$$

which wait for a simultaneous move of Opponent in A^{\perp} and in B.

The meridian category of an adjunction $\uparrow \dashv \downarrow$

To every adjunction $\uparrow \dashv \downarrow$ between functors:

 $\uparrow:\mathfrak{P}\longrightarrow\mathfrak{N}\qquad \downarrow:\mathfrak{N}\longrightarrow\mathfrak{P}$

one associates a meridian category $[\mathfrak{P},\mathfrak{N}]$

- whose objects are the objects of $\mathfrak P$ and of $\mathfrak N,$
- whose morphisms $A \longrightarrow B$, are
 - the morphisms of $\mathfrak P$ between positive objects,
 - the morphisms of ${\mathfrak N}$ between negative objects,
 - the morphisms $A \longrightarrow \downarrow B$ in \mathfrak{P} or $\uparrow A \longrightarrow B$ in \mathfrak{N} , from a positive object A^+ to a negative object B^- .

— composition is defined using the adjunction $\uparrow \dashv \downarrow$.

Remark: No morphism from a negative to a positive object.

Definition: a morphism from \mathfrak{P} to \mathfrak{N} is called meridian, a morphism of \mathfrak{P} or \mathfrak{N} is called polar.

When A is positive and B is negative, one may write:

 $\operatorname{Hom}_{[\mathfrak{P},\mathfrak{N}]}(A,B)\cong\operatorname{Hom}_{\mathfrak{P}}(A,\downarrow B)\cong\operatorname{Hom}_{\mathfrak{N}}(\uparrow A,B)$

The meridian category(2)

From the point of view of data flows...

Polar categories (definition)

A polar category is a:

- two categories \mathfrak{P} and $\mathfrak{N} \cong \mathfrak{P}^{op}$
- the category \mathfrak{P} is symmetric monoidal (\otimes , 1) and has sums (\oplus , 0),
- the tensor distributes over the sum,
- a functor $\uparrow: \mathfrak{P} \longrightarrow \mathfrak{N}$ and its dual functor $\downarrow: \mathfrak{N} \longrightarrow \mathfrak{P}$,
- for every positive object A, an adjunction $\uparrow (-\otimes B) \dashv \downarrow (B^{\perp} \ast -)$

where $(-)^{\perp}: \mathfrak{P} \longrightarrow \mathfrak{N}^{op}$ is the negation functor, and \mathfrak{P} is the dual of \otimes .

The "usual" categories $\mathcal{G}[n]$ and $\mathcal{G}[v]$ as kleisli constructions

The adjunction $\uparrow\dashv\downarrow$ between $\uparrow\colon\mathfrak{P}\longrightarrow\mathfrak{N}$ and $\downarrow\colon\mathfrak{N}\longrightarrow\mathfrak{P}$ induces

— a comonad $\uparrow\downarrow$ on the category $\mathfrak{N}.$

— a monad $\downarrow\uparrow$ on the category \mathfrak{N} .

Fact:

 $\mathcal{G}[n]$ is the cokleisli category over \mathfrak{N} induced by the comonad $\uparrow\downarrow: \mathfrak{N} \longrightarrow \mathfrak{N}$. Dually, $\mathcal{G}[v]$ is the kleisli category over \mathfrak{P} induced by the monad $\downarrow\uparrow: \mathfrak{P} \longrightarrow \mathfrak{P}$.

III. Blass phenomenon revisited

Blass non associativity phenomenon.

$$A^{+} = \begin{pmatrix} a' : - \\ \uparrow \\ a : + \end{pmatrix} \qquad B^{+} = \begin{pmatrix} b' : - \\ \uparrow \\ b : + \end{pmatrix} \qquad C^{-} = \begin{pmatrix} c' : + \\ \uparrow \\ c : - \end{pmatrix} \qquad D^{-} = \begin{pmatrix} d' : + \\ \uparrow \\ d : - \end{pmatrix}$$

One defines

Then

$$(\sigma; \tau) = \{\epsilon, (a, c) \cdot a'\}$$

$$(\sigma; \tau); \nu = \{\epsilon, (a, d) \cdot d'\}$$

and

$$(\tau;\nu) = \{\epsilon, (b,d) \cdot d'\}$$

$$\sigma; (\tau;\nu) = \{\epsilon, (a,d) \cdot a'\}$$

Blass phenomenon: a clash between the kleisli and co-kleisli constructions

$$\sigma : A \xrightarrow{+} \downarrow \uparrow B \quad \text{or} \quad \sigma : \uparrow A \xrightarrow{-} \uparrow B$$
$$\tau : B \xrightarrow{+} \downarrow C \quad \text{or} \quad \tau : \uparrow B \xrightarrow{-} C$$
$$\nu : \downarrow C \xrightarrow{+} \downarrow D \quad \text{or} \quad \nu : \uparrow \downarrow C \xrightarrow{-} D$$

Thus, to compose σ ; τ with ν (in \mathfrak{P}):

$$A \xrightarrow{\sigma} \downarrow \uparrow B \xrightarrow{\downarrow \tau} \downarrow C \xrightarrow{\nu} \downarrow D$$

and to compose σ with τ ; ν (in \mathfrak{N}):

$$\uparrow A \xrightarrow{\sigma} \uparrow B \xrightarrow{\uparrow \tau} \uparrow \downarrow C \xrightarrow{\nu} D$$

and applying the adjunction, does not commute generally.

Remark: this is equivalent to premonoidality of \mathbf{x} in $\mathcal{G}[n]$ (as in Peter's control categories) or that the monad $\downarrow\uparrow$ is strong, but not commutatively so.

Consequence: the Blass phenomenon is not limited to games!

$\mathfrak{P} = \mathrm{Ens}$	$\mathfrak{N} = \mathrm{Ens}^{op}$
$\uparrow : X \mapsto R^X$	$\downarrow: X \mapsto R^X$

Again, a strong monad $X \mapsto R^{R^X}$ in Ens,

$$X \xrightarrow{x \mapsto \lambda f.f(x)} R^{R^{X}} \xleftarrow{h \mapsto \lambda h'.h(\lambda f.f(h'))} R^{R^{R^{X}}}$$

but not commutatively so.

The Blass phenomenon: Let us compose

$$\sigma: R^B \longrightarrow R^A \qquad \tau: B \times C \longrightarrow R \qquad \nu: R^C \longrightarrow R^D$$

To compose σ et τ , one transforms τ as $C \longrightarrow R^B$,

$$C \xrightarrow{\tau} R^B \xrightarrow{\sigma} R^A$$

then transforms the composite $\sigma; \tau$ as $A \longrightarrow R^C$:

$$(\sigma; \tau); \nu : A \longrightarrow R^C \xrightarrow{\nu} R^D$$

The functions $(\sigma; \tau)$; ν and σ ; $(\tau; \nu)$ are generally different.

IV. Polar categories

as (monoidal) continuation categories

Polar categories = "monoidal" continuation category

After some thought... a polar category boils down to

— a symmetric monoidal category $(\mathfrak{P},\otimes,1)$ with sums $(\oplus,0)$,

— where the tensor distributes over the sum,

— an object R with all linear exponentials R^A

(1) a contravariant functor $R^-: \mathfrak{P} \longrightarrow \mathfrak{P}^{op}$ and

(2) a bijection

$$\begin{array}{cccc} A \otimes B & \longrightarrow & R \\ \hline A & \multimap & R^B \end{array}$$

natural in A and B.

In the case of Hyland-Ong games, R is the Sierpinski game $\begin{pmatrix} *O \\ \uparrow \\ *P \end{pmatrix}$

Remark: a polar category with cartesian tensor is called a continuation category (Lafont, Reus, Streicher)

Polarized linear logic = a logic of continuations

$$A, B ::= A \oplus B \mid A \otimes B \mid !(A^{\perp}) = R^A \mid 0 \mid 1 \mid \alpha$$

right \oplus	$\frac{\Gamma \vdash A}{\Gamma \vdash A \oplus B} \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \oplus B}$	left \oplus	$\frac{\Gamma, A \vdash \Pi \qquad \Gamma, B \vdash \Pi}{\Gamma, A \oplus B \vdash \Pi}$
right \otimes	$\frac{\Gamma \vdash A \qquad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B}$	left \otimes	$\frac{\Gamma, A, B \vdash \Pi}{\Gamma, A \otimes B \vdash \Pi}$
left 0	$\overline{\Gamma,0\vdash}$	right 0	no rule
left 1	$\frac{\Gamma \vdash A}{\Gamma, 1 \vdash A}$	right 1	$\overline{\vdash 1}$
right !	$\frac{\Gamma, A \vdash}{\Gamma \vdash R^A}$	left !	$\frac{\Gamma \vdash A}{\Gamma, R^A \vdash}$
contraction	$\frac{\Gamma, A, A \vdash \Pi}{\Gamma, A \vdash \Pi}$	weakening	$\frac{\Gamma \vdash \Pi}{\Gamma, A \vdash \Pi}$

+ axiom, cut and permutation rules.

Interpretation of LLP in a continuation category

a proof of $\Gamma \vdash A$	is interpreted as	a morphism $\Gamma \longrightarrow A$
a proof of $\Gamma \vdash$	is interpreted as	a morphism $\Gamma \longrightarrow R$

Thus, the right !-introduction rule is reversible

$$\frac{\Gamma \otimes A \longrightarrow R}{\Gamma \longrightarrow R^A}$$

while the left !-introduction rule is non-reversible

$$\frac{\Gamma \longrightarrow A}{\Gamma \otimes R^A \longrightarrow R}$$

Continuations, continuations, continuations...

This observation not reductive at all:

— a cut-elimination theorem for continuations, with a nice proof-theoretic characterization of proofs (O. Laurent's correctness criterion for LLP)

— after all, every control category is equivalent to a response category (a structure theorem by Peter).

V. One step further: linearizing Hyland-Ong games

The family construction (Abramsky and McCusker)

The polar category of games enjoys two important properties: -1- every R^A is π -atomic (Joyal)

$$\frac{\downarrow A \xrightarrow{+} B \oplus C}{(\downarrow A \xrightarrow{+} B) + (\downarrow A \xrightarrow{+} C)}$$

-2- every game is a (finite) sum of games of the form R^A . Thus,

$$\frac{\bigoplus_{i} \downarrow A_{i} \quad \stackrel{+}{\longrightarrow} \quad \bigoplus_{j} \downarrow B_{j}}{\prod_{i} (\downarrow A_{i} \quad \stackrel{+}{\longrightarrow} \quad \bigoplus_{j} \downarrow B_{j})} \\
\frac{\bigoplus_{i} (\downarrow A_{i} \quad \stackrel{+}{\longrightarrow} \quad \bigoplus_{j} \downarrow B_{j})}{\prod_{i} \sum_{j} (\downarrow A_{i} \quad \stackrel{+}{\longrightarrow} \quad \downarrow B_{j})}$$

But $\downarrow A_i \xrightarrow{+} \downarrow B_j$ in \mathfrak{P} is simply $A_i \longrightarrow B_j$ in $\mathcal{G}[n]$.

Thus, \mathfrak{P} is (equivalent to) the free co-complete category over $\mathcal{G}[n]$, also called the family construction (by Samson and Guy).

Better: the family construction (Abramsky, McCusker)

To obtain a polar category, start from a symmetric monoidal closed category (\mathcal{C}, \odot, I) with products &, \top .

Define the category \mathfrak{P} as the free co-cartesian category over \mathcal{C} :

```
— its objects are \{A_i \mid i \in I\}
```

— its morphisms $\{A_i \mid i \in I\} \longrightarrow \{B_i \mid i \in I\}$ is a reindexing function $\phi : I \longrightarrow J$ and a morphism $A_i \longrightarrow B_{\phi(i)}$ for every $i \in I$.

Property (adapted from Abramsky, McCusker)

The category $\mathfrak P$ is symmetric monoidal closed, with tensor product distributive over sums. Thus it is a polar category.

Relaxing the polarity constraints

Define \otimes as follows:

 $--P\otimes Q$

$$- [P_1, ..., P_m] \otimes Q = [..., P_i \otimes Q, ...]$$

-
$$[P_1, ..., P_m] \otimes [Q_1, ..., Q_n] = [..., P_i \otimes Q_j, ...]$$

where $[P_1, ..., P_n]$ is the negative game $\&_i \uparrow P_i$.

Tentative: this defines a monoidal structure on the meridian category.

Linearizing the threaded model of Idealized Algol (Abramsky, McCusker)

Fact: There exists a functor ! from \mathfrak{N} to its category of comonoids such that

Besides, there is an adjunction:

$$\frac{|A \longrightarrow B|}{|A \longrightarrow B|}$$

This makes the subcategory Threaded of objects

$$[!A_1, ..., !A_n] = \bigoplus_i \downarrow !A_i$$

in \mathfrak{P} a continuation category (that is: cartesian polar) with $! \perp = !(1^{\perp})$ as response object. Indeed:

$[!A_1,, !A_m] \otimes [!B_1,, !B_n]$	\xrightarrow{m}	[!⊥]
$\overline{ \prod_i \Sigma_j (!A_i \otimes !B_j }$	\xrightarrow{m}	!⊥)
${\sf P}_i{\sf \Sigma}_j(!A_i{\otimes}!B_j$	$\overset{-}{\longrightarrow}$	\perp)
${\sf P}_i{\sf \Sigma}_j(!A_i$	$\overset{-}{\longrightarrow}$	$(!B_j\multimap\bot))$
$([!A_1,, !A_n]$	$\overset{-}{\longrightarrow}$	$[\&_j(!B_j \multimap \bot))]$
$([!A_1,, !A_n])$	\xrightarrow{m}	$[!\&_j(!B_j \multimap \bot))]$

All in all: a cokleisli category.

The interpretation of new in ALGOL

Consider the non-comonoidal non-threaded map

 $\texttt{cell}: 1 \longrightarrow !\texttt{var}$

and the threaded map interpretation of the ALGOL term M:

 $!var \longrightarrow !B$

The two maps may be composed as follows: derelict the second one

 $! \operatorname{var} \xrightarrow{-} B$

to compose it in ${\mathfrak N}$ with the first one

 $1 \xrightarrow{-} !var \xrightarrow{-} B$

then exponentiate the whole map

 $1 \xrightarrow{m} !B$

to obtain the interpretation of the term new x in M.

Innocent strategies

The same kind of comonoidal characterization is possible for innocent strategies... but more complicated.

V. Conclusion

Conclusion

— games are continuation models,

— polarized linear logic is a logic of continuations,

— Blass problem (first noticed by Abramsky) becomes a general phenomenon of continuation models, akin to premonoidality.

polar categories make the positive and negative worlds interact: positive objects = values, past and negative objects = functions, future,

— finally, a linearization of threaded as well as innocent Hyland-Ong games. The secret: alter the arenas.