Games are continuation models!

On Blass phenomenon, duality and polarized linear logic

$$
\begin{gathered}
\text { (work in progress) } \\
\text { Paul-André Melliès } \\
\text { CNRS - Université Paris } 7 \text { Jussieu } \\
\text { in collaboration with Peter Selinger (Stanford U.) }
\end{gathered}
$$

http://www.pps.jussieu.fr/~mellies

Explain Blass phenomenon

How? by bridging three lines of research:

* Game models.
- $\lambda \mu$-categories by L. Ong,
- the family construction by S. Abramsky and G. McCusker.
* Continuation models.
- continuation categories by Y. Lafont, B. Reus and T. Streicher.
- $\otimes \neg$-categories by H. Thielecke,
- control categories by P. Selinger.
* Linear logic.
- LC by J-Y. Girard,
- Polarized linear logic by O. Laurent.

$$
\text { Polarized linear logic }=\text { Iogic of continuations }
$$

I. Polarized games.

Polarization (Blass, Girard, Laurent)

Separate games in two dual classes.
(1) positive games starting by a Player move (=values),
(2) negative games starting by an Opponent move (=functions).

The connectives \oplus and \otimes and units 0 and 1 are positive.
Dually, the connectives \& and \geqslant and units \top and \perp are negative.

The modality ! transforms negative into positive.
Dually, the modality ? transforms positive into negative.

Eg.

$$
!(A \& B) \cong!A \otimes!B
$$

Hyland-Ong games (arenas)

An arena is a triple $\left(M_{A}, \vdash_{A}, \lambda_{A}\right)$ where

- M_{A} is a set of moves,
$-\lambda_{A}$ is a polarity function $M_{A} \longrightarrow\{+,-\}$,
$-\vdash_{A}$ is a justification relation defining a forest of alternated moves.

Hyland-Ong games (plays)

\star A justification sequence s over an arena A is a couple (f, j) such that
$-1-f$ is a finite sequence of moves,
-2- j is a partial decreasing function (for all i in the domain of $j: j(i)<i$) over the domain of f, what is called the justification.

The $i^{\text {th }}$ move of a justification sequence s is justified when,
$-j(i)=\perp$ and $f(i)$ is a root of the arena A,
$-j(i)=k$ and $f(k) \vdash_{A} f(i) ;$
\star A justification sequence s is

- justified when all its moves are justified.
- well-opened when the first move is its only root move.
- player when its last move is of polarity + ,
- opponent when its last move is of polarity -.

Linear Hyland-Ong games (definition)

A linear HO-game is a 4-tuple

$$
A=\left(M_{A}, \vdash_{A}, \lambda_{A}, P_{A}\right)
$$

where

- $\left(M_{A}, \lambda_{A}, \vdash_{A}\right)$ is a positive arena,
- P_{A} is a prefix-closed set of plays, ie. justified alternated and well-opened justification sequences.

A linear HO-game is

- positive when its arena has all roots positive,
- negative when its arena has all roots negative.

Strategies (definition)

A strategy is a set σ of plays such that:

- all plays of σ are player,
- σ is closed by "player" prefix:

$$
\forall s \cdot a \cdot b \in P_{A}, \quad s \cdot a \cdot b \in \sigma \quad \Longrightarrow \quad s \in \sigma
$$

- σ is deterministic:
$\forall s \cdot a \cdot b \in P_{A}, s \cdot a \cdot c \in P_{A}$,

$$
s \cdot a \cdot b \in \sigma \text { et } s \cdot a \cdot c \in \sigma \quad \Longrightarrow \quad b=c
$$

Sum (of positive games)

Given two positive games A and B, the game $A \oplus B$ has

- the sum of forests $\left(M_{A}, \vdash_{A}, \lambda_{A}\right)$ and $\left(M_{B}, \vdash_{B}, \lambda_{B}\right)$ as arena,
- the sum of forests P_{A} and P_{B} as set of plays,

The unit 0 is the empty positive arena.

Tensor (of positive games) by distributivity

A game is simple when its arena has a root at most.

Here, we restrict to semi-simple games, that is finite sums of simple games:

$$
A=\bigoplus_{i=0}^{n} B_{i}
$$

Defining $A \otimes B$ over semi-simple games reduces to defining $A \otimes B$ over simple games, and applying the distributivity equality (??).

$$
A \otimes(B \oplus C)=(A \otimes B) \otimes(A \otimes C)
$$

The tensor product of two simple games A and B has

- the "coalesced sum" of trees $\left(M_{A}, \vdash_{A}, \lambda_{A}\right)$ and $\left(M_{B}, \vdash_{B}, \lambda_{B}\right)$ as arena,
- the "interleaved product" of P_{A} and P_{B} as set of plays $P_{A \otimes B}$.

The z-product (of negative games) and lift operators

Given two negative games A and B, define

$$
A \boldsymbol{\otimes} B=\left(A^{\perp} \otimes B^{\perp}\right)^{\perp}
$$

and given a positive game A and a negative game B, define:

$$
A \multimap B=A^{\perp} \boldsymbol{\not o g}
$$

Remark: the first move of $A \multimap B$ is a pair of a move in A and a move in B.

A lift \downarrow from - to + and a lift \uparrow from + to -
Remark: the positive game $\downarrow A$ and negative game $\uparrow A$ are simple.

II. Polar categories

Two dual categories: $\mathcal{G}[n]$ and $\mathcal{G}[v]$

Negative games form a category $\mathcal{G}[n]$:

- its morphisms $A \longrightarrow B$ are the strategies of $A-\mathrm{n} B$, where the negative game $A-\mathrm{n} B$ is defined as:

$$
A \multimap \mathrm{n} B=\downarrow A \multimap B
$$

for negative games A and B.

Positive games form a category $\mathcal{G}[v]$:

- its morphisms $A \longrightarrow B$ are the strategies of $A-\mathrm{v} B$.
where the negative game $A-\vee B$ is defined as:

$$
A \multimap \mathrm{v} B=A \multimap \uparrow B
$$

for positive games A and B.
Property: The categories $\mathcal{G}[v]$ and $\mathcal{G}[n]$ are dual.

Two dual categories: \mathfrak{P} and \mathfrak{N} of transverse strategies.

In order to have a better grip on control...
Definition: A strategy of $A \multimap \uparrow B$ is transverse (from A to B) if for every root a in A, there exists a root b in B such that $a \cdot b$ is a play of σ.
\star The category \mathfrak{P} has $\begin{array}{ll} & \text { - positive games as objects, } \\ & \text { - transverse strategies of } \mathcal{G}[v] \text { as maps } A \xrightarrow{+} B .\end{array}$
\star The category \mathfrak{N} has $\begin{aligned} & \text { - negative games as objects, } \\ & \\ & \text { - transverse strategies of } \mathcal{G}[n] \text { as maps } A \xrightarrow{-} B .\end{aligned}$

Two remarks:

- The categories \mathfrak{P} and \mathfrak{N} are dual.
— The category \mathfrak{P} is monoidal $(\otimes, 1)$ and has sums $(\oplus, 0)$.

A remarkable adjunction

Two functors

$$
\uparrow: \mathfrak{P} \longrightarrow \mathfrak{N} \quad \downarrow: \mathfrak{N} \longrightarrow \mathfrak{P}
$$

and an adjunction

$$
\frac{\uparrow A \quad \xrightarrow{-} B}{A \xrightarrow{+} \downarrow B}
$$

Intuitively, the two hom-sets

$$
\uparrow A \xrightarrow{-} B \quad A \xrightarrow{+} \downarrow B
$$

describe, each one in its own paradigm (call-by-name or call-by-value) the strategies of

$$
A \multimap B
$$

which wait for a simultaneous move of Opponent in A^{\perp} and in B.

The meridian category of an adjunction $\uparrow \dashv \downarrow$

To every adjunction $\uparrow \dashv \downarrow$ between functors:

$$
\uparrow: \mathfrak{P} \longrightarrow \mathfrak{N} \quad \downarrow: \mathfrak{N} \longrightarrow \mathfrak{P}
$$

one associates a meridian category $[\mathfrak{R}, \mathfrak{N}]$
— whose objects are the objects of \mathfrak{P} and of \mathfrak{N},

- whose morphisms $A \longrightarrow B$, are
- the morphisms of \mathfrak{P} between positive objects,
- the morphisms of \mathfrak{N} between negative objects,
— the morphisms $A \longrightarrow \downarrow B$ in \mathfrak{P} or $\uparrow A \longrightarrow B$ in \mathfrak{N}, from a positive object A^{+}to a negative object B^{-}.
- composition is defined using the adjunction $\uparrow \dashv \downarrow$.

Remark: No morphism from a negative to a positive object.
Definition: a morphism from \mathfrak{P} to \mathfrak{N} is called meridian, a morphism of \mathfrak{P} or \mathfrak{N} is called polar.
When A is positive and B is negative, one may write:

$$
\operatorname{Hom}_{[\mathfrak{P}, \mathfrak{P}]}(A, B) \cong \operatorname{Hom}_{\mathfrak{F}}(A, \downarrow B) \cong \operatorname{Hom}_{\mathfrak{N}}(\uparrow A, B)
$$

The meridian category(2)
From the point of view of data flows...

Polar categories (definition)

A polar category is a:
— two categories \mathfrak{P} and $\mathfrak{N} \cong \mathfrak{P}^{o p}$

- the category \mathfrak{P} is symmetric monoidal $(\otimes, 1)$ and has sums $(\oplus, 0)$,
- the tensor distributes over the sum,
— a functor $\uparrow: \mathfrak{P} \longrightarrow \mathfrak{N}$ and its dual functor $\downarrow: \mathfrak{N} \longrightarrow \mathfrak{P}$,
— for every positive object A, an adjunction $\uparrow(-\otimes B) \dashv \downarrow\left(B^{\perp}-\right)$

where $(-)^{\perp}: \mathfrak{P} \longrightarrow \mathfrak{N}^{o p}$ is the negation functor, and \mathfrak{z} is the dual of \otimes.

The "usual" categories $\mathcal{G}[n]$ and $\mathcal{G}[v]$ as kleisli constructions

The adjunction $\uparrow \dashv \downarrow$ between $\uparrow: \mathfrak{P} \longrightarrow \mathfrak{N}$ and $\downarrow: \mathfrak{N} \longrightarrow \mathfrak{P}$ induces

- a comonad $\uparrow \downarrow$ on the category \mathfrak{N}.
— a monad $\downarrow \uparrow$ on the category \mathfrak{N}.

Fact:

$\mathcal{G}[n]$ is the cokleisli category over \mathfrak{N} induced by the comonad $\uparrow \downarrow: \mathfrak{N} \longrightarrow \mathfrak{N}$.
Dually, $\mathcal{G}[v]$ is the kleisli category over \mathfrak{P} induced by the monad $\downarrow \uparrow: \mathfrak{P} \longrightarrow \mathfrak{P}$.

III. Blass phenomenon revisited

Blass non associativity phenomenon.

$$
A^{+}=\left(\begin{array}{c}
a^{\prime}:- \\
\vdots \\
a:+
\end{array}\right) \quad B^{+}=\left(\begin{array}{c}
b^{\prime}:- \\
\uparrow \\
b:+
\end{array}\right) \quad C^{-}=\binom{c^{\prime}:+}{\vdots:-} \quad D^{-}=\left(\begin{array}{c}
d^{\prime}:+ \\
\vdots \\
d:-
\end{array}\right)
$$

One defines

$$
\begin{array}{ccccc}
\sigma: & A^{+} & \longrightarrow & B^{+} & \sigma=\left\{\epsilon, a \cdot a^{\prime}\right\} \\
\tau: & B^{+} & \longrightarrow & C^{-} & \tau=\{\epsilon\} \\
\nu: & C^{-} & \longrightarrow & D^{-} & \nu=\left\{\epsilon, d \cdot d^{\prime}\right\}
\end{array}
$$

Then

$$
\begin{aligned}
(\sigma ; \tau) & =\left\{\epsilon,(a, c) \cdot a^{\prime}\right\} \\
(\sigma ; \tau) ; \nu & =\left\{\epsilon,(a, d) \cdot d^{\prime}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
(\tau ; \nu) & =\left\{\epsilon,(b, d) \cdot d^{\prime}\right\} \\
\sigma ;(\tau ; \nu) & =\left\{\epsilon,(a, d) \cdot a^{\prime}\right\}
\end{aligned}
$$

Blass phenomenon: a clash between the kleisli and co-kleisli constructions

$$
\begin{array}{rll}
\sigma: A \xrightarrow{+} \downarrow \uparrow B & \text { or } & \sigma: \uparrow A \xrightarrow{-} \uparrow B \\
\tau: B \xrightarrow{+} \downarrow C & \text { or } & \tau: \uparrow B \xrightarrow{-} C \\
\nu: \downarrow C \xrightarrow{+} \downarrow D & \text { or } & \nu: \uparrow \downarrow C \xrightarrow{-} D
\end{array}
$$

Thus, to compose $\sigma ; \tau$ with ν (in \mathfrak{P}):

and to compose σ with $\tau ; \nu$ (in \mathfrak{N}):

and applying the adjunction, does not commute generally.
Remark: this is equivalent to premonoidality of x_{8} in $\mathcal{G}[n]$ (as in Peter's control categories) or that the monad $\downarrow \uparrow$ is strong, but not commutatively so.

Consequence: the Blass phenomenon is not limited to games!

$$
\begin{array}{ll}
\mathfrak{P}=\text { Ens } & \mathfrak{N}=\text { Ens }^{o p} \\
\uparrow: X \mapsto R^{X} & \downarrow: X \mapsto R^{X}
\end{array}
$$

Again, a strong monad $X \mapsto R^{R^{X}}$ in Ens,

$$
X \longrightarrow R^{R^{X} \mapsto \lambda f . f(x)} \longleftrightarrow h^{\longleftrightarrow} \longleftrightarrow \lambda h^{\prime} \cdot h\left(\lambda f \cdot f\left(h^{\prime}\right)\right) \quad R^{R^{R^{R^{X}}}}
$$

but not commutatively so.
The Blass phenomenon: Let us compose

$$
\sigma: R^{B} \longrightarrow R^{A} \quad \tau: B \times C \longrightarrow R \quad \nu: R^{C} \longrightarrow R^{D}
$$

To compose σ et τ, one transforms τ as $C \longrightarrow R^{B}$,

$$
C \xrightarrow{\tau} R^{B} \xrightarrow{\sigma} R^{A}
$$

then transforms the composite $\sigma ; \tau$ as $A \longrightarrow R^{C}$:

$$
(\sigma ; \tau) ; \nu: A \longrightarrow R^{C} \xrightarrow{\nu} R^{D}
$$

The functions $(\sigma ; \tau) ; \nu$ and $\sigma ;(\tau ; \nu)$ are generally different.

IV. Polar categories

as (monoidal) continuation categories

Polar categories = "monoidal" continuation category

After some thought... a polar category boils down to

- a symmetric monoidal category $(\mathfrak{P}, \otimes, 1)$ with sums $(\oplus, 0)$,
- where the tensor distributes over the sum,
- an object R with all linear exponentials R^{A}
(1) a contravariant functor $R^{-}: \mathfrak{P} \longrightarrow \mathfrak{P}^{o p}$ and
(2) a bijection

$$
\begin{array}{ccc}
A \otimes B & \longrightarrow & R \\
\hline A & \multimap & R^{B}
\end{array}
$$

natural in A and B.

In the case of Hyland-Ong games, R is the Sierpinski game $\left(\begin{array}{c}*_{O} \\ \uparrow \\ *_{P}\end{array}\right)$
Remark: a polar category with cartesian tensor is called a continuation category (Lafont, Reus, Streicher)

Polarized linear logic $=$ a logic of continuations

$$
A, B::=A \oplus B|A \otimes B|!\left(A^{\perp}\right)=R^{A}|0| \mathbf{1} \mid \alpha
$$

right \oplus

$$
\frac{\Gamma \vdash A}{\Gamma \vdash A \oplus B} \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \oplus B} \quad \text { left } \oplus
$$

$$
\frac{\Gamma, A \vdash \Pi \quad \Gamma, B \vdash \Gamma}{\Gamma, A \oplus B \vdash \Pi}
$$

$$
\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B}
$$

left \otimes

$$
\frac{\Gamma, A, B \vdash \sqcap}{\Gamma, A \otimes B \vdash \sqcap}
$$

left 0

$$
\overline{\Gamma, 0 \vdash}
$$

left 1

$$
\frac{\Gamma \vdash A}{\Gamma, 1 \vdash A}
$$

right!
contraction
right 0 no rule
right 1

$$
\frac{\Gamma, A \vdash}{\Gamma \vdash R^{A}}
$$

left !
$\frac{\Gamma \vdash A}{\Gamma, R^{A} \vdash}$

+ axiom, cut and permutation rules.

Interpretation of LLP in a continuation category

```
a proof of }\Gamma\vdashA\mathrm{ is interpreted as a morphism }\Gamma\longrightarrow
a proof of }\Gamma\vdash\mathrm{ is interpreted as a morphism }\Gamma\longrightarrow
```

Thus, the right !-introduction rule is reversible

$$
\frac{\Gamma \otimes A \longrightarrow R}{\Gamma \longrightarrow R^{A}}
$$

while the left !-introduction rule is non-reversible

$$
\frac{\Gamma \longrightarrow A}{\Gamma \otimes R^{A} \longrightarrow R}
$$

Continuations, continuations, continuations...

This observation not reductive at all:

- a cut-elimination theorem for continuations, with a nice proof-theoretic characterization of proofs (O . Laurent's correctness criterion for LLP)
- after all, every control category is equivalent to a response category (a structure theorem by Peter).
V. One step further: linearizing Hyland-Ong games

The family construction (Abramsky and McCusker)

The polar category of games enjoys two important properties:
-1- every R^{A} is π-atomic (Joyal)

$$
\frac{\downarrow A \xrightarrow{+} B \oplus C}{(\downarrow A \xrightarrow{+} B)+(\downarrow A \xrightarrow{+} C)}
$$

-2- every game is a (finite) sum of games of the form R^{A}.
Thus,

$$
\begin{array}{ccc}
\bigoplus_{i} \downarrow A_{i} & \xrightarrow{+} & \oplus_{j} \downarrow B_{j} \\
\hline \Pi_{i}\left(\downarrow A_{i}\right. & \xrightarrow{+} & \left.\bigoplus_{j} \downarrow B_{j}\right) \\
\hline \Pi_{i} \Sigma_{j}\left(\downarrow A_{i}\right. & \xrightarrow{\longrightarrow} & \left.\downarrow B_{j}\right)
\end{array}
$$

But $\downarrow A_{i} \xrightarrow{+} \downarrow B_{j}$ in \mathfrak{P} is simply $A_{i} \longrightarrow B_{j}$ in $\mathcal{G}[n]$.
Thus, \mathfrak{P} is (equivalent to) the free co-complete category over $\mathcal{G}[n]$, also called the family construction (by Samson and Guy).

Better: the family construction (Abramsky, McCusker)

To obtain a polar category, start from a symmetric monoidal closed category (\mathcal{C}, \odot, I) with products $\&, \top$.

Define the category \mathfrak{P} as the free co-cartesian category over \mathcal{C} :

- its objects are $\left\{A_{i} \mid i \in I\right\}$
- its morphisms $\left\{A_{i} \mid i \in I\right\} \longrightarrow\left\{B_{i} \mid i \in I\right\}$ is a reindexing function $\phi: I \longrightarrow J$ and a morphism $A_{i} \longrightarrow B_{\phi(i)}$ for every $i \in I$.

Property (adapted from Abramsky,McCusker)
The category \mathfrak{P} is symmetric monoidal closed, with tensor product distributive over sums. Thus it is a polar category.

Relaxing the polarity constraints

Define \otimes as follows:
$-P \otimes Q$
$-\left[P_{1}, \ldots, P_{m}\right] \otimes Q=\left[\ldots, P_{i} \otimes Q, \ldots\right]$
$-\left[P_{1}, \ldots, P_{m}\right] \otimes\left[Q_{1}, \ldots, Q_{n}\right]=\left[\ldots, P_{i} \otimes Q_{j}, \ldots\right]$
where $\left[P_{1}, \ldots, P_{n}\right]$ is the negative game $\&_{i} \uparrow P_{i}$.
Tentative: this defines a monoidal structure on the meridian category.

Linearizing the threaded model of Idealized Algol (Abramsky, McCusker)

Fact: There exists a functor ! from \mathfrak{N} to its category of comonoids such that

Besides, there is an adjunction:

$$
\frac{!A \xrightarrow{-} B}{!A \xrightarrow{m}!B}
$$

This makes the subcategory Threaded of objects

$$
\left[!A_{1}, \ldots,!A_{n}\right]=\oplus_{i} \downarrow!A_{i}
$$

in \mathfrak{P} a continuation category (that is: cartesian polar) with $!\perp=!\left(1^{\perp}\right)$ as response object. Indeed:

$\left[!A_{1}, \ldots,!A_{m}\right] \otimes\left[!B_{1}, \ldots,!B_{n}\right]$	\xrightarrow{m}	$[!\perp]$
$\Pi_{i} \Sigma_{j}\left(!A_{i} \otimes!B_{j}\right.$	\xrightarrow{m}	$!\perp)$
$\Pi_{i} \Sigma_{j}\left(!A_{i} \otimes!B_{j}\right.$	$\xrightarrow{-}$	$\perp)$
$\Pi_{i} \Sigma_{j}\left(!A_{i}\right.$	$\xrightarrow{-}$	$\left.\left(!B_{j} \multimap \perp\right)\right)$
$\left(\left[!A_{1}, \ldots,!A_{n}\right]\right.$	$\left.\xrightarrow{-}\left[\&_{j}\left(!B_{j} \multimap \perp\right)\right)\right]$	
$\left(\left[!A_{1}, \ldots,!A_{n}\right]\right.$	\xrightarrow{m}	$\left.\left[!\&_{j}\left(!B_{j} \multimap \perp\right)\right)\right]$

All in all: a cokleisli category.

The interpretation of new in ALGOL

Consider the non-comonoidal non-threaded map

$$
\text { cell : } 1 \longrightarrow!\operatorname{var}
$$

and the threaded map interpretation of the ALGOL term M :

$$
!\operatorname{var} \xrightarrow{m}!B
$$

The two maps may be composed as follows: derelict the second one

$$
!\operatorname{var} \xrightarrow{-} B
$$

to compose it in \mathfrak{N} with the first one

$$
1 \xrightarrow{-}!\operatorname{var} \xrightarrow{-} B
$$

then exponentiate the whole map

$$
1 \xrightarrow{m}!B
$$

to obtain the interpretation of the term new x in M.

Innocent strategies

The same kind of comonoidal characterization is possible for innocent strategies... but more complicated.

V. Conclusion

Conclusion

- games are continuation models,
- polarized linear logic is a logic of continuations,
- Blass problem (first noticed by Abramsky) becomes a general phenomenon of continuation models, akin to premonoidality.
- polar categories make the positive and negative worlds interact: positive objects $=$ values, past and negative objects= functions, future,
- finally, a linearization of threaded as well as innocent Hyland-Ong games. The secret: alter the arenas.

