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Explain Blass phenomenon
Understand the duality of control
Linearize Hyland-Ong games

How? by bridging three lines of research:

* Game models.

— Au-categories by L. Ong,

— the family construction by S. Abramsky and G. McCusker.

% Continuation models.

— continuation categories by Y. Lafont, B. Reus and T. Streicher.
— ®—-categories by H. Thielecke,

— control categories by P. Selinger.

% Linear logic.

— LC by J-Y. Girard,

— Polarized linear logic by O. Laurent.

Polarized linear logic = logic of continuations




I. Polarized games.



Separate games in two dual classes.
(1) positive games starting by a Player move (=values),

(2) negative games starting by an Opponent move (=functions).

The connectives & and ® and units O and 1 are positive.

Dually, the connectives & and =» and units T and L are negative.

The modality ! transforms negative into positive.

Dually, the modality 7 transforms positive into negative.

Eg. (A& B) = IA® !B



An arena is a triple (My,F4,A4) where
— M4 is a set of moves,
— A4 is a polarity function M4 — {4, -},

— 4 is a justification relation defining a forest of alternated moves.



% A justification sequence s over an arena A is a couple (f,7) such that
-1- f is a finite sequence of moves,

-2- 7 is a partial decreasing function (for all 7 in the domain of j: j(z) < 1)
over the domain of f, what is called the justification.

The ith move of a justification sequence s is justified when,

— j(7) = L and f(3) is a root of the arena A,

— j(@) =k and f(k) Fa f(7) ;

% A justification sequence s is

— justified when all its moves are justified.

— well-opened when the first move is its only root move.
— player when its last move is of polarity 4,

— opponent when its last move is of polarity —.



A linear HO-game is a 4-tuple
A= (My,Fa, 4, Pa)

where
— (M, s, F4) is a positive arena,

— P4 is a prefix-closed set of plays, ie. justified alternated and well-opened
justification sequences.

A linear HO-game is
— positive when its arena has all roots positive,

— negative when its arena has all roots negative.



A strategy is a set o of plays such that:
— all plays of o are player,

— o is closed by “player’ prefix:

Vs-a-b & Py, s-a-bcoc —— s€co

— o IS deterministic:

Vs-a-b& Pa,s-a-cé€ Pa, sra-beocets-a-ce0 = b=c



Given two positive games A and B, the game A& B has
— the sum of forests (Ma,Fa,A4) and (Mp,Fp,A\g) as arena,
— the sum of forests P4 and Pp as set of plays,

The unit O is the empty positive arena.



A game is simple when its arena has a root at most.

Here, we restrict to semi-simple games, that is finite sums of simple games:

D= B
1=0

Defining A ® B over semi-simple games reduces to defining A® B over simple
games, and applying the distributivity equality (?7).

AR (B®C)=(A®B)®(ARC)

The tensor product of two simple games A and B has
— the “coalesced sum” of trees (Ma,Fa,A4) and (Mp,Fg,AB) as arena,

— the “interleaved product” of P4 and Pp as set of plays Pagp.-
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Given two negative games A and B, define
AzB = (At®BH)*t
and given a positive game A and a negative game B, define:
A—-B = A'aB

Remark: the first move of A — B is a pair of a move in A and a move in B.

A lift | from — to + and a lift T from + to —.

Remark: the positive game | A and negative game 1 A are simple.
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II. Polar categories
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Negative games form a category G[n]:
— its morphisms A — B are the strategies of A —nB,

where the negative game A —nFB is defined as:

A—B = |A—-B

for negative games A and B.

Positive games form a category G[v]:
— its morphisms A — B are the strategies of A —VvB.

where the negative game A —vB is defined as:

A—VvB = A-—-1B

for positive games A and B.

Property: The categories G[v] and G[n] are dual.
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In order to have a better grip on control...

Definition: A strategy of A —1 B is transverse (from A to B) if for every root
a in A, there exists a root b in B such that a-b is a play of o.

— positive games as objects,
% T he category B has _ 4+
— transverse strategies of G[v] as maps A — B.

— negative games as objects,

The category 91 has _
o IOrY — transverse strategies of G[n] as maps A — B.

Two remarks:
— The categories ‘B3 and 91 are dual.

— The category B is monoidal (®,1) and has sums (&,0).
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Two functors
TR —MN N — P
and an adjunction

+A — B
A X |B

Intuitively, the two hom-sets

+A-—— B AT B

describe, each one in its own paradigm (call-by-name or call-by-value) the
strategies of

A—oB
which wait for a simultaneous move of Opponent in A+ and in B.
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To every adjunction 1 - | between functors:
TR —MN N — P
one associates a meridian category [, 91]
— whose objects are the objects of ¥ and of I,
— whose morphisms A — B, are
— the morphisms of 3 between positive objects,
— the morphisms of 9t between negative objects,

— the morphisms A —| Bingor1TA— Bin €N,
from a positive object AT to a negative object B~.

— composition is defined using the adjunction 1 - |.
Remark: No morphism from a negative to a positive object.

Definition: a morphism from ¢ to 91 is called meridian,
a morphism of P or I is called polar.

When A is positive and B is negative, one may write:
Hommm](A, B) = Homqg(A, \L B) = Homsﬁ(T A, B)
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From the point of view of data flows...
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A polar category is a:

— two categories P and 91 = PP

— the category P is symmetric monoidal (®,1) and has sums (4, 0),
— the tensor distributes over the sum,

— a functor 1P — 91 and its dual functor |: 91 — 3,

— for every positive object A, an adjunction 1 (= ® B) 4 | (Bt=s-)

+(A® B) — C
AR B —o C
A —o B+=C
A L (BL=0O)

where (=) : P — N is the negation functor, and = is the dual of ®.

18



The adjunction 1T - | between 1: 8 — 91 and |: 9T — P induces
— a comonad 1| on the category 9.

— a monad |1 on the category .

Fact:

G[n] is the cokleisli category over Dt induced by the comonad 1J: 91 — M.

Dually, G[v] is the kleisli category over g induced by the monad [1: ¢ — B.
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III. Blass phenomenon revisited
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(.

One defines

Then

and

_I_

)

Q

b/:_ C/:_I_ .
b:+ c. — d: —
. AT — BT o= {ea-d}
. Bt — C~ T = {e}
C- — D~ v={ed-d}

(0'; T) — {67 (aa C) . a/}
(o;7);v = {e(a,d)-d}

(riv) = {e(b,d)-d}
o (r;v) = {e(a,d)-ad?}
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oA B or ot A1 B
B C  or r1+B - C
vilC 51D or vl C— D

Thus, to compose o; 7 with v (in PB):

A ° 4 B—Y . |C v .| D
and to compose o with 7;v (in MN):

+ A °©  4+B— 1" 40— D
and applying the adjunction, does not commute generally.

Remark: this is equivalent to premonoidality of = in G[n] (as in Peter's control
categories) or that the monad |71 is strong, but not commutatively so.
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T = Ens 2N = Ens®”
1 X — R i X — R

Again, a strong monad X — RE" in Ens,

P% e\ f () RRY hs AW RO F(R)) R R

but not commutatively so.

The Blass phenomenon: Let us compose
o: RP — RA r:BxC—R v:RY — RP
To compose o et 7, one transforms 7 as C — RP,
¢ - RP % RA
then transforms the composite o; 7 as A — RC:
(o;7);v: A— R® 2 RP

The functions (o;7);v and o; (7;v) are generally different.
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IV. Polar categories

as (monoidal) continuation categories
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After some thought... a polar category boils down to

— a symmetric monoidal category (B3,®,1) with sums (&,0),
— where the tensor distributes over the sum,

— an object R with all linear exponentials R4

(1) a contravariant functor R~ : 8 — B and

(2) a bijection

natural in A and B.

*0O
In the case of Hyland-Ong games, R is the Sierpinski game ( T )
*p

Remark: a polar category with cartesian tensor is called a continuation cate-
gory (Lafont, Reus, Streicher)
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AB:=A®B|AQB|1(ANH)=R*|0|1]a

. A s LAET ,BET
right @ left &
r-A9 B fr-A® B rA® BETI
LA BFTI
right ® r-A4 ACB left ®
rIA+FA®B MMA® BFTI
left O right O no rule
LOHF
M= A .
left 1 — right 1 —
M1FA J 1
MARF FHA
right | left !
d r+ RA M RA
. A AT . CEN
contraction weakening —_
LAEN AT

+ axiom, cut and permutation rules.

26



Interpretation of LLP in a continuation category

a proofof T A is interpreted as a morphism [ — A
a proof of I is interpreted as a morphism [ — R

Thus, the right I-introduction rule is reversible

frMRA—R
r— RA
while the left !-introduction rule is non-reversible

r— A
rQ R4 — R
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This observation not reductive at all:

— a cut-elimination theorem for continuations, with a nice proof-theoretic
characterization of proofs (O. Laurent’'s correctness criterion for LLP)

— after all, every control category is equivalent to a response category (a
structure theorem by Peter).
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V. One step further: linearizing Hyland-Ong games
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The polar category of games enjoys two important properties:

-1- every R4 is m-atomic (Joyal)

1A BaoC
LA B +0AS 0

-2- every game is a (finite) sum of games of the form RA.
Thus,

@i\l/Ai i> EBj\LBj
N4 @,1B)

ns;4 A —» 1B

But | A, =] B, in B is simply 4; — B; in G[n].

Thus, B is (equivalent to) the free co-complete category over G[n], also called
the family construction (by Samson and Guy).
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To obtain a polar category, start from a symmetric monoidal closed category
(C,®,I) with products &, T.

Define the category 3 as the free co-cartesian category over C:

— its objects are {A; | i € I}

— its morphisms {A; |i € I} — {B; | i € I} is a reindexing function ¢ : I — J
and a morphism A; — By for every i € I.

Property (adapted from Abramsky,McCusker)

The category B is symmetric monoidal closed, with tensor product distributive
over sums. Thus it is a polar category.
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Define ® as follows:

— PRQ

— [P, .., Pl ®Q=[..P®Q,..]

— [P, .., Pu] ® [Q1, .+, Q] = [, B ® Qj, ..]
where [P4, ..., P,] is the negative game &; 1 P;.

Tentative: this defines a monoidal structure on the meridian category.
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Fact: There exists a functor ! from 91 to its category of comonoids such that

1A = B

6,4 5B

IAQ'A—7%7 _ _IB®!B

threaded strategies from A to B = comonoidal maps from 'A to !B

Besides, there is an adjunction:

1A — B
A 1B
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|
This makes the subcategory Threaded of objects

in B a continuation category (that is: cartesian polar) with 'L =I(11) as
response object. Indeed:

[1A1,.. 1Al @ !By, ...,'By] — [11]
M,>,;(1A;Q!B; — 1)
M, (1 A;Q!B; — 1)
M=, (1A, —> (!Bj — 1))
(['Aq,...,1A,] —  [&;(!1Bj — 1))]
([1Aq,...,14,] s [1&,;('B; — 1))]

All in all: a cokleisli category.
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Consider the non-comonoidal non-threaded map
cell : 1 —lvar

and the threaded map interpretation of the ALGOL term M:

lvar —»1B
The two maps may be composed as follows: derelict the second one

lvar — B
to compose it in 91 with the first one

1l — lvar — B

then exponentiate the whole map

1 % B

to obtain the interpretation of the term new x in M.

35



The same kind of comonoidal characterization is possible for innocent strate-
gies... but more complicated.
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V. Conclusion
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— games are continuation models,
— polarized linear logic is a logic of continuations,

— Blass problem (first noticed by Abramsky) becomes a general phenomenon
of continuation models, akin to premonoidality.

— polar categories make the positive and negative worlds interact: positive
objects = values, past and negative objects= functions, future,

— finally, a linearization of threaded as well as innocent Hyland-Ong games.
The secret: alter the arenas.
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