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Paul-André Melliès

CNRS — Université Paris 7 Jussieu
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Goal
Explain Blass phenomenon

Understand the duality of control
Linearize Hyland-Ong games

How? by bridging three lines of research:

F Game models.

— λµ-categories by L. Ong,

— the family construction by S. Abramsky and G. McCusker.

F Continuation models.

— continuation categories by Y. Lafont, B. Reus and T. Streicher.

— ⊗¬-categories by H. Thielecke,

— control categories by P. Selinger.

F Linear logic.

— LC by J-Y. Girard,

— Polarized linear logic by O. Laurent.

Polarized linear logic = logic of continuations
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I. Polarized games.
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Polarization (Blass, Girard, Laurent)

Separate games in two dual classes.

(1) positive games starting by a Player move (=values),

(2) negative games starting by an Opponent move (=functions).

The connectives ⊕ and ⊗ and units 0 and 1 are positive.

Dually, the connectives & and ............................................................................................... and units > and ⊥ are negative.

The modality ! transforms negative into positive.

Dually, the modality ? transforms positive into negative.

Eg. !(A & B) ∼= !A ⊗ !B
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Hyland-Ong games (arenas)

An arena is a triple (MA,`A, λA) where

— MA is a set of moves,

— λA is a polarity function MA −→ {+,−},

— `A is a justification relation defining a forest of alternated moves.
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Hyland-Ong games (plays)

F A justification sequence s over an arena A is a couple (f, j) such that

-1- f is a finite sequence of moves,

-2- j is a partial decreasing function (for all i in the domain of j: j(i) < i)
over the domain of f , what is called the justification.

The ith move of a justification sequence s is justified when,

— j(i) = ⊥ and f(i) is a root of the arena A,

— j(i) = k and f(k) `A f(i) ;

F A justification sequence s is

— justified when all its moves are justified.

— well-opened when the first move is its only root move.

— player when its last move is of polarity +,

— opponent when its last move is of polarity −.
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Linear Hyland-Ong games (definition)

A linear HO-game is a 4-tuple

A = (MA,`A, λA, PA)

where

— (MA, λA,`A) is a positive arena,

— PA is a prefix-closed set of plays, ie. justified alternated and well-opened
justification sequences.

A linear HO-game is

— positive when its arena has all roots positive,

— negative when its arena has all roots negative.
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Strategies (definition)

A strategy is a set σ of plays such that:

— all plays of σ are player,

— σ is closed by “player” prefix:

∀s · a · b ∈ PA, s · a · b ∈ σ =⇒ s ∈ σ

— σ is deterministic:

∀s · a · b ∈ PA, s · a · c ∈ PA, s · a · b ∈ σ et s · a · c ∈ σ =⇒ b = c
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Sum (of positive games)

Given two positive games A and B, the game A⊕B has

— the sum of forests (MA,`A, λA) and (MB,`B, λB) as arena,

— the sum of forests PA and PB as set of plays,

The unit 0 is the empty positive arena.
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Tensor (of positive games) by distributivity

A game is simple when its arena has a root at most.

Here, we restrict to semi-simple games, that is finite sums of simple games:

A =
n⊕
i=0

Bi

Defining A⊗B over semi-simple games reduces to defining A⊗B over simple
games, and applying the distributivity equality (??).

A⊗ (B ⊕ C) = (A⊗B)⊗ (A⊗ C)

The tensor product of two simple games A and B has

— the “coalesced sum” of trees (MA,`A, λA) and (MB,`B, λB) as arena,

— the “interleaved product” of PA and PB as set of plays PA⊗B.
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The ............................................................................................... -product (of negative games) and lift operators

Given two negative games A and B, define

A...............................................................................................B = (A⊥ ⊗B⊥)⊥

and given a positive game A and a negative game B, define:

A( B = A⊥...............................................................................................B

Remark: the first move of A( B is a pair of a move in A and a move in B.

A lift ↓ from − to + and a lift ↑ from + to −.

Remark: the positive game ↓ A and negative game ↑ A are simple.

11



II. Polar categories
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Two dual categories: G[n] and G[v]

Negative games form a category G[n]:

— its morphisms A −→ B are the strategies of A−−nB,

where the negative game A−−nB is defined as:

A−−nB = ↓ A( B

for negative games A and B.

Positive games form a category G[v]:

— its morphisms A −→ B are the strategies of A−−vB.

where the negative game A−−vB is defined as:

A−−vB = A( ↑ B

for positive games A and B.

Property: The categories G[v] and G[n] are dual.
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Two dual categories: P and N of transverse strategies.

In order to have a better grip on control...

Definition: A strategy of A(↑ B is transverse (from A to B) if for every root
a in A, there exists a root b in B such that a · b is a play of σ.

F The category P has
– positive games as objects,

– transverse strategies of G[v] as maps A
+−→ B.

F The category N has
– negative games as objects,

– transverse strategies of G[n] as maps A
−−→ B.

Two remarks:

— The categories P and N are dual.

— The category P is monoidal (⊗,1) and has sums (⊕,0).
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A remarkable adjunction

Two functors

↑: P −→ N ↓: N −→ P

and an adjunction

↑ A −−→ B

A
+−→ ↓ B

Intuitively, the two hom-sets

↑ A −−→ B A
+−→↓ B

describe, each one in its own paradigm (call-by-name or call-by-value) the
strategies of

A( B

which wait for a simultaneous move of Opponent in A⊥ and in B.
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The meridian category of an adjunction ↑ a ↓

To every adjunction ↑ a ↓ between functors:

↑: P −→ N ↓: N −→ P

one associates a meridian category [P,N]

— whose objects are the objects of P and of N,

— whose morphisms A −→ B, are

— the morphisms of P between positive objects,

— the morphisms of N between negative objects,

— the morphisms A −→↓ B in P or ↑ A −→ B in N,
from a positive object A+ to a negative object B−.

— composition is defined using the adjunction ↑ a ↓.

Remark: No morphism from a negative to a positive object.

Definition: a morphism from P to N is called meridian,
a morphism of P or N is called polar.

When A is positive and B is negative, one may write:

Hom[P,N](A,B) ∼= HomP(A, ↓ B) ∼= HomN(↑ A,B)
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The meridian category(2)

From the point of view of data flows...
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Polar categories (definition)

A polar category is a:

— two categories P and N ∼= Pop

— the category P is symmetric monoidal (⊗,1) and has sums (⊕,0),

— the tensor distributes over the sum,

— a functor ↑: P −→ N and its dual functor ↓: N −→ P,

— for every positive object A, an adjunction ↑ (−⊗B) a ↓ (B⊥...............................................................................................−)

↑ (A⊗B)
−−→ C

A⊗B ( C
A ( B⊥...............................................................................................C

A
+−→ ↓ (B⊥...............................................................................................C)

where (−)⊥ : P −→ Nop is the negation functor, and ............................................................................................... is the dual of ⊗.
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The “usual” categories G[n] and G[v] as kleisli constructions

The adjunction ↑ a ↓ between ↑: P −→ N and ↓: N −→ P induces

— a comonad ↑↓ on the category N.

— a monad ↓↑ on the category N.

Fact:

G[n] is the cokleisli category over N induced by the comonad ↑↓: N −→ N.

Dually, G[v] is the kleisli category over P induced by the monad ↓↑: P −→ P.
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III. Blass phenomenon revisited
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Blass non associativity phenomenon.

A+ =

(
a′ : −

a : +

OO
)

B+ =

(
b′ : −

b : +

OO
)

C− =

(
c′ : +

c : −

OO

)
D− =

(
d′ : +

d : −

OO

)

One defines
σ : A+ −→ B+ σ = {ε, a · a′}
τ : B+ −→ C− τ = {ε}
ν : C− −→ D− ν = {ε, d · d′}

Then

(σ; τ) = {ε, (a, c) · a′}

(σ; τ); ν = {ε, (a, d) · d′}
and

(τ ; ν) = {ε, (b, d) · d′}

σ; (τ ; ν) = {ε, (a, d) · a′}
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Blass phenomenon: a clash between the kleisli and co-kleisli constructions

σ : A
+−→↓↑ B or σ :↑ A −−→↑ B

τ : B
+−→↓ C or τ :↑ B −−→ C

ν :↓ C +−→↓ D or ν :↑↓ C −−→ D

Thus, to compose σ; τ with ν (in P):

A σ // ↓↑ B ↓τ // ↓ C ν // ↓ D
and to compose σ with τ ; ν (in N):

↑ A σ // ↑ B ↑τ // ↑↓ C ν //D

and applying the adjunction, does not commute generally.

Remark: this is equivalent to premonoidality of ............................................................................................... in G[n] (as in Peter’s control
categories) or that the monad ↓↑ is strong, but not commutatively so.
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Consequence: the Blass phenomenon is not limited to games!

P = Ens N = Ensop

↑: X 7→ RX ↓: X 7→ RX

Again, a strong monad X 7→ RRX

in Ens,

X
x7→λf.f(x)

//RRX

RRRR
Xh7→λh′.h(λf.f(h′))

oo

but not commutatively so.

The Blass phenomenon: Let us compose

σ : RB −→ RA τ : B × C −→ R ν : RC −→ RD

To compose σ et τ , one transforms τ as C −→ RB,

C
τ−→ RB σ−→ RA

then transforms the composite σ; τ as A −→ RC:

(σ; τ); ν : A −→ RC ν−→ RD

The functions (σ; τ); ν and σ; (τ ; ν) are generally different.
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IV. Polar categories

as (monoidal) continuation categories
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Polar categories = “monoidal” continuation category

After some thought... a polar category boils down to

— a symmetric monoidal category (P,⊗,1) with sums (⊕,0),

— where the tensor distributes over the sum,

— an object R with all linear exponentials RA

(1) a contravariant functor R− : P −→ Pop and

(2) a bijection

A⊗B −→ R
A ( RB

natural in A and B.

In the case of Hyland-Ong games, R is the Sierpinski game

( ∗O
∗P

OO
)

Remark: a polar category with cartesian tensor is called a continuation cate-
gory (Lafont, Reus, Streicher)
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Polarized linear logic = a logic of continuations

A,B ::= A⊕B | A⊗B | !(A⊥) = RA | 0 | 1 | α

right ⊕ Γ ` A
Γ ` A⊕B

Γ ` B
Γ ` A⊕B

left ⊕
Γ, A ` Π Γ, B ` Π

Γ, A⊕B ` Π

right ⊗ Γ ` A ∆ ` B
Γ,∆ ` A⊗B

left ⊗
Γ, A,B ` Π

Γ, A⊗B ` Π

left 0
Γ,0 `

right 0 no rule

left 1
Γ ` A

Γ,1 ` A
right 1

` 1

right !
Γ, A `
Γ ` RA

left !
Γ ` A

Γ, RA `

contraction
Γ, A,A ` Π

Γ, A ` Π
weakening

Γ ` Π
Γ, A ` Π

+ axiom, cut and permutation rules.
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Interpretation of LLP in a continuation category

a proof of Γ ` A is interpreted as a morphism Γ −→ A
a proof of Γ ` is interpreted as a morphism Γ −→ R

Thus, the right !-introduction rule is reversible

Γ⊗A −→ R

Γ −→ RA

while the left !-introduction rule is non-reversible

Γ −→ A

Γ⊗RA −→ R

27



Continuations, continuations, continuations...

This observation not reductive at all:

— a cut-elimination theorem for continuations, with a nice proof-theoretic
characterization of proofs (O. Laurent’s correctness criterion for LLP)

— after all, every control category is equivalent to a response category (a
structure theorem by Peter).
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V. One step further: linearizing Hyland-Ong games
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The family construction (Abramsky and McCusker)

The polar category of games enjoys two important properties:

-1- every RA is π-atomic (Joyal)

↓ A +−→ B ⊕ C

(↓ A +−→ B) + (↓ A +−→ C)

-2- every game is a (finite) sum of games of the form RA.

Thus,

⊕
i ↓ Ai

+−→
⊕

j ↓ Bj
Πi(↓ Ai

+−→
⊕

j ↓ Bj)
ΠiΣj(↓ Ai

+−→ ↓ Bj)

But ↓ Ai
+−→↓ Bj in P is simply Ai −→ Bj in G[n].

Thus, P is (equivalent to) the free co-complete category over G[n], also called
the family construction (by Samson and Guy).
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Better: the family construction (Abramsky, McCusker)

To obtain a polar category, start from a symmetric monoidal closed category
(C,�, I) with products &,>.

Define the category P as the free co-cartesian category over C:

— its objects are {Ai | i ∈ I}

— its morphisms {Ai | i ∈ I} −→ {Bi | i ∈ I} is a reindexing function φ : I −→ J
and a morphism Ai −→ Bφ(i) for every i ∈ I.

Property (adapted from Abramsky,McCusker)

The category P is symmetric monoidal closed, with tensor product distributive
over sums. Thus it is a polar category.
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Relaxing the polarity constraints

Define ⊗ as follows:

— P ⊗Q

— [P1, ..., Pm]⊗Q = [..., Pi ⊗Q, ...]

— [P1, ..., Pm]⊗ [Q1, ..., Qn] = [..., Pi ⊗Qj, ...]

where [P1, ..., Pn] is the negative game &i ↑ Pi.

Tentative: this defines a monoidal structure on the meridian category.
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Linearizing the threaded model of Idealized Algol (Abramsky, McCusker)

Fact: There exists a functor ! from N to its category of comonoids such that

!A σ //

δA

��

!B

δB

��

!A⊗!A σ⊗σ // !B⊗!B

threaded strategies from A to B = comonoidal maps from !A to !B

Besides, there is an adjunction:

!A
−−→ B

!A
m−→!B
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This makes the subcategory Threaded of objects

[!A1, ..., !An] = ⊕i ↓!Ai
in P a continuation category (that is: cartesian polar) with !⊥ =!(1⊥) as
response object. Indeed:

[!A1, ..., !Am]⊗ [!B1, ..., !Bn]
m−→ [!⊥]

ΠiΣj(!Ai⊗!Bj
m−→ !⊥)

ΠiΣj(!Ai⊗!Bj
−−→ ⊥)

ΠiΣj(!Ai
−−→ (!Bj ( ⊥))

([!A1, ..., !An]
−−→ [&j(!Bj ( ⊥))]

([!A1, ..., !An]
m−→ [!&j(!Bj ( ⊥))]

All in all: a cokleisli category.
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The interpretation of new in ALGOL

Consider the non-comonoidal non-threaded map

cell : 1 −→!var

and the threaded map interpretation of the ALGOL term M :

!var
m−→!B

The two maps may be composed as follows: derelict the second one

!var
−−→ B

to compose it in N with the first one

1
−−→ !var

−−→ B

then exponentiate the whole map

1
m−→ !B

to obtain the interpretation of the term new x in M .

35



Innocent strategies

The same kind of comonoidal characterization is possible for innocent strate-
gies... but more complicated.
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V. Conclusion
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Conclusion

— games are continuation models,

— polarized linear logic is a logic of continuations,

— Blass problem (first noticed by Abramsky) becomes a general phenomenon
of continuation models, akin to premonoidality.

— polar categories make the positive and negative worlds interact: positive
objects = values, past and negative objects= functions, future,

— finally, a linearization of threaded as well as innocent Hyland-Ong games.
The secret: alter the arenas.
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