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Purpose of this talk

I. Apply the ideas of linear logic to connect

> the type-theoretic account by Kobayashi & Ong

> the domain-theoretic account by Salvati & Walukiewicz

of higher-order model-checking.

II. Construct a cartesian-closed category & of coloured domains.

Very similar in spirit as Kazushige’s talk of this morning



Higher-order recognizability
Suppose given a set .« of BOhm trees of same type A.

Question:

When should one consider the set . as a recognizable language?



Higher-order recognizability
Suppose given a set .« of BOhm trees of same type A.

Question:

When should one consider the set . as a recognizable language?

Tentative answer:

Use a finite domain interpretation of types.



Higher-order recognizability

Every finite domain D induces an interpretation of A as a finite domain:

[ol = D
[AXB] = TA] X [B]
[A— B] = TA] — [B]

By continuity, every Bohm tree M of type A is interpreted as an element

Ml € [Al
of the domain [[A].



Higher-order recognizability

Now, every finite subset ¢ C [[A]l induces a set

Ly = {M|IM] € ¢}
of Bohm trees of type A.

Notation: We write £ M : ¢ to meanthat [M] € .

Definition. [ adapted from Salvati 2009 ]

A set of Bohm trees . is recognizable when it is of the form Z,.



Refinement types

Every such pair (D, @) should be seen as a predicate over the type A.

¢ P
A f B

Pullback operation:
Given a predicate ¢ C [[B]] one defines the predicate
ff@) = {xelAll fx) e}
in such a way that
F P:MI'(y) & £ MP:y
for every Bohm tree P of type A.



Refinement types

Every such pair (D, @) should be seen as a predicate over the type A.

¢ P
A f B

Pushforward operation:

Given a predicate ¢ C [A]] one defines the predicate
flo) = {f)el[B] | xeq}

in such a way that

F P:op = k MP:[M]p)
for every Bohm tree P of type A.



The Scott semantics of linear logic

Well-known principle.

Every preorder (A, <) induces adomain Domain(A) defined as follows:

> its elements are the ideals of the preorder,

> the ideals are ordered by inclusion.

Recall that a subset X C A is called an ideal of the preorder A when

YVaeA VxeX a<x=aelX



The Scott semantics of linear logic

Key observation.

Suppose that the base type o is interpreted as the domain of ideals
[oe]l = Domain(Q, <)

generated by a preorder O of atomic states.

In that case, the interpretation of every type A is the domain of ideals

[A] = Domain(Qu, <p)

generated by a specific preorder O, of higher-order states.
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The Scott semantics of linear logic

A series of new connectives on preorders, such as:

At = AP
A&B = (A + B,<4+<p)
A®B = (AXB,<4%X<p)
1A = 95 (A)

where the finite sets of elements of A are ordered as:

{al,...,ap} <14 {bl,...,bq} — ViE[p]Ele[q] LZiSAb]'
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The Scott semantics of linear logic

Given a preorder of atomic states for the base type o

Qo = ( Q, < )
the preorder Q 4 of higher-order states is defined by induction:
Qaxp = Qa & Op
Qi = 'Qa — Op

In particular, a state of the simple type A — B is of the form

{5]1/---/5]11} —0 q
where g4, ...,q, are states of A and g is a state of B.
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What is a higher-order automaton?

Methodological question.

Given a simple type A, a finite preorder (Q, <) and a subset

¢ <Al
can we describe the BOhm trees of the associated language
ZLo = {(M|[M]egp} = (M| EM:¢}

in a more direct and automata-theoretic fashion ?
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What is a higher-order automaton?

Methodological question.
Given a simple type A, a finite preorder (O, <) and an element

q€QAa
can we describe the BOhm trees of the associated language
2L = {M|qelM]}

in a more direct and automata-theoretic fashion ?
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What is a higher-order automaton?

Definition. A higher-order automaton

A = <Z/ Q,(S, qO)

consists of:

a finite signature . : Type — Set

a finite set of states O

a family of transition functions o6y : Xx — [X]
a higher-order initial state g € [A]]

VvV V V V

where the interpretation [[—]| of types is induced by the preorder O, = Q.
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What is a higher-order automaton?
Suppose given a finite preorder (Q, <).

Adequacy Theorem.

The interpretation of a Bohm tree M is the set of its accepting states.

In other words, for every higher-order state g € [A]],

ge[[M]] = g is accepted by the automaton (0, Q, 0, q)

Corollary.

Acceptance of a BoOhm tree generated by a AY-term M is decidable.
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Higher-order recursion schemes

The infinite tree

O —O —— N

O e O~ — O — O

is generated by the higher-order recursion scheme

{ S — Fabc
Fxyz w» x(yz)(Fxy(yz)
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Church encoding in the A-calculus

The higher-order recursion scheme

S — Fabc
Fxyz +— x(yz)(Fxy(yz)
may be seen as a A-term of type

(0> 0—>0)—(0—>0) —0—>o0.

in the simply-typed A-calculus extended with a recursion operator Y.

Here, each tree-constructor a, b and c is of type:

a : 0 —>0—>o0 b : 0o > o0 cC : 0
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Higher-order recursion schemes

Signature a:0—>0—>0
b:0—o0
Cc:.0

Non terminals S:o0
F:0—>0

Rewrite rules S > Fc

F — Ax.ax(F(bx))

S — Fc¢ — ac(F(bc)) — ac(a(bc)F(b(bc)))




Church encoding in linear logic

The formula
(0> 0—>0)—>((0—>0)—>0—>0
traditionally translated in linear logic as
A = I(lo—olo—o0)—o!(lo—o00)—o!lo—oo0
may be also translated as

B = !(0o—o00-—o00)—o!(0—00)—o!o—o.
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Church encoding in linear logic

So, the same tree may be seen as a term of type
A = I(lo—olo—o00)—o!(lo—o00)—o!l0o—oo0
with tree-constructors a, b and c of type
a :lo—olo—oo b :lo—oo c :
or as a term of type
B = !(0-—o00—o00)—o!(0—o00)—o!0o—oo0

with tree-constructors a, b and c of type

a : 0 —o00 — 0 b : 0 oo cC : 0
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Principle of duality

Proponent
Program

Opponent
Environment

plays the formula plays the formula

A At

Negation permutes the réles of Proponent and Opponent
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Principle of duality

Opponent
Environment

Proponent
Program

plays the formula plays the formula

At A

Negation permutes the roles of Opponent and Proponent
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Question:

Answer:

Duality applied to the Church encoding

So, what is the dual of a tree ?

Well, it should be a tree automaton !
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Duality applied to the Church encoding
The formulas A and B have counter-formulas:
At = I(lo—olo—o0)® !(lo—o0) ® o ® ot
B+ = (0 <0 —o0)®!(0o00)®0® o+
Claim:

> the counter-formula B+ is the type of tree automata

> the counter-formula A+ is the type of alternating tree automata
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What is a linear higher-order automaton?
Suppose given a finite preorder (Q, <).

Adequacy Theorem.

The interpretation of a Bohm tree M is the set of its accepting states.

In other words, for every higher-order state g € [A]],

ge[[M]] = g is accepted by the automaton (0, Q, 0, q)

Corollary.

Acceptance of a BOhm tree generated by a LLy-term M is decidable.
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The modal nature of priorities

A proof-theoretic account of parity tree automata
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An intersection type system
equivalent to the modal u-calculus

The grammar of kinds «
K = 0 | k=«

Naoki Kobayashi and Luke Ong [LICS 2009]
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An intersection type system
equivalent to the modal u-calculus

The grammar of atomic types 0 and intersection types

qdi “atomic ©

01 “atomic € -+ On Sutomic K
(Ql,ml) VAN (Gn,mn) K

Naoki Kobayashi and Luke Ong [LICS 2009]
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A type system equivalent to the modal p-calculus

x:(60,Q0]) v x:0

((0gi) 11<i<n1<j< k;} satisfies 64(q,4)

AN

k n
: /\]il(ch]/ml]) = ... = /\l;zl(qnjlmnj) =1
where mjj = max(Q[qij],Q[q])

AI—t:(@1,7111)/\.../\(6k,mk)z>6 AMru:07 - Apru: O

A,Alﬂml,...,Akﬂmk F tu: O
where Afm = {F : (0, max(m,m")|F : (6,m) € A}

A, xt Nigr(6;,mij) + t:6 [cj
Ak /\x.t:/\iej(Gi,mi)zQ
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Emulation theorem
Let G be a higher-order recursion scheme.

Let A be an alternating parity tree automaton.
Theorem [Kobayashi & Ong]

The tree generated by G — The higher-order recursion
IS recognized by A scheme G is typable.
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Guiding idea of Kobayashi and Ong

q

(a,,m) A (a,,m,) = g
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Modal reformulation

-ql/\-q2:>q

Collecting colours works in the same way as collecting levels of copies
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A colour modality for intersection types

Definition. A parametric modality is a family of functors

each of them lax monoidal:
DmA 039 DmB — Dm(A X B)

1 — Ol
and defining together a parametric comonad

Oax(mm’y A — Om Oy A

I:loA—>A

The structure of copy management in linear logic
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The exponential modality

IA®!'B — !(A®B)
A — 1A

A — A

The structure of copy management in linear logic
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Translation

Al-t:(Ql,ml)/\.../\(ek,mk)=>6 Aﬂ—u:@i
A,Alﬂml,...,Akﬂmk F tu: O

where Afm = {F : (0, max(m,m’) | F : (0,m) e A}

IS translated as

Ail—u : @i
Art:Op 01 A...AOp O >0 Om; AjFu : Oy, 0;
A,I:ImlAl,...,ElmkAk F tu: O
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Linear logic with colours

A domain-theoretic account of parity tree automata
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A colour modality for domains
Suppose given a specific number n of colours.
Definition. The colour modality on preorders is defined as

OA = A& - &A

-~

n

As a consequence, note that

Domain(@A) := Domain(A) X --- X Domain(A)
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The colour modality

Two preliminary observations

> The modality O defines a comonad.

EA : OA —> A
(L 9) - q
6A : OA —> OOA
(max (mqy,mp),q)  +—  (mq,(mp,q))

> The comonad O commutes with finite products:

O(A&B)

112

OA & OB

OT

12

T
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The colour modality

A third observation

> There exists a distributivity law

A ! = 0oO! : ScottL — ScottL

defined as follows:

AA : {(mllch)/'“/(mk/EIk)} = (max(m1/°°'rmk)/{Chl"'/q}(})
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A colour modality

An important consequence: The composite modality

'O : ScottL — ScottL

defines an exponential modality of linear logic.

From this follows that the Kleisli category

92 = Kleisli(ScottL, ! O)

is a cartesian closed category.
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A domain-theoretic formulation
The category ¥ has

>  finite prime algebraic domains as objects

> continous functions f : D" — E as morphisms.

Two morphisms of the category &
f:D"—E ¢g:E"—F
are composed as follows:

D max

Dn Dan fn En 8
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A domain-theoretic formulation
In the casen =2

gof :(xp,x) =  g(f(xg,x2), f(x2,x72))

Inthe casen =3

g ©° f : (xllle x3) = 8(f (x1/x2/ x3) ’ f(Xz, X2, X3) ’ f(x3/ X3, Xg))

More generally:

(123 4 5)

( \
12 3 L2504 22345

1 2 2 23 4
- 2 2 3 2354 33345
3 3 3 4444 4 4445
\ /5555 5|
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An inductive-coinductive fixpoint
For simplicity, let us assume that the number 7 of colours is even.

Given a morphism in the category ¥
f : D" — D
one defines the fixpoint

Y(f) = van.puxy—q.vXp—p ... vxp.pxq . f(xg, e, xn)

Theorem. This defines a categorical interpretation of the AY-calculus.
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What is a higher-order automaton?
Suppose given a finite preorder (Q, <).

Adequacy Theorem.

The interpretation of a Bohm tree M is the set of its accepting states.

In other words, for every higher-order state g € [A]],

ge[M] <= g is accepted by the parity automaton (0, Q, 0, q)

Corollary.

Acceptance of a BoOhm tree generated by a AY-term M is decidable.
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Thank you !
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