
Linear logic

and higher-order model checking

Paul-André Melliès

CNRS & Université Paris Diderot

Abstraction and Verification in Semantics
Institut Henri Poincaré 23→ 27 June 2014

Purpose of this talk

I. Apply the ideas of linear logic to connect

B the type-theoretic account by Kobayashi & Ong

B the domain-theoretic account by Salvati & Walukiewicz

of higher-order model-checking.

II. Construct a cartesian-closed category D of coloured domains.

Very similar in spirit as Kazushige’s talk of this morning

2

Higher-order recognizability

Suppose given a set L of Böhm trees of same type A.

Question:

When should one consider the set L as a recognizable language?

Tentative answer:

Use a finite domain interpretation of types.

3

Higher-order recognizability

Suppose given a set L of Böhm trees of same type A.

Question:

When should one consider the set L as a recognizable language?

Tentative answer:

Use a finite domain interpretation of types.

4

Higher-order recognizability

Every finite domain D induces an interpretation of A as a finite domain:

[[o]] := D
[[A × B]] := [[A]] × [[B]]
[[A→ B]] := [[A]] → [[B]]

By continuity, every Böhm tree M of type A is interpreted as an element

[[M]] ∈ [[A]]

of the domain [[A]].

5

Higher-order recognizability

Now, every finite subset ϕ ⊆ [[A]] induces a set

Lϕ = { M | [[M]] ∈ ϕ }

of Böhm trees of type A.

Notation: We write �M : ϕ to mean that [[M]] ∈ ϕ.

Definition. [adapted from Salvati 2009]

A set of Böhm trees L is recognizable when it is of the form Lϕ.

6

Refinement types

Every such pair (D, ϕ) should be seen as a predicate over the type A.

ϕ ψ

D D

A
f

// B

Pullback operation:

Given a predicate ψ ⊆ [[B]] one defines the predicate

f ∗ (ψ) := { x ∈ [[A]] | f (x) ∈ ψ }

in such a way that

� P : [[M]]∗(ψ) ⇐⇒ � MP : ψ

for every Böhm tree P of type A.

7

Refinement types

Every such pair (D, ϕ) should be seen as a predicate over the type A.

ϕ ψ

D D

A
f

// B

Pushforward operation:

Given a predicate ϕ ⊆ [[A]] one defines the predicate

f (ϕ) := { f (x) ∈ [[B]] | x ∈ ϕ }

in such a way that

� P : ϕ ⇒ � MP : [[M]](ϕ)

for every Böhm tree P of type A.

8

The Scott semantics of linear logic

Well-known principle.

Every preorder (A , ≤) induces a domain Domain(A) defined as follows:

B its elements are the ideals of the preorder,

B the ideals are ordered by inclusion.

Recall that a subset X ⊆ A is called an ideal of the preorder A when

∀a ∈ A, ∀x ∈ X, a ≤ x⇒ a ∈ X.

9

The Scott semantics of linear logic

Key observation.

Suppose that the base type o is interpreted as the domain of ideals

[[o]] = Domain(Q , ≤)

generated by a preorder Q of atomic states.

In that case, the interpretation of every type A is the domain of ideals

[[A]] := Domain(QA , ≤A)

generated by a specific preorder QA of higher-order states.

10

The Scott semantics of linear logic

A series of new connectives on preorders, such as:

A⊥ := A op

A & B := (A + B , ≤A + ≤B)

A ⊗ B := (A × B , ≤A × ≤B)

! A := ℘ f in (A)

where the finite sets of elements of A are ordered as:

{ a1 , . . . , ap } ≤ !A { b1 , . . . , bq } ⇐⇒ ∀i ∈ [p] ∃ j ∈ [q] ai ≤A b j

11

The Scott semantics of linear logic

Given a preorder of atomic states for the base type o

Qo = (Q , ≤)

the preorder QA of higher-order states is defined by induction:

QA×B = QA & QB

QA→B = ! QA (QB

In particular, a state of the simple type A→ B is of the form

{ q1, . . . , qn } (q

where q1, . . . , qn are states of A and q is a state of B.

12

What is a higher-order automaton?

Methodological question.

Given a simple type A, a finite preorder (Q,≤) and a subset

ϕ ⊆ [[A]]

can we describe the Böhm trees of the associated language

Lϕ = { M | [[M]] ∈ ϕ } = { M | � M : ϕ }

in a more direct and automata-theoretic fashion ?

13

What is a higher-order automaton?

Methodological question.

Given a simple type A, a finite preorder (Q,≤) and an element

q ∈ QA

can we describe the Böhm trees of the associated language

L q = { M | q ∈ [[M]] }

in a more direct and automata-theoretic fashion ?

14

What is a higher-order automaton?

Definition. A higher-order automaton

A = 〈Σ , Q , δ , q0 〉

consists of:

B a finite signature Σ : Type→ Set
B a finite set of states Q
B a family of transition functions δX : ΣX −→ [[X]]
B a higher-order initial state q0 ∈ [[A]]

where the interpretation [[−]] of types is induced by the preorder Q o = Q.

15

What is a higher-order automaton?

Suppose given a finite preorder (Q , ≤).

Adequacy Theorem.

The interpretation of a Böhm tree M is the set of its accepting states.

In other words, for every higher-order state q ∈ [[A]] ,

q ∈ [[M]] ⇐⇒ q is accepted by the automaton 〈∅,Q, ∅, q〉

Corollary.

Acceptance of a Böhm tree generated by a λY-term M is decidable.

16

Higher-order recursion schemes

The infinite tree
a

a

a

b

c

b

c

b

b

c

b

b

is generated by the higher-order recursion scheme{
S 7→ F a b c
F x y z 7→ x (y z) (F x y (y z))

17

Church encoding in the λ-calculus

The higher-order recursion scheme{
S 7→ F a b c
F x y z 7→ x (y z) (F x y (y z))

may be seen as a λ-term of type

(o→ o→ o)→ (o→ o)→ o→ o.

in the simply-typed λ-calculus extended with a recursion operator Y.

Here, each tree-constructor a, b and c is of type:

a : o → o → o b : o → o c : o

18

Higher-order recursion schemes

Signature a : o→ o→ o
b : o→ o
c : o

Non terminals S : o
F : o→ o

Rewrite rules S 7→ F c
F 7→ λx . a x (F (b x))

S → F c → a c (F (b c)) → a c (a (b c) F (b (b c)))

Church encoding in linear logic

The formula

(o→ o→ o)→ (o→ o)→ o→ o

traditionally translated in linear logic as

A = ! (! o (! o (o)(! (! o(o)(! o (o

may be also translated as

B = ! (o (o (o)(! (o(o)(! o (o.

20

Church encoding in linear logic

So, the same tree may be seen as a term of type

A = ! (! o (! o (o)(! (! o(o)(! o (o

with tree-constructors a, b and c of type

a : ! o (! o (o b : ! o (o c : o

or as a term of type

B = ! (o (o (o)(! (o(o)(! o (o

with tree-constructors a, b and c of type

a : o (o (o b : o (o c : o

21

Principle of duality

Proponent
Program

plays the formula

A

Opponent
Environment

plays the formula

A⊥

Negation permutes the rôles of Proponent and Opponent

22

Principle of duality

Opponent
Environment

plays the formula

A⊥

Proponent
Program

plays the formula

A

Negation permutes the rôles of Opponent and Proponent

23

Duality applied to the Church encoding

Question: So, what is the dual of a tree ?

Answer: Well, it should be a tree automaton !

24

Duality applied to the Church encoding

The formulas A and B have counter-formulas:

A⊥ = ! (! o (! o (o) ⊗ ! (! o(o) ⊗ ! o ⊗ o⊥

B⊥ = ! (o (o (o) ⊗ ! (o(o) ⊗ o ⊗ o⊥

Claim:

B the counter-formula B⊥ is the type of tree automata

B the counter-formula A⊥ is the type of alternating tree automata

25

What is a linear higher-order automaton?

Suppose given a finite preorder (Q , ≤).

Adequacy Theorem.

The interpretation of a Böhm tree M is the set of its accepting states.

In other words, for every higher-order state q ∈ [[A]] ,

q ∈ [[M]] ⇐⇒ q is accepted by the automaton 〈∅,Q, ∅, q〉

Corollary.

Acceptance of a Böhm tree generated by a LLY-term M is decidable.

26

The modal nature of priorities

A proof-theoretic account of parity tree automata

27

An intersection type system
equivalent to the modal µ-calculus

The grammar of kinds κ

κ :: o | κ ⇒ κ

Naoki Kobayashi and Luke Ong [LICS 2009]

28

An intersection type system
equivalent to the modal µ-calculus

The grammar of atomic types θ and intersection types τ

qi ::atomic o

θ1 ::atomic κ . . . θn ::atomic κ
(θ1,m1) ∧ . . . ∧ (θn,mn) :: κ

τ1 :: κ1 . . . τn :: κn q ::atomic o
τ1 ⇒ · · · τk ⇒ q ::atomic κ1⇒ . . .⇒ κk ⇒ o

Naoki Kobayashi and Luke Ong [LICS 2009]

29

A type system equivalent to the modal µ-calculus

x : (θ,Ω[θ]) ` x : θ

{ (i, qi j) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)

a :
∧k1

j=1(q1 j,m1 j) ⇒ . . . ⇒
∧kn

j=1(qnj,mnj)⇒ q

where mi j = max(Ω[qi j],Ω[q])

∆ ` t : (θ1,m1) ∧ . . . ∧ (θk,mk)⇒ θ ∆1 ` u : θ1 · · · ∆k ` u : θk
∆ , ∆1 ⇑ m1 , . . . , ∆k ⇑ mk ` t u : θ
where ∆ ⇑ m = {F : (θ , max(m,m′) |F : (θ,m) ∈ ∆ }

∆ , x :
∧

i∈I (θi , mi) ` t : θ I ⊆ J
∆ ` λ x . t :

∧
i∈J (θi , mi)⇒ θ

30

Emulation theorem

Let G be a higher-order recursion scheme.

Let A be an alternating parity tree automaton.

Theorem [Kobayashi & Ong]

The tree generated by G
is recognized by A ⇐⇒

The higher-order recursion
scheme G is typable.

31

Guiding idea of Kobayashi and Ong

q

q

q

1

2

m2m1

q
1

qm
1

�

�, q
2

m2

�

�, ⇒

32

Modal reformulation

q

q

q

1

2

m2m1

q
1

q⇒m1 q
2

m2

Collecting colours works in the same way as collecting levels of copies

33

A colour modality for intersection types

Definition. A parametric modality is a family of functors

�m : C −→ C m ∈N

each of them lax monoidal:

�m A ⊗ �m B −→ �m (A ⊗ B)

1 −→ �m 1

and defining together a parametric comonad

�max(m,m′) A −→ �m �m′ A

� 0 A −→ A

The structure of copy management in linear logic

34

The exponential modality

! A ⊗ ! B −→ ! (A ⊗ B)

! A −→ ! ! A

! A −→ A

The structure of copy management in linear logic

35

Translation

∆ ` t : (θ1,m1) ∧ . . . ∧ (θk,mk)⇒ θ ∆i ` u : θi
∆ , ∆1 ⇑ m1 , . . . , ∆k ⇑ mk ` t u : θ

where ∆ ⇑ m = {F : (θ , max(m,m′) | F : (θ,m) ∈ ∆ }

is translated as

∆ ` t : �m1 θ1 ∧ . . . ∧ �mk θk ⇒ θ
∆i ` u : θi

�mi ∆i ` u : �mi θi
∆ , �m1 ∆1 , . . . , �mk ∆k ` t u : θ

36

Linear logic with colours

A domain-theoretic account of parity tree automata

37

A colour modality for domains

Suppose given a specific number n of colours.

Definition. The colour modality on preorders is defined as

�A := A & · · · & A︸ ︷︷ ︸
n

As a consequence, note that

Domain(�A) := Domain(A) × · · · × Domain(A)

38

The colour modality

Two preliminary observations

B The modality � defines a comonad.

εA : �A −→ A
(1, q) 7→ q

δA : �A −→ ��A
(max (m1,m2), q) 7→ (m1, (m2, q))

B The comonad � commutes with finite products:

� (A & B) � �A & �B

�> � >

39

The colour modality

A third observation

B There exists a distributivity law

λ : ! � ⇒ � ! : ScottL −→ ScottL

defined as follows:

λA : { (m1, q1) , . . . , (mk, qk) } 7→ (max (m1, . . . ,mk) , { q1 , . . . , qk })

40

A colour modality

An important consequence: The composite modality

! � : ScottL −→ ScottL

defines an exponential modality of linear logic.

From this follows that the Kleisli category

D := Kleisli (ScottL , ! �)

is a cartesian closed category.

41

A domain-theoretic formulation

The category D has

B finite prime algebraic domains as objects

B continous functions f : D n
−→ E as morphisms.

Two morphisms of the category D

f : D n
−→ E g : E n

−→ F

are composed as follows:

D n D max
//D n×n f n

//E n g
//E

42

A domain-theoretic formulation
In the case n = 2

g ◦ f : (x1, x2) 7→ g (f (x1, x2) , f (x2, x2))

In the case n = 3

g ◦ f : (x1, x2, x3) 7→ g (f (x1, x2, x3) , f (x2, x2, x3) , f (x3, x3, x3))

More generally:

(
1 2
2 2

)  1 2 3
2 2 3
3 3 3




1 2 3 4
2 2 3 4
3 3 3 4
4 4 4 4




1 2 3 4 5
2 2 3 4 5
3 3 3 4 5
4 4 4 4 5
5 5 5 5 5


43

An inductive-coinductive fixpoint

For simplicity, let us assume that the number n of colours is even.

Given a morphism in the category D

f : D n
−→ D

one defines the fixpoint

Y(f) = νxn . µxn−1 . νxn−2 . . . νx2 . µx1 . f (x1, · · · , xn)

Theorem. This defines a categorical interpretation of the λY-calculus.

44

What is a higher-order automaton?

Suppose given a finite preorder (Q , ≤).

Adequacy Theorem.

The interpretation of a Böhm tree M is the set of its accepting states.

In other words, for every higher-order state q ∈ [[A]] ,

q ∈ [[M]] ⇐⇒ q is accepted by the parity automaton 〈∅,Q, ∅, q〉

Corollary.

Acceptance of a Böhm tree generated by a λY-term M is decidable.

45

Thank you !

46

