Linear logic and higher-order model checking

Paul-André Melliès

CNRS & Université Paris Diderot

Abstraction and Verification in Semantics Institut Henri Poincaré

 $23 \rightarrow 27 \; June \; 2014$

Purpose of this talk

- I. Apply the ideas of linear logic to connect
 - ▶ the **type-theoretic** account by Kobayashi & Ong
 - ▶ the **domain-theoretic** account by Salvati & Walukiewicz

of higher-order model-checking.

II. Construct a cartesian-closed category \mathscr{D} of coloured domains.

Very similar in spirit as Kazushige's talk of this morning

Suppose given a set \mathscr{L} of Böhm trees of same type A.

Question:

When should one consider the set \mathscr{L} as a recognizable language?

Suppose given a set \mathscr{L} of Böhm trees of same type A.

Question:

When should one consider the set \mathscr{L} as a recognizable language?

Tentative answer:

Use a finite domain interpretation of types.

Every finite domain D induces an interpretation of A as a finite domain:

$$\begin{bmatrix} o \end{bmatrix} := D$$
$$\begin{bmatrix} A \times B \end{bmatrix} := \begin{bmatrix} A \end{bmatrix} \times \begin{bmatrix} B \end{bmatrix}$$
$$\begin{bmatrix} A \to B \end{bmatrix} := \begin{bmatrix} A \end{bmatrix} \to \begin{bmatrix} B \end{bmatrix}$$

By continuity, every Böhm tree M of type A is interpreted as an element

 $\llbracket M \rrbracket \in \llbracket A \rrbracket$

of the domain [[A]].

Now, every finite subset $\varphi \subseteq \llbracket A \rrbracket$ induces a set

$$\mathscr{L}_{\varphi} = \{ M \mid \llbracket M \rrbracket \in \varphi \}$$

of Böhm trees of type A.

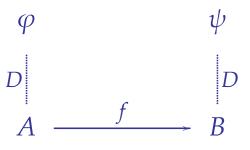
Notation: We write $\models M : \varphi$ to mean that $\llbracket M \rrbracket \in \varphi$.

Definition. [adapted from Salvati 2009]

A set of Böhm trees \mathscr{L} is **recognizable** when it is of the form \mathscr{L}_{φ} .

Refinement types

Every such pair (D, φ) should be seen as a **predicate** over the type A.



Pullback operation:

Given a predicate $\psi \subseteq \llbracket B \rrbracket$ one defines the predicate

 $f^*(\psi) := \{ x \in [[A]] \mid f(x) \in \psi \}$

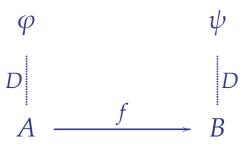
in such a way that

 $\models P : \llbracket M \rrbracket^*(\psi) \quad \iff \quad \models MP : \psi$

for every Böhm tree *P* of type *A*.

Refinement types

Every such pair (D, φ) should be seen as a **predicate** over the type A.



Pushforward operation:

Given a predicate $\varphi \subseteq \llbracket A \rrbracket$ one defines the predicate

 $f(\varphi) := \{ f(x) \in [\![B]\!] \mid x \in \varphi \}$

in such a way that

$$\models P:\varphi \implies \models MP: \llbracket M \rrbracket(\varphi)$$

for every Böhm tree P of type A.

Well-known principle.

Every preorder (A, \leq) induces a domain Domain(A) defined as follows:

- ▷ its elements are the ideals of the preorder,
- ▶ the ideals are ordered by inclusion.

Recall that a subset $X \subseteq A$ is called an ideal of the preorder A when

 $\forall a \in A, \ \forall x \in X, \quad a \leq x \Rightarrow a \in X.$

Key observation.

Suppose that the base type o is interpreted as the domain of ideals

 $\llbracket o \rrbracket = Domain(Q, \leq)$

generated by a preorder Q of **atomic states**.

In that case, the interpretation of every type A is the domain of ideals

 $\llbracket A \rrbracket := Domain(Q_A, \leq_A)$

generated by a specific preorder Q_A of **higher-order states**.

A series of new connectives on preorders, such as:

 $A^{\perp} := A^{op}$ $A \& B := (A + B, \leq_A + \leq_B)$ $A \otimes B := (A \times B, \leq_A \times \leq_B)$ $!A := \wp_{fin}(A)$

where the finite sets of elements of A are ordered as:

 $\{a_1, \ldots, a_p\} \leq A \{b_1, \ldots, b_q\} \quad \iff \quad \forall i \in [p] \; \exists j \in [q] \; a_i \leq_A b_j$

Given a preorder of **atomic states** for the base type o

 $Q_0 = (Q, \leq)$

the preorder Q_A of **higher-order states** is defined by induction:

$Q_{A \times B}$	=	$Q_A \& Q_B$
$Q_A \rightarrow B$	=	$!Q_A \multimap Q_B$

In particular, a state of the simple type $A \rightarrow B$ is of the form

 $\{q_1,\ldots,q_n\} \multimap q$

where q_1, \ldots, q_n are states of A and q is a state of B.

Methodological question.

Given a simple type A, a finite preorder (Q, \leq) and a subset

 $\varphi \subseteq \llbracket A \rrbracket$

can we describe the Böhm trees of the associated language

 $\mathscr{L}_{\varphi} = \{ M \mid \llbracket M \rrbracket \in \varphi \} = \{ M \mid \models M : \varphi \}$

in a more direct and automata-theoretic fashion ?

Methodological question.

Given a simple type A, a finite preorder (Q, \leq) and an element

 $q \in Q_A$

can we describe the Böhm trees of the associated language

 $\mathcal{L}_q = \{ M \mid q \in \llbracket M \rrbracket \}$

in a more direct and automata-theoretic fashion ?

Definition. A higher-order automaton

 $\mathcal{A} \;=\; \left< \Sigma \,,\, Q \,,\, \delta \,,\, q_0 \right>$

consists of:

- \triangleright a finite signature Σ : *Type* \rightarrow *Set*
- \triangleright a finite set of states Q
- ▷ a family of transition functions $\delta_X : \Sigma_X \longrightarrow \llbracket X \rrbracket$
- ▷ a higher-order initial state $q_0 \in [A]$

where the interpretation [-] of types is induced by the preorder $Q_o = Q$.

Suppose given a finite preorder (Q, \leq).

Adequacy Theorem.

The interpretation of a Böhm tree M is the set of its accepting states.

In other words, for every higher-order state $q \in \llbracket A \rrbracket$,

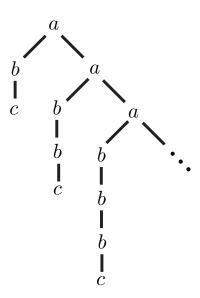
 $q \in \llbracket M \rrbracket \iff q \text{ is accepted by the automaton } \langle \emptyset, Q, \emptyset, q \rangle$

Corollary.

Acceptance of a Böhm tree generated by a λY -term M is decidable.

Higher-order recursion schemes

The infinite tree



is generated by the higher-order recursion scheme

$$\begin{cases} S & \mapsto & F \ a \ b \ c \\ F \ x \ y \ z & \mapsto & x \ (y \ z) \ (F \ x \ y \ (y \ z)) \end{cases}$$

Church encoding in the λ -calculus

The higher-order recursion scheme

 $\begin{cases} S & \mapsto & F \ a \ b \ c \\ F \ x \ y \ z & \mapsto & x \ (y \ z) \ (F \ x \ y \ (y \ z)) \end{cases}$

may be seen as a λ -term of type

$$(o \to o \to o) \to (o \to o) \to o \to o.$$

in the simply-typed λ -calculus extended with a recursion operator Y.

Here, each tree-constructor *a*, *b* and *c* is of type:

 $a : o \rightarrow o \rightarrow o$ $b : o \rightarrow o$ c : o

Higher-order recursion schemes

Signature	$a : o \to o \to o$ $b : o \to o$ c : o
Non terminals	$S: o F: o \to o$
Rewrite rules	$\begin{array}{rcl} S & \mapsto & F \mathbf{c} \\ F & \mapsto & \lambda x . \mathbf{a} x (F (\mathbf{b} x)) \end{array}$

 $S \rightarrow F\mathbf{c} \rightarrow \mathbf{ac}(F(\mathbf{bc})) \rightarrow \mathbf{ac}(\mathbf{a}(\mathbf{bc})F(\mathbf{b}(\mathbf{bc})))$

Church encoding in linear logic

The formula

$$(o \to o \to o) \to (o \to o) \to o \to o$$

traditionally translated in linear logic as

$$A = !(! \circ \multimap ! \circ \multimap \circ) \multimap !(! \circ \multimap \circ) \multimap ! \circ \cdots \circ \circ)$$

may be also translated as

$$B = !(o \multimap o \multimap o) \multimap !(o \multimap o) \multimap !o \multimap o.$$

Church encoding in linear logic

So, the same tree may be seen as a term of type

$$A = !(! \circ \multimap ! \circ \multimap \circ) \multimap !(! \circ \multimap \circ) \multimap ! \circ ! \circ \multimap \circ$$

with tree-constructors *a*, *b* and *c* of type

 $a : ! o \multimap ! o \multimap o \qquad b : ! o \multimap o \qquad c : o$

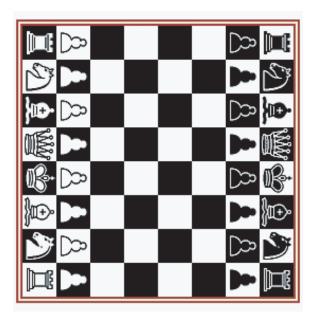
or as a term of type

$$B = !(o \multimap o \multimap o) \multimap !(o \multimap o) \multimap !o \multimap o$$

with tree-constructors *a*, *b* and *c* of type

 $a : o \multimap o \multimap o b : o \multimap o c : o$

Principle of duality



Opponent Environment

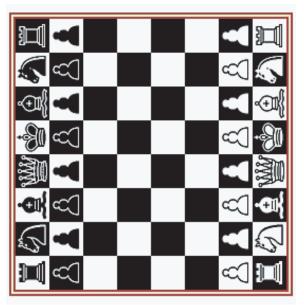
plays the formula

 A^{\perp}

Negation permutes the rôles of Proponent and Opponent

Principle of duality

 $\begin{array}{c} \text{Opponent}\\ \text{Environment} \end{array}$ plays the formula A^{\perp}



plays the formula

A

Negation permutes the rôles of Opponent and Proponent

Duality applied to the Church encoding

- **Question:** So, what is the dual of a tree ?
- **Answer:** Well, it should be a tree automaton !

Duality applied to the Church encoding

The formulas A and B have counter-formulas:

$$A^{\perp} = !(! \circ \multimap ! \circ \multimap \circ) \otimes !(! \circ \multimap \circ) \otimes ! \circ \otimes \circ^{\perp}$$
$$B^{\perp} = !(\circ \multimap \circ \multimap \circ) \otimes !(\circ \multimap \circ) \otimes \circ \circ^{\perp}$$

Claim:

- ▷ the counter-formula B^{\perp} is the type of tree automata
- ▷ the counter-formula A^{\perp} is the type of **alternating tree automata**

Suppose given a finite preorder (Q, \leq).

Adequacy Theorem.

The interpretation of a Böhm tree M is the set of its accepting states.

In other words, for every higher-order state $q \in \llbracket A \rrbracket$,

 $q \in \llbracket M \rrbracket \iff q \text{ is accepted by the automaton } \langle \emptyset, Q, \emptyset, q \rangle$

Corollary.

Acceptance of a Böhm tree generated by a LL_Y -term M is decidable.

The modal nature of priorities

A proof-theoretic account of parity tree automata

An intersection type system equivalent to the modal *µ*-calculus

The grammar of kinds κ

 $\kappa \quad :: \quad o \quad | \quad \kappa \Rightarrow \kappa$

Naoki Kobayashi and Luke Ong [LICS 2009]

An intersection type system equivalent to the modal μ -calculus

The grammar of **atomic** types θ and **intersection** types τ

q_i ::*atomic* 0

$$\frac{\theta_{1} ::_{atomic} \kappa \dots \theta_{n} ::_{atomic} \kappa}{(\theta_{1}, m_{1}) \wedge \dots \wedge (\theta_{n}, m_{n}) :: \kappa}$$

$$\frac{\tau_{1} :: \kappa_{1} \dots \tau_{n} :: \kappa_{n} \quad q ::_{atomic} o}{\tau_{1} \Rightarrow \cdots \tau_{k} \Rightarrow q ::_{atomic} \kappa_{1} \Rightarrow \dots \Rightarrow \kappa_{k} \Rightarrow o}$$

Naoki Kobayashi and Luke Ong [LICS 2009]

A type system equivalent to the modal μ -calculus

 $\overline{x:(\theta,\Omega[\theta]) \vdash x:\theta}$

 $\frac{\{(i,q_{ij}) \mid 1 \le i \le n, 1 \le j \le k_i\} \text{ satisfies } \delta_A(q,a)}{a : \bigwedge_{j=1}^{k_1} (q_{1j}, m_{1j}) \Rightarrow \ldots \Rightarrow \bigwedge_{j=1}^{k_n} (q_{nj}, m_{nj}) \Rightarrow q}$ where $m_{ij} = max(\Omega[q_{ij}], \Omega[q])$

$$\begin{array}{cccc} \Delta \vdash t : (\theta_1, m_1) \land \ldots \land (\theta_k, m_k) \Rightarrow \theta & \Delta_1 \vdash u : \theta_1 & \cdots & \Delta_k \vdash u : \theta_k \\ & \Delta, \Delta_1 \Uparrow m_1, \ldots, \Delta_k \Uparrow m_k \vdash t u : \theta \\ & \text{where} & \Delta \Uparrow m = \{F : (\theta, max(m, m') | F : (\theta, m) \in \Delta\} \end{array}$$

$$\frac{\Delta, x : \bigwedge_{i \in I} (\theta_i, m_i) \vdash t : \theta \qquad I \subseteq J}{\Delta \vdash \lambda x . t : \bigwedge_{i \in J} (\theta_i, m_i) \Rightarrow \theta}$$

Emulation theorem

Let \mathcal{G} be a higher-order recursion scheme.

Let \mathcal{A} be an alternating parity tree automaton.

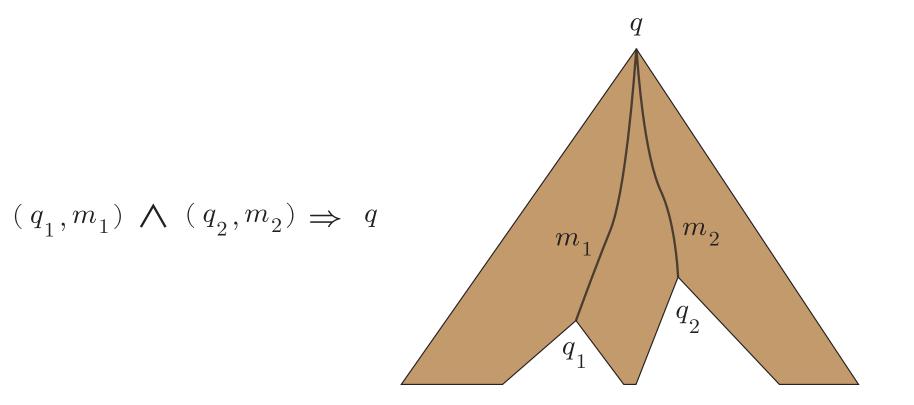
Theorem [Kobayashi & Ong]

The tree generated by \mathcal{G} is recognized by \mathcal{A}

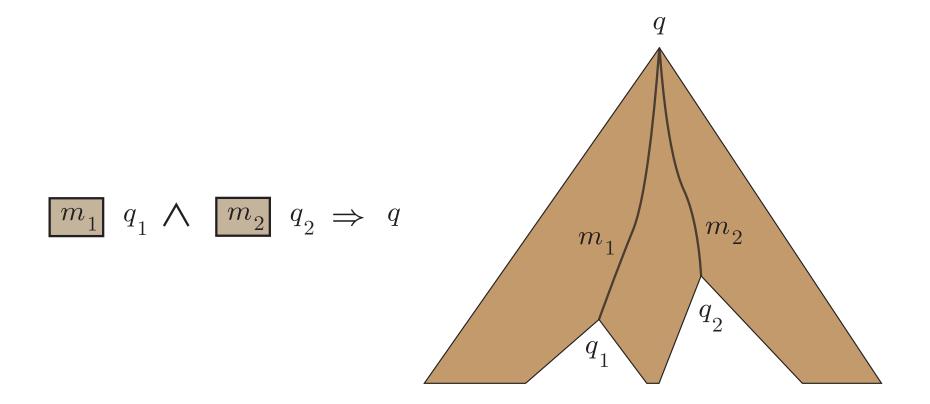
$$\iff$$

The higher-order recursion scheme \mathcal{G} is typable.

Guiding idea of Kobayashi and Ong



Modal reformulation



Collecting colours works in the same way as collecting levels of copies

A colour modality for intersection types

Definition. A parametric modality is a family of functors

$$\Box_m : \mathscr{C} \longrightarrow \mathscr{C} \qquad m \in \mathbb{N}$$

each of them lax monoidal:

$$\Box_m A \otimes \Box_m B \longrightarrow \Box_m (A \otimes B)$$
$$1 \longrightarrow \Box_m 1$$

and defining together a parametric comonad

$$\Box_{max(m,m')} A \longrightarrow \Box_m \Box_{m'} A$$
$$\Box_0 A \longrightarrow A$$

The structure of **copy management** in linear logic

The exponential modality

 $\begin{array}{rrrr} !A \otimes !B & \longrightarrow & !(A \otimes B) \\ & !A & \longrightarrow & !!A \\ & !A & \longrightarrow & A \end{array}$

The structure of **copy management** in linear logic

Translation

$$\frac{\Delta \vdash t : (\theta_1, m_1) \land \ldots \land (\theta_k, m_k) \Rightarrow \theta}{\Delta, \Delta_1 \Uparrow m_1, \ldots, \Delta_k \Uparrow m_k \vdash t u : \theta}$$

where $\Delta \uparrow m = \{F : (\theta, max(m, m') | F : (\theta, m) \in \Delta\}$

is translated as

$$\begin{array}{c} \underline{\Delta \vdash t : \Box_{m_1} \theta_1 \land \ldots \land \Box_{m_k} \theta_k \Rightarrow \theta} & \underline{\Delta_i \vdash u : \theta_i} \\ \underline{\Delta, \Box_{m_1} \Delta_1, \ldots, \Box_{m_k} \Delta_k} \vdash t u : \theta \end{array}$$

36

Linear logic with colours

A domain-theoretic account of parity tree automata

A colour modality for domains

Suppose given a specific number n of colours.

Definition. The colour modality on preorders is defined as

$$\Box A := \underbrace{A \And \cdots \And A}_{n}$$

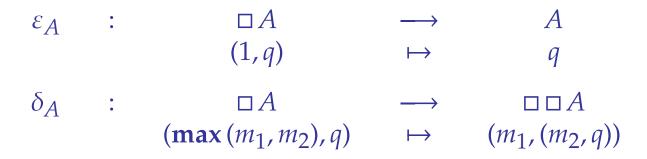
As a consequence, note that

 $Domain(\Box A) := Domain(A) \times \cdots \times Domain(A)$

The colour modality

Two preliminary observations

 \triangleright The modality \Box defines a comonad.



▷ The comonad □ commutes with finite products:

 $\Box (A \& B) \cong \Box A \& \Box B$ $\Box \top \cong \top$

The colour modality

A third observation

▷ There exists a distributivity law

 λ : ! \Box \Rightarrow \Box ! : ScottL \longrightarrow ScottL

defined as follows:

 $\lambda_A : \{(m_1, q_1), \dots, (m_k, q_k)\} \mapsto (\max(m_1, \dots, m_k), \{q_1, \dots, q_k\})$

A colour modality

An important consequence: The composite modality

 $! \square : ScottL \longrightarrow ScottL$

defines an exponential modality of linear logic.

From this follows that the Kleisli category

 \mathscr{D} := *Kleisli*(**ScottL**, ! \Box)

is a cartesian closed category.

A domain-theoretic formulation

The category \mathcal{D} has

- finite prime algebraic domains as objects
- \triangleright continous functions $f : D^n \longrightarrow E$ as morphisms.

Two morphisms of the category ${\mathscr D}$

$$f: D^n \longrightarrow E \qquad g: E^n \longrightarrow F$$

are composed as follows:

$$D^n \xrightarrow{D^{\max}} D^{n \times n} \xrightarrow{f^n} E^n \xrightarrow{g} E$$

A domain-theoretic formulation

```
In the case n = 2
```

 $g \circ f : (x_1, x_2) \mapsto g(f(x_1, x_2), f(x_2, x_2))$

In the case n = 3

 $g \circ f : (x_1, x_2, x_3) \mapsto g(f(x_1, x_2, x_3), f(x_2, x_2, x_3), f(x_3, x_3, x_3))$

More generally:

$$\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 3 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4 \\ 4 & 4 & 4 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 3 & 4 & 5 \\ 3 & 3 & 3 & 4 & 5 \\ 4 & 4 & 4 & 4 & 5 \\ 5 & 5 & 5 & 5 & 5 \end{pmatrix}$$

An inductive-coinductive fixpoint

For simplicity, let us assume that the number n of colours is even.

Given a morphism in the category \mathscr{D}

 $f : D^n \longrightarrow D$

one defines the fixpoint

$$Y(f) = v x_n \cdot \mu x_{n-1} \cdot v x_{n-2} \cdots v x_2 \cdot \mu x_1 \cdot f(x_1, \cdots, x_n)$$

Theorem. This defines a categorical interpretation of the λY -calculus.

Suppose given a finite preorder (Q, \leq).

Adequacy Theorem.

The interpretation of a Böhm tree M is the set of its accepting states.

In other words, for every higher-order state $q \in \llbracket A \rrbracket$,

 $q \in \llbracket M \rrbracket \iff q$ is accepted by the parity automaton $\langle \emptyset, Q, \emptyset, q \rangle$

Corollary.

Acceptance of a Böhm tree generated by a λY -term *M* is decidable.

Thank you !