
A functorial bridge between proofs and knots

Paul-André Melliès

Laboratoire Preuves, Programmes, Systèmes
CNRS — Université Paris Diderot

January 24, 2012

Abstract

In this paper, we investigate notions of cyclic and braided dialogue cat-
egories. In particular, we establish that the functor from the free balanced
dialogue category to the free ribbon category is faithful.

Contents
1 Introduction 2

2 Balanced dialogue categories 13
2.1 Monoidal categories . 13
2.2 Braided categories . 13
2.3 Balanced categories . 14
2.4 Balanced dialogue categories . 15

3 Ribbon logic 16
3.1 The ribbon groups . 16
3.2 The sequent calculus . 17
3.3 The proof equalities . 18

3.3.1 The group-theoretic equations 18
3.3.2 The braid and twist equations 18
3.3.3 Exchange vs. the left introduction rules 19
3.3.4 Exchange vs. the right introduction rules 20

3.4 A normal form . 20
3.5 Soundness theorem . 21

4 The free balanced dialogue category 21
4.1 The free balanced dialogue category 21

5 Ribbon categories 21
5.1 Ribbon categories . 22
5.2 The free ribbon category . 23
5.3 The proof-as-tangle functor . 24

1

6 The proof-as-tangle theorem 24

7 Cyclic dialogue categories and cyclic logic 26
7.1 Cyclic dialogue categories . 26
7.2 Every balanced dialogue category is cyclic 27
7.3 Cyclic logic . 29
7.4 The free cyclic dialogue category 29

8 Appendix: the cut-elimination procedure 30
8.1 Interaction with the exchange rule 30
8.2 Commuting conversions . 31
8.3 The axiom steps . 31
8.4 Principal formulas . 32
8.5 Expansion steps . 33
8.6 Secondary hypothesis . 34
8.7 Secondary conclusion . 37

9 Appendix: the cut-elimination procedure (bis) 38
9.1 Left introduction of the tensor product 38
9.2 Left introduction of the unit . 39
9.3 Left introduction of the negation 41

1 Introduction
Gottlob Frege reinvented logic at the end of the 19th century by declaring that a
mathematical proof could be understood and studied like any other mathemati-
cal object. This revolutionary insight was substantiated by his recent discovery
of the Begriffschrift, a symbolic calculus where formal proofs are constructed
mechanically, as sequences of elementary transformations on mathematical for-
mulas. However, because of the novelty of his ideas, Frege’s description of for-
mal proofs remained somewhat rudimentary. This initiated a secular quest for
a more appropriate notation. Several alternative descriptions of proofs were
formulated along the years, most notably among them:

• the sequent calculus, introduced by Gentzen in the 1930s in order to es-
tablish the consistency of Peano Arithmetic,

• natural deduction, also introduced by Gentzen in the 1930s and revived
by Prawitz in the mid-1960s,

• proof nets, introduced by Girard in the mid-1980s as a graphical notation
for proofs of linear logic, standing at the mediating point between sequent
calculus and natural deduction.

Each of these notations is designed to provide a convenient framework to ma-
nipulate formal proofs, and to enlighten some of their cardinal properties:

• the cut-elimination theorem and the subformula property in the case of
the sequent calculus,

2

• the symmetry between the introduction and the elimination rules in the
case of natural deduction,

• the correction criterion and the sequentialization theorem in the case of
proof nets.

From that point of view, proof theory remains a science in construction, still
looking for a satisfactory definition of its object of investigation: the very no-
tion of logical proof. There lies one amusing paradox of proof theory. By way of
principle, an intrinsic notion of “ logical proof ” does not depend on the symbolic
notation where it is formulated. On the other hand, every symbolic notation de-
signed to capture this intrinsic notion of proof... describes it through the lenses
of its own syntax. This explains the accumulation of dedicated formalisms as
well as the never-ending quest for an intrinsic and syntax-free notion of “ logical
proof ”. The situation should be contrasted with what one finds in algebra, which
is more satisfactory: the same group (take for instance the group Bn of braids
with n strands) may admit several algebraic presentations by generators and
relations... but it is still the same group!

Proof invariants. This intrinsic point of view is fruitful in algebra because it
enables to compare the various syntactic presentations of a given group using
a sophisticated toolbox, typically including the homological notion of syzygy. In
particular, the intrinsic notion of group is complementary to its syntactic pre-
sentations. Hence, in order to define an intrinsic notion of logical proof, it is
tempting to adapt to proof theory what has been achieved for groups and for
other algebraic structures. This line of research was initiated by Lambek [?]
and promoted in his book with Scott [?]. The key idea is to think of a particular
proof system as a presentation of a category with structure. Typically, Lam-
bek established that the free cartesian closed category free-ccc(X) on a given
category X has:

• the formulas of minimal logic (constructed with the binary constructors
× and ⇒ together with the conjunctive unit 1) with atoms given by the
objects of the category X ,

• the simply-typed λ-terms of type A⇒ B as morphisms from the formula A
to the formula B, considered modulo a suitable notion of equivalence be-
tween λ-terms (that is, β and η conversion and composition of maps be-
tween atoms in X).

This result enables to construct denotational models of the simply-typed λ-
calculus in a very nice and conceptual way. Consider the full and faithful functor
X −→ free-ccc(X) which transports every object of X to the corresponding
atomic formula in free-ccc(X). The theorem established by Lambek means
that every functor X −→ D to a cartesian-closed category D lifts to a structure-
preserving functor

[−] : free-ccc(X) −→ D

3

making the diagram commute:

free-ccc(X)
[−]

.. D

X

<<[[

Moreover, the structure-preserving functor [−] is unique modulo natural isomor-
phism. The benefit of the construction is that the functor [−] transports very
simply-typed λ-term P to a denotation [P] in the cartesian-closed category D –
this providing an invariant of the λ-term P modulo βη-conversion. A typical il-
lustration of the method is to define D as the category of sets and functions. This
enables to interpret every λ-term M of type A⇒ B as a function [M] : [A]→ [B]
between the set-theoretic interpretations of the types A and B.

Ribbon categories. It appears that a similar story occurs at the interface
of knot theory and of representation theory for quantum groups. There, one
defines a ribbon category as a monoidal category equipped with combinators for
braiding and U-turns, satisfying a series of expected equations, see Sections ??
for a brief survey. Then, one establishes a coherence theorem, which states that
the free ribbon category on a category X has

• as objects: sequences (Aε1
1 , . . . , A

εn
n) of signed objects of X where each Ai

is an object of the category X , and each εi is either + or −,

• as morphisms: oriented ribbon tangles considered modulo topological de-
formation, where every open strand is colored by a morphism of X , and
every closed strand is colored by an equivalence class of morphisms of X ,
modulo the equality g ◦ f ∼ f ◦ g for every pair of morphisms of the form
f : A→ B and g : B → A.

So, a typical morphism from (A+) to (B+, C−, D+) in the category free-ribbon(X)
looks like this

g

f

D+C−B+

A+

4

where f : A −→ B and g : C −→ D are morphisms in the category X . Now,
consider the full and faithful functor X −→ free-ribbon(X) which transports
every object A of X to the corresponding signed sequence (A+). Then, just as in
the case of the free cartesian closed category, every functor from the category X
to a ribbon category D lifts as a structure-preserving functor [−] which makes
the diagram below commute:

free-ribbon(X)
[−]

.. D

X

<<]]

Once properly oriented and colored, every topological ribbon knot P defines a
morphism P : I −→ I from the tensorial unit I = () to itself in the category
free-ribbon(X). Hence, its image [P] defines an invariant of the ribbon knot P
modulo topological deformation. This well-known method enables for instance
to establish that the Jones polynomial [P] associated to a ribbon knot P defines
a topological invariant, see [?] for details.

Dialogue categories. The discussion so far reveals an analogy between the
functorial approaches to proof theory and to knot theory. The analogy does
not imply in itself that proofs and knots are related in any deeper sense: after
all, the same hammer (in that case, the notion of free category with structure)
may be used to knock in different kinds of nails. So, our purpose here will be
to substantiate this emerging analogy by designing an intermediate notion of
category with structure at the gravity center between cartesian closed categories
and ribbon categories. As we will see in the course of the paper, this topo–logical
crossbreeding is provided by the notion of balanced dialogue category, whose
intended position is summarized in the diagram below.

proof theory knot theory
cartesian closed

categories ↔ balanced
dialogue categories ↔ ribbon

categories

The notion of dialogue category has been already used by the author in order
to reflect the dialogical interpretations of proofs as interactive strategies. It is
defined as a monoidal category equipped with a primitive notion of duality.

Definition 1 (Dialogue categories) A dialogue category is a monoidal cate-
gory C equipped with an object ⊥ together with two functors

x 7→ (x(⊥) : C op −→ C x 7→ (⊥� x) : C op −→ C

and two families of isomorphisms

ϕx,y : C (x⊗ y,⊥) � C (y, x(⊥)
ψx,y : C (x⊗ y,⊥) � C (x,⊥� y)

natural in x and y.

5

A balanced dialogue category is then simply defined as a dialogue category
whose underlying monoidal category C is balanced in the sense of Joyal and
Street [?]. This means that the category C is equipped with a braiding and a
twist, satisfying a series of coherence diagrams reflecting topological equalities
of ribbon tangles. Interestingly, no additional coherence property is required
between the dialogue structure and the balanced structure.

The proof-theoretic nature of dialogue categories is witnessed by the fact
that it comes together with a logic — a braided and twisted logic of tensor and
negation called ribbon logic. The logic is introduced in §.?? and formulated
in the traditional style of proof theory — that is, as a sequent calculus whose
derivation trees are identified modulo a notion of proof equality. Just as in
the case of cartesian closed categories, one establishes that the free balanced
dialogue category generated by a category X has

• as objects: the formulas of ribbon logic (constructed with the binary tensor
product ⊗ and its unit I together with the left negation A 7→ A (⊥ and
the right negation A 7→ ⊥� A) with atoms provided by the objects of the
category X ,

• as morphisms from A to B: the derivation trees of the sequent A ` B in
ribbon logic, modulo the proof equalities of the logic.

The proof-as-tangle theorem. Once the proof-theoretic nature of balanced
dialogue categories clarified, there remains to understand how they are re-
lated to topology. This aspect is captured by a coherence theorem established
in the course of the paper. The theorem is called the proof-as-tangle theo-
rem because it enables to identify the proofs of ribbon logic as ribbon tangles
modulo topological deformation. Let us briefly explain how it is formulated.
A pointed category (C ,⊥) is defined as a category C equipped with an ob-
ject ⊥ singled out in the category. A pointed category may be alternatively
defined as an S-algebra for the monad S which transports every category X
to the category X + 1 defined as the disjoint sum of X with the terminal
category 1. The unique object of 1 is noted ⊥ and provides the singled-out
object of the pointed category (X + 1,⊥). Every category X induces a free
ribbon category free-ribbon(X + 1) generated by the category X + 1. The cat-
egory free-ribbon(X + 1) is monoidal and balanced by construction. It is also
a dialogue category where the left and right negation functors are defined as

x(⊥ def= x∗ ⊗⊥ ⊥� x
def= ⊥⊗ x∗.

Note that the balanced dialogue category free-ribbon(X + 1) is somewhat de-
generate, since the canonical morphism

(⊥� (x(⊥))⊗ y −→ ⊥� ((x⊗ y)(⊥)

is an isomorphism. Now, the unit of the monad S instantiated at the categoryX

η : X −→ X + 1

6

induces a functor

X −→ X + 1 −→ free-ribbon(X + 1)

from X to the balanced dialogue category free-ribbon(X⊥). From this follows
that there exists a structure-preserving functor between balanced dialogue cat-
egories

[−] : free-dialogue(X) −→ free-ribbon(X + 1)

which makes the diagram below commute:

free-dialogue(X)
[−] // free-ribbon(X + 1)

X

OO

η // X + 1

OO

This functor [−] transports:

• the formulas of ribbon logic into signed sequences of ⊥ ’ s and of objects of
the underlying category X ,

• the proofs of ribbon logic modulo proof equality into ribbon tangles modulo
topological deformation.

Note in particular that the double negation of a formula A is transported to

[⊥� (A(⊥)] = ⊥⊗⊥ ∗ ⊗ [A] [(⊥� A)(⊥] = [A]⊗⊥ ∗ ⊗⊥

We establish in §. the following proof-as-tangle theorem:

Theorem. The functor [−] is faithful.

This statement means that two derivation trees π1 and π2 of the same se-
quent A1, · · · , An ` B in ribbon logic are equal in the proof-theoretical sense
precisely when the associated ribbon tangles [π1] and [π2] are equal in the topo-
logical sense. The proof-as-tangle theorem provides in that way a tentative
solution to the problem of defining an intrinsic notion of “ logical proof ” in rib-
bon logic. More specifically, the theorem tells that a proof π of a formula A
is an entangled network of ribbon wires, whose strands connect the negations
and the atoms of the formula A... Although the theorem is limited here to a
small fragment of logic, it should help to design similarly intrinsic notions of
“ logical proofs ” in larger systems — typically including first-order and second-
order quantification, the structural rules of contraction and weakening, as well
as dependent types.

One distinctive aspect of the theorem is that the ribbon tangle exists inde-
pendently of the way it is constructed by the proof system. This leads to some-
thing like a copernician turn, already germinating in the notion of proof-net

7

of linear logic discussed below. Indeed, once recognized the intrinsic nature of
the logical proof, the sequent calculus appears as a specific procedure in order
to construct (or to deconstruct) it. This procedure may be then compared with
other construction (or deconstruction) methods — typically natural deduction,
or Frege-like systems based on rewriting1.

Two main precursors. Besides the mentioned analogy between the functo-
rial approach to proof theory and knot theory, the proof-as-tangle theorem is
inspired by two different but related lines of work in proof theory:

• the dialogical interpretation of intuitionnistic and classical logic where for-
mulas are interpreted as dialogue games, and proofs are interpreted as
interactive strategies between two players: the Ego playing the proof and
the Alter playing the refutation,

• the multiplicative proof-nets of linear logic where a cut-free proof of a for-
mula is described as an involution on the atoms of the formula, satisfying
an additional “ long trip ” correctness criterion.

Each line of work tries to articulate an intrinsic notion of logical proof — in-
teractive in the case of dialogue games, graphical in the case of multiplicative
proof-nets. Our work is an attempt of unification based on the observation that
the strategy [π] associated to a proof π may be alternatively seen as a proof-net
for tensorial logic — a variant of linear logic where negation is not necessarily
involutive. It appears that this tensorial bridge between dialogue games and
linear logic magnifies the two fields, and “ repairs ” a series of deficiencies en-
countered on each side. Let us briefly describe in turn how the proof-as-tangle
theorem and its connection to knot theory revisits and unifies these two well-
established fields of proof theory.

Dialogue games. As already mentioned, ribbon logic is a topological refine-
ment of tensorial logic — a primitive logic of tensor and negation designed to
reflect the dialogical interpretations of proofs as interactive strategies playing
on dialogue games. The connection between tensorial logic and dialogue games
is established in [?]. It is provided by the notion of symmetric (rather than
balanced) dialogue category: a coherence theorem states that the free symmet-
ric dialogue category generated by a category X is the category with dialogue
games as objects, and total innocent strategies as morphisms. The theorem
also ensures that two proofs π1 and π2 of a formula A are equal in tensorial
logic precisely when their interpretation as interactive strategies [π1] and [π2]
are equal. This proof-as-strategy theorem established in [?] should be seen as
a symmetric version of the proof-as-tangle theorem, where symmetric tensorial
logic replaces ribbon logic. In that sense, the proof-as-tangle theorem refines

1This point of view relies on the implicit assumption that every proof system of ribbon logic
should recover in its own way the proofs as well as the proof equalities of the original sequent
calculus. Although this methodological assumption is arguably strong (weaker notions of proof
equality may be considered in some situations) we believe that it is quite reasonable — after all,
changing the proof equality should mean changing the logic.

8

traditional game semantics, and provides it with new topological foundations.
The main observation of [?] is that a proof of tensorial logic like

A ` A B ` B Right ⊗
A , B ` A ⊗ B

Left (
A , B , (A ⊗ B)(⊥ `

Exchange
B , (A ⊗ B)(⊥ , A `

Right (
(A ⊗ B)(⊥ , A ` B (⊥

Left �⊥� (B (⊥) , (A ⊗ B)(⊥ , A `
Exchange

A , ⊥� (B (⊥) , (A ⊗ B)(⊥ `
Right (

⊥� (B (⊥) , (A ⊗ B)(⊥ ` A(⊥
Left �⊥� (A(⊥) , ⊥� (B (⊥) , (A ⊗ B)(⊥ `

Right �
⊥� (A(⊥) , ⊥� (B (⊥) ` ⊥� ((A ⊗ B)(⊥)

Left ⊗(⊥� (A(⊥)) ⊗ (⊥� (B (⊥)) ` ⊥� ((A ⊗ B)(⊥)

(1)

may be depicted in string diagrams as a formula tree in motion:

R

L

R
L

R
L

A

B
AB

where L : C → C op and R : C op → C denote the functors

L : A 7→ A(⊥ R : A 7→ ⊥� A

Moreover, the flow of negations induced by the formula tree in motion coincides
with the game-theoretic interpretation of the proof. As a matter of fact, it is not
difficult to see that ribbon logic is conservative over tensorial logic. In particular,
there exists a canonical functor

free-dialogue(X) −→ free-sym-dialogue(X)

from the free balanced dialogue category to the free symmetric dialogue category
generated by the same category X . This functor is one-to-one on objects, and
full on morphisms. This means that the ribbon logic has the same formulas as
tensorial logic, and that every proof of tensorial logic comes from one proof (or
more) of ribbon logic. In particular, several proofs of ribbon logic correspond
to the proof (1) of tensorial logic. All of them are translated to a ribbon tangle
defining a map

⊥2 ⊗⊥∗3 ⊗ [A]⊗⊥4 ⊗⊥∗5 ⊗ [B] −→ ⊥1 ⊗⊥∗6 ⊗ [A]⊗ [B]

in the free ribbon category generated by the category X⊥. The tags i ∈ {1, ..., 6}
labeling the objects⊥ and⊥∗ are here to indicate that the ribbon tangle contains
three strands labelled with j ∈ {1, 3, 5} each of them connecting the “ input ”
object labelled j to the “ output ” object labelled j + 1.

9

Linear logic. Although it often remains implicit, the idea of looking for an
intrinsic notion of “ logical proof ” is prominent in Girard’s work in proof theory.
After all, one of his main contributions to our field is the notion of proof-net
which was introduced in his seminal article on linear logic. In its most ele-
mentary form designed for multiplicative linear logic, a proof-net is defined as
a graph whose nodes are the connectives of the logic: the conjunction ⊗, the
disjunction ℘, the axiom and the cut. In particular, a cut-free proof-net π of a
multiplicative formula A is entirely described by the involution [[π]] defined by
its axiom links on the atoms of the formula A. Girard had this revolutionary
insight that any such involution on the atoms of a formula A should be under-
stood as an attempt (possibly failed) to build a proof of multiplicative linear logic
— what he coined a proof-structure. A purely graphical correctness criterion
called the “ long trip ” criterion enables then to test whether a proof-structure is
a proof-net — that is, whether it comes from a derivation tree of multiplicative
linear logic.

The notion of proof-net is nice, simple and elegant. It would provide a per-
fect candidate for an intrinsic concept of logical proof... Unfortunately, it ap-
peared very soon in the short history of linear logic that something was sim-
ply wrong with the definition of a multiplicative proof-net. The defect appears
when one takes the units of linear logic seriously. In order to detect when a
proof-structure is a proof-net, the correctness criterion needs to know when the
disjunctive unit ⊥ of multiplicative linear logic has been introduced by the rule

` A1, . . . , An introduction of ⊥` A1, . . . , An,⊥

in the derivation tree. In order to deal with this problem, Girard suggested to
equip every disjunctive unit ⊥ of the proof-net with a dedicated link called a
“ jump ”. This jump connects the unit ⊥ to any of the connectives appearing in
the context A1, . . . , An of the introduction rule. The technical device enables to
reconstruct the derivation tree from the proof-net with jumps... but it breaks
at the same time the correspondence between proof-nets and derivation trees
modulo proof equality.

A purely categorical account of this defect of linear logic is possible. Just like
tensorial logic is underlined by dialogue categories, linear logic is underlined
by ∗-autonomous categories. The notion of symmetric ∗-autonomous category
may be defined in several ways, for instance as a dialogue category C with the
additional requirement that the object ⊥ is dualizing — this meaning that the
canonical morphisms

x −→ ⊥� (x(⊥) x −→ (⊥� x)(⊥

are isomorphisms for every object x of the category C . Such a ∗-autonomous
category is called symmetric when the underlying dialogue category is symmet-
ric. Recall that a symmetric monoidal category is a balanced monoidal category
whose twist is the identity. Besides, a compact closed category is defined as a
ribbon category whose twist is an identity. Every compact-closed category is
symmetric ∗-autonomous. From this follows that given a category X , there

10

exists a structure-preserving functor

[[−]] : free-sym-∗-autonomous(X) −→ free-compact-closed(X)

between symmetric ∗-autonomous categories. It appears that the functor trans-
ports every proof π of a formula A of multiplicative linear logic to an involu-
tion [[π]] on the atoms in the category X of the formula. The functor [[−]] is not
faithful. This means that two proofs A typical example is

...

On the other hand, the proof-as-strategy theorem states that the functor

[−] : free-sym-dialogue(X) −→ free-compact-closed(X⊥)

is faithful. This clarifies in what sense the shift to dialogue games and tensorial
logic provides a tentative solution to the traditional problem of proof equality
in linear logic. By removing the flow of negations, and keeping only the flow
of negation, linear logic does not reflect the intrinsic dynamic of proofs. This is
fine when formulas have a space. But the unit ⊥ has no space. This explains
why one needs to add a technical device like jumps.

Representation theory. Much work has been devoted to understand how the
algebraic dualities of quantum groups are related to the topological invariants
of knots. These investigations have been generally performed in categories of
finite dimensional representations where the duality is involutive, in the sense
that the canonical map A→ A∗∗ transporting a space A to its bidual space A∗∗ is
invertible. One primary task of this work is to recast this well-established con-
nection inside categories where the duality is not necessarily involutive. To that
purpose, we start from the primitive notion of duality provided by dialogue cat-
egories. A typical illustration is provided by the category C of representations
(of arbitrary dimension) of a Hopf algebra with an invertible antipode, where
the object ⊥ is defined as the base field k. More generally, any object ⊥ picked in
a monoidal closed category C (closed on the left and on the right) defines a dia-
logue category. As it stands, the notion of dialogue category reflects a primitive
(and pervasive) notion of duality, and it is thus natural to look for a satisfac-
tory definition of cyclic dialogue and ribbon dialogue category. In particular, we
characterize the Hopf algebras H whose category H-Mod of left representations
is cyclic dialogue or ribbon dialogue.

Related works. Speak of non commutative linear logic, balanced star-autonomous...
this topological flow of negations and atoms is precisely what every formal

syntax of ribbon logic is describing. Either Hilbert-style, natural deduction or
sequent calculus –

This work in proof theory is part of a wider research program, whose purpose
is to refine to tensorial logic the components of linear logic, where negation is
necessarily involutive. From an algebraic point of view, this means extending to
dialogue categories the body of tools and concepts developed for ∗-autonomous

11

categories. It should be noted that a ∗-autonomous is the same thing as a dia-
logue category where the object ⊥ is dualizing, this meaning that the canonical
morphisms

x −→ ⊥� (x(⊥) x −→ (⊥� x)(⊥

are isomorphisms for every object x. In particular, we will be careful to check
that the notions of cyclic and braided dialogue categories match with the exist-
ing notions of cyclic and braided ∗-autonomous categories. The notion of dia-
logue category is connected to game semantics. This work is part of a plan to
develop cyclic as well as braided notions of game semantics, with a clear topo-
logical status. Again, strategies should collapse to proof-nets in cyclic and in
braided linear logic when the flow of negation is removed.

the sequent calculus, in natural deduction one symbolic framework or an-
other:

The theorem has far-reaching proof-theoretic consequences which go beyond
its conceptual formulation. The whole point of the coherence theorem is to pro-
vide an intrinsic notion of proof, independent of its formal construction. The
theorem establishes that proof equality boils down to the topology of the net-
work of links connecting negations and atoms flowing inside the proof. From
that point of view, it makes sense to think of the proof as this network of nega-
tions and atoms

Linear logic – proof-nets. Tensorial logic – game semantics.
This theorem is the latest
safer topological foundations to the dialogical
The notion of dialogue category was introduced by the author in order to

reflect the dialogical interpretations of proofs as interactive strategies playing
on dialogue games. In particular, we have established that the free symmetric
dialogue category generated by a category X has dialogue games as objects,
and total innocent strategies as morphisms.

As such, the category We have already established in a companion paper
that the free symmetric dialogue category generated by a category X has di-
alogue games as objects, and total innocent strategies as morphisms. In this
framework, a proof A ` B of the associated tensorial logic may be seen as a
family of links connecting the negations of A and the negations of B.

It appears that the free balanced dialogue category has the same objects,
and its morphisms are a refinement of innocent strategies where the flow of
negation (as well as the morphisms of X) behave like topological strands in a
ribbon tangle.

The point is that these notations are not supported by any intrinsic notion
of formal proof. From that point of view, The situation is a bit similar as if there
were various notions of presentations of a group, but no intrinsic notion of proof.

n proof theory, which is the search for the intrinsic meaning of logical proofs,
independently of the formal syntax in which they are traditionally expressed.
This is an old question in logic, which has never found a satisfactory answer. Se-
mantics is the study of invariants of proofs modulo execution. A difficult ques-
tion in the field is to decide when two proofs should be considered as equal. It

12

appears that the notion of braided dialogue category enables to recast this tra-
ditional problem to the topology of ribbon tangles. This is achieved in two steps.
First of all, one shows that the free braided dialogue category free-dialogue(X)
generated by a category X is a category of formulas and proofs (modulo execu-
tion) of a braided variant of tensorial logic. Tensorial logic is a primitive logic
of tensor and negation, where negation is not necessarily involutive. Then, one
shows that there exists a faithful functor from free-dialogue(X) to the free
ribbon category free-ribbon(X∗) over the category X extended with one ob-
ject ⊥. The fact that the functor is faithful shows that equality of proofs modulo
execution reduces in this case to equality of ribbon tangles modulo deformation.

Plan of the paper.

2 Balanced dialogue categories
2.1 Monoidal categories
In order to fix notations, we recall that a monoidal category C is a category
equipped with a functor ⊗ : C × C → C and an object I and three natural
isomorphisms

αx,y,z : (x⊗ y)⊗ z −→ x⊗ (y ⊗ z)

λx : I ⊗ x −→ x ρx : x⊗ I −→ x

making the two coherence diagrams below commute.

(w ⊗ x)⊗ (y ⊗ z)
α

++
((w ⊗ x)⊗ y)⊗ z

α
33

α⊗idz
��

w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y))⊗ z α // w ⊗ ((x⊗ y)⊗ z)
idw⊗α
OO

(x⊗ I)⊗ y α //

ρ⊗idy &&

x⊗ (I ⊗ y)

idx⊗λxx
x⊗ y

2.2 Braided categories
The notion of braided monoidal category C is introduced in

Definition 2 (braiding) A braiding in a monoidal category C is a family of
isomorphisms

γx,y : x⊗ y −→ y ⊗ x

13

natural in x and y such that the two diagrams

x⊗ (y ⊗ z) γ // (y ⊗ z)⊗ x α

��
(x⊗ y)⊗ z

α //

γ⊗z //

(a) y ⊗ (z ⊗ x)

(y ⊗ x)⊗ z α // y ⊗ (x⊗ z) y⊗γ

AA

(x⊗ y)⊗ z γ // z ⊗ (x⊗ y) α−1

��
x⊗ (y ⊗ z)

α−1 //

x⊗γ //

(b) (z ⊗ x)⊗ y

x⊗ (z ⊗ y) α−1
// (x⊗ z)⊗ y γ⊗y

AA

commute.

The braiding map γx,y is depicted in string diagrams as a positive braiding of the
ribbon strands x and y where its inverse is depicted as the negative braiding:

γx,y =

x y

xy

γ−1
x,y =

x y

xy

The two coherence diagrams (a) and (b) are then depicted as equalities between
string diagrams:

x y z

xy z

(a)=

x y z

xy z

x y z

x yz

(b)=

x y z

x yz

2.3 Balanced categories
The notion of balanced category is introduced in...

Definition 3 (balanced category) A balanced category C is a braided mo-
noidal category equipped with a family of morphisms

θx : x −→ x

14

natural in x, satisfying the equality

θI = idI
and making the diagram

x⊗ y
γx,y //

θx⊗y

��

y ⊗ x

θy⊗θx

��
x⊗ y y ⊗ x

γy,x

oo

(2)

commute for all objects x and y of the category C .

The twist θx is depicted as the ribbon x twisted positively in the trigonomet-
ric direction with an angle 2π whereas its inverse θ−1

x is depicted as the same
ribbon x twisted this time negatively with an angle −2π:

θx =

x

x

θ−1
x =

x

x

This notation enables us to give a topological motivation to the axioms of a
balanced category. The first requirement that θI is the identity means that
the ribbon strand I should be thought as ultra thin. The second requirement
that the coherence Diagram 2 commutes says that topological equality between
string diagrams:

θx⊗y =

x y

x y

2.4 Balanced dialogue categories
At this stage, we are ready to introduce the notion of balanced dialogue category
which provides a functorial bridge between proof theory and knot topology.

Definition 4 (balanced dialogue category) A balanced dialogue category is
a dialogue category C moreover equipped with a braiding and a twist defining a
balanced category.

15

3 Ribbon logic
We introduce below the sequent calculus of ribbon logic, this including the
equalities associated by the cut-elimination procedure.

3.1 The ribbon groups
Recall that the braid group Bn on n strands is presented by the generators σi
for 1 ≤ i ≤ n− 1 and the equations

σi ◦ σi+1 ◦ σi = σi+1 ◦ σi ◦ σi+1
σi ◦ σj = σj ◦ σi when |j − i| ≥ 2. (3)

There is an obvious left action

� : Bn × [n] −→ [n] (4)

of the group Bn on the set [n] = {1, · · · , n} of strands. This action enables to
define a wreath product of Bn on the additive group (Z,+, 0). The resulting
group Gn is called the ribbon group on n strands. The group is presented by
the generators σi for 1 ≤ i ≤ n − 1 and θi for 1 ≤ i ≤ n, together with the
equations (3) of the braid group Bn and the equations below:

σi ◦ θi = θi+1 ◦ σi
σi ◦ θi+1 = θi ◦ σi
σi ◦ θj = θj ◦ σi when j < i or when j ≥ j + 2.

Each group Gn may be alternatively seen as a groupoid noted SGn, with a
unique object ∗ and SGn(∗, ∗) = Gn. There is a nice and conceptual definition
of the ribbon groups Gn which goes as follows. The groupoid G defined as the
disjoint sum of the groupoids SGn coincides with the free balanced category
generated by the terminal category 1. Recall that the category 1 has a unique
object ∗ and a unique map. Hence, the group Gn may be alternatively defined
as G (n, n) where n = 1⊗ · · · ⊗ 1 is the n-fold tensor product of the generator 1 of
the category G . This is just the ribbon-theoretic counterpart to the well-known
fact that the free braided monoidal category B generated by the category 1
coincides with the disjoint sum of the groupoids SBn. From this observation
follows a family of group homomorphisms

⊗ : Gp ×Gq −→ Gp+q

which reflects the monoidal structure of the category G . It is also useful to
observe that the action (4) extends to a left action

� : Gn × [n] −→ [n]

where each generator θi acts trivially, in the sense that θi � k = k for all k ∈ [n].

16

3.2 The sequent calculus
The formulas of ribbon logic are finite trees generated by the grammar

A,B ::= A⊗B | I | A(⊥ | ⊥� A | ⊥.

The sequence are two-sided

A1, . . . , Am ` B

with a sequence of formulas A1, ..., Am on the left-hand side, and a unique for-
mula B on the right-hand side. The proof of ribbon logic are then defined as
derivation trees in a sequent calculus. The sequent calculus is defined as the
usual sequent calculus of tensorial logic, recalled in Figure 1, together with a
family of exchange rules

A1, . . . , An ` B Exchange[g]
Ag�1, . . . , Ag�n ` B

parametrized by the elements g of the ribbon group Gn.

Axiom A ` A

Cut Γ ` A Υ1, A,Υ2 ` B
Υ1,Γ,Υ2 ` B

Right ⊗ Γ ` A ∆ ` B
Γ,∆ ` A⊗B

Left ⊗ Υ1, A,B,Υ2 ` C
Υ1, A⊗B,Υ2 ` C

Right I ` I

Left I Υ1,Υ2 ` A
Υ1, I,Υ2 ` A

Right� Γ, A ` ⊥
Γ ` ⊥� A

Left� Γ ` A
⊥� A,Γ ` ⊥

Right(A,Γ ` ⊥
Γ ` A(⊥

Left(Γ ` A
Γ, A(⊥ ` ⊥

Figure 1: Sequent calculus of tensorial logic.

17

3.3 The proof equalities
Ribbon logic comes equipped with a notion of equality between proofs. The
equality is refined as a rewriting system modulo equations. A typical example
of such a rewriting rule is provided by the exchange rule.

3.3.1 The group-theoretic equations

Exchange (composition) —

π
...

A1, . . . , An ` BExch[h]
Ah�1, . . . , Ah�n ` BExch[g]

Ag�(h�1), . . . , Ag�(h�n) ` B

!

π
...

A1, . . . , An ` B Exch[g ◦ h]
Ag◦h�1, . . . , Ag◦h�n ` B

Exchange (unit) —

π
...

A1, . . . , An ` BExchange[e]
Ae�1, . . . , Ae�n ` B

!

π
...

A1, . . . , An ` B

where e denotes the unit of the ribbon group Gn.

3.3.2 The braid and twist equations

We start by a series of three basic rewriting steps which reflect the coherence
diagrams required of the braiding and of the twist in a balanced monoidal cate-
gory.

The braid equations

π
...

Υ1, A,B,C,Υ2 ` D
Left ⊗ Υ1, A⊗B,C,Υ2 ` D[p⊗ σ ⊗ q] Υ1, C,A⊗B,Υ2 ` D

π
...

Υ1, A,B,C,Υ2 ` D [p⊗ 1⊗ σ ⊗ q]Υ1, A, C,B,Υ2 ` C [p⊗ σ ⊗ 1⊗ q]Υ1, C,A,B,Υ2 ` C
Left ⊗Υ1, C,A⊗B,Υ2 ` C

π
...

Υ1, A,B,C,Υ2 ` D
Left ⊗ Υ1, A,B ⊗ C,Υ2 ` D[p⊗ σ ⊗ q] Υ1, B ⊗ C,A,Υ2 ` D

π
...

Υ1, A,B,C,Υ2 ` D [p⊗ σ ⊗ 1⊗ q]Υ1, B,A,C,Υ2 ` C [p⊗ 1⊗ σ ⊗ q]Υ1, B,C,A,Υ2 ` C
Left ⊗Υ1, B ⊗ C,A,Υ2 ` C

where p and q denote the respective lengths of Υ1 and Υ2.

18

The twist equation

π
...

Υ1, A,B,Υ2 ` C
Left ⊗ Υ1, A⊗B,Υ2 ` C[p⊗ θ ⊗ q] Υ1, A⊗B,Υ2 ` C

π
...

Υ1, A,B,Υ2 ` C [p⊗ θ ⊗ θ ⊗ q]Υ1, A,B,Υ2 ` C [p⊗ σ ⊗ q]Υ1, B,A,Υ2 ` C [p⊗ σ ⊗ q]Υ1, A,B,Υ2 ` C
Left ⊗Υ1, A⊗B,Υ2 ` C

where p and q denote the respective lengths of Υ1 and Υ2.

3.3.3 Exchange vs. the left introduction rules

We describe the proof transformations induced by the interaction between an
exchange rule and a left introduction rule. In each case, the transformation has
the effect of permuting the exchange rule before the left introduction rule.

Left introduction of the tensor product — The proof
π
...

A1, . . . , Ap, A,B,B1, . . . , Bq ` C
Left ⊗

A1, . . . , Ap, A⊗B,B1, . . . , Bq ` C [g ⊗ 2⊗ h]
Ag�1, . . . , Ag�p, A⊗B,Bh�1, . . . , Bh�q ` C

is transformed into the proof
π
...

A1, . . . , Ap, A,B,B1, . . . , Bq ` C [g ⊗ 1⊗ h]
Ag�1, . . . , Ag�p, A,B,Bh�1, . . . , Bh�q ` C

Left ⊗
Ag�1, . . . , Ag�p, A⊗B,Bh�1, . . . , Bh�q ` C

Left introduction of the left negation —
π
...

A1, . . . , An ` B[g]
Ag�1, . . . , Ag�n ` B

Left(
Ag�1, . . . , Ag�n, B (⊥ ` ⊥

π
...

A1, . . . , An ` B Left(
A1, . . . , An, B (⊥ ` ⊥ [g ⊗ 1]

Ag�1, . . . , Ag�n, B (⊥ ` ⊥

Left introduction of the right negation —
π
...

A1, . . . , An ` B[g]
Bg�1, . . . , Bg�n ` A

Left� ⊥� A,Bg�1, . . . , Bg�n ` ⊥

π
...

B1, . . . , Bn ` A Left�⊥� A,B1, . . . , Bn ` ⊥ [1⊗ g]⊥� A,Bg�1, . . . , Bg�n ` ⊥

19

3.3.4 Exchange vs. the right introduction rules

We describe now the proof transformations induced by the interaction between
an exchange rule and a right introduction rule.

Right introduction of the tensor product — The proof

π1...

A1, · · · , Ap ` C

π2...

B1, . . . , Bq ` D Right ⊗
E1, . . . , Ep+q ` C ⊗D Exchange[g ⊗ h]

Eg⊗h�1, · · · , Eg⊗h�p+q ` C ⊗D

where Ei = Ai for 1 ≤ i ≤ p and Ep+i = Bi for 1 ≤ i ≤ q, is transformed into

π1...

A1, · · · , Ap ` CExchange[g]
Ag�1, . . . , Ag�p ` C

π2...

B1, . . . , Bq ` D Exchange[h]
Bh�1, . . . , Bh�p ` D Right ⊗

Ag�1, . . . , Ag�p, Bh�1, · · · , Bh�q ` C ⊗D

Right introduction of the left negation —

π
...

A,B1, . . . , Bn ` ⊥Right(
B1, . . . , Bn ` A(⊥[g]

Bg�1, . . . , Bg�n ` A(⊥

π
...

A,B1, . . . , Bn ` ⊥ [1⊗ g]
A,Bg�1, . . . , Bg�n ` ⊥ Right(
Bg�1, . . . , Bg�n ` A(⊥

Right introduction of the right negation —

π
...

A1, . . . , An, B ` ⊥Right�
A1, . . . , An ` ⊥� B[g]

Ag�1, . . . , Ag�n ` ⊥� B

π
...

A1, . . . , An, B ` ⊥ [g ⊗ 1]
Ag�1, . . . , Ag�n, B ` ⊥ Right�
Ag�1, . . . , Ag�n ` ⊥� B

3.4 A normal form
There is a cut-elimination procedure: cuts can be removed. Once cuts have been
removed, then one may apply the proof transformations above, as well as the
proof transformations in the second appendix, in order to get a cut-free proof in
normal form. What does that mean? First we do

We can start by Left introduction of ⊗ and of I until we reach a negation or
an atom everywhere. Then a series of exchange rules. Then we apply the right
introduction of the tensor product in order to separate the subproofs which were

20

tonsured. We get sequents Gamma |- A where A is a negation or an atom. We
can then remove a right introduction of a left or right negation if we picked
properly the exchange laws. We start again...

3.5 Soundness theorem
Suppose given a proof π of ribbon logic over the category C . Then, Every formal
proof of ribbon logic may be interpreted in a ribbon dialogue category

Proposition 1 Every derivation tree of ribbon logic may be interpreted as a
morphism in a ribbon dialogue category.

4 The free balanced dialogue category
We give a categorical account of the soundness theorem.

4.1 The free balanced dialogue category
Suppose given a category X . Let C denote the category

• with the formulas of ribbon logic as objects,

• with the proofs of A ` B modulo proof equality as morphisms A −→ B.

Composition is defined using the cut-rule.

Proposition 2 The category C defines a ribbon dialogue category.

Proof. there is a one-to-one relationship between the proofs of A1, · · · , An ` B
and the proofs of A1 ⊗ · · · ⊗An ` B

The category with formulas as objects, proofs modulo equality as morphisms.

5 Ribbon categories
To that purpose, we start by recalling the definition of monoidal categories
in § 2.1, of braided monoidal categories in § 2.2, of balanced monoidal categories
in § 2.3 and of ribbon categories in § 5.1. We finally introduce the notion of bal-
anced dialogue category in § 2.4. We show in § ?? that every balanced dialogue
category induces two cyclic structures on the tensorial pivot ⊥. We conclude
the section by illustrating in § ?? the notion of balanced dialogue category with
an example coming from representation theory of quantum groups: the cate-
gory of (finite and infinite dimensional) H-modules associated to a ribbon Hopf
algebra H.

21

5.1 Ribbon categories
Definition 5 (dual pairs) A dual pair in a monoidal category C is a quadruple
(x, y, η, ε) consisting of two objects x and y and two morphisms

η : I −→ x⊗ y ε : y ⊗ x −→ I

making the two diagrams below commute:

(x⊗ y)⊗ x α−1
// x⊗ (y ⊗ x)

x⊗ε

��
x

η⊗x

OO

idx // x

y ⊗ (x⊗ y) α−1
// (y ⊗ x)⊗ y

ε⊗y

��
y

y⊗η

OO

idy // y

One often writes x a y in that case, and says that y is a left dual of x, and that x
is a right dual of y.

The unit η and count ε are depicted as U -turns:

x *x

η x*x

ε

The two coherence diagrams express how a U -turn combines with a U -turn in
the other direction:

x

x

ε

η

=

x

x

y

y

η

ε

=

y

y

Definition 6 (ribbon category) A ribbon category C is a balanced category
where every object x is equipped with a duality (x, x∗, ηx, εx) and such that the
diagram

x∗ ⊗ x x∗⊗ θx //

θx∗⊗x

��

x∗ ⊗ x

ε

��
x∗ ⊗ x ε // I

commutes for every object x of the category C .

The coherence diagram of ribbon categories is depicted as

22

x

=

*xx*x

Note that in a ribbon category, every object x∗ is also right dual to the object x
thanks to the dual pair x a x∗ with unit η′ and counit ε′ defined as

=

x*x

η’

x*x

η x

=

*xx *x

εε’

This implies in particular that the following equality holds in every ribbon cat-
egory:

η

ε’

=

x

*x

x

x

x

ε

η’

*x

x

x

= (5)

This leads to a concise definition of ribbon category, which does not mention the
balanced structure:

Proposition 3 A ribbon category is the same thing as a braided category where
every object x is equipped with a dual pair (x, x∗, η, ε) and a dual pair (x∗, x, η′, ε′)
satisfying the equality:

η

ε’

=

x

*x

x

x

x

ε

η’

*x

Note that the object x∗ is at the same time a left dual and a right dual of the
object x.

5.2 The free ribbon category
Shum – framed ribbon tangles

23

5.3 The proof-as-tangle functor
Every ribbon category C equipped with a distinguished object ⊥ defines a bal-
anced dialogue category where the two negation functors are defined as

x(⊥ = x∗ ⊗⊥ ⊥� x = ⊥⊗ x∗

As explained in § 7.2, the balanced structure on the dialogue category C induces
a cyclic structure wheel defined in Equation (8). The twist in Equation (8) en-
sures then that the associated turn described in § ?? coincides with the negative
braiding

turn x = γ−1
⊥,x∗ : x∗ ⊗⊥ −→ ⊥⊗ x∗

permuting the object x∗ under the tensorial pivot ⊥. This also justifies the in-
formal topological explanation for the definition of wheel in § 7.2. Indeed, the
topological equality of Equation (9) makes sense in any balanced dialogue cat-
egory coming from a ribbon category with a distinguished object ⊥— although
the diagrams are meaningless in a general balanced dialogue category.

6 The proof-as-tangle theorem
Every object ⊥ picked in a ribbon category D defines a balanced dialogue cate-
gory with left and right negations defined as:

A(⊥ = A∗ ⊗⊥ ⊥� A = ⊥⊗A∗

Moreover, the canonical definition of turn induced from the balanced structure
of the category D coincides with the braiding map:

γA∗,⊥ : A∗ ⊗⊥ −→ ⊥⊗A∗.

Now, suppose given a category C , and define the category C⊥ as the category C
extended with an object ⊥. Note in particular that C⊥ is isomorphic to the
category C + 1 where 1 is the singleton category. By definition, the free ribbon
category free-ribbon(C⊥) is a ribbon category, and thus a balanced dialogue
category with ⊥ defined as tensorial pole. From this follows that there exists,
up to isomorphism, a unique dialogue functor

[−] : free-dialogue(C) −→ free-ribbon(C⊥)

making the diagram commute:

free-dialogue(C) // free-ribbon(C⊥)

C //

OO

C⊥

OO

This leads to the main theorem of the article.

24

Theorem 1 The functor [−] is faithful.

Proof. Suppose that two cut-free derivation trees

π1...

A ` B

π2...

A ` B
of ribbon logic induce the same tangle [π1] = [π2] modulo topological deformation
in the category free-ribbon(C⊥). We show that π1 ! π2 and conclude. We
proceed by induction on the number of links in the tangle. By the normal form
theorem, we know that the proofs π1 and π2 are equal modulo logical equality
to:

π′1...

A1, . . . , An ` B

π′2...

A1, . . . , An ` B
where each Ai is either a negation or an atom, followed by the same sequence
of left introduction of tensor and left introduction of unit. Suppose that B = ⊥.
In that case, the formula ⊥ was either introduced by:

• an axiom rule,

• the left introduction of a left negation,

• or the left introduction of a right negation.

The case of the axiom is easy to treat, and left to the reader.. We may suppose
without loss of generality that it is a left negation rule. In that case, the proof π′1
is equal to

π′′1...

X1, . . . , Xn−1 ` X
Left(

X1, . . . , Xn−1, X (⊥ ` ⊥ Exchange[g]
A1, . . . , An ` ⊥

The topological equality of [π1] and [pi2] implies that ⊥ is also introduced by the
left introduction of a left negation. The proof π′2 factors as

π′′2...

Y1, . . . , Yn−1 ` Y
Left(

Y1, . . . , Yn−1, Y (⊥ ` ⊥ Exchange[h]
A1, . . . , An ` ⊥

From this, we conclude that the proof

π′′1...

X1, . . . , Xn−1 ` X
Left(

X1, . . . , Xn−1, X (⊥ ` ⊥

25

has the same topological tangle as

π′′2...

Y1, . . . , Yn−1 ` Y
Left(

Y1, . . . , Yn−1, Y (⊥ ` ⊥ Exchange[h]
A1, . . . , An ` ⊥ Exchange[g−1]

X1, . . . , Xn−1, X (⊥ ` ⊥

From this we deduce that
g−1 ◦ h ∈ Gn

is of the form
f ⊗ 1.

From this follows that the second proof is equal to

π′′1...

X1, . . . , Xn−1 ` X

Moreover, the two proofs

π′′1...

X1, . . . , Xn−1 ` X

and

π′′2...

Y1, . . . , Yn−1 ` Y Exchange[f]
Yf�1, . . . , Yf�n−1 ` Y

have the same tangle, and thus are equal in the logical equality by induction
hypothesis.

Now, suppose that B = B1 ⊗ B2. In that case, the last rule is a tensor. We
get a tensor product of proofs, and we carry on.

7 Cyclic dialogue categories and cyclic logic
7.1 Cyclic dialogue categories
The notion of cyclic dialogue category is recalled in this section. The notion may
be defined in two different but equivalent ways. On the one hand, it is defined
a dialogue category equipped with a family of bijections

wheel x,y : C (x⊗ y,⊥) −→ C (y ⊗ x,⊥)

26

natural in x and y, required to make the diagram below

C ((y ⊗ z)⊗ x,⊥) associativity // C (y ⊗ (z ⊗ x),⊥)

wheel y,z⊗x

��
C (x⊗ (y ⊗ z),⊥)

wheel x,y⊗z

OO

associativity

��

C ((z ⊗ x)⊗ y,⊥)

C ((x⊗ y)⊗ z,⊥)
wheel x⊗y,z // C (z ⊗ (x⊗ y),⊥)

associativity

OO
(6)

commute for all objects x, y, z. A cyclic dialogue category may be alternatively
defined as a dialogue category C equipped with a natural isomorphism

turn x : x(⊥ −→ ⊥� x

making the coherence diagram

⊥

(⊥� x)⊗ x

reval
66

y ⊗ (y (⊥)

leval
hh

(x(⊥)⊗ x

turn x

OO

y ⊗ (⊥� y)

turn−1
y

OO

y ⊗ ((x⊗ y)(⊥)⊗ x

lev
OO

turn x⊗y // y ⊗ (⊥� (x⊗ y))⊗ x

rev
OO

(7)

commute for all objects x, y of the category C .

7.2 Every balanced dialogue category is cyclic
Every dialogue category C whose underlying monoidal category is braided comes
equipped with a natural bijection

wheel x,y : C (x⊗ y,⊥) // C (y ⊗ x,⊥)
f � // f ◦ γy,x

Unfortunately, the bijection does not satisfy the coherence diagram (6) required
of a cyclic structure in § ??. The trouble comes from the fact that the two dia-
grams below are not necessarily equal because the category C is braided, rather
than symmetric:

27

x yz

f

x yz

f

=

So, in order to obtain the desired equality

wheel y,z⊗x = wheel y,z⊗x ◦ wheel x,y⊗z

one needs to define wheel in a slightly different way. However, braided categories
are not sufficient to that purpose. This is precisely the reason for shifting to
balanced categories, since they provide us with a satisfactory solution based on
the ability to twist ribbon strands. Indeed, every balanced dialogue category C
comes equipped with a natural bijection wheel defined this time as:

wheel x,y : C (x⊗ y,⊥) // C (y ⊗ x,⊥)
f � // f ◦ γy,x ◦ (idy ⊗ θx)

(8)

This bijection satisfies the coherence diagram (6) and thus defines a cyclic struc-
ture on the balanced dialogue category C . Pictorially:

wheel x,y :

x y

f

7→

xy

f

This definition is also supported (at least informally) by the topological equality
which relates the pictorial notation for wheel on the one hand, and the topologi-
cal reformulation in (5) of the twist map on the other hand.

xy

f f

xy

= (9)

28

Although this diagram does not make sense in the general case of a balanced di-
alogue category, we will see in § ?? that it becomes meaningful in the particular
case of a balanced dialogue category coming from a ribbon category.

One shows moreover that

Proposition 4 In every balanced dialogue category C , the dialogical twist asso-
ciated to the cyclic structure (8) in Proposition ?? coincides with the twist map θ⊥
associated to the tensorial focus.

In every balanced dialogue category, there exists another cyclic structure
defined as:

wheel x,y : C (x⊗ y,⊥) // C (y ⊗ x,⊥)

f � // f ◦ γ−1
x,y ◦ (idy ⊗ θ−1

x)

(10)

Pictorially,

wheel x,y :

x y

f

7→

xy

f

Note that the induced dialogical twist is equal to θ−1
⊥ .

7.3 Cyclic logic
In the case of cyclic logic, the exchange rule is limited to

A1, . . . , An ` ⊥ Exchange[g]
Ag�1, . . . , Ag�n ` ⊥

where g is an element of the abelian group (Z,+, 0).

Exchange vs. cut. Note that such a h does not exist in the case of cyclic logic,
when B = ⊥ and one of the two contexts Υ1 and Υ2 is nonempty. We will see
that this rewrite rule is not necessary in the case of cyclic logic. This has to do
with the status of ⊥ in a context

Υ1,⊥,Υ2 ` A

which has to introduce ⊥ on the left with an axiom.

7.4 The free cyclic dialogue category
....

29

8 Appendix: the cut-elimination procedure
The cut-elimination procedure is described as a series of symbolic transforma-
tions on proofs in Sections 8.2 – ??.

8.1 Interaction with the exchange rule
Before starting the comprehensive list of rewriting steps, we complete the series
of interactions coming from the exchange rule.

Exchange vs. cut — The proof

π1...

A1, · · · , An ` BExchange[g]
Ag�1, . . . , Ag�n ` B

π2...

Υ1, B,Υ2 ` C
CutΥ1, Ag�1, . . . , Ag�n,Υ2 ` C

is transformed into

π1...

A1, · · · , An ` B

π2...

Υ1, B,Υ2 ` C CutΥ1, A1, · · · , An,Υ2 ` C Exchange[h]Υ1, Ag�1, . . . , Ag�n,Υ2 ` C

where h = p ⊗ h ⊗ q is deduced from g and the size p and q of the two contexts
Υ1 and Υ2.

Cut vs. exchange — The proof

π1...

Γ ` Ai

π2...

A1, . . . , An ` B Exchange[g]
Ag�1, . . . , Ag�n ` B

Cut
Ag�1, . . . , Aj−1,Γ, Aj+1, . . . , Ag�n ` B

where j = g−1 � i is the unique index such that g � j = i, is transformed into
the proof

π1...

Γ ` Ai

π2...

A1, . . . , An ` B Cut
A1, . . . , Ai−1,Γ, Ai+1, An ` B Exchange[h]

Ag�1, . . . , Aj−1,Γ, Aj+1, . . . , Ag�n ` B

where h is deduced from g and the size of the context Γ.

30

8.2 Commuting conversions
The two proofs below are equivalent from the point of view of cut-elimination:

π1...

Γ ` A

π2...

Υ2, A,Υ3 ` B

π3...

Υ1, B,Υ4 ` C CutΥ1,Υ2, A,Υ3,Υ4 ` C CutΥ1,Υ2,Γ,Υ3,Υ4 ` C

π1...

Γ ` A

π2...

Υ2, A,Υ3 ` B CutΥ2,Γ,Υ3 ` B

π3...

Υ1, B,Υ4 ` C CutΥ1,Υ2,Γ,Υ3,Υ4 ` C

In particular, the cut-elimination procedure is allowed to transform the first
proof into the second one, and conversely. The two proofs below are also equiv-
alent from the point of view of cut-elimination:

π1...

Γ ` A

π2...

∆ ` B

π3...

Υ1, A,Υ2, B,Υ3 ` C CutΥ1, A,Υ2,∆,Υ3 ` C CutΥ1,Γ,Υ2,∆,Υ3 ` C

π2...

∆ ` B

π1...

Γ ` A

π3...

Υ1, A,Υ2, B,Υ3 ` C CutΥ1,Γ,Υ2, B,Υ3 ` C CutΥ1,Γ,Υ2,∆,Υ3 ` C

8.3 The axiom steps
Axiom vs. cut

Axiom
A ` A

π
...

Υ1, A,Υ2 ` B CutΥ1, A,Υ2 ` B

π
...

Υ1, A,Υ2 ` B

Cut vs. axiom

π
...

Γ ` A Axiom
A ` A CutΓ ` A

π
...

Γ ` A

31

8.4 Principal formulas
The tensor product The proof

π1...

Γ ` A

π2...

∆ ` BRight ⊗ Γ,∆ ` A⊗B

π3...

Υ1, A,B,Υ2 ` C Left ⊗Υ1, A⊗B,Υ2 ` C CutΥ1,Γ,∆,Υ2 ` C

is transformed into the proof

π1...

Γ ` A

π2...

∆ ` B

π3...

Υ1, A,B,Υ2 ` C CutΥ1, A,∆,Υ2 ` C CutΥ1,Γ,∆,Υ2 ` C

A choice has been made here: indeed, the cut rule on the formula A ⊗ B is re-
placed by a cut rule on the formula B, followed by a cut rule on the formula A.
The other order could have been followed instead, with the cut rule on A ap-
plied before the cut rule on B. However, this choice is innocuous, because the
two derivations resulting from this choice are equivalent modulo the conversion
rule.

Tensor unit The proof

Right I ` I

π
...

Υ1,Υ2 ` A Left IΥ1, I,Υ2 ` A CutΥ1,Υ2 ` A

is transformed into the proof

π
...

Υ1,Υ2 ` A

Left negation The proof

π1...

A,∆ ` ⊥
Right(∆ ` A(⊥

π2...

Γ ` A Left(Γ, A(⊥ ` ⊥
CutΓ,∆ ` ⊥

is transformed into the proof

32

π2...

Γ ` A

π1...

A,∆ ` ⊥
CutΓ,∆ ` ⊥

Right negation The proof

π1...

Γ, A ` ⊥
Right� Γ ` ⊥� A

π2...

∆ ` A Left�⊥� A,∆ ` ⊥
CutΓ,∆ ` ⊥

is transformed into the proof

π2...

∆ ` A

π1...

Γ, A ` ⊥
CutΓ,∆ ` ⊥

8.5 Expansion steps
Tensor product

Axiom
A⊗B ` A⊗B

Axiom
A ` A Axiom

B ` B Right ⊗
A,B ` A⊗B

Left ⊗
A⊗B ` A⊗B

Left negation

Axiom
A(⊥ ` A(⊥

Axiom
A ` A Left(

A,A(⊥ ` ⊥
Right(

A(⊥ ` A(⊥

Right negation

Axiom⊥� A ` ⊥� A

Axiom
A ` A Left�⊥� A,A ` ⊥

Right�⊥� A ` ⊥� A

Tensor unit

Axiom
I ` I

Right I` I Left I
I ` I

33

8.6 Secondary hypothesis
Tensor product (right introduction) The proof

π1...

Γ ` A

π2...

Υ1, A,Υ2 ` B

π3...

∆ ` C
Right ⊗Υ1, A,Υ2,∆ ` B ⊗ C CutΥ1,Γ,Υ2,∆ ` B ⊗ C

is transformed into the proof

π1...

Γ ` A

π2...

Υ1, A,Υ2 ` BCut Υ1,Γ,Υ2 ` B

π3...

∆ ` C
Right ⊗Υ1,Γ,Υ2,∆ ` B ⊗ C

Similarly, the proof

π1...

Γ ` A

π2...

∆ ` B

π3...

Υ1, A,Υ2 ` C Right ⊗∆,Υ1, A,Υ2 ` B ⊗ C Cut∆,Υ1,Γ,Υ2 ` B ⊗ C

is transformed into the proof

π2...

∆ ` B

π1...

Γ ` A

π3...

Υ1, A,Υ2 ` C CutΥ1,Γ,Υ2 ` C Right ⊗∆,Υ1,Γ,Υ2 ` B ⊗ C

Tensor product (left introduction) The proof

π1...

Γ ` A

π2...

Υ1, A,Υ2, B,C,Υ3 ` D Left ⊗Υ1, A,Υ2, B ⊗ C,Υ3 ` D CutΥ1,Γ,Υ2, B ⊗ C,Υ3 ` D

is transformed into the proof

π1...

Γ ` A

π2...

Υ1, A,Υ2, B,C,Υ3 ` D CutΥ1,Γ,Υ2, B,C,Υ3 ` D Left ⊗Υ1,Γ,Υ2, B ⊗ C,Υ3 ` D

34

Similarly, the proof

π1...

Γ ` C

π2...

Υ1, A,B,Υ2, C,Υ3 ` D Left ⊗Υ1, A⊗B,Υ2, C,Υ3 ` D CutΥ1, A⊗B,Υ2,Γ,Υ3 ` D

is transformed into the proof

π1...

Γ ` C

π2...

Υ1, A,B,Υ2, C,Υ3 ` D CutΥ1, A,B,Υ2,Γ,Υ3 ` D Left ⊗Υ1, A⊗B,Υ2,Γ,Υ3 ` D

Tensor unit (left introduction) The proof

π1...

Γ ` A

π2...

Υ1, A,Υ2,Υ3 ` D Left IΥ1, A,Υ2, I,Υ3 ` D CutΥ1,Γ,Υ2, I,Υ3 ` D

is transformed into the proof

π1...

Γ ` A

π2...

Υ1, A,Υ2,Υ3 ` D CutΥ1,Γ,Υ2,Υ3 ` D Left IΥ1,Γ,Υ2, I,Υ3 ` D

Similarly, the proof

π1...

Γ ` A

π2...

Υ1,Υ2, A,Υ3 ` D Left IΥ1, I,Υ2, A,Υ3 ` D CutΥ1, I,Υ2,Γ,Υ3 ` D

is transformed into the proof

π1...

Γ ` A

π2...

Υ1,Υ2, A,Υ3 ` D CutΥ1,Υ2,Γ,Υ3 ` D Left IΥ1, I,Υ2,Γ,Υ3 ` D

35

Left negation (left introduction) The proof

π1...

Γ ` A

π2...

Υ1, A,Υ2 ` B Left(Υ1, A,Υ2, B (⊥ ` ⊥ CutΥ1,Γ,Υ2, B (⊥ ` ⊥

is transformed into the proof

π1...

Γ ` A

π2...

Υ1, A,Υ2 ` B CutΥ1,Γ,Υ2 ` B Left(Υ1,Γ,Υ2, B (⊥ ` ⊥

Right negation (left introduction) The proof

π1...

Γ ` B

π2...

Υ1, B,Υ2 ` A Left�⊥� A,Υ1, B,Υ2 ` ⊥ Cut⊥� A,Υ1,Γ,Υ2 ` ⊥

is transformed into the proof

π1...

Γ ` B

π2...

Υ1, B,Υ2 ` A CutΥ1,Γ,Υ2 ` A Left�⊥� A,Υ1,Γ,Υ2 ` ⊥

Left negation (right introduction) The proof

π1...

Γ ` A

π2...

Υ1, A,Υ2, B ` ⊥ Right�Υ1, A,Υ2 ` ⊥� B
CutΥ1,Γ,Υ2 ` ⊥� B

is transformed into the proof

π1...

Γ ` A

π2...

Υ1, A,Υ2, B ` ⊥ CutΥ1,Γ,Υ2, B ` ⊥ Right�Υ1,Γ,Υ2 ` ⊥� B

36

Right negation (right introduction) The proof

π1...

Γ ` B

π2...

A,Υ1, B,Υ2 ` ⊥ Right(Υ1, B,Υ2 ` A(⊥ CutΥ1,Γ,Υ2 ` A(⊥
is transformed into the proof

π1...

Γ ` B

π2...

A,Υ1, B,Υ2 ` ⊥ Cut
A,Υ1,Γ,Υ2 ` ⊥ Right(Υ1,Γ,Υ2 ` A(⊥

8.7 Secondary conclusion
Tensor product The proof

π1...

Υ2, A,B,Υ3 ` CLeft ⊗ Υ2, A⊗B,Υ3 ` C

π2...

Υ1, C,Υ4 ` D CutΥ1,Υ2, A⊗B,Υ3,Υ4 ` D
is transformed into the proof

π1...

Υ2, A,B,Υ3 ` C

π2...

Υ1, C,Υ4 ` D CutΥ1,Υ2, A,B,Υ3,Υ4 ` D Left ⊗Υ1,Υ2, A⊗B,Υ3,Υ4 ` D

Tensor unit The proof

π1...

Υ2,Υ3 ` ALeft I Υ2, I,Υ3 ` A

π2...

Υ1, A,Υ4 ` B CutΥ1,Υ2, I,Υ3,Υ4 ` B
is transformed into the proof

π1...

Υ2,Υ3 ` A

π2...

Υ1, A,Υ4 ` B CutΥ1,Υ2,Υ3,Υ4 ` B Left IΥ1,Υ2, I,Υ3,Υ4 ` B

37

9 Appendix: the cut-elimination procedure (bis)
Permutation between the left and the right rules:

9.1 Left introduction of the tensor product
Right introduction of the tensor product

π1...

Υ1, A,B,Υ2 ` C

π2...

∆ ` D
Right ⊗Υ1, A,B,Υ2,∆ ` C ⊗D Left ⊗Υ1, A⊗B,Υ2,∆ ` C ⊗D

is transformed into

π1...

Υ1, A,B,Υ2 ` CLeft ⊗ Υ1, A⊗B,Υ2 ` C

π2...

∆ ` D
Right ⊗Υ1, A⊗B,Υ2,∆ ` C ⊗D

Similarly, the proof

π1...

Γ ` C

π2...

Υ1, A,B,Υ2 ` D Right ⊗Γ,Υ1, A,B,Υ2 ` C ⊗D Left ⊗Γ,Υ1, A⊗B,Υ2 ` C ⊗D

is transformed into

π1...

Γ ` C

π2...

Υ1, A,B,Υ2 ` D Left ⊗Υ1, A⊗B,Υ2 ` D Right ⊗Γ,Υ1, A⊗B,Υ2 ` C ⊗D

Right introduction of the left negation

π
...

A,Υ1, B,C,Υ2 ` ⊥ Right(Υ1, B,C,Υ2 ` A(⊥ Left ⊗Υ1, B ⊗ C,Υ2 ` A(⊥

is transformed into

38

π
...

A,Υ1, B, C,Υ2 ` ⊥ Left ⊗
A,Υ1, B ⊗ C,Υ2 ` ⊥ Right(Υ1, B ⊗ C,Υ2 ` A(⊥

Right introduction of the right negation

π
...

Υ1, A,B,Υ2, C ` ⊥ Right�Υ1, A,B,Υ2 ` ⊥� C
Left ⊗Υ1, A⊗B,Υ2 ` ⊥� C

is transformed into

π
...

Υ1, A,B,Υ2, C ` ⊥ Left ⊗Υ1, A⊗B,Υ2, C ` ⊥ Right�Υ1, A⊗B,Υ2 ` ⊥� C

9.2 Left introduction of the unit
Right introduction of the unit

Right I` I Left I
I ` I

is transformed into

Axiom
I ` I

Right introduction of the tensor

π1...

Υ1,Υ2 ` A

π2...

∆ ` B
Right ⊗Υ1,Υ2,∆ ` A⊗B Left IΥ1, I,Υ2,∆ ` A⊗B

is transformed into

π1...

Υ1,Υ2 ` ALeft I Υ1, I,Υ2 ` A

π2...

∆ ` B
Right ⊗Υ1, I,Υ2,∆ ` A⊗B

39

Similarly, the proof

π1...

Γ ` A

π2...

Υ1,Υ2 ` B Right ⊗Γ,Υ1,Υ2 ` A⊗B Left IΓ,Υ1, I,Υ2 ` A⊗B

is transformed into

π1...

Γ ` A

π2...

Υ1,Υ2 ` B Left IΥ1, I,Υ2 ` B Right ⊗Γ,Υ1, I,Υ2 ` A⊗B

Right introduction of the left negation.

π
...

A,Υ1,Υ2 ` ⊥ Right(Υ1,Υ2 ` A(⊥ Left IΥ1, I,Υ2 ` A(⊥

is transformed into

π
...

A,Υ1,Υ2 ` ⊥ Left I
A,Υ1, I,Υ2 ` A(⊥ Right(Υ1, I,Υ2 ` A(⊥

Right introduction of the right negation.

π
...

Υ1,Υ2, A ` ⊥ Right�Υ1,Υ2 ` ⊥� A
Left IΥ1, I,Υ2 ` ⊥� A

is transformed into

π
...

Υ1,Υ2, A ` ⊥ Left IΥ1, I,Υ2, A ` ⊥ Right(Υ1, I,Υ2 ` ⊥� A

40

9.3 Left introduction of the negation
No permutation, typically from the proof

π1...

Γ ` A

π2...

∆ ` B Right ⊗Γ,∆ ` A⊗B
Left(Γ,∆, (A⊗B)(⊥ ` ⊥

This means that the last rule may be a Left introduction of a negation. But in
that case, the formula proved is ⊥.

41

