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Abstract
In this paper, we describe an algebraic presentation of the notion of he-

lical dialogue chirality. In particular, the helix structure enables us to de-
compose the dual of the left negation as the right negation of the dual.

1 Motivations
Among the several equivalent definitions of dialogue chirality formulated in our
companion paper [6], one finds a definition directly inspired by proof-theory and
based on the following combinators:

axiom[m] : L(a) // m∗ 6 L(m7 a)
cut[m] : m7R(m∗ 6 b) // R(b)

Besides the requirement that these combinators define a transjunction accross
the adjunction L a R for every objectm of the category A , one requires that they
satisfy a monoidality property, expressed by the following coherence diagram
for the axiom[−] combinator:

n∗ 6 L(n7 a) axiom[m] // n∗ 6 (m∗ 6 L(m7 (n7 a)))
associativity

��
(n∗ 6m∗) 6 L((m7 n) 7 a)

monoidality

��
La

axiom[n]

OO

axiom[m7n] // (m7 n)∗ 6 L((m7 n) 7 a)

(1)
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As expected, this diagram is required to commute for all objects a,m, n of the
category A . Looking at it with linear and tensorial proof-nets in mind, this
coherence diagram may be understood as an η-expansion law for the axiom
link. This point becomes even clearer when one translates (1) in the graphical
language of string diagrams:

L

L

m nn* m*

=

L

L m nn* m*

As should be clear from the picture, the purpose of the η-expansion law is to
decompose the axiom[m7 n] link into the pair of more elementary axiom[m]
and axiom[n] links. A natural question is whether there exists a similar η-
expansion law for the axiom link

La
left.axiom[Rm] // (Rm)∗ 6 L((Rm) 7 a) (2)

associated to the negation Rm of an object m of the category B. The idea would
be to deduce it from the axiom link of the object m itself. However, the object m
lives in the category B and thus needs to be translated back to the object ∗m
which lives in the other side A of the dialogue chirality. Recall that the two
monoidal categories (A ,7, true) and (B,6, false) of a dialogue chirality are re-
lated by a monoidal equivalence

A

(−)∗

""monoidal
equivalence

∗(−)

cc B op(0,1)

See [5] for details. Note that we are careful here to indicate in (2) that we con-
sider the left axiom link. The reason is that, in order to define an η-expansion
for Rm, one needs to be careful about orientations and to start from the right
axiom link

L(true) right.axiom[m] // L(∗m) 6m
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associated to the object m in the category B. This morphism induces in turn
the morphism

La
η // L(RL(true) 7 a) map // L(R(L(∗m) 6m) 7 a)

which may be composed with the distributivity law

L(R(L(∗m) 6m) 7 a) distributivity // L(∗m) 6 L((Rm) 7 a)

The resulting morphism

La // L(∗m) 6 L((Rm) 7 a) (3)

may be depicted in the following way:

true
L

L
R

L

*m

m

m

a

a

*m

true

true

a

L

R

The different shades of blue and red are here to separate the different instances
of categories A and B appearing in the 2-categorical diagram. Note that for
graphical convenience, we depict a variant

L(true 7 a) // L(R(L(true 7 ∗m) 6m) 7 a) // L(true 7 ∗m) 6 L((Rm) 7 a)

of the morphism (3). The last step in order to complete the construction is to
require the existence of a family of isomorphisms

L(∗m) isomorphism // (Rm)∗ (4)
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natural in m. In this way, by composing (3) with (4), one obtains a morphism

La // (Rm)∗ 6 L((Rm) 7 a) (5)

with the expected source and target. There remains to understand whether the
resulting morphism coincides with the original axiom link (2). Although the
answer to this question is positive in many situations of interest, it appears
that nothing compels the two morphisms to coincide in general. This technical
point is subtle but fundamental because it reveals that logical negation may be
twisted in exactly the same way as a topological ribbon. We will see that the
two morphisms (2) and (5) are equal modulo a twist of angle 2π of the negation
strand. This observation puts topology at the heart of logic.

Our primary purpose in this work is to shed light on these topological as-
pects of the logical negation by transferring ideas coming from functorial knot
theory and representation theory of quantum groups. Recall that the notion
of ribbon category axiomatizes the properties of the category Mod(H) of finite
dimensional representations of a quantum group H, defined here as a quasi-
triangular and twisted Hopf algebra. Every object⊥ in such a ribbon category C
defines a pair of negation functors

x(⊥ := x∧ ⊗⊥ ⊥� x := ⊥⊗ x∨

where x∧ denotes the right dual and x∨ denotes the left dual of the object x in
the ribbon category. These negation functors equip the ribbon category C with
the structure of a dialogue category. The associated dialogue chirality (A ,B)
has monoidal sides defined as

(A ,7, true) = (C ,⊗,1) (B,6, false) = (C ,⊗,1) op(0,1)

with monoidal equivalence (−)∗ and ∗(−) defined as the identity on C . We wish
to give a little precedence to the right axiom combinator and thus define L andR
as the negation functors

Lx = x(⊥ = x∧ ⊗⊥ Rx = ⊥� x = ⊥⊗ x∨.

The right axiom associated to the object m in the category C

La = a∧ ⊗⊥ left.axiom[m] // L(a7 ∗m) 6m � m⊗m∧ ⊗ a∧ ⊗⊥

lives in the category B = C op and is thus defined as the counit of the dual pair
x a x∧ and depicted as follows in the category C :
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right.axiom[m] =

ε

mm

a

a

The left axiom associated an object m

La = a∧ ⊗⊥ left.axiom[m] // m∗ 6 L(m7 a) � a∧ ⊗m∧ ⊗⊥⊗m

requires a braiding:

left.axiom[m] =

ε

m

a

a m

where we may for simplicity identify the left dual x∨ and the right dual x∧ of
the object x at the condition of adding the equality:

=

x x

ε ε

x x

θ

γ

The two morphisms are not equal... but equal modulo a twist.

left.axiom[Rm] =

ε

m

a

a m

ε

On the other hand, the composite map is equal to:
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composite morphism (5) =

ma m

a

ε

ε

This shows that the two morphisms (2) and (5) are different in the particular
case of ribbon categories. They differ of a twist on the object ⊥.

La = a∧ ⊗⊥ // (Rm)∗ 6 L((Rm) 7 a) � (a∧ ⊗⊥⊗m∨)⊗⊥⊗⊥⊗m∨

The twist may be obtained in any dialogue category !!!
As we will see, this additional combinator has a topological content, and may

be interpreted as an helical structure on the tensorial negation of the underly-
ing dialogue category C . This helical structure generalizes the familiar notion
of pivotal or cyclic monoidal category. This requires to integrate this helical
map in the general theory of distributivity laws developed in our companion
paper [6]. We will see that the two morphisms are not equal, that one needs to
twist the negation functors R and L.

2 Helical dialogue categories and chiralities
The notion of helical dialogue category was introduced in the companion pa-
per [7] among a series alternative notions of dialogue categories motivated by
topology. The notion of helical dialogue category is important because it appears
(at least in our current understanding) as the most primitive instance of these
topological notions of dialogue categories. In particular, every cyclic or ribbon
dialogue category is helical in a canonical way. Our main purpose in this section
is to introduce and to justify the corresponding notion of helical dialogue chiral-
ity. In order to validate this 2-sided account of helical dialogue categories, we
proceed in exactly the same way as for the notion of dialogue chirality, see [5]
for details. We thus construct a 2-category HeliCat of helical dialogue cate-
gories in §2.2 and a 2-category HeliChir of helical dialogue chiralities in §2.3
and §2.4. Finally, we exhibit a 2-dimensional equivalence between the pair of
2-categories in §3.
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2.1 Helical dialogue categories
A dialogue category is defined as a monoidal category (C ,⊗, I) equipped with
an object ⊥ coming together with a representation

ϕx,y : C (x⊗ y,⊥) � C (y, x(⊥)

of the functor
y 7→ C (x⊗ y,⊥) : C op −→ Set

for each object x, and with a representation

ψx,y : C (x⊗ y,⊥) � C (x,⊥� y)

of the functor
x 7→ C (x⊗ y,⊥) : C op −→ Set

for each object y. The following notion of dialogue category is introduced in [6].

Definition 1 (helical dialogue category) A helical dialogue category is a di-
alogue category C equipped with a family of bijections

wheel x,y : C (x⊗ y,⊥) −→ C (y ⊗ x,⊥)

natural in x and y and required to make the diagram

C ((y ⊗ z)⊗ x,⊥) associativity // C (y ⊗ (z ⊗ x),⊥)
wheel y,z⊗x

��
C (x⊗ (y ⊗ z),⊥)

wheel x,y⊗z

OO

associativity

��

C ((z ⊗ x)⊗ y,⊥)

C ((x⊗ y)⊗ z,⊥) wheel x⊗y,z // C (z ⊗ (x⊗ y),⊥)

associativity

OO
(6)

commute for all objects x, y, z of the category C .

2.2 A 2-category of helical dialogue categories
We define a 2-category HeliCat with

• helical dialogue categories as 0-cells,

• helical functors as 1-cells,

• dialogue natural transformations as 2-cells.
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The 1-dimensional cells. A helical functor between two helical dialogue cat-
egories is defined as a lax monoidal functor

F : C −→ D

equipped with a morphism

⊥F : F (⊥) −→ ⊥

such that the diagram

C (x⊗ y,⊥) F //

wheel x,y

��

D(F (x⊗ y), F (⊥)) coercion // D(F (x)⊗ F (y),⊥)

wheel F (x),F (y)

��
C (y ⊗ x,⊥) F // D(F (y ⊗ x), F (⊥)) coercion // D(F (y)⊗ F (x),⊥)

(7)

commutes for all objects x, y of the category C . In this diagram, the two coer-
cion maps are deduced by precomposing with the lax monoidal structure of the
functor F

mx,y : F (x)⊗ F (y) −→ F (x⊗ y)
and by postcomposing with the map ⊥F .

The 2-dimensional cells. The 2-cells are defined in the same way as in the
case of dialogue categories, see [5] for details. A dialogue natural transforma-
tion

θ : (F,⊥F ) ⇒ (G,⊥G)
is defined there as a natural transformation

θ : F ⇒ G

making the diagram
F (⊥)

θ⊥

��

⊥F

'' ⊥

G(⊥)
⊥G

77

commute. We leave the reader check that the expected notions of (horizontal
and vertical) identity and composition define a 2-category HeliCat together
with a forgetful 2-functor

U : HeliCat −→ DiaCat

to the 2-category DiaCat of dialogue categories constructed in [5]. Note that by
construction, the 2-functor U is fully faithful on 2-dimensional cells.
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2.3 Helical dialogue chiralities
Recall from [5, 6] that a dialogue chirality is defined as a pair of monoidal cate-
gories

(A ,7, true) (B,6, false)
equipped with an adjunction L a R and with a monoidal equivalence

A

L

""⊥
R

cc B A

(−)∗

""monoidal
equivalence

∗(−)

cc B op(0,1)

together with a family of bijections

χm,a,b : 〈m7 a | b 〉 −→ 〈 a |m∗ 6 b 〉 (8)

natural in a and b, where 〈 a | b 〉 is defined as

〈 a | b 〉 = A ( a , R b ).
The family χ is moreover required to make the diagram

〈 (m7 n) 7 a | b 〉 χm7n //

associativity

��

〈 a | (m7 n)∗ 6 b 〉

〈m7 (n7 a) | b 〉 χm // 〈n7 a |m∗ 6 b 〉 χn // 〈 a |n∗ 6 (m∗ 6 b) 〉

associativity
monoidality of negation

OO

(9)

commute. A helical dialogue chirality is then defined as a dialogue category
equipped with a natural family of bijections helix permuting the two sides of the
evaluation bracket 〈− |− 〉.
Definition 2 (helical chirality) A helical structure in a dialogue chirality is
defined as a family of bijections

helixa,b : 〈 a | b 〉 −→ 〈 ∗b | a∗ 〉
natural in a and b, and making the diagram below commute:

〈 a1 7 a2 | b 〉
χa1,a2,b

��

helix // 〈 ∗b | (a1 7 a2)∗ 〉 〈 a2 | a∗1 6 b 〉

〈 a2 | a∗1 6 b 〉
helix

��

〈 a2 7 ∗b | a∗1 〉

χa2,∗b,a∗1

OO

〈 ∗(a∗1 6 b) | a∗2 〉 〈 ∗(b6 a∗2) | a∗1 〉

〈 ∗b7 a1 | a∗2 〉
χ∗b,a1,a∗2 // 〈 a1 | (∗b)∗ 6 a∗2 〉 〈 a1 | b6 a∗2 〉

helix
OO

(10)
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where every double edge is meant to describe a canonical coercion isomorphism
induced by the monoidal equivalence between A and B op(0,1). A helical dialogue
category is then defined as a dialogue category equipped with a helical structure.

The family helix induces a series of bijections

A (a,Rb) helix // A (a, ∗(L(∗b))) equivalence //B(L(∗b), a∗) adjunction // A (∗b, R(a∗))

each of them, and thus their composite, natural in a and b. From this follows
by the usual Yoneda argument that the natural family of bijections helix may
be alternatively formulated as a family of isomorphisms ∗(L(∗b)) → Rb natural
in b, or equivalently, as a family of isomorphisms

helixa : ∗(La) // R(a∗) (11)

natural in a.

Remark. It should be noted that a dialogue chirality is typically obtained
from a dialogue category by defining the negation functors L and R as Lx =
⊥� x and Rx = x ( ⊥. In that case, the family (11) amounts to a family of
isomorphisms

helixx : ⊥� x −→ x(⊥. (12)

This choice of orientation is essentially arbitrary, so much arbitrary in fact that
we take the reverse one in our companion paper [7]. However, there is a rea-
son for making the particular choice (12) when one starts from the notion of
dialogue chirality (10) considered here, with currification (8) acting on the left.
Thanks to that particular choice, we are able to keep “positive” all the instances
of the combinators helix and χ in the coherence diagram (10). Another choice
would have been to reverse the orientation of helixa,b, to take decurrification
(the reverse of currification) as primitive and to start from 〈 a | b1 6 b2 〉 in the
coherence diagram (10).

2.4 A 2-category of helical dialogue chiralities
We define a 2-category HeliChir with helical dialogue chiralities as objects
(or 0-dimensional cells). This construction will be compared in §3 with the 2-
category HeliCat of helical categories just constructed in §2.4.
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The 1-dimensional cells. A 1-dimensional cell in HeliChir

F : (A1,B1) −→ (A2,B2)

is defined in essentially the same way as a 1-dimensional cell in the 2-category
DiaChir of dialogue chiralities constructed in [5]. Hence, it is a quadruple
F = (F•, F◦, F̃ , F ) consisting of a lax monoidal functor F• : A1 −→ A2, an oplax
monoidal functor F◦ : B1 −→ B2, a monoidal natural isomorphism

A1
F• //

(−)∗

��

F̃

A2

(−)∗

����

B op(0,1)
1

F
op(0,1)
◦

//B op(0,1)
2

(13)

together with a natural transformation:

A1
F• // A2

F
+3

B1 F◦
//

R

OO

B2

R

OO

(14)

making the diagram

〈m7 a | b 〉 χm //

Fm7a,b

��

〈 a |m∗ 6 b 〉
Fa,m∗6b

��
〈F•(m7 a) |F◦(b) 〉

monoidality of F•

��

〈F•(a) |F◦(m∗ 6 b) 〉
monoidality of F◦
��

〈F•(a) |F◦(m∗) 6 F◦(b) 〉

F̃
��

〈F•(m) 7 F•(a) |F◦(b) 〉
χF•(m) // 〈F•(a) |F•(m)∗ 6 F◦(b) 〉

(15)

commute for all objects a,m in A1 and b in B1. Here, the map

Fa,b : 〈 a | b 〉 −→ 〈F•(a) |F◦(b) 〉
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is defined as the composite

〈 a | b 〉
Fa,b // 〈F•(a) |F◦(b) 〉

A1(a,Rb) F• // A2(F•(a), F•(Rb)) F // A2(F•(a), RF◦(b))

The only additional requirement compared to a 1-dimensional cell in DiaChir
is that the diagram below commutes:

〈 a | b 〉
Fa,b //

helixa,b

��

〈F•(a) |F◦(b) 〉

helixF•(a),F◦(b)

��
〈 ∗b | a∗ 〉

F∗b,a∗ // 〈F•(∗b) |F◦(a∗) 〉 F̃ // 〈 ∗(F◦(b)) | (F•(a))∗ 〉

(16)

Here, the map F̃b,a is defined by applying the natural isomorphism F̃ on the
object F◦(a∗) in order to get the object (F•(a))∗ and at the same time its mate

F̃mate : F• ◦ ∗(−) ⇒ ∗(−) ◦ F◦ : B op(0,1)
1 −→ A2

on the object F•(∗b) in order to get the object ∗(F◦(b)).

The 2-dimensional cells. A 2-dimensional cell in HeliChir

θ : F ⇒ G : (A1,B1) −→ (A2,B2)

is defined in exactly the same way as a 2-dimensional cell in the 2-category DiaChir
of dialogue chiralities constructed in [5]. It is a pair (θ•, θ◦) of monoidal natural
transformations θ• : F• ⇒ G• and θ◦ : G◦ ⇒ F◦ satisfying the two equations
below:

θ•��
A1

F•

((

G•

77

(−)∗

��

A2

(−)∗

��
G̃

��B op(0,1)
1

G
op(0,1)
◦

55
B op(0,1)

2

=

A1

F•

''

(−)∗

��

A2

(−)∗

��

F̃


�

θ
op(0,1)
◦��

B op
1

F
op(0,1)
◦

))

G
op(0,1)
◦

77
B op(0,1)

2

(17)
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A1
F• // A2

F
-5

B1 F◦
//

R

OO

B2

R

OO

=

θ•
��A1

F•

  

G•
// A2

G
-5

B1
G◦ //

F◦

>>

R

OO

θ◦
��

B2

R

OO

(18)

As in the case of the 2-category HeliCat in §2.2, we let the reader check that
the expected notions of (horizontal and vertical) identity and composition define
a 2-category HeliChir together with a forgetful 2-functor

U ′ : HeliChir −→ DiaChir

to the 2-category DiaChir of dialogue chiralities constructed in [5]. As in the
case of the forgetful 2-functor from HeliCat in §2.2, the forgetful 2-functor U is
fully faithful on 2-dimensional cells.

3 Construction of the 2-categorical equivalence
In this section, we show that the 2-categories HeliCat and HeliChir are equiv-
alent in the appropriate 2-dimensional sense. The construction is a direct adap-
tation of the 2-dimensional equivalence between DiaCat and DiaChir exhib-
ited in our companion paper [5]. So, it is not particularly difficult, but it should
done with great care. In the same way as in the original case of dialogue cat-
egories, the equivalence may be understood as a coherence theorem for helical
dialogue chiralities. In particular, it provides a general recipe to strictify a he-
lical dialogue chirality into an equivalent helical dialogue category. Recall that
a dialogue chirality (A ,B) is called strict when B = A op(0,1) and moreover, the
two functors ∗(−) and (−)∗ and their monoidal equivalence are trivial — that is,
equal to the identity on A .

3.1 From dialogue categories to dialogue chiralities
We start by constructing a 2-functor

F : HeliCat −→ HeliChir

from the 2-category HeliCat of helical dialogue categories to the 2-category
DiaChir of helical dialogue chiralities.

13



Definition of F : the 0-dimensional cells. To every helical dialogue cat-
egory C , the 2-functor F associates the helical dialogue chirality defined in
exactly the same way as in the case of basic dialogue categories:

(A ,7, true) := (C ,⊗, e) (B,6, false) := (C ,⊗, e)op(0,1).

The monoidal equivalence between A and Bop(0,1) is defined as the identity
functor on the monoidal category C . The two adjoint functors L and R are
defined as

L : x 7→ ⊥� x R : x 7→ x(⊥

with the adjunction L a R witnessed by the series of bijections

A (x,R(y)) = C (x, y (⊥)
� C (y ⊗ x,⊥)
� C (y,⊥� x)
= B(L(x), y)

natural in x and y. The bijection χm,x,y is defined as the composite

C (m⊗ x, y (⊥)
ϕ−1

x⊗m,y // C (y ⊗m⊗ x,⊥) ϕy⊗m,x // C (x, (y ⊗m)(⊥)

where for simplicity, we forget the associativity map between y ⊗ (m ⊗ x) and
(y ⊗ m) ⊗ x. Up to that stage, the 2-functor F is defined in exactly the same
way in the original case of dialogue categories, see [5] for details. This already
ensures that the data introduced for (A ,B) define a dialogue chirality. The
only novelty is the definition of the helical structure

〈 a | b 〉 = A (a,Rb) = C (a, b(⊥)
helixa,b // C (b, a(⊥) = A (∗b, Ra∗) = 〈 ∗b | a∗ 〉

as the natural family of isomorphisms

C (a, b(⊥)
ϕ−1

b,a // C (b⊗ a,⊥)
wheel−1

a,b // C (a⊗ b,⊥)
ϕa,b // C (a, b(⊥)

It is not difficult to check that this defines a helical dialogue chirality (A ,B).
The point is that the two coherence diagrams (6) for dialogue categories and (10)
for dialogue chiralities essentially coincide.

Definition of F : the 1-dimensional cells. To every dialogue functor

(F,⊥F ) : (C ,⊥C ) −→ (D ,⊥D)
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the 2-functor F associates the 1-dimensional cell F(F ) defined as the quadruple
consisting of the lax monoidal functor

F(F )• : C
F−→ D

the oplax monoidal functor

F(F )◦ : C op(0,1) F op(0,1)
−→ D op(0,1)

the monoidal isomorphism F̃(F ) defined as the identity on the functor F , and
the natural transformation

F(F ) : R ◦ F −→ F ◦R

whose components
F (x(⊥C ) −→ F (x)(⊥D

is associated by currification ϕF (x),F (x(⊥C ) to the morphism

F (x)⊗ F (x(⊥C ) −→ F (x⊗ (x(⊥C )) −→ F (⊥C ) −→ ⊥D .

We know from [5] that this defines a 1-dimensional cell between dialogue chiral-
ities. There remains to show that F(F ) is compatible with the helical structure,
in the technical sense that diagram (16) commutes. This fact is essentially im-
mediate to deduce from the fact that F is compatible with wheel in the technical
sense that diagram (7) commutes.

Definition of F : the 2-dimensional cells. The 2-functor F acts on 2-cells
in exactly the same way as in the original case of dialogue categories considered
in [5], see that paper for details.

3.2 From dialogue chiralities to dialogue categories
Now that the 2-functor F has been constructed, we complement it with a 2-
functor in the reverse direction:

G : HeliChir −→ HeliCat

from the 2-category of helical dialogue chiralities to the 2-category of helical
dialogue categories.
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Definition of G : the 0-dimensional cells. The 2-functor transports every
helical dialogue chirality (A ,B) to the helical dialogue category defined as

(C ,⊗, I) := (A ,7, true)

equipped with the tensorial pole

⊥ := R(false).

together with the functors:

⊥� x = ∗(L(x)) x(⊥ = R(x∗).

The natural bijections ϕ and ψ are then defined by composing the series of nat-
ural bijections

C (x⊗ y,⊥) = A (x7 y,R(false)) by definition of C and of ⊥,
� A (y,R(x∗ 6 false)) by applying χx,y,false,
� A (y,R(x∗)) by applying the unit law in B,
� B(L(y), x∗) by the adjunction L a R,
� A (x, ∗(L(y))) by the adjunction (−)∗ a ∗(−),
= C (x, ∗(L(y))) by definition of C .

C (x⊗ y,⊥) = A (x7 y,R(false)) by definition of C and of ⊥,
� A (y,R(x∗ 6 false)) by applying χx,y,false,
� A (y,R(x∗)) by applying the unit law in B,
= C (y,R(x∗)) by definition of C .

The helical structure wheel on the dialogue category C is defined as the compos-
ite of natural bijections:

C (x⊗ y,⊥) wheel x,y //

ϕx,y

��

C (y ⊗ x,⊥)

C (y, x(⊥) 〈 ∗y |x∗ 〉
helix−1

x,y // 〈x | y 〉 C (x, y (⊥)

ϕ−1
y,x

OO

The fact that this defines a helical structure is essentially immediate: the rea-
son already mentioned is that the two coherence diagrams (6) for dialogue cat-
egories and (10) for dialogue chiralities essentially coincide modulo translation
of one into the other.

16



Definition of G : the 1-dimensional cells. Every 1-dimensional cell

F = (F•, F◦, F̃ , F ) : (A1,B1) −→ (A2,B2)

is transported to the dialogue functor (F•,⊥F ) consisting of the functor

F• : A1 −→ A2

and of the morphism

⊥F : F•(⊥A1) −→ ⊥A2

defined as the composite

F• ◦R (false) F false // R ◦ F◦ (false) monoidality // R (false)

There remains to show that G(F ) = F• is compatible with the wheel structure,
in the technical sense that diagram (7) commutes. This fact is essentially im-
mediate to deduce from the diagram chase below:

C (x⊗ y,⊥)

(a)

F //

ψx,y

��

D(F (x⊗ y),⊥) coercion // D(F (x)⊗ F (y),⊥)

ψF x,F y

��
C (x,⊥� y) F //

helix−1
x,y

��

(b)

D(Fx, F (⊥� y)) // D(Fx,⊥� Fy)

helix−1
F x,F y

��
C (y,⊥� x) F //

ψ−1
y,x

��

(c)

D(Fy, F (⊥� x)) // D(Fy,⊥� Fx)

ψ−1
F y,F x

��
C (y ⊗ x,⊥) F // D(F (y ⊗ x),⊥) coercion // D(F (y)⊗ F (x),⊥)

whose hexagons (a) and (c) commute in every dialogue category, and whose
inner hexagon (b) commutes because diagram (16) commutes.

Definition of G : the 2-dimensional cells. The 2-functor G acts on 2-dimensional
cells in exactly the same way as in the original case of dialogue categories con-
sidered in [5]. We refer the reader to that paper for details. We simply recall
here that every 2-dimensional cell θ = (θ•, θ◦) is transported to the dialogue
transformation θ•.
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3.3 The pseudo-natural transformation Φ
The composite 2-functor

HeliCat F−→ HeliChir G−→ HeliCat

coincides with the identity on the 2-category HeliCat of helical dialogue cate-
gories. In order to establish that HeliCat and HeliChir are biequivalent, we
construct a pair of pseudo-natural transformations

Φ : Id −→ F ◦ G Ψ : F ◦ G −→ Id

between the identity 2-functor on HeliChir and the 2-functor F ◦ G. We then
show that their components Φ(A ,B) and Ψ(A ,B) define an equivalence in the 2-
category DiaChir, for every helical dialogue chirality (A ,B). Before proceed-
ing further, we find convenient to give a detailed account of the helical dialogue
chirality (A ,A op(0,1)) obtained by applying the 2-functor F ◦ G to a given dia-
logue chirality (A ,B). The dialogue chirality (A ,A op(0,1)) is equipped with the
trivial monoidal equivalence:

A

id

""monoidal
equivalence

id

cc (A op(0,1)) op(0,1)

with the adjunction

A

L

!!⊥

R

bb B

(∗(−)) op(0,1)

!!⊥

((−)∗) op(0,1)

bb A op(0,1)

From this follows that

〈 a1 | a2 〉(A ,A op(0,1)) = A (a1, R (a∗2)) = 〈 a1 | a∗2 〉(A ,B)

The natural transformation χ(A ,A op(0,1)) at instance (m, a, b) is defined as the
composite function

〈m7 a1 | a∗2 〉

��

〈 a1 | (a2 7m)∗ 〉

〈m7 a1 | a∗2 6 false 〉
(χ(A ,B))−1

��

〈 a1 | (a2 7m)∗ 6 false 〉

OO

〈 a2 7 (m7 a1) | false 〉 // 〈 (a2 7m) 7 a1 | false 〉

χ(A ,B)

OO
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Similarly, the dialogue chirality G ◦ F(A ,B) has helical structure defined as

〈 a1 | a∗2 〉(A ,B)
helixa1,a∗2 // 〈 ∗(a∗2) | a∗1 〉(A ,B)

equivalence // 〈 a2 | a∗1 〉(A ,B)

where helix is the helical structure of the original dialogue chirality (A ,B).
After this detailed description of the “strictified” version G ◦ F(A ,B) ob-

tained from the helical dialogue chirality (A ,B), we are ready to introduce the
pseudo-natural transformations Φ and Ψ. The construction is exactly the same
as for dialogue chiralities in [5]. Our main concern is thus to check that the
constructions are compatible with the helical structures of the original dialogue
chirality (A ,B) and of its strictified version.

The 1-dimensional cells Φ(A ,B). Recall from [5] that to every dialogue chi-
rality (A ,B) one associates the 1-cell

Φ(A ,B) : (A ,B) −→ (A ,A op(0,1))

defined as the pair of monoidal functors

(Φ(A ,B))• : A id // A (Φ(A ,B))◦ : B
(∗(−)) op(0,1)

// A op(0,1)

together with the monoidal natural isomorphism

˜Φ(A ,B) =

A id //

(−)∗

��

A

id

��

η


�

B op(0,1)
∗(−)

// (A op(0,1)) op(0,1)

and the natural transformation

Φ(A ,B) =

A id // A

ε op(0,1) *2 B

R

OO

B
(∗(−)) op(0,1)

//

R

OO

A op(0,1)
((−)∗) op(0,1)
OO

where η and ε denote the unit and counit of the adjunction (−)∗ a ∗(−). We
know from [5] that Φ defines a 1-dimensional cell between the dialogue chi-
rality (A ,B) and its strictified version. There remains to check that this 1-
dimensional cell is compatible with the helical structures of the two dialogue
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chiralities. Technically speaking, this simply means that the coherence dia-
gram (16) commutes when instantiated as follows:

〈 a | b 〉
Φa,b //

helixa,b

��

〈 a | (∗b)∗ 〉
helixa,(∗b)∗
��

〈 ∗((∗b)∗) | a∗ 〉
equivalence
��

〈 ∗b | a∗ 〉
Φ∗b,a∗ // 〈 ∗b | (∗(a∗))∗ 〉

Φ̃∗b,a∗ // 〈 ∗b | a 〉

We leave the reader check that this diagram commutes by naturality of helix and
because all the bijections (except for the two instantiations of helix) involved in
it are deduced from the equivalence (−)∗ a ∗(−).

The 2-dimensional cells ΦF . Are constructed just as the 2-dimensional cells
ΦF in [5]. From this follows that each of them defines a 2-cell in the 2-category
HeliChir and that the family Φ itself defines a pseudo-natural transformation.

3.4 The pseudo-natural transformation Ψ
The 1-dimensional cells Ψ(A ,B). To every dialogue chirality (A ,B), one as-
sociates the 1-cell Ψ(A ,B) defined as the pair of functors

(Ψ(A ,B))• : A
id−→ A (Ψ(A ,B))◦ : A op(0,1) ((−)∗) op(0,1)

−→ B

equipped with the trivial monoidal natural isomorphism

˜Ψ(A ,B) =

A id //

id

��

A

(−)∗

��

id

��

(A op(0,1)) op(0,1)
(−)∗

//B op(0,1)

and with the trivial natural transformation

Ψ(A ,B) =

A id // A

id )1B

R

OO

A op(0,1)

((−)∗) op(0,1)
OO

((−)∗) op(0,1)
//B

R

OO
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We know from [5] that Ψ defines a 1-dimensional cell between the dialogue
chirality (A ,B) and its strictified version. So, just as in the case of the 1-
dimensional cell Φ in §3.4, we only need to check that this 1-dimensional cell Ψ
is compatible with the helical structures of the two dialogue chiralities. The
coherence diagram (16) is instantiated as follows in that case:

〈 a1 | a∗2 〉
Ψa1,a2 //

helixa1,a∗2 ��

〈 a1 | a∗2 〉

helixa1,a∗2

��

〈 ∗(a∗2) | a∗1 〉
equivalence

��
〈 a2 | a∗1 〉

Ψa2,a1 // 〈 a2 | a∗1 〉
Ψ̃a2,a∗1 // 〈 ∗(a∗2) | a∗1 〉

where we write 〈 a | b 〉 for the evaluation bracket 〈 a | b 〉(A ,B) of the original dia-
logue chirality. We leave the reader check that this diagram commutes because
Ψa1,a2 and Ψa2,a1 are equal to the identity, and because Ψ̃a2,a∗1

is obtained by ap-
plying the unit η of the equivalence a2 → ∗(a∗2) inside the evaluation bracket.

The 2-dimensional cells ΨF . Are constructed just as the 2-dimensional cells
ΨF in [5]. From this follows that each of them defines a 2-cell in the 2-category
HeliCat and that the family Ψ itself defines a pseudo-natural transformation.

3.5 Coherence theorem for helical dialogue chiralities
We have just established that

Theorem 1 (coherence theorem) The pair of 2-functors F and G defines a
biequivalence between the 2-categories HeliCat and HeliChir.

Note that the pair of forgetful 2-functors U and U ′ defines a homomorphism in
the appropriate 2-dimensional sense between the biequivalences:

HeliCat

U

��

F

""2− dim
equivalence

G

cc HeliChir

U ′

��
DiaCat

F

""2− dim
equivalence

G

cc DiaChir

This homomorphism reflects the fact that strictification of a helical dialogue
chirality (A ,B) is performed in the same way in HeliChir and in DiaChir.
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4 Ambidextrous chiralities
In this section, we introduce the notion of ambidextruous chirality which pro-
vides the most primitive notion of dialogue chirality equipped with a left as well
as a righthand side currification. The notion is introduced in §4.1. Following
our general policy, we construct in §4.2 a 2-category AmbiChir of ambidex-
trous chiralities. We establish in §4.3 our main result of the section, which
states that the 2-category of ambidextrous chiralities is isomorphic to the 2-
category HeliChir of helical dialogue chiralities. This very strong correspon-
dance provides a purely logical justification for the topological notion of helical
dialogue category.

4.1 Definition
Definition 3 (ambidextrous chirality) An ambidextrous chirality is a pair
of monoidal categories

(A ,7, true) (B,6, false)

equipped with a monoidal equivalence

A

(−)∗

""monoidal
equivalence

∗(−)

cc B op(0,1)

and with two families of bijections

χRm,a,b : 〈 a7m | b 〉 −→ 〈 a | b6m∗ 〉

χLm,a,b : 〈m7 a | b 〉 −→ 〈 a |m∗ 6 b 〉

natural in a, b and m, where the evaluation bracket is defined as

〈− |− 〉 := A (− , R(−) ) : A op ×B −→ Set

The families χL and χR are required to make the three diagrams commute:

〈 (m7 n) 7 a | b 〉
χL

m7n //

associativity

��

〈 a | (m7 n)∗ 6 b 〉

〈m7 (n7 a) | b 〉 χL
m // 〈n7 a |m∗ 6 b 〉 χL

n // 〈 a |n∗ 6 (m∗ 6 b) 〉

associativity
monoidality of negation

OO

(19)
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〈 a7 (m7 n) | b 〉
χR

m7n //

associativity

��

〈 a | b6 (m7 n)∗ 〉

〈 (a7m) 7 n | b 〉 χR
n // 〈 a7m | b6 n∗ 〉 χR

m // 〈 a | (b6 n∗) 6m∗ 〉

associativity
monoidality of negation

OO

(20)

〈 (m7 a) 7 n | b 〉 χR
n //

associativity

〈m7 a | b6 n∗ 〉 χL
m // 〈 a |m∗ 6 (b6 n∗) 〉

associativity

〈m7 (a7 n) | b 〉 χL
m // 〈 a7 n |m∗ 6 b 〉 χR

n // 〈 a | (m∗ 6 b) 6 n∗ 〉

(21)

for all objects a,m, n of the category A and all objects b of the category B.

The two first coherence diagrams (19) and (20) may be seen as left and right
instances of the familiar coherence diagram (9) for left currification in dialogue
chiralities. The last coherence diagram (21) requires that the left and right
currification are compatible in the expected sense. We will see that this last
requirement has the somewhat unexpected consequence of equipping the am-
bidextrous chirality with a helical structure described in §4.3.

4.2 The 2-category of ambidextrous chiralities
Here, we define the 2-category AmbiChir whose 0-dimensional cells are the
ambidextrous chiralities, and whose 1 and 2-dimensional cells are defined as
follows.

The 1-dimensional cells. An ambidextrous homomorphism is defined as a
quadruple

F = (F•, F◦, F̃ , F )

consisting of a lax monoidal functor F• : A1 −→ A2, an oplax monoidal func-
tor F◦ : B1 −→ B2, a monoidal natural isomorphism (13) and a natural iso-
morphism (14) making the diagram (15) commute for χ = χL together with the
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corresponding diagram for the right currification χR, given below:

〈 a7m | b 〉 χR
m //

Fa7m,b

��

〈 a | b6m∗ 〉
Fa,b6m∗

��
〈F•(a7m) |F◦(b) 〉

monoidality of F•

��

〈F•(a) |F◦(b6m∗) 〉
monoidality of F◦
��

〈F•(a) |F◦(b) 6 F◦(m∗) 〉

F̃
��

〈F•(a) 7 F•(m) |F◦(b) 〉
χR

F•(m) // 〈F•(a) |F◦(b) 6 F•(m)∗ 〉

(22)

The 2-dimensional cells. The 2-dimensional cells are defined in exactly the
same way as in the 2-categories DiaChir and HeliChir.

4.3 An isomorphism between ambidextrous and helical
We establish here that

Theorem 2 The 2-category AmbiChir of ambidextrous chiralities is isomor-
phic to the 2-category HeliChir of helical chiralities.

To that purpose, we construct a pair of 2-functors

F : AmbiChir −→ HeliChir G : HeliChir −→ AmbiChir

and then show that they define an isomorphism between the 2-categories.

Ambidextrous ⇒ Helical. The 2-functor F transports every ambidextrous
chirality (A ,B, χL, χR) to the underlying dialogue chirality (A ,B, χ) with left
currification χ = χL. The dialogue chirality is moreover equipped with the
following helical structure:

〈 a | b 〉
helixa,b // 〈 ∗b | a∗ 〉

〈 a | (∗b)∗ 6 false 〉
(χL

(∗b))−1

// 〈 ∗b7 a | false 〉 χR
a // 〈 ∗b | false 6 a∗ 〉

We need to establish that (10) commutes. Then the same for ambidetrous ho-
momorphisms.
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Helical ⇒ Ambidextrous. The 2-functor G transports every helical chiral-
ity (A ,B, χ) into the ambidextrous chirality (A ,B, χL, χR) with left currifica-
tion χL defined as the currification χ of the original chirality, and right currifi-
cation χR defined as the composite morphism

〈 a7m | b 〉

χa,m,b

��

χR
m,a,b // 〈 a | b6m∗ 〉 〈 a | (∗b)∗ 6m∗ 〉

〈m | a∗ 6 b 〉 helix // 〈 ∗(a∗ 6 b) |m∗ 〉 〈 ∗b7 a |m∗ 〉

χ∗b,a,m∗

OO

We need to establish that the two coherence diagrams (20) and (21) of ambidex-
trous categories commute. Then the same for helical homomorphisms.

A series of chase diagrams establish that the relationship is one-to-one.
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