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Abstract

In this paper, we describe an algebraic presentation of the notion of
helical dialogue chirality. In particular, the helix structure enables us
to decompose the dual of the left negation as the right negation of the
dual.

1 Motivations

The study of dialogue categories and chiralities leads to the following co-
herence diagrams for the axiom combinator:

L(a®m) @ m* axiomir] (L((a®m)®n)@n*)@m*
lassociativity

axiom|[m] Lla® (mon)) @ (n*@m*)
lmonoidality

La axiom{m®r] La® (mon) @ (mo n)*

commutes for all objects a, m,n and morphisms f : m — n of the category 7.
In string diagrams:
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From the logical point of view, the two coherence diagrams (??) and (??)
should be understood as n-expansion laws for the axiom link. Typically, the
purpose of the n-expansion law (??) is to decompose the link axiom|[m @ n|
into the more elementary links axiom|m| and axiom|[n|. A natural question
is whether there exists a similar n-expansion law which decomposes the
axiom link

right.axiom|[Rm)]

La L(a® Rm) @ (Rm)*

associated to the negation of m into the axiom link associated to the ob-
ject m of the category 4. To that purpose, it appears necessary to start
from the left axiom link

left.axiom[*m] equivalence

L(true) (*m)* @ L(*m) m @ L(*m)

associated to the object *m living this time in the category <. Then, the
helical structure

isomorphism

(Rm)*

L(*m)
This defines a morphism

map

La —'> L(a® RL(true)) ——% = L(a® R(m® (Rm)*))
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At this point, we want a map

distributivity

L(a® R(m @ (Rm)*)) L(a ® Rm) @ (Rm)*

This requires to develop a general theory of these distributivity laws, de-
scribing the coherence diagrams.

2 Helical dialogue categories and chiralities

We construct a 2-category of helical dialogue categories, helical functors
and helical natural transformations.

2.1 A 2-category of helical dialogue categories
We define a 2-category HelCat with

e helical dialogue categories as 0-cells,
e helical functors as 1-cells,

e dialogue natural transformations as 2-cells.

The 0-dimensional cells. Recall from [6] that a helical dialogue cate-
gory ¢ is defined as a dialogue category equipped with a family of bijections

wheel,, : Clr®y,l) — Cly®x, 1)
natural in x and y and required to make the diagram

associativity

C(yRz)@x, 1) CyR(zx),L)

wheelx$y®zT iwheely,Z@U
Clr®y®e) L) C(z®x)®y, 1) (1)
associativityl T associativity

wheel z 0y, ~

C((rRy)®z 1) C(zR(xy),l)

commute for all objects x, y, z of the category %.



The 1-dimensional cells. A helical functor between two helical dialogue
categories is a lax monoidal functor

r ¢ — 9
equipped with a morphism
lp : FL) — 1

such that the diagram

Cla®y L) ——P(Fz®y), F(L) —" > 9(F(x) ® F(y), L)
wheezz,yl iWheEZF(z),F(y)

Cly®w, L) ———=2(Fly®), (1)) —*">9(F(y) @ F(x), 1)

commutes for all objects z, y of the category . In this diagram, the two co-
ercion maps are deduced by precomposing with the lax monoidal structure
of the functor F

mey  Fl)@Fly) — Flzey)

and by postcomposing with the map 1 5.

The 2-dimensional cells. A dialogue natural transformation
¢ : (F,Lp) = (G, Lg)
is defined as a natural transformation
6 - F = (

making the diagram
F(L)

L

01 1

A

G(L)

commute. The composition law and identities of the 2-category HelCat are
defined as expected.



2.2 A 2-category of helical dialogue chiralities

We construct a 2-category HelChir with helical dialogue chiralities as 0-
cells.

The 0-dimensional cells.

Definition 1 (Helical chirality) A helical chirality is a dialogue chirality
equipped with a family of bijections

oap = (a|b) — (*bla")
natural in a,b, and making the diagram below commute:

R
Xa2,a1,b o

(01 @ az|b) ——= (a1 [b@a3) ——("(b@a3)|a]) (a2 @7bla7)

R
U\L lx*b,aQ,al

("0 (a1 ® az)") (az]af @ ("b)")
Xflﬁ*b,az o
(a3 @ai) ~<—— (@ a|az) == ("(a] © b)[a3) ~——(az[af @)
(2)

The 1-dimensional cells. A 1-dimensional cell in HelChir
P (%) — (9, PB)

is defined as a quadruple F' = (F,, F,, ', F) consisting of a lax monoidal
functor F, : o4 — 4%, an oplax monoidal functor F, : %4, — %5, a mo-
noidal natural isomorphism

Fe

a oy
(=) F f (=) (3)
v
op(0,1 op(0,1
@1 p(0,1) Fop(o,m (@2 p(0,1)



together with a natural transformation:

F,

¥ ¥o7
R fK> R (4)
P, o DBy,
making the two diagrams
(a®m|b) Xm (a]lb@m*)
Fopm.b Fy pom*
(Fo(ladm)| Fo(b)) (Fo(a) | Fo(b@m*))
monoidality of Fo (5)
monoidality of Fe < F.(CL) | Fo(b) @ FO (m*) >
F
(Fo(a) ® Fu(m) | Fo(b)) — "~ ( F,(a) | Fo(b) @ Fua(m)")
(a]b) (Fa(a) | Fu(b))
Oa,b OFe(a),Fo(b) (6)

(“bla*) " (R('D)| Fo(a")) — = ((R(0) | (Fu(0))")

commute for all objects a, m in .« and b in %4,. Here, the map

Fop 0 {alb) — (Fi(a)[F(b))
is defined as the composite

Fa,b

(a]b) (Fo(a) | Fo(b))

i(a,Rb) —"= ch(Fu(a), Fu(Rb) — — ah(F.(a), RE,(D))



The 2-dimensional cells. A 2-dimensional cell in HelChir
0 : F=d : (%,%1) — (%,%2)

is defined as a pair (6., 6,) of monoidal natural transformations 0, : F, = G,
and 0, : G, = F, satisfying the two equations below:

F, Fo

/\ /\
=7 ﬂa. o ah X7
\_/ ﬁ
()*l Ge N k()* — (=) Fop(o,l)f (=) 7
G o
/\
%;1017(071) ( f@;p([ll) B ﬁeé)p(og) %7201?(0,1)
\_/ \/
a2 GorOD)
Fo
. /ﬂm
oh L, o ——
R{ Fk> ]R = R] §k> ]R (8)
B, By P, Ge By
Fo

2.3 Equivalence

The 2-functor induces a biequivalence between the 2-categories HelCat
and HelChir.

3 Helical chiralities revisited

In this section, we study another formulation of helical chiralities.

3.1 Helical dialogue chiralities (bis)

Definition 2 (Helical chirality bis) A helical chirality is a pair of mo-
noidal categories

(7,0, true) (%, @, false)



equipped with a monoidal equivalence

(=)
(=)
with two families of bijections
Xmay = (a®m|b) — (alb@m")
Xmay = (m®alb) — (a|m"@b)
natural in a, b and m, where
(=|—) = H(—,R(-)) @ AdP"xAB — Set

The families x* and x® are moreover required to make the diagrams below
commute:

X on
(a®(Mmon)|b) ° (a|b@ (mon)*)
associativity mono;ldsjlzigjag;v’iteygation (9)
R R
((adm)On|b) —">(a®m|b@n*) —"—(a|(b@n*) @m*)
Xf‘n@n *
((mon)oalb) (al(mon) ©b)
associativity monogdsjzjiza;jfvriteZation ( 10)
Xt XH

(mo®(noa)lb)

(noalm @b) (a|n” @ (m" @0b))

together with the additional coherence diagram between y* and x*:

R L
(moa)on|b)—=(moalbon')—">(a|m @ (bon))

associ‘ativity associlztivity ( 1 1)

| . n |
(Mo (a®n)|b) —">(a®n|m* @b) —" (a|(m* @b) @n*)

Proposition 1 The two notions of helical chirality formulated in Defini-
tions 1 and 2 are equivalent.



3.2 The 2-category of helical dialogue categories

The 1-dimensional cells. The helical functors may be reformulated in
this style. A helical functor is defined as a quadruple F = (F.,Fo,ﬁ,F)
consisting of a lax monoidal functor F, : @, — %, an oplax monoidal
functor F, : 8, — %,, a monoidal natural isomorphism (3) and a natural
isomorphism (4) making the diagram (5) commute for y = \* together with
the corresponding diagram for the left currification y, given below:

L
(m®alb) = (a|m*@b)
Frpa,b Fo,m*ob
(Fo(moa)| Fs(b)) (Fo(a) | Fo(m™ @b))
monoidality of Fo (12)
monoidality of Fe <F.(a) ‘ Fo(m*) Q@ Fo(b> >
XF "
Fo(m)

(Fo(m) ® Fu(a) | Fo(b)) (Fo(a) | Fo(m)™ @ Fo(b))

The 2-dimensional cells. The 2-dimensional cells are defined as previ-
ously for the 2-category HelChir.

3.3 Proof of isomorphism

In order to clarify the comparison between the two definitions of helical
dialogue chirality, we decide to call Def-a the original definition 1 and Def-
b its alternative but equivalent formulation in Proposition 1.

Def-a = Def-b. Every helical dialogue category in the sense of Defini-
tion 1 is equipped with a natural bijection o, In order to obtain a helical
dialogue category in the sense of Proposition 1, one defines the natural bi-
jection x”* as y and the natural bijection x" as the family of bijections x/, ,,



as the composite morphism:

(moalb)

(a|m”@b)

o1

(b (m®a)*) — (*b|a* @m*) "~ (bom|a*) — {*(m* @ b)| a*)

Def-b = Def-a. Conversely, given a helical dialogue chirality in the sense
of Proposition 1, the natural bijection o is defined as the unique family of
bijections o, ;, making the diagram below commute:

(alb) (*b|a*)

i Oy ™! xk T

(a|false @ (*b)*) (a @ *b|false) (*b|a* @ false)

A series of chase diagrams establish that the relationship is one-to-one.

4 Helical chiralities by transjunctions

Construire une 2-categorie de nouveau, et montrer le lien avec la dualite.

4.1 Definition

It is not difficult to deduce a formulation of helical categories based on tran-
sjunctions. This starts with the two coherence diagrams for the right axiom

combinator
right. axlo/ G W) m \
a D n

L(a)

right. axum

10



right.axiom|n]

L(a®m)@m* (L((a®m)®n)@n*) @m*
lassociativity
right.axiom[m] L(a D (m D n)) W) (n* Q@ m*)

imonoidality

right.axiom[m®n]

La La®(mon)@(mon)*

followed by the two coherence diagrams for the left axiom combinator

left. axlo/ m* W) L<m O Cl) \

L(a) m*@ L(n® a)

1eft.ax1ck\n ) L TL@ CL /

left.axiom|m)]

n* @ L(n®a) n*@(m*@Lmo (n®a)))
J{associativity
left.axiom[n] (n* @ m*) @ L((m D n) D CL)

J{monoidality

left.axiom[m®n]

La (mon)*@L(MmoOn)da)

for every morphism f : m — n of the category 7. Finally, the important
additional coherence diagram tells that the tensor products permute:

left.axiom|m]

La®n)@n* m* @ (L(m® (a®n)) @n*)
right.axionV
L(a> associativity
left.axiomm right.axiom|n]
m*@ L(m® a) (m* @ L(m®a)®n)) @n*

11



4.2 Cut

/Rb@m @mxg};tcut[m]

R(b@n*)®m R(b
\\ R bQn* A cut[n]
(R((b@n*) @m*) @m)@n right.cut[m] R(b@n*) on
associativity
Rb@ (n*@m*)) ® (m o n) right.cut[n]

monotidality

right.cut[mon]

Rb@ (m®n)")® (mon) R(b)

followed by the two coherence diagrams for the left cut combinator

/m®Rm @b x&:ut

mo® R(n* @) R(b
\f\x no R(n* ) b left.cut[n]
" " left.cut[n] N
O (n® R(n* @ (m*@b))) mo R(m* @)
associativity
(m D) n) D) R((n* W) m*) W) b) left.cut[m)]
monotdality
(m ®n) ® R((m ® n)* @b) teft-cutlmon] R(b)

12



for every morphism f : m — n of the category «#. Finally, the important
additional coherence diagram tells that the tensor products permute:

left.cut|m]

(MmO R(m* @ (a@n*))) ®n R(n®a)
\Lrlght cut(n]
associativity R(b (13)
Tleft cut[m
m® (R((m* @ a) @ n*) @ n) —et-euth R(m® a)
4.3 Graphically
The coherence diagram (13) is depicted as
R R
m n R n* m* m n R TL* m*

4.4 The 2-category

The 1-dimensional cells. A homorphism of helical dialogue chiralities
is defined

13



5 Eta law for negation

5.1 Flexible negation

The following equation holds when the negation is twist-free +

*(R(false)) @ L(R(false) ® true) —— L(true) @ L(R(false))

axiom—left €
L(true) i L(true)
axiom—right €

L(true ©® R(false)) @ *(R(false)) —— L(R(false)) @ L(true)

6 Discursive pairs

6.1 Definition

A discursive pair is defined as a pair of monoidal categories
(#, D, true) (%, @, false)

equipped with an adjunction

L
Y
~. =
R
together with the four bimonads
left.x® . moOR(L(a)@b) —  R(L(MOa)@Db)
left.x® : L(R(n@b)®a) — n®@ L(R(b) ® a) (14)
right.x<® : ROb®L(a)om —  RbQ@L(a®m))
right.x¥ La® R(b@n)) — Lia® R()) @n

between the ®-tensor product and the %-monad of .« on the one hand, and
between the @-tensor product and the 7-comonad of % on the other hand.
Besides the resulting series of commutative diagrams, we ask that the two
diagrams below commute

14



a R Q
@ L L
I I left. RO . 5 o
m O a m R n
R n b
b
left.r® Tleft.n@
O R
a R R
left. k@ L left. kO L
L e —_— %)
D &) R n
R n a R n ©
Q@ Q L b
L b L b o
m m a m
R @a R
Q @

L L right.xo® L L
D n > ) D
m R m R n a
b b
right. k@ T right. k@
o R R

R a right.x®© L right. K0 L
L —_— —_—
) o m@}?
m R m g a @
v 1L boL oL
n n n_a

for all objects a, m,n of the category 7 and all object b of the category 4.
Plus a series of other diagrams required in the proof of the following lemma.

R R
L Q
® left.n@ b é
R a > R
W)
b m m
right.m@T Tright.m@
D
R a left. kO g a
L - b L
R R
W)
b m "

15



Note that these coherence diagrams are not justified by any of the previous
discussions.

7 Dualities

A duality in a discursive pair (<7, %) is defined as a monoidal equivalence

(=)
m op(0,1
SR

(=)

together with four families of morphisms

right. AX[m| : true — R(L(m)@m")
right. CUT[m| : L(R(m")om) — false
left. AX[m|] : true — R(m"@ L(m))

left. CUT[m| : L(mo® R(m*)) — false

each of them parametrized by the objects m of the category .«7. These mor-
phisms are required to make the three coherence diagrams below commute.

The right coherence diagrams. The first coherence diagram adapts
the usual triangular axiom of adjunctions:

V)
R ®m L L
left. k@ m )
© * —_— R m
L m m*
m
right.AX [m]/4 \;@'ght.CUT [1n]
L id L
m -

The second coherence diagram means that the family of combinators AX][—|
is dinatural:

16



R

right. AX [m] I Y % f
m
/ m \ R
true ©
L m*
\ R / n
right. AX [n] I ®n* f*

n

The third coherence diagram expresses a monoidality of the family AX[—]:

R R
@ Q
L m* L m"
@ left KO R
B
m R Q
right.AX [n] Q L n*
L n* )
R n m n IS
W)
L m*
m R
right. AX [m]/ Q
*
right. AX [m@n] L n™ m
true > 0
m n
monoidality
R of R
Q p negation Q
L true » [ false
true true
'm‘ght.AX[t'r‘ue]/( ‘nit law
R
n
true > L

>

true

The four coherence diagrams hold for all objects m,n and all morphisms f :
m — n of the category .o/

The left coherence diagrams. We need to give the same coherence dia-
grams on the left side.

17



@
o L L
mn right. k© D m
o ——— R,
m
left. AX [m]/4 \eft.CUT [m]
L id L
m > m
R
Q f
left. AX [m]/y m* L \
m R
true L ©
m L
\ R / n
left.AX [n] o ®L £
n
R R
Q@ W)
n* L ot mo L
right. K
R ® n —> i
Q@
zeft.AX[m]/4 . @ m* L
m L
m O
R m n €
Q@
n* L
n R
left.AX[n]/ o
n*m* L
left.AX [mon]
true >
m
R monoidality R
V) of ©
tr’u,e* I negation - false I
true - true
left. AX [true]/ ‘nit law
R
mn
true = L
true

18



The mixed coherence diagrams. We also ask this one, which ensures
that the two left and right axioms commute:

f R
g left.AX [m] L®n* right. k0 Q
L n* _— ) —_— L n
n R n R
@ left.r©@
m>k®L L Xﬁ K
& R
right. AX [n] m m n Q
m* L n* (15)
true R
L
left.AX [m] g g m®n
m* L m* L
R o g right. k@
m* right. AX [17] Q left.kO L n*
m L n” @)
n m n

Remark. These coherence diagrams should be dualized and repeated for
the combinator CUT. There is apparently no way to recover them from the
coherence diagrams for the combinator AX.

8 Main theorem

8.1 Preliminary result on helicality

One main benefit of introducing the coherence diagram (??) is that we can
establish the following property, which states that the dialogue category is
helical.

Proposition 2 Suppose given a discursive pair with a duality. In that case,
the following diagram

left. kO & @ left.AX[m] right
. n . 3 g RO

L
right.AX[n]/ 2% g \\
Q

L
a )

m a n
@
left.AX[mN right. o e m* L right.AX[n] left.xo /
> o

m a

19



commutes.

The proof that the left and the right axioms commute is based on the com-
mutative diagram below:

L left. ko L c o ,
a®R —_— —_—> Lo
(. )
Y % L n a n
L n
right. AX [n] n (z®n
n n K
L L
D R Y *
L a g left.k® ) € L
a L n*—» L n —_— a®R
W)
K R a R L
L n
L L
) n n
a
R
] 5 3
Q N Q
— z = -
e
— x X
&
- L L L
? a R left. k0 5 )
& L, — L _ a R
R W) Qo
o a R L n
L n* ®n* n
n
Y

Note that we only need a special case of Diagram (??) with 7 in front of
AX]|n|. This commutative diagram enables to establish in turn that the
diagram below commutes:

)
)
left. ko e L n* left.AX[m] right.ro e m* L n*
Tight.AX[n] o @) n
a n m oa n \
L é n ©
(&) \ *
L left.AX[m] R o right.AX[n] R a R left.ro right. @ m é "
_— —_— Q @
¢ m* © L m* L [ n* RaR
m m n / L L
) ) n o m n
left. AX[m] right. KO 5 m* L right.AX[n] left.ko 5 m* L n* A
(&)
)
m a

m a n

20



In order to conclude, there simply remains to establish that the two mor-
phisms 7 appearing in the previous diagram are monos. This immediately
follows from the fact that

L
L R
L n n ) right. x® left.x® I e € L
& —>—> R a R > > p &
m a n L L I m a n
m n o
ma n

is equal to the identity., this esta that each » morphism involved in the
previous diagram are monos. We conclude that the expected diagram

Q@

left. ko € L n* left.AX[m] right.rko
m‘ght.Ax[n]/' W%, X
v)
L m* L n*
a (&
m a n
left. AX [m] «©
: : right. k® 5 m L Tight.AX[n] left.kO €
o
m a

commutes.

Corollary 3 Suppose given a helical discursive pair with a helical duality.
In that case, the induced dialogue chirality is helical.

There remains to show that...

8.2 From chiralities to discursive pairs and back

Given a helical chirality, one constructs a helical discursive pair equipped
with a duality.

Proposition 4 The helical chirality deduced from the helical discursive
pair and its duality coincide with the original helical chirality.

This is easy. This essentially reduces to establishing that the morphism
right.axiom[m| : L(a) — L(a®m)@m*
in the original helical chirality (<7, #) coincides with the morphism

right. AX[m] left.x® €

L(a) La®m)@m*

21



recovered from the associated discursive pair. This is established by the
simple diagram chase below

left. kO
s ™

L
left. awzom[ ] &) left.cut [a]

L
a g —_— R — I m*
* * Q
¢ L mn L m* a @m
@)
a m
A
'E' Trlght aa:zom[m] T right. awzom[m] T 3
— Q
:§ =
E' é left. awzom[ ] L left.cut [a] L g (16)
> _— a @R _ > R S
< L 3
a* L a ?
/ true a / \ [l
. id o id L
a S “

One then needs to check that the morphisms left.axiom|m|, right.cut|m)|
and left.cut[m] coincide with their reconstruction in the discursive pair.
Each of the three facts is established by one of the three possible symmetric
variants of the diagram (16).

8.3 From discursive pairs to chiralities and back

Suppose given a helical discursive pair equipped with a duality. We have
seen how to construct a helical chirality from it. The question we would like
to address here is whether the associated discursive pair coincides with the
original one. The first step is to check that the morphism

right. AX[m| : true — R(L(m)@m")

of the original duality coincides with the morphism

R
Y] R right.AX[m] I left. ko
true —» L —_— _—

true true R «
Q L m

()
(SR~ I =y

*
L m
m



which corresponds to the morphism reconstructed from the chirality. This
is essentially immediate. One needs to do the same for the three other com-
ponents left. AX[m/|, right. CUT[m] and left. CUT[m] of the original duality.
This is done in just the same way, by applying the appropriate symmetry to
the case just treated.

Now, the main difficulty lies in the second part of the proof, which con-
sists in establishing that the distributivity law

right.x® : RO®L(a))om — RO L(a®m))

of the original discursive pair coincides with the morphism reconstructed
from the associated chirality. This amounts to establishing that the dia-
gram below

R ®m right. K©® g
b @L > ) L
a a m
l right. AX [m]
right.CUT [m]
W) @)
R m R m 12 R
W) W)
b UL left. ko b UL € W) n left.k® b oL © I
) R R m R m ) )
a R Q b © . © am R m
o L L m b L m m*
L m* ) o )
m a m a m a m

commutes. This is true, but not so easy to establish, although it boils down
to producing the appropriate diagram chase. We start by establishing that

L L
o ® 1 %1
a R m left.xko R m left.r® o >
L I ©m* > a m R m
m [») 777,*
a m
right.AX [m]/( Night.CUT [m]
L id I
® > )
a m a m
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commutes as follows:

R
L
left. k0O Q]
R m
@
L m* _
D S
a m ./S(
) o KP@
e R a R R
L @ ©
%) left. k® I I left. kO L L
R m ———> o —_— ) )
m
Q R m am R m
L m* * m
m
m
right.AX [m] right.CUT [m] 3
® s
id a R =
Q
L S
m ~
=
n left. kO
R
L
@ 77
a m > )
a m
We then observe that the diagram below
L L ight.CUT
O D —— o 9 [M:l > false
R m R
(V. *m T €
L m m
R L
false R
false
right.m@T T right.CUT [m]
L L
® R
R m right. K©® I
L >
R R®m
*
m* m

commutes, as an instance of Then, we get the final diagram chase:
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8.4 Main result (step 4)

Proposition 5 There is a one-to-one relationship between the two following
notions:

e a helical dialogue chirality,

e a helical discursive pair equipped with a duality.
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9 Appendix

9.1 Main proposition

Proposition 6 Every helical chirality (<7, %) comes equipped with the nat-
ural transformations

right.x® :  RO@L(a))om — RO L(a®dm))
right.x% La®d R(b@n)) — La® R()) @n
left.x® : m®R(L(a) @) —  R(L(m®a)@b)
left.x® : L(R(n@b) ®a) — n®@ L(R(b) ® a)
natural in a, m and b, defined as
right.x®
R(b® L(a)) ®m R(b@ L(a ®m))
right.axiom[m] right.cut|[m]
associativity

R(b®@ (L(a®m)@*m))®m R(b@ L(a®m)) @ *m)®dm

right.x©

L(a® R(b@n))

right.axiom[*n]

equivalence associativity

L(a®R(b@n)) ®*n) @ (*n)* L(a®Rb@n)) ®*n)@n

and similarly for left.x® and left.x®. They define together a helical dialogue
chirality.

10 Dualities

10.1 Definition

A duality on a linearly distributive pair (<7, %) is defined as a monoidal
equivalence

(=)
m 0,1
o @ g8 op(0,1)

“(=)
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together with four families of morphisms

right. AX[m|] : true — R(L(m)@m")
right. CUT[m| : L(R(m")®m) — false
left. AX[m] : true — R(m"@ L(m))

left. CUT[m| : L(mo® R(m*)) — false

each of them parametrized by the objects m of the category .«7. These mor-
phisms are moreover required to make the coherence diagrams below com-

mute.

Q@
g% L L
m left. k©@ m )
I . R* m
m m
m
right.AX/ \'"ight.CUT
L id L
m > m
R
R 1 9 ox
right. AX ) n n-m
true > L n* m* > R
) L
m n @)
m n

right. AX /
R R
KO
R right. AX (U KO o
W)

) L m — L m
L m" B R
m m R Y
@ L n
*
n &
n m n
K R
true > Ll
true
right.A)x monoidality %it law
of
R negation R
L true
L false
true true
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o
L m*
m .
m’ght.A% \f

@
true I *

m
n

Tight.Ax R /*
f
@
L n*

n

for all objects m,n and all morphisms f : m — n of the category 7.

10.2 Main proposition

Proposition 7 Every helical dialogue chirality comes equipped with a du-
ality defined as follows:

right.axiom[m]

right. AX[m] : true —> RL(true)

R(L(m) @ m*)

right.cut[m]

right. CUT[m] : L(R(m*)®m)

L(R(false) —= false

left.axiom|m)]

left. AX[m] : true —> RL(true) R(m* @ Lm)

left.cut[m]
—_—

left. CUT[m| : L(m® R(m*)) L(R(false) —= false

Remark. For simplicity, we do not mention the monoidal coercions when
they are obvious. Typically, in full rigor, the right axiom map is defined as
follows:

right.axiom|m]

true —> RL(true) R(L(true ® m) @ m*) % R(L(m) @ m*)

11 A reconstruction of helical chiralities

We show that a distributive pair equipped with a duality is the same thing
as a dialogue chirality.

Theorem 1 A helical chirality is the same thing as a linearly distributive
pair equipped with a duality.
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Proof of one of the triangular law

*
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R R
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[4) [3)
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\ ® (l@m H?m
n ) m
a ;? AX o R KO a®]? . cuT
” K
” L © \
R_m
* * (%)
Tl;l m m a
CUT\ /
[3)
id « R KO
D L
m
Proof of monoidality
[4)
AX . a R
a v Q@
L n"m
[4)
m n
AX
€
o a®1~l a®R
a R AX © KO @
© L m" L m
L m o
R
m m R )
*
@ L n
L n* D
n mon KO
ﬂ KO
KO g
L m*
[3)
KO o R
@ <
L n
[3)
m n R
@
L n*
Jl KO 0
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R & R e
@
@ *
L m* AX R kO Lm
® — © —— R
a m L m o .,
o L n
am R " g "
@
L n*
n
Proof of naturality
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0 R
a R KO /
© L v m
L m*
) 0o f
AX " a m \
JN o R
a R KO (W) «
a L m* D

f% ! t
R
AX &) /
KO W) % f*

The proof of commutation is more involved. First of all, we observe that the
diagram below commutes.

R
right. AX N Q@
true P

SRS

mon
m n
righ,tAA)x
R R
K@

R right. AX L@ * KO Q0
L@ B —_ ” m —_— IL? m
m
m m R @
o L n
L n [

Then.
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@
L n*
(3]
KO a n AX
\ R
(3] @
a R L n* R
KO Y *
L n* Ran —_— ][é n
n AX KO Q
/N N
m L
® m o
R 4 R man R
a @ @ * © *
m* L L n* mtopon
(3]

B Y @ €
R a m* L é m* L
Y 4] R
m L m a R o
m AX @ L n*
L n* )
KO
R n man
Y
m L
B
m a

11.1 Eta-expansion of negation

Check that the diagram below commutes.

(a® R(m @ L(*
leftW \
L(a ® RL(true)) L{a® R(m)) @ L(*m)
] |
I right.axiom[Rm)] L(CL ) Rm) ) (Rm)*
m)@m)® a)
I'W \
L(RL(true) ® a) L{B(m) ®a)
] N
I left.axiom[Rm] (Rm)* @ L(R(m) D a)
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12 The balanced and symmetric cases

In that case, all the left structures are deduced using the braiding. This
has to be done very carefully.
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