
The parametric continuation monad

Paul-André Melliès∗

August 24, 2012

Abstract
Every dialogue category comes equipped with a continuation monad

defined by applying the negation functor twice. We advocate here that
this double negation monad should be seen as part of a larger para-
metric monad, or lax action, with parameter in the opposite category.
This change of point of view has one main benefit: it reveals that the
strength of the continuation monad is the asymmetric fragment of a
more fundamental symmetric structure — provided by a distributivity
law between the parametric continuation monad and the canonical ac-
tion of the dialogue category over itself. The purpose of this work is to
describe the formal properties of this distributivity law, and to prepare
the way for a purely combinatorial presentation of dialogue categories.

1 Introduction
Origins of tensorial logic. The starting point of tensorial logic was the
somewhat unexpected discovery that the distributivity law of linear logic

(AMB)⊗ C −→ AM (B ⊗ C) (1)

could be unified with the tensorial strength of the continuation monad

(¬¬A)⊗B −→ ¬¬ (A⊗B) (2)

by shifting to a more primitive logic of tensor and negation, which we called
tensorial logic because its own distributivity law

κX,B,C : ¬ (¬B ⊗X)⊗ C −→ ¬ (¬ (B ⊗ C )⊗X ) (3)
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may be understood at the same time as a tensorial strength parametrized
by the objectX. This principle of logic is sufficiently general to hold in every
dialogue category. Recall that a dialogue category C is a monoidal category
equipped with an object ⊥ and a pair of natural isomorphisms

ϕA,B : C (A⊗B,⊥) � C (B,A(⊥)
ψA,B : C (A⊗B,⊥) � C (A,⊥� B)

each of them providing a representation of the presheaves

A,B 7→ C (A⊗B,⊥) : C op −→ Set.

A typical illustration is provided by the category of finite and infinite di-
mensional vector spaces on a given field k, with the object ⊥ defined as
the field k itself. When the dialogue category is symmetric, the two ob-
jects A ( ⊥ and ⊥� A are isomorphic, and are thus often identified for
simplicity, both of them written ¬A in that case. Note that every dialogue
category comes equipped with a monad

A 7→ ⊥� (A(⊥) : C −→ C

obtained by double negation. This monad is traditionally called the con-
tinuation monad of the category because it is related to the continuation-
passing style translations used in programming language semantics. Note
that the tensorial strength (2) of the continuation monad is recovered in
any dialogue category C by instantiating (3) at the parameter X equal to
the tensorial unit I.

Linear logic is to a large extent based on the decision of forgetting this
continuation monad. Accordingly, the categorical counterpart of linear logic
is provided by the notion of ∗-autonomous category, which plays the same
role as the notion of dialogue category for tensorial logic. Seen from that
point of view, a ∗-autonomous category is conveniently defined as a partic-
ular case of symmetric dialogue category, where the unit

A −→ ¬¬A

of the continuation monad happens to be invertible — this reflecting the
fact that negation is involutive in linear logic. At this point, the distribu-
tivity law (1) of linear logic is recovered by taking the parameter X = ¬A
in the distributivity law (3) of tensorial logic

κ¬A,B,C : ¬ (¬B ⊗ ¬A)⊗ C −→ ¬ (¬ (B ⊗ C )⊗ ¬A )
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and by recalling that the multiplicative disjunction of linear logic is defined
as

AMB = ¬ (¬B ⊗ ¬A) (4)

in any ∗-autonomous category.

This convergence of (1) and (2) leads to the methodological question of
understanding the algebraic nature of their unifying principle (3). This
mathematical investigation should shed light on (1) and (2) in retrospect
and benefit at the same time from what is already known about these two
important and well-studied instances. Typically, it seems natural to think
of the distributivity law (3) as a parametric refinement of the tensorial
strength (2). This leads us to decompose (3) in two independent ingredi-
ents:

• a functor

~ : (X,A) 7→ X ~ A = ¬ (X ⊗ ¬A ) : C op × C −→ C

extending the continuation monad of the dialogue category C ,

• a natural transformation

κX,A,B : (X ~ A)⊗B −→ X ~ (A⊗B)

generalizing the tensorial strength of the continuation monad.

This decomposition reduces our original problem to understanding in turn
the algebraic nature of this specific functor ~ and of this specific natural
transformation κ. As we will see, the exercise is not difficult in itself —
although it should be done with care — but it is foundational, because it
reveals a series of 2-dimensional structures which secretly regulate the log-
ical discourse, and more specifically its use of negation.

Parametric continuation monad. Let us start by the functor ~ which
we would like to see here as a parametric version of the continuation monad.
A preliminary step in that direction is to observe is that every dialogue cat-
egory C comes equipped with an adjunction

C

L

""⊥
R

cc C op
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where L and R denote the expected negation functors:

L : a 7→ a(⊥ R : b 7→ ⊥� b.

In order to analyze the algebraic nature of this adjunction, it appears con-
venient to rename the monoidal categories C and C op in the following way:

• the category A is the new name for C and its tensor product and unit
are noted 7 and true in order to stress the logical interpretation of ⊗
and I as a linear conjunction and its neutral element,

• the category B is the new name for C op(0,1) whose tensor product and
unit are denoted 6 and false in order to stress the logical interpreta-
tion of ⊗ and I as a linear disjunction and its neutral element.

Here, the notation C op(0,1) means that the orientation of the morphisms
(of dimension 1) is reversed in C as well as the orientation of the tensor
product (of dimension 0). This orientation of disjunction enables to rewrite
the formula (4) as follows:

AMB = R (LA6 LB ) (5)

and thus to interpret 6 as a primitive variant of M, with the functors L
and R playing the role of coercions interpreted as identity functors in the
case of linear logic.

Now, suppose that we are given a lax 2-monad T on the 2-category CAT
of categories. As the reader will see, we will be more specifically interested
in the weak 2-monad

T : X 7→ B ×X : CAT −→ CAT (6)

whose lax T -algebras are the lax actions

∗ : B ×X −→ X

of the category B = C op(0,1) on the left, possibly seen as the lax actions of
the category C op(1) on the right. A particular example of such a lax action
is provided by the weak action

6 : B ×B −→ B

of the monoidal category B over itself. Now, given an adjunction

A

L

""⊥
R

cc B (7)
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and such a lax 2-monad T , a general transfer theorem establishes that every
lax T -algebra structure

∗ : TB −→ B

on the category B induces a lax T -algebra structure on the category A ,
defined as follows:

~ : TA
TL−→ TB

∗−→ B
R−→ A .

This transfer theorem may be established by purely equational means, and
thus works in any 2-category V equipped with a lax 2-monad T . It ap-
pears that when T is the identity 2-monad in such a 2-category V , the
notion of lax T -algebra coincides with the notion of formal monad. So, the
transfer theorem applied to a formal adjunction (21) implies that every for-
mal monad S in B is transported to a formal monad S ′ in A , defined as
S ′ = R ◦ S ◦ L. Observe that in the case S = id, one recovers the fact that
R ◦ L defines a formal monad in A .

The transfer theorem may be also applied to the free monoidal cate-
gory monad T in the 2-category CAT, and to the specific adjunction L a R
between the negations of a dialogue category. In that case, it enables to
transfer the monoidal structure (6, false) of the category B to a lax mo-
noidal structure of the category A . This lax monoidal structure is provided
by the family of n-ary disjunctions

[A1 M · · ·M An ] = R (LA1 6 · · ·6 LAn )

which generalizes to any dialogue category the familiar definition (5) of
M in linear logic. An essential aspect of this definition of disjunction in
tensorial logic is that it requires to replace the binary disjunction of linear
logic by a family of n-ary disjunctions. This is done in order to recover the
expected associativity property. The point is that the tensorial version of
binary disjunction is not associative in the expected sense, since the two
formulas

[ [AMB ]M C ] [AM [B M C ] ]
are not required to be isomorphic. However, the family of n-ary disjunc-
tions is associative in a more subtle and oriented way. Typically, there are
canonical proofs of tensorial logic connecting the two clusters of binary dis-
junctions above to the ternary disjunction:

[ [AMB ]M C ] −→ [AMB M C ] ←− [AM [B M C ] ]
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One benefit of this 2-categorical analysis is to explain in what sense the
linear disjunction M living in the dialogue category A = C is derived by
deformation — one should probably say by adjunction in that case — from
the disjunction 6 living in the opposite category B = C op(0,1).

Finally, the transfer theorem may be applied to the weak 2-monad (20)
and to the weak action of the monoidal category (B,6, false) on itself on
the left. From this, one derives a lax action on the left

~ : B ×A −→ A

of the monoidal category (B,6, false) on the category A which happens to
coincide with the functor

b ~ a = R ( b6 La )

we started from. We will call parametric monad in C with parameters
in M such a lax action of a monoidal category M on a category C . The
terminology is justified by the fact that every such parametric monad ~
includes a monad in C defined as (I~−) where I is the unit of the monoidal
category M . Note that in the case of the parametric continuation monad,
one recovers in this way the familiar continuation monad as

false ~ a = R ( false 6 La ) � R ◦ L (a).

We will see moreover that the coherence diagrams defining a parametric
monad are a direct adaptation of the familiar definition of monad.

Commutation between monads. The notion of parametric monad leads
to a new and more symmetric way to think of a monadic strength — this
leading to a natural unification with the notion of distributivity law be-
tween monads.

σA,B : T (A)⊗B −→ T (A⊗B)

The notion of strength is regulated by four coherence diagrams, which may
be organized in two independent series, each of them consisting of two co-
herence diagrams. First, the monad vs. the tensor product

Second, the functor vs. the multiplication of the tensor product:
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T (A)⊗B ⊗ C

σA,B ⊗C

%%

σA,B⊗C // T (A⊗B ⊗ C)

T (A⊗B)⊗ C

σA⊗B,C

99

TA⊗ I

σA,I

##

ρT A // TA

T (A⊗ I)

TρA

==

Plan of the paper. We start by §4 §2 §5 §6

2 Parametric monads

2.1 Formal adjunctions
Recall that an adjunction in a 2-category W consists of a pair An, B of
0-dimensional cells, of a pair

L : A −→ B R : B −→ A

of 1-dimensional cells, and of a pair

η : 1A ⇒ R ◦ L ε : L ◦R⇒ 1B

of 2-dimensional cells. One requires moreover that the 2-dimensional cells
obtained by pasting:

A

L

  

1 //

⇓ε ⇓η

A

B

R

>>

1
//B

R

>> A

L

  

1 //

⇓η

A

L

  
⇓ε

B

R

>>

1
//B

coincide with the identity on the 1-dimensional cells L and R, respectively.
In that case, one writes L a R and one says that the 1-cell L is left adjoint to
the 1-cell R, and conversely, that the 1-cell R is right adjoint to the 1-cell L.
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These equations are depicted in string diagrams, with the 0-cells A and B
are colored blue and red respectively.

ε

η

R

R

R

R

=

ε

η

L

=

L

L

L

2.2 Formal adjunctions continued
Suppose given a formal adjunction

A

L

""⊥
R

cc B

in a 2-category W . It is well-known that every such adjunction induces a
monad R◦L on the 0-cell A and a comonad L◦R on the 0-cell B. Less known
is the fact that this monad is part of a much broader structure, originally
noticed by Jean Bénabou, and which we describe now.

Let End(A ) denote the category with 1-cells from the 0-cell A to itself
as objects, and 2-cells between them as morphisms. The category End(A )
may be alternatively defined as the hom-category W (A ,A ). The cate-
gory End(A ) is strictly monoidal, with composition ◦ as tensor product,
and the identity 1-cell 1A as tensor unit. Note that a monoid in this cate-
gory End(A ) is the same thing as a monad in W on the 0-cell A . Similarly,
a comonoid in the category End(B) is the same thing as a comonad in W
on the 0-cell B. Now, the main observation is that the two 1-cells L and R
induce in turn two functors
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[L,R] : End(A ) → End(B)
F 7→ L ◦ F ◦R

[R,L] : End(B) → End(A )
G 7→ R ◦G ◦ L

defined by pre and postcomposition. The two functors are moreover in-
volved in an adjunction

End(A )

[L,R]

""⊥
[R,L]

cc End(B) (8)

whose unit and counit are defined in the expected way:

[η]F = η ◦ F ◦ η : F ⇒ R ◦ L ◦ F ◦R ◦ L,
[ε]G = ε ◦G ◦ ε : L ◦R ◦G ◦ L ◦R⇒ G.

The adjunction simply says that there exists a one-to-one correspondence
between the 2-cells

A F //

⇓

A

L
��

B
G

//

R

OO

B

and the 2-cells
A F //

⇓L
��

A

B
G

//B

R

OO

in the 2-category W , and that this correspondence is natural wrt. action
on F in End(A) and action on G in End(B). The adjunction is just an avatar
of what Kelly and Street called “mate 2-cells” in their 2-categorical theory
of adjunctions.

Now, it appears that the right adjoint functor [R,L] is lax monoidal from
End(B) to End(A). This means that there exists a morphism

m1 : 1A −→ R ◦ 1B ◦ L

and a family of morphisms

mG,G′ : (R ◦G ◦ L) ◦ (R ◦G′ ◦ L) −→ R ◦ (G ◦G′) ◦ L
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making a series of coherence diagrams commute in the category End(A).
The morphisms m1 and mG,F are provided in this case by the unit η and the
counit ε of the formal adjunction L a R, respectively. The construction is
nicely depicted in the language of string diagrams. The morphism mG,F is
typically depicted as follows.

mG,F =

R R LL FG

R LFG

ε

The proof that the coherence diagrams required of a lax monoidal functor
commute works exactly in the same way as the proof that the endofunc-
tor R ◦ L defines a monoid in the category End(A ). The main coherence
diagram is typically reflected by the pictorial equality below:

R R LL FGR LH

LFGR H LFGR H

R R LL FGR LH

=

2.3 Parametric monads
This discussion motivates to parametrize by a monoidal category (J,⊗, e)
the usual notion of formal monad, in the following way.

Definition 1 (parametric monad) A parametric J-monad on a 0-cell A
of a 2-category W is defined as a lax monoidal functor

(T,m) : J −→ End(A).

The monoidal category J is called the parameter category of the J-monad;
and an object j of J is called a parameter.

Hence, a parametric J-monad (T,m) consists of
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• a 1-cell Tj : A −→ A for every parameter j and a 2-cell Tf : Tj ⇒ Tk
for every morphism f : j −→ k between such parameters,

• a 2-cell me : 1A ⇒ Te called the unit of the parametric monad,

• a 2-cell mj,k : Tj ◦ Tk ⇒ Tj⊗k called the (j, k)-component of the mul-
tiplication of the parametric monad, for every pair of parameters j
and k.

These data are moreover required to make a series of coherence diagrams
commute in the category End(A ). First, the diagrams

Tk Tg

��
Tj

Tf //

Tg◦f

66 Tl
Tj

idTj

''

Tidj

77 Tj

expressing the functoriality of T ; then, the diagrams

Tj ◦ Tk
Tf◦Tg //

mj,k

��

Tj′ ◦ Tk′
mj′,k′

��
Tj⊗k

Tf⊗g // Tj′⊗k′

expressing the naturality of m; and finally the diagrams

Tj ◦ Tk ◦ Tl
mj,k◦Tl //

Tj◦mk,l

��

Tj⊗k ◦ Tl

mj⊗k,l

��
Tj ◦ Tk⊗l

mj,k⊗l // Tj⊗(k⊗l)
α // T(j⊗k)⊗l

and
Te ◦ Tj me,j

��
Tj idTj

//

Tj◦me --

me◦Tj 11

Tj

Tj ◦ Te mj,e

BB

expressing the monoidality of m; this for all indices j, j′, k, k′, l and mor-
phisms f, g, h in the parameter category J .

11



It was first observed by Jean Bénabou that a monoid in a monoidal cat-
egory (J,⊗, e) is the same thing as a lax monoidal functor

1 −→ J

from the monoidal category 1 with a single object and a single morphism.
Thus, a monad in the usual sense is just the same thing as an parametric
monad whose parameter category is the monoidal category 1.

Lax monoidal functors compose: they define a category, and in fact a 2-
category, whose 2-cells are provided by monoidal natural transformations.
From this follows that lax monoidal functors preserve monoids. Hence,
every monoid (j, p, u) in the parameter category J induces a monoid in the
category End(A), and thus a monad Tj in the category A in the usual sense.
The multiplication and unit of the monad Tj are defined as expected:

Tj ◦ Tj
mj,j // Tj⊗j

Tp // Tj

1A
me // Te

Tu // Tj

Since the unit e is a monoid of the category J , every J-monad T induces
a monad Te. This is the particular case, for K = 1, of the fact that ev-
ery lax monoidal functor K −→ J and every J-monad T induce together a
parametric K-monad, obtained by composition.

The discussion onwards may be summarized by the following

Proposition 1 Every formal adjunction

A

L

""⊥
R

cc B

in a 2-category W induces a formal J-monad T on the 0-cell A , where the
parameter category J is the hom-category End(B) = W (B,B) with tensor
product defined as composition of 1-cells B −→ B in the 2-category.

The well-known fact that R◦L defines a monad follows then from the equal-
ity

R ◦ L = T1B

where 1B is the identity functor of the category B, and the unit of the pa-
rameter category End(B).
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There is a similar account of the comonadic aspects of adjunctions, in
which a parametric J-comonad S in a category B is defined as a colax mo-
noidal functor

(S, n) : J −→ End(B).
A parametric J-comonad in the category B is the same thing as a paramet-
ric J op-monad in the opposite category B op.

It is not difficult to establish then that every adjunction L a R : A → B
induces a parametric comonad S in the category B, parametrized this time
by the monoidal category J = End(A ). The parametric comonad S is ob-
tained by equipping the functor [L,R] with a colax monoidal structure n
in the same way as the parametric monad T was obtained by equipping
the functor [R,L] with a lax monoidal structure m. The construction of the
colax monoidal structure n works exactly in the same way. There exists
also an alternative way to construct n. The adjunction (8) induces a one-
to-one correspondence between the colax monoidal structures on the left
adjoint functor [L,R] and the lax monoidal structures on the right adjoint
functor [R,L]. The colax monoidal structure n on the functor [L,R] is then
inherited from the lax structure m on the functor [R,L]. Note moreover that
the adjunction (8) is monoidal in the lax sense iff the colax monoidal struc-
ture n is invertible; and monoidal in the colax sense iff the lax monoidal
structure m is invertible.

2.4 Illustration: the parametric continuation monad
The notion of parametric monad is appropriate to describe the following
situation. Suppose given an adjunction:

L : η ((
⊥ εhh : RA B

in which the category B is monoidal — equipped with a tensor product
(noted 6) and a unit (noted false). We have seen in Section 2.3 that the
adjunction generates a J-monad in the category A , parametrized by the
category J = End(B) of endofunctors of B. Now, the monoidal structure
on B induces a strong monoidal functor

B ×B co −→ End(B)
(b1, b2) 7→ b1 6−6 b2

where b1 6 b 6 b2 means either (b1 6 b) 6 b2 or b1 6 (b 6 b2) depending on
the taste of the reader. Precomposing the End(B)-monad with the strong
monoidal functor induces a parametric B ×B co-monad in the category A .
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The component Tb of the resulting monad T is provided by the endofunc-
tor

Tb : A −→ A
a 7→ R(b6 La).

This functor will be often noted using a tree notation:

a 7→

R

6

b L

a

Let us clarify what parametricity means in this case. There are natural
transformations

m2 :

R

6

b1 L

R

6

b2 L

a

ε−→

R

6

b1 6

b2 L

a

α−→

R

6

6 L

b1 b2 a

m0 : a
η−→

R

L

a

λ−→

R

6

I L

a

satisfying a series of expected coherence properties, expressing associativ-
ity, etc.
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3 Transjunctions

3.1 Definition
Applying the translation to the triangular equations of adjunctions leads to
the notion of transjunction.

Definition 2 (transjunction) Suppose given a pair of adjunctions

A1

L1

""⊥
R1

cc B1 A2

L2

""⊥
R2

cc B2

whose units and counits are denoted η1, η2 and ε1, ε2 respectively. A tran-
sjunction F a G between a pair of functors

F : A1 → A2 G : B2 → B1

along the adjunctions L1 a R1 and L2 a R2 is defined as a pair of natural
transformations

axiom : L1 ⇒ G ◦ L2 ◦ F cut : F ◦R1 ◦G⇒ R2

making the two diagrams

F ◦R1 ◦ L1
axiom +3

(a)

F ◦R1 ◦G ◦ L2 ◦ F

cut

��
F

η1

KS

η2 +3 R2 ◦ L2 ◦ F

G ◦ L2 ◦ F ◦R1 ◦G cut +3

(b)

G ◦ L2 ◦R2

ε2

��
L1 ◦R1 ◦G

axiom

KS

ε1 +3 G

commute.

This notion of transjunction is ultimately justified by the following state-
ment.

Proposition 2 A transjunction F a G along the adjunctions L1 a R1 and
L2 a R2 is the same thing as an adjunction F ◦ L1 a R2 ◦G.

These various equations between natural transformations may be al-
ternatively depicted as string diagrams living in the 2-category Cat of
categories, functors and natural transformations. First of all, the gener-
ators axiom and cut of a transjunction F a G along the adjunctions L1 a R1
and L2 a R2 mentioned in Definition 2 are depicted as
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axiom =

B2

B1

A2

L1

L2 FG

A1

cut =

A1

A2

B1

R2

R1 GF

B2

The two equalities regulating transjunctions are then depicted as follows:
L2 F

A1

A2

B1

R2

F

B2

(a)=

L2 F

A1

A2

R2

F

B2

A2

R1 G

B1 A1

L1

G

B2

(b)=

R1 G

B2

B1

L1

G

A1

3.2 Transjunction homomorphism
A notion of homorphism between transjunctions may be also introduced,
this giving rise to a category of transjunctions.
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Definition 3 (homomorphism) A homomorphism between two transjunc-
tions F a G and F ′ a G′ along the same adjunctions L1 a R1 and L2 a R2 is
defined as a pair of natural transformations

f : F ⇒ F ′ g : G′ ⇒ G

making the two diagrams

G ◦ L2 ◦ F
f +3

(a)

G ◦ L2 ◦ F ′

L1

axiom

KS

axiom′ +3 G′ ◦ L2 ◦ F ′

g

KS F ′ ◦R1 ◦G′ cut′ +3

(b)

R2

F ◦R1 ◦G′
f

KS

g +3 F ◦R1 ◦G

cut

KS

commute.

A homomorphism (f, g) between from a transjunction F a G to a tran-
sjunction F ′ a G′ along the same adjunctions is pair of natural transfor-
mations f : F ⇒ F ′ and g : G′ ⇒ G satisfying the pictorial equalities below:

F

f

L1

L2 F ′G

(a)= G′

g

L1

L2 F ′G

F ′

f

R2

R1 GF

(b)= G′

g

R2

R1 GF
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4 Dialogue chiralities
We start by recalling the two-sided formulation of the elementary notion
of dialogue category. We will see that our axiomatization includes an η-
expansion equality for the tensor product, but not for the linear negation.
This will be repaired in the next section devoted to cyclic dialogue cate-
gories.

4.1 Original definition
Recall from [5] that a dialogue chirality is a pair of monoidal categories

(A ,7, true) (B,6, false)
equipped with a monoidal equivalence

A

(−)∗

""monoidal
equivalence

∗(−)

cc B op(0,1) (9)

with an adjunction

A

L

""⊥
R

cc B (10)

whose unit and counit are denoted as

η : Id −→ R ◦ L ε : L ◦R −→ Id

and, finally, with a family of bijections

χm,a,b : 〈 a7m | b 〉 −→ 〈 a | b6m∗ 〉
natural in m, a, b, called currification in honor of the logician Haskell Curry.
Here, the bracket 〈 a | b 〉 denotes the set of morphisms from a to R(b) in the
category A :

〈 a | b 〉 = A ( a , R(b) ).
The family χ is moreover required to make the diagram

〈 a7 (m7 n) | b 〉 χm7n //

associativity

��

〈 a | b6 (m7 n)∗ 〉

〈 (a7m) 7 n | b 〉 χn // 〈 a7m | b6 n∗ 〉 χm // 〈 a | (b6 n∗) 6m∗ 〉

associativity
monoidality of negation

OO

(11)
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commute for all objects a,m, n of the category A , and all objects b of the
category B.

4.2 A formulation based on adjunctions
A preliminary step towards the algebraic presentation of dialogue chirali-
ties is provided by the following reformulation, where the currification iso-
morphism χ is replaced by a family of adjunctions.

Proposition 3 A dialogue chirality is the same thing as a pair of monoidal
categories (A ,7, true) and (B,6, false) equipped with a monoidal equiva-
lence (9) and an adjunction (10) together with an adjunction

L(−7m) a R(−6m∗) (12)

for every object m of the category A , whose unit and counit are denoted

η[m] : a −→ R(L(a7m) 6m∗) ε[m] : L(R(b6m∗) 7m) −→ b

The family η[−] is moreover required to be natural and monoidal, this mean-
ing that the diagrams below

R(L(a7m) 6m∗) f

��
a

η[m]
66

η[n] ))

R(L(a7 n) 6m∗)

R(L(a7 n) 6 n∗) f∗

??
(13)

a
η[m7n] //

η[m]
��

R(L(a7 (m7 n)) 6 (m7 n)∗)

associativity &
monoidality of negation

��

R(L(a7m) 6m∗)
η[n]
��

R(L(R(L((a7m) 7 n) 6 n∗)) 6m∗) ε // R((L((a7m) 7 n) 6 n∗) 6m∗)

(14)

should commute for all objects a,m, n and all morphisms f : m → n of the
category A .
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Remark. The family of adjunctions (12) instantiated at the unit true in-
duces an adjunction L a R between the functors L and R, whose unit and
counit are defined as the expected families of morphisms

η′a : a
η[true] // R(L(a7 true) 6 true∗)

associativity
& monoidality // RL(a)

ε′b : LR(b)
associativity

& monoidality // L(R(b6 true∗) 7 true) ε[true] // b

An important question is thus to understand whether this adjunction coin-
cides with the original adjunction (10) between L and R. It is not difficult to
see that the coherence diagram (14) implies that the two adjunctions coin-
cide in the sense that η = η′ and ε = ε′. The main idea is to instantiate the
coherence diagram (14) with m = n = e, and to apply the coherence laws of
the monoidal categories A and B in order to show that the diagram

a
η′ //

η′ ��

RLa

RLa
η′ ��

RLRLa
ε // RLa

commutes. It easily follows from this and from the properties of adjunctions
that η = η′ and ε′ = ε. This means in particular that the coherence diagram

R(L(a7 true) 6 true∗) monoidality // R(L(a7 true) 6 false)

associativity

��
a

η //

η[true]

OO

RL(a)

(15)

is a consequence of the two coherence diagrams (13) and (14) formulated in
the statement of Proposition 3.

Remark. Once established that the adjunction (L,R, η′, ε′) coincides with
the adjunction (L,R, η, ε), it is not difficult to deduce from their companion
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diagrams (13) and (14) that the two coherence diagrams

L(R(b6 n∗) 7 n)
ε[n]

��
L(R(b6 n∗) 7m)

f
33

f∗ **

b

L(R(b6m∗) 7m)
ε[m]

BB

L((R((b6 n∗) 6m∗) 7m) 7 n)

associativity &
monoidality of negation

��

η // L(RL(R((b6 n∗) 6m∗) 7m) 7 n)
ε[m]
��

L(R(b7 n) 6 n∗)
ε[n]
��

L(R(b6 (m7 n)∗) 7 (m7 n)) ε[m7n] // b

commute for all object b of the category B and all objects m,n and all mor-
phisms f : m → n of the category A . Note that there is an element of
choice in the formulation of dialogue chiralities in Proposition 3 since the
two coherence diagrams for ε[−] may have very well replaced the two cor-
responding diagrams (13) and (14) for η[−].

4.3 A formulation based on transjunctions
The formulation of dialogue chiralities described in §4.2 is fine, but may be
marginally improved. The idea is to replace the original combinators η[−]
and ε[−] presenting the adjunctions by somewhat simpler combinators in-
spired by proof-theory:

axiom[m] : L(a) // L(a7m) 6m∗

cut[m] : R(b6m∗) 7m // R(b)

This pair of mirror-symmetric combinators is defined from η[−] and ε[−] in
the following way:

axiom[m] : L(a) η[m] // LR(L(a7m) 6m∗) ε // L(a7m) 6m∗

cut[m] : R(b6m∗) 7m
η // RL(R(b6m∗) 7m) ε[m] // R(b)
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Conversely, the combinators η[−] and ε[−] may be recovered from the origi-
nal combinators axiom[−] and cut[−] in the following way:

η[m] : a
η // RL(a) axiom[m] // R(L(a7m) 6m∗)

ε[m] : L(R(b6m∗) 7m) cut[m] // LR(b) ε // b

It is immediate that this back-and-forth translation between the pair η[−],
ε[−] and the pair axiom[−], cut[−] defines a one-to-one relationship be-
tween the two pairs of combinators. This idea leads to an alternative formu-
lation of dialogue chiralities, based this time on the transjunction between
the two functors

− 7 m : A −→ A − 6m∗ : B −→ B

along the adjunction L a R between A and B. Note that the transjunction
is presented by the logical combinators axiom[−] and cut[−].
Proposition 4 A dialogue chirality may be alternatively defined as a pair
of categories (A ,7, true) and (B,6, false) equipped with a monoidal equiv-
alence (9) and an adjunction (10) together with a family of transjunctions

axiom[m] : L(a) −→ L(a7m) 6m∗ cut[m] : R(b6m∗) 7m −→ R(b)

natural in b and m. The family cut[−] is moreover required to be natural
and monoidal, in the sense that the two diagrams

R(b6m∗) 7m cut[m]

��
R(b6 n∗) 7m

f∗
22

f ,,

R(b)

R(b6 n∗) 7 n cut[n]

BB
(16)

(R((b6 n∗) 6m∗) 7m) 7 n
cut[m] // R(b6 n∗) 7 n

cut[n]

��

R(b6 (n∗ 6m∗)) 7 (m7 n)

associativity

OO

R(b6 (m7 n)∗) 7 (m7 n)

monoidality

OO

cut[m7n] // R(b)

(17)

commute for all objects a,m, n and morphisms f : m→ n of the category A .
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Remark. Just as in the case of the alternative definition of dialogue chi-
ralities based on adjunctions in §4.2, the expected coherence diagram

R(b) id // R(b)

R(b6 true∗) 7 true monoidality //

cut[true]

OO

R(b6 false) 7 true

associativity

OO

(18)

follows from the coherence diagrams (16) and (17). Moreover, the two coher-
ence diagrams for the combinator cut[−] are equivalent to the correspond-
ing coherence diagrams for axiom[−] below:

L(a7m) 6m∗ f

��
L(a)

axiom[m] 33

axiom[n] ++

L(a7 n) 6m∗

L(a7 n) 6 n∗ f∗

??

L(a7m) 6m∗
axiom[n] // (L((a7m) 7 n) 6 n∗) 6m∗

associativity

��
L(a7 (m7 n)) 6 (n∗ 6m∗)

monoidality

��
La

axiom[m]

OO

axiom[m7n] // L(a7 (m7 n)) 6 (m7 n)∗

From this follows that any of the two pairs of coherence diagrams imply
that the diagram

L(a7 true) 6 true∗ monoidality // L(a7 true) 6 false

associativity

��
La

id //

axiom[true]

OO

La

commutes.
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4.4 Dialogue chiralities in string diagrams
The equations for the cut link are depicted in the following way:

mRm n n* *

R

(a)=

mR

R

m n n* *

R

R

true false

(b)=

R

R

These equations are reminiscent of the ⊗ vs. ℘ as well as the 1 vs. ⊥ cut-
elimination rewriting steps in proof-nets of linear logic. Similar diagrams
for the axiom link

m L

L

m nn* *

(a)=

m L

L

m nn* *
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L

L

false true

(b)=

L

L

The η-expansion laws of proof-nets in linear logic.

5 Commutations between parametric monads
At this point, we are ready to introduce the notion of commutation between
parametric monads, and to establish at the same time that every dialogue
category is equipped with such a structure. As we will see, the notion
of commutation unifies and generalizes the celebrated notions of monadic
strength on the one hand, and of distributivity law between two monads on
the other hand.

5.1 Definition
We suppose given a category C equipped with a parametric J -monad

• : J × C −→ C

and a parametric M op(0)-monad

◦ : C ×M −→ C

with parameters taken in the monoidal categories (J ,⊗, e) and (M ,⊗, u).

Definition 4 (Commutation) A commutation between the parametric mon-
ads • and ◦ is defined as a natural transformation

κ : − • (− ◦ −) ⇒ (− • −) ◦ − : J × C ×M −→ C

making the four diagrams below commute
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κ

κ

κ

A
m

j
i

A
j

m
i

A
j

m
i

A

m

ji

A
m

ji

µ µ

κ

µ µ
A
m

A

m
e

A

m

e

A
m

i

κ

A
nm

κ

n

i

A

nm

i

A
m

n
i

κ

A

m
n

i A

A

u

i

A

u
i

i

κ

µ µ

µ µ

for all objects A of the category C , all objects i, j of the category J and all
objects m,n of the category M .

This may be depicted in string diagrams as follows: kappa as a braided
permutation, compatible with multiplication and unit on both sides.

mji

m ji

κ

µ

mji

m ji

κ

µ

κ=

m

m e

κ

µ

m

µ=

m e
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=

mn

nm i

i mn

nm i

i

κ

κ

κ

µ

µ

This may be also adapted to comonads vs. comonads, monads vs. comonads
and comonads vs. monads.

5.2 Illustration
Every dialogue chirality is equipped with a commutation

κ7 : R(b6 L(a)) 7m −→ R(b6 L(a7m))

between

• the monoidal action of A over itself,

• the parametric B-monad of A .

defined as

R(b6 L(a)) 7m
κ7

//

axiom[m]

��

R(b6 L(a7m))

R(b6 (L(a7m) 6 ∗m)) 7m
associativity // R((b6 L(a7m)) 6 ∗m) 7m

cut[m]

OO

Symmetrically, every dialogue chirality is equipped with a commutation

κ6 : L(a7R(b6 n)) −→ L(a7R(b)) 6 n

between

• the monoidal action of B over itself,

• the parametric A -comonad of B.
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6 Discursive pairs

6.1 Definition
A discursive pair is defined as a pair of monoidal categories

(A ,7, true) (B,6, false)

equipped with an adjunction

A

L

""⊥
R

cc B

together with the two bimonads

κ7 : m7R(L(a) 6 b) −→ R(L(m7 a) 6 b)
κ6 : L(R(n6 b) 7 a) −→ n6 L(R(b) 7 a) (19)

between the 7-tensor product and the B-monad of A on the one hand,
and between the 6-tensor product and the A -comonad of B on the other
hand. Besides the resulting series of commutative diagrams, we ask that
the diagram below commutes.

a R

R

L
m

n

L κ

a R

L
m

n

L

R

a

R

L

m

L

n

R

κ

a R

L

m

L

n

R

κκ

R

L
m

L

n

Ra
κ

b b
b

b
b

for all objects a,m, n of the category A and all object b of the category B.
Note that this coherence diagram is not justified by any of the previous
discussions.
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6.2 Right dualities
A duality in a discursive pair (A ,B) is defined as a monoidal equivalence

A

(−)∗

""monoidal
equivalence

∗(−)

cc B op(0,1)

together with two families of morphisms

AX[m] : true −→ R(L(m) 6m∗)

CUT[m] : L(R(m∗) 7m) −→ false

each of them parametrized by the objects m of the category A . These mor-
phisms are required to make the three coherence diagrams below commute.
The first coherence diagram adapts the usual triangular axiom of adjunc-
tions:

L
m

*

L

mR

mL
m

*

L

mR
m

L
m

L
m

κ

id 

AX m CUT m

The second coherence diagram means that the family of combinators AX[−]
is dinatural:

AX m
*

R

mL
m

*

R

nL
n

*mL
n

*f

true
R

AX n

f

The third and fourth coherence diagrams express monoidality of the family
AX[−]:
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true

AX m

*

R

mL
m

AX n

*

R

mL

m

*

R

nL
n

AX m n

R

L

m n

*m*n

κ
*

R

mL

m

*

R

nL

n ε

true

*

R

L

η

AX
true

true

R

L
true

false

R
L

true

monoidality
        of
  negation

unit lawtrue

The four coherence diagrams hold for all objects m,n and all morphisms f :
m→ n of the category A .

6.3 Main result
Proposition 5 Every discursive pair (A ,B) equipped with a duality de-
fines a dialogue chirality.

The two categorical combinators axiom[−] and cut[−] are defined in such
as way as to make the diagrams below commute:

L(a7R(L(m) 6m∗)) κ7
// LR(L(a7m) 6m∗)

ε

��
L(a) axiom[m] //

AX[m]

OO

L(a7m) 6m∗

R(L(R(b6m∗) 7m)) κ6
// R(b6 L(R(m∗) 7m))

CUT[m]

��
R(b6m∗) 7m

cut[m] //

η

OO

R(b)
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The very definition of the families axiom[−] and cut[−] ensures that they
are natural in a and b respectively. The fact that each pair defines a tran-
sjunction is established by the diagram chase below

AX m

*

a R

mL
m

*

a

R

mL

m

L
κ

m

m

a

L

m

L κ

*
a R

m

L

m

L

m

a

L

m

CUT m
η

a m

R

R
R

R

R

a

L
m

R

a R

*

R

mL
m

m

L

κ

*
R
m

L
m

L

m

Ra

κ

κ

κ

η
a

L
m

R

CUT m

AX m

κ

η

id

One establishes by a similar diagram chase the two additional facts that
the family axiom[−] is dinatural in m:

ε

a
L

*

a R

mL
m

L

*

a

R

mL

m

L

AX m

AX n

*

a R

nL
n

L

κ

κ *

a

R

nL

n

L

ε

*

a

mL

m

*

a

nL

n

*

a

mL

n

f

f *

ε

*

a

R

mL

n

L
κ

*

a R

mL
n

L

f *

ff

f *
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and at the same time monoidal:

*

a

m

m

*nL

n

*m

m

*nL

n

a
L

*

a R

mL
m

L

κ

ε

*

a

R

mL

m

L

AX m

AX n
*

a

mL

m

*

a

mL

m

*

R

nL
n

κ

AX m n

a

L

R κ

*m

m

*nL

na

L

R

AX n

*

R

nL
n

*

a R

mL

m

L

AX n *

a

mL

m

*

R

nL
n

R
L ε

κ

*

R

nL

n

*

a R

mL

m

L

ε

*

a

mL

m

*

R

nL

n

R
L

*

a

mL

m

*

R

nL

n

R
L

κ κ

ε
ε

ε
ε

*

a

mL

m

*

R

nL

n

ε

*

a

mL

m

*

R

nL

n

κ

κ

κ
κ

This concludes the proof that the pair axiom[−] and cut[−] provides a dia-
logue chirality structure to the original discursive pair (A ,B). In particu-
lar,

Corollary 6 In any discursive pair (A ,B) equipped with a duality, the
functor

L(−7m) : A −→ B

is left adjoint to the functor

R(−6m∗) : B −→ A

for every object m of the category A .

Remark. An important observation at this point is that the discursive
pair (A ,B) cannot be recovered from the chirality structure, since the chi-
rality structure deals with right actions of A and B, whereas the discursive
structure (19) is concerned with their left actions. A natural way to resolve
this problem is to start from a discursive pair (A ,B) generated by left and
right actions, and then to reconstruct an equivalent notion of dialogue chi-
rality also based on left and right actions. However, the problem of properly
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correlating the left and right actions of A and B is far more subtle than
it seems. In particular, it requires to introduce a natural isomorphism be-
tween the two negations

turnA : A(⊥ −→ ⊥� A

satisfying a series of appropriate coherence diagrams. This leads to the
axiomatic investigation of helical, cyclic, braided or symmetric notions of
dialogue category. This is done in a companion paper.

Remark. Note that the last coherence axiom required of the right dual-
ity is not used in the proof of Proposition 3. We keep it because it is a very
natural requirement to ask, and because it is not clear that it follows from
the three other coherence diagrams — in contrast to its counterpart dia-
gram (15) in the definition of dialogue categories based on transjunctions.

6.4 Illustration
An important example of discursive pair is provided by the notion of lin-
early distributive category studied by Blute, Cockett, Seely and Trimble.
One recovers a theorem by Cockett and Seely

Proposition 7 A linearly distributive category is the same thing as a dis-
cursive pair where A = B and where the two functors L and R are identity
functors.
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7 Director’s cut – removed from the published
paper

7.1 Part of the introduction
Now, suppose that we are given a lax 2-monad T on the 2-category CAT of
categories. As the reader will see, we will be more specifically interested in
the weak 2-monad

T : X 7→ B ×X : CAT −→ CAT (20)

whose lax T -algebras are the lax actions

∗ : B ×X −→ X

of the category B = C op(0,1) on the left, possibly seen as the lax actions of
the category C op(1) on the right. A particular example of such a lax action
is provided by the weak action

6 : B ×B −→ B

of the monoidal category B over itself. Now, given an adjunction

A

L

""⊥
R

cc B (21)

and such a lax 2-monad T , a general transfer theorem establishes that every
lax T -algebra structure

∗ : TB −→ B

on the category B induces a lax T -algebra structure on the category A ,
defined as follows:

~ : TA
TL−→ TB

∗−→ B
R−→ A .

This transfer theorem may be established by purely equational means, and
thus works in any 2-category V equipped with a lax 2-monad T . It ap-
pears that when T is the identity 2-monad in such a 2-category V , the
notion of lax T -algebra coincides with the notion of formal monad. So, the
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transfer theorem applied to a formal adjunction (21) implies that every for-
mal monad S in B is transported to a formal monad S ′ in A , defined as
S ′ = R ◦ S ◦ L. Observe that in the case S = id, one recovers the fact that
R ◦ L defines a formal monad in A .

The transfer theorem may be also applied to the free monoidal cate-
gory monad T in the 2-category CAT, and to the specific adjunction L a R
between the negations of a dialogue category. In that case, it enables to
transfer the monoidal structure (6, false) of the category B to a lax mo-
noidal structure of the category A . This lax monoidal structure is provided
by the family of n-ary disjunctions

[A1 M · · ·M An ] = R (LA1 6 · · ·6 LAn )
which generalizes to any dialogue category the familiar definition (5) of
M in linear logic. An essential aspect of this definition of disjunction in
tensorial logic is that it requires to replace the binary disjunction of linear
logic by a family of n-ary disjunctions. This is done in order to recover the
expected associativity property. The point is that the tensorial version of
binary disjunction is not associative in the expected sense, since the two
formulas

[ [AMB ]M C ] [AM [B M C ] ]
are not required to be isomorphic. However, the family of n-ary disjunc-
tions is associative in a more subtle and oriented way. Typically, there are
canonical proofs of tensorial logic connecting the two clusters of binary dis-
junctions above to the ternary disjunction:

[ [AMB ]M C ] −→ [AMB M C ] ←− [AM [B M C ] ]
One benefit of this 2-categorical analysis is to explain in what sense the
linear disjunction M living in the dialogue category A = C is derived by
deformation — one should probably say by adjunction in that case — from
the disjunction 6 living in the opposite category B = C op(0,1).

Finally, the transfer theorem may be applied to the weak 2-monad (20)
and to the weak action of the monoidal category (B,6, false) on itself on
the left. From this, one derives a lax action on the left

~ : B ×A −→ A

of the monoidal category (B,6, false) on the category A which happens to
coincide with the functor

b ~ a = R ( b6 La )
we started from.
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7.2 Adjunction homomorphisms
A homomorphism between two adjunctions L1 a R1 and L2 a R2 is defined
as a pair of 1-dimensional cells

F : A1 −→ A2 G : B1 −→ B2

together with a pair of 2-dimensional cells

F ◦R1 ⇒ R2 ◦G : B1 −→ A2

L2 ◦ F ⇒ G ◦ L1 : A1 −→ B2

One requires moreover that the two 2-dimensional cells are mates, this
meaning that the diagram below commutes:

F
η1 +3

η2

��

F ◦R1 ◦ L1

��
R2 ◦ L2 ◦ F +3 R2 ◦G ◦ L1

(22)

or equivalently, that the diagram below commutes:

L2 ◦ F ◦R1 +3

��

L2 ◦R2 ◦G

ε2

��
G ◦ L1 ◦R1

ε1 +3 G

(23)

It is not difficult to check that this additional coherence axiom is equivalent
when V = Cat to the requirement that the diagram below commutes

B1(L1(a), b)
ϕa,b //

G
��

A1(a,R1(b))
F
��

B2(G ◦ L1(a), G(b))

��

A2(F (a), F (R1(b)))

��
B2(L2 ◦ F (a), G(b))

ϕF (a),G(b) // A2(F (a), R2 ◦G(b))

(24)

for all objects a of the category A and all objects b of the category B. Here,
the greek letter ϕ is used generically in order to denote the natural bijection
between the presheaves

ϕa,b : B(La, b) � A (a,Rb) : A op ×B −→ Set
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induced from an adjunction L a R with left adjoint L : A −→ B. Note
that the reformulation of (22) as (24) also works in any 2-category V , at the
price however of carefully replacing the objects a, b of the categories A ,B
by arbitrary 1-dimensional cells a : X −→ A and b : X −→ B, playing
there the role of generalized elements of the 0-dimensional cells A and B.
See [?] for details.

7.3 A 2-category of dialogue chiralities
The 1-dimensional cells. A 1-dimensional cell in

F : (A1,B1) −→ (A2,B2)

is defined as a quadriple (F•, F◦, F̃ , F ) consisting of a lax monoidal functor

F• : A1 −→ A2

an oplax monoidal functor

F◦ : B1 −→ B2

a monoidal natural isomorphism

A1
F• //

(−)∗

��

F̃

A2

(−)∗

����

B op(0,1)
1

F
op(0,1)
◦

//B op(0,1)
2

and a natural transformation

A1
F• // A2

F
+3

B1 F◦
//

R

OO

B2

R

OO

making the pair of functors F• and F◦ together with the natural transfor-
mations

F• ◦R1 ◦ (−6m∗) ⇒ R2 ◦ (−6 (F•m)∗) ◦ F◦
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L2 ◦ (−7 F•m) ◦ F• ⇒ F◦ ◦ L1 ◦ (−7m)
a homomorphism between the adjunctions

L1(−7m) a R1(−6m∗) L2(−7 F•m) a R2(−6 (F•m)∗)

for every object m of the category A1.

The 2-dimensional cells. A 2-dimensional cell in

θ : F ⇒ G : (A1,B1) −→ (A2,B2)

is defined as a pair (θ•, θ◦) of monoidal natural transformations θ• : F• ⇒ G•
and θ◦ : G◦ ⇒ F◦ satisfying the two equalities below:

θ•��
A1

F•

((

G•

77

(−)∗

��

A2

(−)∗

��
G̃

��B op(0,1)
1

G
op(0,1)
◦

55
B op(0,1)

2

=

A1

F•

((

(−)∗

��

A2

(−)∗

��

F̃

�

θ
op(0,1)
◦��

B op(0,1)
1

F
op(0,1)
◦

**

G
op(0,1)
◦

66
B op(0,1)

2

(25)

as well as the equation (26) below.

A1
F• // A2

F
-5

B1 F◦
//

R

OO

B2

R

OO

=

θ•
��A1

F•

  

G•
// A2

G
-5

B1
G◦ //

F◦

>>

R

OO

θ◦
��

B2

R

OO

(26)

The 1-dimensional cells. A homomorphism of chirality is a pair of func-
tors

....

and a natural transformation...
...
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such that
...

defines a homomorphism of adjunctions

L1(−7m) ` R1(−6m∗) −→ L2(−7 F (m)) ` R1(−6 F ′(m∗))

This including diagrams.
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