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Abstract

The purpose of this paper is to develop a purely combinatorial presen-
tation of dialogue categories, based on the symmetric notion of linearly
distributive chirality. As such, the micrological analysis may be under-
stood as performing a chemical decomposition into primary elements of
the molecular notion of negation in tensorial logic.

1 Introduction

One primary purpose of our work in tensorial logic is to transfer the ideas of
linear logic to this more primitive logic of tensor and negation, where nega-
tion A 7→ ¬A is not required to be involutive anymore. An amusing but also
disturbing aspect of this research program is that it looks perfectly meaningless
on the surface, at least when one considers it with the prevailing spectacles
of linear logic. Indeed, seen from this angle, the project immediately bumps
against the objection that tensorial logic lacks the nice “classical” symmetries
of linear logic. The misunderstanding is deeply rooted in the tradition, and it
cannot be overtaken without recasting the very foundations of linear logic in a
radically different way. This task is accomplished in the present paper by ex-
plaining that the so-called “classical” symmetries of linear logic are not specific
to “classical” systems like classical logic or linear logic. On the contrary, we ad-
vocate that these symmetries are an intrinsic principle of logic itself, and apply
for instance to a system like intuitionistic logic. Once this new picture of logic
spelled out, the rigid separation between classical logic and intuitionistic logic
appears suddenly obsolete – and our research program becomes meaningful
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again. In particular, tensorial logic benefits of the symmetries of classical logic,
just like any other reasonable logical system.

As already mentioned, this revised picture of logic emerges from the project
of adapting to tensorial logic the “classical” symmetries of linear logic. Our
starting point in this investigation is provided by the notion of ∗-autonomous
category — the categorical alter-ego of linear logic — traditionally defined as
a symmetric monoidal closed category C equipped with a dualizing object ⊥.
Recall that an object ⊥ of a symmetric monoidal closed category C is called
dualizing when the canonical morphism

x −→ (x(⊥)(⊥

transporting x into its double negation is an isomorphism, for every object x of
the category. The terminology itself of “dualizing object” comes from the fact
that the negation functor

(−)⊥ : A 7→ A(⊥ : C −→ C op

defines in that case an equivalence

C

(−)⊥

""equivalence

(−)⊥

cc C op (1)

between the category C and its opposite category C op. This establishes that
every ∗-autonomous category C is self-dual, in the technical sense that it is
equivalent to its opposite category.

Although this definition of ∗-autonomous is prevailing, it is not “symmetric”
in the sense that it starts from the conjunction (⊗) and the implication (()
provided by the underlying monoidal closed category, rather than from the
conjunction (⊗) and the disjunction (`) provided by linear logic. In particular,
in this non-symmetric formulation of linear logic, the disjunction is deduced
from the implication by the equality

x ` y := ((y(⊥) ⊗ (x(⊥))(⊥

which holds in any ∗-autonomous category. From a purely esthaetic point of
view, this non-symmetric presentation of a perfectly self-dual logic like linear
logic looks awkward, and one wonders whether it may be replaced by a more
symmetric presentation. The matter was resolved in a very interesting and
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elegant way by Cockett and Seely with the notion of linearly distributive category.
Recall from [2, 3] that a linearly distributive category is defined as a category C
equipped with two monoidal structures (C ,⊗, 1) and (C ,`,⊥) together with a
pair of distributivity laws

κR
x,y,z : ( x ` y ) ⊗ z −→ x ` ( y ⊗ z )
κL

x,y,z : x ⊗ ( y ` z ) −→ ( x ⊗ y ) ` z (2)

between the two tensor products, which satisfy a series of coherence diagrams
recalled in the paper. The four authors establish then a nice theorem, which
states that a ∗-autonomous category is the same thing as a (symmetric) lin-
early distributive category where every object m comes equipped with a dual
object m∗ together with two maps

AX[m] : 1 −→ m∗ ` m
CUT[m] : m ⊗m∗ −→ ⊥

(3)

satisfying a series of well-chosen coherence diagrams. This alternative pre-
sentation of ∗-autonomous categories is purely combinatorial, and provides a
perfectly symmetric formulation of the conjunction (⊗) and the disjunction (`)
of linear logic. A fascinating aspect of the approach is that the notion of lin-
early distributive category does not require the category C to be self-dual. As
a matter of fact, in this particular presentation of ∗-autonomous categories,
self-duality comes only at a later stage, when one requires that every object x
of the linearly distributive category C comes equipped with a dual object x∗.
As already explained, this forces the category C to be ∗-autonomous, and thus
self-dual.

Now, the notion of dialogue category provides a categorical counterpart to
tensorial logic, in the same way as the notion of ∗-autonomous category does
for linear logic. So, if one really believes in this apparently extravagant idea that
tensorial logic is a refinement of linear logic — rather than simply a fragment of
it — then there should exist a way to present dialogue categories in a similarly
symmetric fashion. As we already pointed out, the problem is that this idea does
not make sense when one looks at it with the spectacles of linear logic. Recall
that a dialogue category is a monoidal category equipped with an object⊥ and
two natural isomorphisms

ϕx,y : C (x ⊗ y,⊥) � C (y, x(⊥)
ψx,y : C (x ⊗ y,⊥) � C (x,⊥� y)

The dialogue category is called symmetric when the underlying monoidal cat-
egory is symmetric. So, if one wants to adapt the notion of linearly distributive
category to dialogue categories, one needs
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a. to understand how and where the conjunction (⊗) and the disjunction (`)
should be interpreted in a dialogue category,

b. to separate very carefully the self-duality (for what it means) from the
conjunction (⊗) and the disjunction (`) of the dialogue category, in the
same way as the self-duality is removed from ∗-autonomous categories in
order to get linearly distributive categories.

Again, all this does not make a lot of sense at this stage, at least in the way
it is formulated: one does not see how to interpret the disjunction (`) in a
dialogue category, and probably even worse, one does not see how to interpret
the self-duality. So, one needs to change spectacles at this point, and to analyze
the problem in a deeper fashion, nurtured by 2-dimensional algebra. The first
thing to observe is that every dialogue category comes with an adjunction

C

L

""
⊥

R

cc C op (4)

between the two negation functors

L : x 7→ ⊥� x R : x 7→ x(⊥

This adjunction induces in turn a monad

T : x 7→ (⊥� x)(⊥ : C −→ C

defined by double negation on the dialogue category C . Here, it is worth
mentioning that a ∗-autonomous category is the same thing as a symmetric
dialogue category where the unit η of the double negation monad T instantiated
at x

η x : x −→ (⊥� x)(⊥

is invertible for every object x of the category. Equivalently, a ∗-autonomous
category is a symmetric dialogue category where the adjunction (4) is an equiv-
alence. This establishes that one does not need to start from a monoidal closed
category in order to define a ∗-autonomous category: the weaker notion of
dialogue category is sufficient for that task.

At this point, a tentative solution for problem a. emerges from the con-
templation of the adjunction (4) between the category C and its opposite cat-
egory C op. The idea is to interpret the conjunction (⊗) as the tensor product
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taken in the dialogue category C and the disjunction (`) as the tensor product
taken in the opposite dialogue category C op(0,1). Here, we write C op(0,1) for the
monoidal category C where the orientation of tensors (dimension 0) and of
morphisms (dimension 1) have been reversed. After this appealing but also
very speculative resolution of problem a. we are facing two additional and
quite serious difficulties:

c. on the one hand, the conjunction (⊗) and the disjunction (`) do not live
in the same category, since the conjunction (⊗) lives in the category C and
the disjunction (`) lives in its opposite category,

d. on the other hand, it is difficult to understand in what sense the conjunc-
tion (⊗) is really different from the disjunction (`) since they are both
defined as the tensor product of the category C and of the category C op,
and consequently, they only differ modulo the apparentlyconventional
difference between the category C and its opposite category C op.

We will see how to resolve the three difficulties b. c. and d. in three steps. The
first step is purely notational. It consists in writing

A = (A ,7, true)

for the monoidal category C and

B = (B,6, false)

for its opposite category C op(0,1). This resolves problem d. or at least overcomes
it, since the two categories A and B are considered from now on as intrinsically
different, although they are “secretly” related by the identity

B op(0,1) = A . (5)

Accordingly, and for clarity’s sake, we choose to write conjunction as 7 in the
category A and disjunction as 6 in the category B. In order to resolve problem
c. we recast the original adjunction (4) as an adjunction

A

L

""
⊥

R

cc B (6)

between the categories A and B. In that way, the conjunction (7) and the
disjunction (6) live in different categories A and B related by the functors L
and R of the adjunction (6).
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Our ongoing analysis is sufficiently advanced at this stage to provide the
ground for a relaxed notion of “linearly distributive category” adapted to dia-
logue categories. The idea is that the linearly distributive category C together
with its two tensor products ⊗ and ` should be replaced in the case of tensorial
logic by a pair of monoidal categories

(A ,7, true) (B,6, false)

equipped with an adjunction (6) relating them. In addition, the original pair of
distributivity laws (2) should be replaced by the pair of distributivity laws

κ7 : R(b 6 L(a)) 7 m −→ R(b 6 L(a 7 m))
κ6 : L(a 7 R(b 6 n)) −→ L(a 7 R(b)) 6 n (7)

which happen to exist (and this is the fundamental point) in every dialogue
category. This leads to the notion of linearly distributive chirality introduced in
the technical core of the paper (§5). The notion refines the notion of linearly
distributive category, in the same way as the notion of dialogue category refines
the notion of ∗-autonomous category. Note that the resulting notion of chirality
is mixed rather than pure, in the sense that the side B of the chirality is not
required to be equivalence to the opposite of the side A , see [7] for a discussion
about the distinction between mixed and. pure chiralities. The notion of
linearly distributive chirality is justified by the two basic observations:

• every dialogue category C defines a linearly distributive chirality with
sides A and B defined as A = C and B = C op(0,1) and where the functors
L and R are defined as the negation functors as indicated above,

• a linearly distributive category C is the same thing as a linearly distribu-
tive chirality where the two sides A and B are defined as the category C
and where the two functors L and R are defined as the identity functor
between the category C and itself.

It is worth stressing the perfect symmetry between the two distributivity
laws κ7 and κ6. This symmetry is witnessed by the fact that each of the
two laws may be obtained from the other one by applying the involution

R ↔ L x 7 y ↔ x 6 y a ↔ b m ↔ n

and by reversing the orientation of the map. In the particular case of a linearly
distributive chirality (C ,C ) with L = R = idC induced by a linearly distributive
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category, this perfect symmetry between κ7 and κ6 boils down to a “self-
symmetry” of the original linear distributivity (2) or more precisely to the
symmetry between the left and right variants κR and κL.

Now that we have a counterpart to the notion of linearly distributive cate-
gory, we are very close to the resolution of problem b. and to understand how
to adapt the notion of self-duality of ∗-autonomous categories. The idea is to
take the identity (5) very seriously, and to relax it to a monoidal equivalence

A

(−)∗

""monoidal
equivalence

∗(−)

cc B op(0,1) (8)

between the monoidal categories A and B op(0,1) respectively equipped with
conjunction (7) and the disjunction (6 op) oriented right-to-left. One motiva-
tion for relaxing the identity (5) into an equivalence (8) is to include the original
notion of duality in a linearly distributive category [3]. In the case of linearly dis-
tributive categories, the negation functor is not required to be strictly involutive
— but only up to equivalence — as it is the case in a ∗-autonomous category.
In that way, the notion of duality on a linearly distributive chirality (A ,B)
includes the two cases we have in mind:

• in the case of a dialogue category C , the equivalence is defined by taking
the identity functors between C and itself,

• in the case of a ∗-autonomous category C , the equivalence is defined by
taking the two negation functors between the category C and its opposite
category C op(0,1).

At this stage, we have finally resolved the four obstructions a. b. c. and d. to the
very idea of presenting the notion of dialogue category in a nice and symmetric
fashion. In order to complete our program, there remains to formulate a variant
of duality refining (3) between an object m in the category A and an object m∗

in the category B. We will see that this two-sided notion of duality is based on
the existence of two combinators

AX[m] : true −→ R ( m∗ 6 L ( m ) )
CUT[m] : L ( m 7 R ( m∗ ) ) −→ false

which happen to coincide in the one-sided case with the combinators of (3)
since L and R are defined in that case as the identity functors between the
linearly distributive category C and itself. The existence of such a duality for
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every object m of the category A implies that A defines a dialogue category, at
least when A and B are not just monoidal, but also symmetric monoidal.

What have we learned from this brief excursion accross the universe of log-
ical symmetries? Well, it revealed to us that every logical category A = C
(typically provided by a category of proofs) comes with an opposite cate-
gory B = C op(0,1) (typically provided by a category of refutations) and that
every formula may be either seen from the point of view of A or from the
point of view of B. This change of frame between A and B is precisely what
the “classical” involutive negation of logic x 7→ x∗ captures. It also appeared
under inspection that this symmetry between A and B has nothing to do with
classical logic or with linear logic. There lies a general “relativity” principle in
logic which reflects the fact that every dispute involves a Player (or Prover) and
an Opponent (or Refutator) and that each of them looks at the formula from
its own point of view. As we have seen, classical logic or linear logic is simply
the very particular case when the universe A of the Player happens to coincide
with the universe B of the Opponent, up to equivalence.

It should be finally acknowledged how much this symmetric account of
logic owes to the technical shift from 1-dimensional to 2-dimensional cate-
gorical semantics. This shift to 2-categories enables to articulate the fact that
the primitive symmetry between Player and Opponent lives at a 2-dimensional
level, rather than at a 1-dimensional level — and that the primary duality of
logic is thus provided by the 2-dimensional operation of “reversing” a cate-
gory C into its opposite category C op(0,1). This purely algebraic observation
reflects this linguistic and possibly ethological principle that symmetry comes
before logic. Understood from that point of view, every logical system offers a
specific symbolic regime in order to accomodate this primitive symmetry be-
tween Player and Opponent, and to make the two sides of the dispute interact.

This new scenography of logic based on 2-categories is arguably more uni-
form and harmonious than the existing one with its rigid separation between
classical and intuitionistic logic. It relies on a microcosm principle formulated
in [7] and inspired by a similar phenomenon in higher dimensional algebra
stressed by Baez and Dolan [1]. When applied to logic, the microcosm prin-
ciple tells us that any contravariant operation — like negation or implication
— relies in the end on the primary duality between C and C op(0,1). In retro-
spect, linear logic appears as the miraculous encounter between this primary
2-dimensional duality between C and C op(0,1) and the purely 1-dimensional
(that is, categorical) notion of ∗-autonomous category where the category C is
equivalent to its opposite category C op(0,1). One purpose of the present work is to
dissect this specific situation in order to extend it to tensorial logic, and to bring
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to light its primary structure based on the 2-dimensional duality C 7→ C op(0,1)

and its refraction in a 1-dimensional category.

Plan of the paper. We start by recalling in §2 the notion of linearly distribu-
tive category introduced by Cockett and Seely in [2] together with the notion
of right duality we will be specifically interested in. We recall in §3 the no-
tion of dialogue chirality introduced by the author in [7] as a symmetric and
deformed notion of dialogue category. The notion of commutator between
parametric monads is also recalled in §4. We reach in §5 the technical core of
the paper, where we introduce the notion of linearly distributive chirality, and
formulate the corresponding notion of right duality. We establish at the end of
the section that the notion of dialogue chirality coincides with the notion of lin-
early distributive chirality with a right duality when the underlying monoidal
categories are symmetric. We conclude in §6 by observing that a mismatch
remains between the two notions of dialogue chirality and linearly distributive
chirality in the case of non-symmetric monoidal categories. We leave the task
of resolving this matter to the companion paper [9].

2 Linearly distributive categories

2.1 Definition

Recall from [2, 3] that a (planar) linearly distributive category C is defined as
a category equipped with two monoidal structures, the first one called “tensor
product” given by the bifunctor ⊗ : C × C −→ C with unit 1 and natural
isomorphisms

α⊗A,B,C : (A ⊗ B) ⊗ C −→ A ⊗ (B ⊗ C),

λ⊗A : 1 ⊗ A −→ A, ρ⊗A : A ⊗ 1 −→ A,

and the second one called “cotensor product” given by the bifunctor ` : C ×
C −→ C with unit ⊥ and natural isomorphisms

αÀ,B,C : (A ` B) ` C −→ A ` (B ` C),

λÀ : ⊥` A −→ A, ρÀ : A `⊥ −→ A.

Linearly distributive categories are moreover equipped with two natural mor-
phisms

κL
A,B,C : A ⊗ (B ` C) −→ (A ⊗ B) ` C
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κR
A,B,C : (A ` B) ⊗ C −→ A ` (B ⊗ C)

required to satisfy a series of commutativity axioms, consisting of six pentagons
and four triangles. The six pentagons may be separated into three series of two
pentagons, where the first series describes how the distributive law κR interacts
with the associativity laws:

((A ` B) ⊗ C) ⊗D κR
//

α⊗

��

(A ` (B ⊗ C)) ⊗D κR
// A ` ((B ⊗ C) ⊗D)

α⊗

��
(A ` B) ⊗ (C ⊗D) κR

// A ` (B ⊗ (C ⊗D))

(A ` (B ` C)) ⊗D κR
//

α`
��

A ` ((B ` C) ⊗D) κR
// A ` (B ` (C ⊗D))

α`
��

((A ` B) ` C) ⊗D κR
// (A ` B) ` (C ⊗D)

the second series describes how the distributive law κL interacts with the asso-
ciativity laws:

(A ⊗ B) ⊗ (C ` D) κL
//

α⊗

��

((A ⊗ B) ⊗ C) ` D

α⊗

��
A ⊗ (B ⊗ (C ` D)) κL

// A ⊗ ((B ⊗ C) ` D) κL
// (A ⊗ (B ⊗ C)) ` D

A ⊗ (B ` (C ` D)) κL
//

α`
��

(A ⊗ B) ` (C ` D)

α`
��

A ⊗ ((B ` C) ` D) κL
// (A ⊗ (B ` C)) ` D κL

// ((A ⊗ B) ` C) ` D

and the last series describes how κL and κR interact together with the associa-
tivity laws:

(A ⊗ (B ` C)) ⊗D

κL

��

α⊗ // A ⊗ ((B ` C) ⊗D) κR
// A ⊗ (B ` (C ⊗D))

κL

��
((A ⊗ B) ` C) ⊗D κR

// (A ⊗ B) ` (C ⊗D)
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(A ` B) ⊗ (C ` D) κL
//

κR

��

((A ` B) ⊗ C) ` D κR
// (A ` (B ⊗ C)) ` D

α`
��

A ` (B ⊗ (C ` D)) κL
// A ` ((B ⊗ C) ` D)

Similarly, the four coherence triangles may be separated in two series of two
triangles, where the first series describes how the distributive law κR interacts
with the units:

A ⊗ B
λ`
&&

λ`
xx

(⊥` A) ⊗ B κR
// ⊥` (A ⊗ B)

A ` B
ρ⊗

xx

ρ⊗

&&
(A ` B) ⊗ 1 κR

// A ` (B ⊗ 1)

and the second series describes how the distributive law κL interacts with the
units:

1 ⊗ (A ` B) κL
//

λ⊗ &&

(1 ⊗ A) ` B

λ⊗xx
A ` B

A ⊗ (B `⊥) κL
//

ρ` &&

(A ⊗ B) `⊥
ρ`xx

A ⊗ B

One requires that these diagrams commute for all objects A,B,C,D of the lin-
early distributive category C .

2.2 Right duality in linearly distributive categories

A general notion of negation in a linearly distributive category C is introduced
by Cockett and Seely in [2]. Here, we find convenient to keep only half of it,
this leading us to the notion of right duality in a linearly distributive category C ,
defined below.

Definition 1 A right duality in a linearly distributive category C consists of the
following data:

• an object A∗,

• two morphisms axR
A : 1 −→ A∗ ` A and cutR

A : A ⊗ A∗ −→ ⊥

for every object A of the category C . The morphisms are moreover required to make the
diagrams
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A ⊗ 1

ρ⊗

��

A⊗axR
// A ⊗ (A∗ ` A)

κL

��
(A ⊗ A∗) ` A

cutR`A
��

A ⊥` Aλ`oo

1 ⊗ A∗

λ⊗

��

axR
⊗A∗ // (A∗ ` A) ⊗ A∗

κR

��
A∗ ` (A ⊗ A∗)

A∗`cutR

��
A∗ A∗ `⊥ρ`oo

commute.

Every such right duality defines a contravariant functor

A 7→ A∗ : C op
−→ C

which transports every morphism f : A −→ B of the linearly distributive
category C to the morphism f ∗ : B∗ −→ A∗ constructed in the following way:

B∗

(λ⊗)−1

��

A∗ ` (A ⊗ B∗)
A∗`( f⊗B∗) // A∗ ` (B ⊗ B∗)

A∗`cutR
// A∗ `⊥

ρ`
��

1 ⊗ B∗
axR
⊗B∗ // (A∗ ` A) ⊗ B∗

κR

OO

(A∗` f )⊗B∗ // (A∗ ` B) ⊗ B∗
κR

OO

A∗

The functoriality of A 7→ A∗ follows easily from the coherence diagrams.

2.3 Alternative formulation of ∗-autonomous categories

As explained in the introduction, one main purpose of the notion of linearly
distributive category is to isolate the properties of ⊗ and ` from the properties
of the duality in a ∗-autonomous category. In particular, the notion of right
duality is motivated by the following property, which states that every linearly
distributive category C equipped with a right duality is monoidal closed on
the left.

Proposition 1 In any linearly distributive category C with a right duality,

• the functor (A ⊗ −) is left adjoint to the functor (A∗ ` −)

• the functor (−` B) is right adjoint to the functor (− ⊗ B∗)

for all objects A,B of the category. In particular, every such category C is monoidal
closed on the left, with implication defined as

A ( B = A∗ ` B.
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The proof is essentially immediate. One associates to every morphism

f : A ⊗ X −→ B

the morphism ϕA,X,B( f ) defined as the composite

X
(λ⊗)−1

// 1 ⊗ X
axR

// (A∗ ` A) ⊗ X κR
// A∗ ` (A ⊗ X)

f // A∗ ` Y

Conversely, one associates to every morphism

g : X −→ A∗ ` Y

the morphism ψA,X,B( f ) defined as the composite

A ⊗ X
g // A ⊗ (A∗ ` Y) κL

// (A ⊗ A∗) ` Y
cutR

// ⊥` Y
ρ` // Y

The coherence properties of the linearly distributive category C and of the
right duality A 7→ A∗ imply together that the correspondence is one-to-one and
natural in X and Y. This establishes the property.

A linearly distributive category C is called symmetric when its monoidal struc-
ture (C ,⊗, 1) is equipped with a symmetry. An immediate but important corol-
lary of Proposition 1 is that

Corollary 2 The notion of ∗-autonomous category coincides with the notion of sym-
metric linearly distributive category C with a right duality.

3 Dialogue chiralities

We start the section by recalling in §3.1 the two-sided formulation as so-called
dialogue chiralities of the elementary notion of dialogue category. We then
investigate a series of equivalent formulations of dialogue chiralities, either
based on a family of adjunctions in §3.2 or on a family of transjunctions in
§3.3. Meanwhile, we recall in §3.4 the notion of transjunction introduced by the
author in [8] together with their pictorial representation in string diagrams. We
conclude the section in §3.5 by pointing out how the formulation of dialogue
chiralities based on transjunctions recovers and refines the familiar axiom-cut
and ⊗-` cut-elimination rules of multiplicative proof-nets in linear logic, as
well as their η-expansion rules for axiom links.

13



3.1 Original definition of dialogue chiralities

We start from the original definition of dialogue chiralities given in [7]. Recall
that a dialogue chirality is a pair of monoidal categories

(A ,7, true) (B,6, false)

equipped with a monoidal equivalence

A

(−)∗

""monoidal
equivalence

∗(−)

cc B op(0,1) (9)

together with an adjunction

A

L

""
⊥

R

cc B (10)

whose unit and counit are denoted as

η : Id −→ R ◦ L ε : L ◦ R −→ Id

and, finally, with a family of bijections

χm,a,b : 〈m 7 a | b 〉 −→ 〈 a |m∗ 6 b 〉

natural in m, a, b, which we call currification in honor of the logician Haskell
Curry. Here, the bracket 〈 a | b 〉 denotes the set of morphisms from a to R(b) in
the category A :

〈 a | b 〉 = A ( a , R(b) ).

The family χ is moreover required to make the diagram

〈 (m 7 n) 7 a | b 〉
χm7n //

associativity

��

〈 a | (m 7 n)∗ 6 b 〉

〈m 7 (n 7 a) | b 〉
χm // 〈n 7 a |m∗ 6 b 〉

χn // 〈 a |n∗ 6 (m∗ 6 b) 〉

associativity
monoidality o f negation

OO

(11)

commute for all objects a,m,n of the category A , and all objects b of the cate-
gory B.
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3.2 A formulation based on adjunctions

A preliminary step towards the algebraic presentation of dialogue chiralities
performed in §5 is to replace the currification isomorphism χ by a family of
adjunctions, in the following way.

Proposition 3 A dialogue chirality is the same thing as a pair of monoidal cate-
gories (A ,7, true) and (B,6, false) equipped with a monoidal equivalence (9) and an
adjunction (4) together with an adjunction

L(m 7 −) a R(m∗ 6 −) (12)

for every object m of the category A , whose unit and counit are denoted

η[m] : a −→ R(m∗ 6 L(m 7 a)) ε[m] : L(m 7 R(m∗ 6 b)) −→ b

The family η[−] is moreover required to be natural and monoidal, this meaning that
the diagrams below

R(m∗ 6 L(m 7 a)) f

��
a

η[m]
55

η[n] ))

R(m∗ 6 L(n 7 a))

R(n∗ 6 L(n 7 a)) f ∗

@@ (13)

a
η[m7n] //

η[n]
��

R((m 7 n)∗ 6 L((m 7 n) 7 a))

associativity &
monoidality o f negation

��

R(n∗ 6 L(n 7 a))
η[m]
��

R(n∗ 6 LR(m∗ 6 L(m 7 (n 7 a)))) ε // R(n∗ 6 (m∗ 6 L(m 7 (n 7 a))))

(14)

should commute for all objects a,m,n and all morphisms f : m→ n of the category A .

Remark. The family of adjunctions (12) instantiated at the unit true induces
an adjunction L a R between the functors L and R, whose unit and counit are
defined as the expected families of morphisms

η′a : a
η[true] // R(true∗ 6 L(true 7 a))

associativity
& monoidality // RL(a)

ε′b : LR(b)
associativity

& monoidality // L(true 7 R(true∗ 6 b))
ε[true] // b
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An important question is to understand whether this adjunction necessarily
coincides with the original adjunction (4) between L and R. The answer is
positive. Indeed, it is not difficult to see that the coherence diagram (14)
implies that the two adjunctions coincide in the sense that η = η′ and ε = ε′.
The main idea is to instantiate the coherence diagram (14) with m = n = e, and
to apply the coherence laws of the monoidal categories A and B in order to
show that the diagram

a
η′ //

η′ ��

RLa

RLa
η′ ��

RLRLa ε // RLa

commutes. It easily follows from this and from the properties of adjunctions
that η = η′ and ε′ = ε. This means in particular that the coherence diagram

R(true∗ 6 L(true 7 a))
monoidality // R(false 6 L(true 7 a))

associativity

��
a

η //

η[true]

OO

RL(a)

(15)

is a consequence of the two coherence diagrams (13) and (14) formulated in the
statement of Proposition 3.

Remark. Once established that the adjunction (L,R, η′, ε′) coincides with the
adjunction (L,R, η, ε), it is not difficult to deduce from their companion dia-
grams (13) and (14) that the two coherence diagrams

L(n 7 R(n∗ 6 b))
ε[n]

��
L(m 7 R(n∗ 6 b))

f
33

f ∗ **

b

L(m 7 R(m∗ 6 b))
ε[m]

CC
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L(m 7 (n 7 R(n∗ 6 (m∗ 6 b))))
η //

associativity &
monoidality o f negation

��

L(m 7 RL(n 7 R(n∗ 6 (m∗ 6 b))))
ε[n]
��

L(m 7 R(m∗ 6 b))
ε[m]
��

L((m 7 n) 7 R((m 7 n)∗ 6 b))
ε[m7n] // b

commute for all object b of the category B and all objects m,n and all morphisms
f : m → n of the category A . At this point, it is worth mentioning that there
is an element of choice in the definition of dialogue chiralities formulated in
Proposition 3 since the two coherence diagrams for ε[−] may very well replace
the two corresponding diagrams (13) and (14) for η[−].

3.3 A formulation based on transjunctions

The formulation of dialogue chiralities described in §3.2 is fine, but may be
marginally improved. The idea is to replace the original combinators η[−]
and ε[−] presenting the adjunctions by somewhat simpler combinators inspired
by proof-theory:

axiom[m] : L(a) // m∗ 6 L(m 7 a)
cut[m] : m 7 R(m∗ 6 b) // R(b)

This pair of combinators is defined from η[−] and ε[−] in the following way:

axiom[m] : L(a)
η[m] // LR(m∗ 6 L(m 7 a)) ε // m∗ 6 L(m 7 a)

cut[m] : m 7 R(m∗ 6 b)
η // RL(m 7 R(m∗ 6 b))

ε[m] // R(b)

Conversely, the combinators η[−] and ε[−] may be recovered from the original
combinators axiom[−] and cut[−] in the following way:

η[m] : a
η // RL(a)

axiom[m] // R(m∗ 6 L(m 7 a))

ε[m] : L(m 7 R(m∗ 6 b))
cut[m] // LR(b) ε // b

It is immediate that this back-and-forth translation between the pair η[−], ε[−]
and the pair axiom[−], cut[−] defines a one-to-one relationship between the two
pairs of combinators. This idea leads to an alternative formulation of dialogue
chiralities, based this time on the transjunction between the two functors

m 7 − : A −→ A m∗ 6 − : B −→ B

17



along the adjunction L a R between A and B. The reader unaware of the
notion of transjunction will find the notion recalled in §3.4. One main reason
for introducing this notion is that it enables to replace the original combinators
η[−] and ε[−] by the logically flavoured combinators axiom[−] and cut[−].

Proposition 4 A dialogue chirality may be alternatively defined as a pair of cate-
gories (A ,7, true) and (B,6, false) equipped with a monoidal equivalence (9) and an
adjunction (4) together with a family of transjunctions

axiom[m] : L(a) −→ m∗ 6 L(m 7 a) cut[m] : m 7 R(m∗ 6 b) −→ R(b)

natural in b and m. The family cut[−] is moreover required to be natural and monoidal,
in the sense that the two diagrams

m 7 R(m∗ 6 b) cut[m]

��
m 7 R(n∗ 6 b)

f ∗ 22

f ,,

R(b)

n 7 R(n∗ 6 b) cut[n]

BB
(16)

m 7 (n 7 R(n∗ 6 (m∗ 6 b)))
cut[n] // m 7 R(m∗ 6 b)

cut[m]

��

(m 7 n) 7 R((n∗ 6 m∗) 6 b)

associativity

OO

(m 7 n) 7 R((m 7 n)∗ 6 b)

monoidality

OO

cut[m7n] // R(b)

(17)

commute for all objects a,m,n and morphisms f : m→ n of the category A .

Remark. In the same way as in the definition of dialogue chiralities based on
adjunctions in §3.2, the coherence diagram

R(b) id // R(b)

true 7 R(true∗ 6 b)
monoidality //

cut[true]

OO

true 7 R(false 6 b)

associativity

OO

(18)

18



follows from the coherence diagrams (16) and (17). Moreover, one can easily
check that in the same way as in §3.2, the two coherence diagrams for the
combinator cut[−] are equivalent to the corresponding coherence diagrams
for axiom[−] below:

m∗ 6 L(m 7 a) f

��
L(a)

axiom[m]
33

axiom[n] ++

m∗ 6 L(n 7 a)

n∗ 6 L(n 7 a) f ∗

@@

n∗ 6 L(n 7 a)
axiom[m] // n∗ 6 (m∗ 6 L(m 7 (n 7 a)))

associativity
��

(n∗ 6 m∗) 6 L((m 7 n) 7 a)

monoidality
��

La

axiom[n]

OO

axiom[m7n] // (m 7 n)∗ 6 L((m 7 n) 7 a)

Note that the coherence diagram

true∗ 6 L(true 7 a)
monoidality // false 6 L(true 7 a)

associativity

��
L(a) id //

axiom[true]

OO

L(a)

also follows from the coherence diagrams (16) and (17).

3.4 Transjunctions

The notion of transjunction was introduced by the author in [8] in order to
reflect the structure of negation in dialogue categories.

Definition 2 (transjunction) Suppose given a pair of adjunctions

A1

L1

""
⊥

R1

cc B1 A2

L2

""
⊥

R2

cc B2

19



whose units and counits are denoted η1, η2 and ε1, ε2 respectively. A transjunction F a
G between a pair of functors

F : A1 → A2 G : B2 → B1

along the adjunctions L1 a R1 and L2 a R2 is defined as a pair of natural transformations

axiom : L1 ⇒ G ◦ L2 ◦ F cut : F ◦ R1 ◦ G⇒ R2

making the two diagrams

F ◦ R1 ◦ L1
axiom +3

(a)

F ◦ R1 ◦ G ◦ L2 ◦ F

cut
��

F

η1

KS

η2 +3 R2 ◦ L2 ◦ F

G ◦ L2 ◦ F ◦ R1 ◦ G cut +3

(b)

G ◦ L2 ◦ R2

ε2

��
L1 ◦ R1 ◦ G

axiom

KS

ε1 +3 G

(19)

commute.

This notion of transjunction is ultimately justified by the following statement.

Proposition 5 A transjunction F a G along the adjunctions L1 a R1 and L2 a R2 is
the same thing as an adjunction F ◦ L1 a R2 ◦ G.

The two equations (a) and (b) may be alternatively depicted as string diagrams
living in the 2-category Cat of categories, functors and natural transformations.
First of all, the generators axiom and cut of a transjunction F a G along the
adjunctions L1 a R1 and L2 a R2 mentioned in Definition 2 are depicted as
follows:

axiom =

B2

B1

A2

L1

L2 FG

A1

cut =

A1

A2

B1

R2

R1 GF

B2

The two commutative diagrams (a) and (b) are then depicted as follows:
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L2 F

A1

A2

B1

R2

F

B2

(a)
=

L2 F

A1

A2

R2

F

B2

A2

R1 G

B1 A1

L1

G

B2

(b)
=

R1 G

B2

B1

L1

G

A1

An important methodological point to observe at this point is that the two
equations (a) and (b) refine the familiar cut-axiom equation of multiplicative
proof-nets encountered in linear logic. In the particular case of a ∗-autonomous
category C , the two sides A and B of the dialogue chirality coincide with C , the
two functors R and L are the identity functor, and the family of transjunctions
mentioned in Proposition 4 thus boils down to a family of adjunctions m ⊗ − a
m∗ ` −with unit and counit defined as

axiom[m] : a −→ m∗ ` (m ⊗ a) cut[m] : m ⊗ (m∗ ` b) −→ b.

Each transjunction discussed in Proposition 4 should be thus seen as a refine-
ment of this adjunction of ∗-autonomous categories in the presence of the non
involutive negation functors L and R of dialogue categories.

A notion of homorphism between transjunctions may be then introduced, this
giving rise to a category of transjunctions.
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Definition 3 (homomorphism) A homomorphism between two transjunctions F a
G and F′ a G′ along the same pair of adjunctions L1 a R1 and L2 a R2 is defined as a
pair of natural transformations

f : F ⇒ F′ g : G′ ⇒ G

making the two diagrams

G ◦ L2 ◦ F
f +3

(a)

G ◦ L2 ◦ F′

L1

axiom

KS

axiom′ +3 G′ ◦ L2 ◦ F′

g

KS F′ ◦ R1 ◦ G′ cut′ +3

(b)

R2

F ◦ R1 ◦ G′

f

KS

g +3 F ◦ R1 ◦ G

cut

KS

commute.

Pictorially, such a homomorphism ( f , g) is defined as a pair of natural trans-
formations f : F ⇒ F′ and g : G′ ⇒ G satisfying the diagrammatic equalities
below:

F

f

L1

L2 F ′G

(a)
= G′

g

L1

L2 F ′G

F ′

f

R2

R1 GF

(b)
= G′

g

R2

R1 GF
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3.5 Tensorial conjunction vs. disjunction

The guiding philosophy of our present work is to refine the constructions of
linear logic to the more primitive and more general situation of tensorial logic,
where negation is not required to be involutive anymore. We have already seen
in the previous section §3.4 how to extend the cut-axiom rule of linear logic in
order to accomodate a non involutive pair of negations L and R. This refinement
is natural, but also far from obvious. A nice outcome of our algebraic approach
is that the solution is provided by the first part of Proposition 4. Let us turn
now to the second part of Proposition 4 which is also very informative. The
first diagram (16) ensures

The second diagram 17

mRm n n* *

R

(b)
=

mR

R

m n n* *

The third diagram 18 is depicted as follows:

R

R

true false

(c)
=

R

R

These equations are reminiscent of the ⊗ vs. ℘ as well as the 1 vs. ⊥ cut-
elimination rewriting steps in proof-nets of linear logic. Similar diagrams for
the axiom link The η-expansion laws of proof-nets in linear logic.
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m L

L

m nn* *

(a)
=

m L

L

m nn* *

L

L

false true

(b)
=

L

L

Note that one recovers the familiar equations of linear logic by “depolarizing”
the notion of dialogue chirality (A ,B) to a situation where the two sides A
and B are equal, and where the functors L and R are equal to the identity.

4 Commutators

In this section, we recall the notion of commutator between parametric monads
introduced in [8].

4.1 Parametric monads

This discussion motivates to parametrize by a monoidal category (J,⊗, e) the
usual notion of formal monad, in the following way.

Definition 4 (parametric monad) A parametric J-monad on a 0-cell A of a 2-
category W is defined as a lax monoidal functor

(T,m) : J −→ End(A).

The monoidal category J is called the parameter category of the J-monad; and an object j
of J is called a parameter.
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Hence, a parametric J-monad (T,m) consists of

• a 1-cell T j : A −→ A for every parameter j and a 2-cell T f : T j ⇒ Tk

for every morphism f : j −→ k between such parameters,

• a 2-cell me : 1A ⇒ Te called the unit of the parametric monad,

• a 2-cell m j,k : T j ◦ Tk ⇒ T j⊗k called the ( j, k)-component of the multipli-
cation of the parametric monad, for every pair of parameters j and k.

These data are moreover required to make a series of coherence diagrams
commute in the category End(A ). First, the diagrams

Tk
Tg

��
T j

T f //

Tg◦ f

66 Tl
T j

idTj

''

Tid j

77 T j

expressing the functoriality of T; then, the diagrams

T j ◦ Tk
T f ◦Tg //

m j,k

��

T j′ ◦ Tk′

m j′ ,k′

��
T j⊗k

T f⊗g // T j′⊗k′

expressing the naturality of m; and finally the diagrams

T j ◦ Tk ◦ Tl
m j,k◦Tl //

T j◦mk,l

��

T j⊗k ◦ Tl

m j⊗k,l

��
T j ◦ Tk⊗l

m j,k⊗l // T j⊗(k⊗l)
α // T( j⊗k)⊗l

and
Te ◦ T j me, j

��
T j idTj

//

T j◦me --

me◦T j 11

T j

T j ◦ Te
m j,e

BB

expressing the monoidality of m; this for all indices j, j′, k, k′, l and morphisms f , g, h
in the parameter category J.
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4.2 Commutators between parametric monads

At this point, we recall the notion of commutator between parametric monads
introduced in [8]. As we have shown there, the notion of commutator unifies
and generalizes the two fundamental notions of monadic strength on the one
hand, and of distributivity law between two monads on the other hand. We
recall at the same time that every dialogue chirality is equipped with such
a structure. From now on, we suppose given a 0-cell C in a 2-category W
equipped with a parametric J -monad

T = • : J −→ End(C )

and a parametric M op(0)-monad

S = ◦ : M op(0)
−→ End(C )

with parameters taken in the monoidal categories (J ,⊗, e) and (M ,⊗,u).

Definition 5 (commutator) A commutator between two parametric monads T = •
and S = ◦ is defined as a natural transformation

κ : S T ⇒ T S : J ×M op(0)
−→ End(C )

making the four diagrams below commute

κ

κ

κm

j
i

j
m

i
j

m

i

m
jim

ji

µ µ

κ

µ µ

m

m

e m

e

m

i

κ

nm

κ

n

i

nm

i

m

n
i

κ
m
n

i

u

iu
i

i

κ

µ µ

µ µ

for all objects i, j of the category J and all objects m,n of the category M .
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Remark. In the particular case when W = Cat, a commutator may be alterna-
tively defined as a natural transformation

κ : (− • −) ◦ − ⇒ − • (− ◦ −) : J × C ×M −→ C

with components

κi,m,A : (i • A) ◦m −→ i • (A ◦m)

parametrized by the objects i of the category J , m of the category M and A
of the category C . As such, the parametric monads ◦ and • together with the
commutator κmay be seen as a lax version of a (J ,M )-biaction (or bimodule).
This may be depicted in string diagrams as follows. The idea is to depict the
commutator κ as a braiding

m j

m

κ

j

commuting the string representing the action • under the string representing ◦.
This notation enables to depict the coherence diagrams of the commutator κ as
a series of topologically intuitive equations, permuting the multiplication and
unit of each parametric monad under or over the string representing the other
parametric monad. Typically, the first series of equations in the definition of
a commutator “permutes” the operations µ• over the string representing the
action ◦

mji

m ji

κ

µ

mji

m ji

κ

µ

κ=
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m

m e

κ

µ

m

µ

=

m e

while the second series of equations “permutes” the operations µ◦ under the
string representing the action •

=

mn

nm i

i mn

nm i

i

κ

κ

κ

µ

µ

u

κ
=

i

i u

i

µ

µ

i

Remark. The notion of commutator may be easily adapted to the case of a
parametric comonad commuting with a parametric comonad, or a parametric
monad commuting with a parametric comonad.
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4.3 Dialogue chiralities on the right

We have recalled in §3 the original definition of dialogue chirality as it appears
in [7]. However, it is mentioned in the very same paper [7] that there is an
element of choice in the definition of dialogue chirality. In particular, if we call
dialogue chirality on the left the notion of dialogue chirality recalled in §3, every
dialogue category C induces such a dialogue chirality, obtained by defining L
and R as the negation functors

L : x 7→ ⊥� x R : x 7→ x(⊥.

On the other hand, the other choice of negation functors

L : x 7→ x(⊥ R : x 7→ ⊥� x

induces a dialogue chirality on the right. The notion is symmetric to the notion
of dialogue chirality on the left and is defined in the following way. A dialogue
chirality (on the right) is a pair of monoidal categories

(A ,7, true) (B,6, false)

equipped with a monoidal equivalence and with an adjunction

A

~(−)

""monoidal
equivalence

(−)~

cc B op(0,1) A

L

""
⊥

R

cc B

and with a family of bijections

χm,a,b : 〈 a 7 m | b 〉 −→ 〈 a | b 6 ~m 〉

natural in m, a, b. In the same way as in the case of a dialogue chirality on
the left, the bracket 〈 a | b 〉 denotes the set of morphisms from a to R(b) in the
category A :

〈 a | b 〉 = A ( a , R(b) ).

The family χ is moreover required to make the diagram

〈 a 7 (m 7 n) | b 〉
χm7n //

associativity

��

〈 a | b 6 ~(m 7 n) 〉

〈 (a 7 m) 7 n | b 〉
χn // 〈 a 7 m | b 6 n∗ 〉

χm // 〈 a | (b 6 n∗) 6 m∗ 〉

associativity
monoidality o f negation

OO
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commute for all objects a,m,n of the category A , and all objects b of the cat-
egory B. Recall from [7] that every dialogue chirality on the left induces a
dialogue chirality on the right (and conversely) by applying the involution

A 7→ B op(0,1) B 7→ A op(0,1) L 7→ R op(0,1) R 7→ L op(0,1).

We have seen in [8] that every dialogue chirality (on the right) comes equipped
with two parametric monads

T : (b, a) 7→ R(b 6 L(a)) : B ×A −→ A
S : (a,m) 7→ a 7 m : A ×A −→ A

together with a commutator

κ7 : S T −→ T S

Symmetrically, every dialogue chirality (on the right) comes equipped with
two parametric comonads

J : (b,n) 7→ b 6 n : B ×B −→ B
K : (a, b) 7→ L(a 7 R(b)) : A ×B −→ B

together with a commutator

κ6 : K J −→ J K.

5 Linearly distributive chiralities

At this point, we are ready to articulate the formal definition of linearly distribu-
tive chirality discussed in the introduction. The reader will find it fully exposed
in §5.1. We then proceed by analogy with linearly distributive categories, and
introduce in §5.2 a notion of right duality adapted to linearly distributive chiral-
ities. The main technical result of the paper appears in §5.3. We establish there
that every linearly distributive chirality equipped with a right duality defines a
dialogue chirality in the sense of §3.1. Finally, we conclude in §5.5 by showing
the notion of linearly distributive chirality (and of right duality) coincides with
the traditional notion of linearly distributive category (and of right duality) in
the “depolarized” case when the two sides A and B of the chirality coincide,
and the two functors L and R are equal to the identity functor.
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5.1 Definition

A linearly distributive chirality is defined as a pair of monoidal categories

(A ,7, true) (B,6, false)

equipped with an adjunction

A

L

""
⊥

R

cc B

together with two commutators

κ7 : R(b 6 L(a)) 7 m −→ R(b 6 L(a 7 m))
κ6 : L(a 7 R(b 6 n)) −→ L(a 7 R(b)) 6 n (20)

between

• the parametric B-monad Tb : a 7→ R(L(b) 7 a) and the parametric A -
monad Sm : a 7→ a 7 m on the category A in the case of κ7,

• the parametric B-comonad Kn : b 7→ b 6 n and the parametric A -
comonad La : b 7→ L(a 6 R(b)) on the category B in the case of κ6.

According to the definition of a commutator, this means that 2 × 4 diagrams
are required to commute. We review them in turn. First of all, the fact that κ7

defines a commutator means that the four diagrams

κ

a

n
R

L

m

b
a

nR

L

m

b

κ

a
n

R

L

m

b

α

a
m

R

L

n

b

α

a

R

Lb

m n

κ
κ

a m

a m

R

L

a

mR

L

η η

false
false

λλ
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κ κ

ε

κ

a

m

R

Lb2

R

Lb1

a

mR

Lb2

R

Lb1

a

m

Lb1

R

b2

α

am

L
b1

R

b2

a m

R

Lb2

R

Lb1

ε

α

ρρ

κ

a

R

Lb

true

a

R

Lb

a

R

Lb

true

commute for all objects a,m,n in A and b, b1, b2 in B. Symmetrically, the fact
that κ6 defines a commutator means that the four diagrams

κ

α

a R

L

nb

a R

L

2

1
κ

κ

a R

L n

b

a R

L

2

1

a R

L

n

b

a R

L

 2 

1

a R

nb
a

L

1 2

η

a
R

n

ba

L

1 2

α

η
R

L

ε

true

κ

nb

ε

n

b

R

L

true

nb

λ λ

κ

α

κ

κ

a R

n
b

L

m

α

a R

n
b

L

m

a R

n

b

L

m a R

n

b

L m

a R

n

b

L m
R

L

κ

b

false

a

b R

L false

a

b

R

L

a

ρ ρ

commute for all objects a, a1, a2 in A and b,m,n in B. Besides this series of eight
commutative diagrams, we ask that the diagram

32



nR

R

L
a

m

L
κ

nR

L
a

m

L
R

n

R

L

a

L

m

R
κ

nR

L

a

L

m

R

κ
κ

R

L
a

L

m

R n

κ

b b b

bb

commutes for all objects a,m,n of the category A and all object b of the cate-
gory B. Symmetrically, we ask that its mirror image

nL

L

R
b

m

R

nL

R
b

m

R
L

n

L

R

b

R

m

L

nL

R

b

R

m

L
κ

κ

a
a

a

a L

R
b

R

m

L n

a
κ

κ κ

commutes for any object a of the category A and all objects b,m,n of the
category B.

Remark. It should be mentioned that in contrast to the eight other coherence
diagrams, the algebraic status of these two coherence diagrams remains some-
what mysterious at the current stage. In particular, they are not justified by the
previous discussions on commutators since they relate the two commutators κ7

and κ6.
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5.2 Right duality in linearly distributive chiralities

A right duality in a linearly distributive chirality (A ,B) is defined as a mo-
noidal equivalence

A

(−)∗

""monoidal
equivalence

∗(−)

cc B op(0,1)

together with two families of morphisms

AX[m] : true −→ R ( m∗ 6 L ( m ) )

CUT[m] : L ( m 7 R ( m∗ ) ) −→ false

each of them parametrized by the objects m of the category A . These mor-
phisms are required to make a series of 4 × 2 coherence diagrams commute,
each of the four pairs consisting of a diagram and of its mirror image. The
first pair of diagrams adapts the usual triangular axiom of adjunctions to the
combinators AX[−] and CUT[−]:

L
m

*

L

m R

m L
m

*

L

m R
m

L
m

L
m

κ

id 

AX m CUT m

true

L

m
false

L
m

ρ λ

(21)

κ

id 

AX m
CUT m

ρλ

R
m

false

R

mtrue

R
m

*

R

m L
m

R
m*

R

m L

m R
m

*

*

R
m* *

* (22)
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The second pair of coherence diagrams expresses that the two combinators AX[−]
and CUT[−] are dinatural:

AX m

*

R

m L
m

*

R

n L
n

*m L
n

true
R

AX n *f

f

(23)

*f

f

*
m R

n

L

CUT m

CUT n

*
m R

m

L

*
n R

n

L

false (24)

The third pair of coherence diagrams expresses that the combinators AX[−]
and CUT[−] are monoidal:

true

AX m

*

R

n L
n

AX n

AX m n

R

L

m n

*m*n

ε

α

λ

*

R

n L

ntrue

*

R

n L

n

*

R

m L
m

κ

*

R

n L

m

*

R

m L

n

*

R

n

m

*m L

n (25)

false

CUT m

CUT n

CUT m n
L

Rm n
*m*n

η

α

κ

L

R
m

n

*m*n

L

n

R

L

R

m

*m*n

L

R

L

R

m

n

*m

*n

R

L

m

*mfalse
λ

R
L
m

*m (26)
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The fourth and last pair of coherence diagrams expresses that the combina-
tors AX[−] and CUT[−] are monoidal, this time with respect to the units:

true

*

R

L

η

AX
true

true

R

L
true

false

R
L

true

monoidality
        of
  negation

unit lawtrue (27)

* R

L

η

CUT

true

R
L

false

monoidality
        of
  negation

unit law
false

false

false
falseR

L

false
(28)

These diagrams are required to commute for all objects m,n and all mor-
phisms f : m→ n of the category A .

5.3 Main result

At this stage, we are ready to establish the main technical result of the paper,
which we identify as the cornerstone of the theory. As a matter of fact, the
property is so important that the two notions of linearly distributive chirality
and of right duality have been carefully carved in order to establish it.

Proposition 6 Every linearly distributive chirality (A ,B) equipped with a right
duality defines a dialogue chirality.

We have described in §3 several equivalent formulations of the notion of dia-
logue chirality. In order to establish Proposition 6, we find convenient to follow
the presentation based on transjunctions as it appears in §3.3. First of all, given
a linearly distributive chirality with a right duality, the two categorical combi-
nators axiom[−] and cut[−] are defined in such a way as to make the diagrams
below commute:

L(R(m∗ 6 Lm) 7 a) κ7
// LR(m∗ 6 L(m 7 a))

ε

��
L(a)

axiom[m] //

AX[m]

OO

m∗ 6 L(m 7 a)
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RL(m 7 R(m∗ 6 b)) κ6
// R(L(m 7 R(m∗)) 6 b)

CUT[m]

��
m 7 R(m∗ 6 b)

cut[m] //

η

OO

R(b)

Note that the very definition of the families axiom[−] and cut[−] ensures that
they are natural in a and b respectively. In order to establish the fact that each
pair defines a transjunction, one needs to check that the two coherence dia-
grams (a) and (b) commute in (19). To that purpose, one starts by constructing
the diagram chase below

am

a

m
L
R

AX m κ

a

m
L
R

*

R

m L

m

a

m R

*m L

m

a

m R

*m L

m

L
R

am R
*m

L

m

L

R

a

L

m

R
a

m
L
R

*

R

m L
m

am

L
R

*

R

m L
m

L
R

true

am

am
R

*m L
mε η

κ

a
L
R

*

R

m L
m

m

a

L

R

*
R
m

L
m

m

η

κ κ

AX m

ε

κ

η

κ

a
L
R

*

R

m L
m

m

κ

κ

κ

CUT m

a
L
m

R

κ

η

CUT m

completed by the following one:
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m

L
R

true

m

η

id

L
m

R
L
R

m

κ
L
R

*

R

m L
m

m
L

R

*
R
m

L
m

m

C
U

T
m

m R

*m L
m

A
X

m

η

η

m R

*m L
m

η

A
X

m

m
L
R

*

R

m L
mA

X
m

ε

id

η

This establishes that the coherence diagram (a) commutes in (19). The fact that
the other coherence diagram (b) commutes in (19) is proved in exactly the same
way, by replacing each diagram chase by its mirror image. This establishes
that the pair of morphisms axiom[m] and cut[m] defines a transjunction as
required by the definition of a dialogue chirality in Proposition 4. At this stage,
there remains to establish the two additional facts required in Proposition 4.
This is achieved by the two diagram chases below, which establish that the
family axiom[−] is dinatural in m:

ε

a
L

*

aR

m L
m

L

*

a

R

m L

m

L

AX m

AX n

*

aR

n L
n

L

κ

κ *

a

R

n L

n

L

ε

*

a

m L

m

*

a

n L

n

*

a

m L

n

f

f *

ε

*

a

R

m L

n

L
κ

*

aR

m L
n

L

f *

ff

f *

and at the same time monoidal:
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m

m

*n L

n

*m

m

*n L

n

a
L

κ

ε

*

a

R

n L

n

L

AX m

κ

AX m n

a

L

R
κ

*m

m

*n L

n a

L

R

AX n

ε

κ

ε

κ κ

ε

ε

ε

ε

κ

κ

κ

*

R

m L

n

*

aR

n L

m

L
*

a

n L

m

*

R

m L

n

R
L

*

a

m

L

m

*
R

n

L

n

R
L

*

R

m L
m

*

aR

n L

n

L

*

a

n L

n

*

R

m L
m

R
L

*

aR

n L
n

L

*

a

n L

n

*

a

n L

m
*

R

m L

n

*

a

n L

m

*

R

m L

n

*

a

n L

m

*

R

m L

n
κ

AX m

AX m

ε

This concludes the proof that the family of transjunctions axiom[−] and cut[−]
provides a dialogue chirality structure to the linearly distributive chirality (A ,B).

An important consequence of Proposition 6 is that

Corollary 7 In a linearly distributive chirality (A ,B) equipped with a right duality,
the functor

L(m 7 −) : A −→ B

is left adjoint to the functor

R(m∗ 6 −) : B −→ A

for every object m of the category A .

Now, recall that a dialogue chirality (A ,B) is called symmetric when the mo-
noidal category (A ,7, true) is equipped with a symmetry. Similarly, a lin-
early distributive chirality (A ,B) is called symmetric when the monoidal cat-
egory (A ,7, true) is equipped with a symmetry. Although we are mainly
interested here in the general case of non-symmetric monoidal categories, we
find useful to observe that

Corollary 8 The notion of symmetric dialogue chirality coincides with the notion of
symmetric linearly distributive chirality with a right duality.
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Remark. It may come as a surprise to the careful reader that only four of the
4 × 2 coherence diagrams required of a right duality — namely equations (21),
(22), (23) and (25) — are used in the proof of Proposition 6. We keep the four
other coherence diagrams in the definition of a right duality because each of
them makes perfect sense, either as the mirror image of another coherence
diagram — in the case of (24) and (26) — or as the degenerate case for units of
another coherence diagram — in the case of (27) and (28). On the other hand,
it follows from Proposition 6 that the four coherence diagrams (24), (26), (27)
and (28) are automatically valid when the coherence diagrams (21), (22), (23)
and (25) hold in a linearly distributive chirality.

5.4 Depolarization

We start by introducing the notion of depolarized linearly distributive chirality.

Definition 6 A linearly distributive chirality is called depolarized when its two
sides A and B are equal and when the two functors L and R are identity functors.

A careful inspection establishes that

Proposition 9 A linearly distributive category is the same thing as a depolarized
linearly distributive chirality.

The main point to observe is that there is a one-to-one relationship between
the coherence diagrams in §5.1 and the coherence diagrams in §2.1.

Proposition 10 The notion of right duality in a linearly distributive category coincides
with the notion of right duality in a depolarized linearly distributive chirality.

An important example of linearly distributive chirality is provided by the
notion of linearly distributive category introduced by Cockett and Seely in [2].
One recovers a theorem by Cockett and Seely

5.5 Illustration

6 Conclusion

An important observation at this point is that the linearly distributive chiral-
ity (A ,B) cannot be recovered from the dialogue chirality structure, because
the dialogue chirality structure deals with right actions of A and B, whereas the
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linearly distributive chirality structure (20) is concerned with their left actions.
A natural way to resolve this problem is to start from a linearly distributive
chirality (A ,B) generated by left and right actions, and then to reconstruct
an equivalent notion of dialogue chirality also based on left and right actions.
However, the problem of properly correlating the left and right actions of A
and B is far more subtle than it seems. In particular, it requires to introduce a
natural isomorphism between the two negations

turnA : A(⊥ −→ ⊥� A

satisfying a series of appropriate coherence diagrams. This leads to the ax-
iomatic investigation of helical, cyclic, braided or symmetric notions of dia-
logue category. This is done in a companion paper.
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