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Abstract
We explain how to see the set of positions of a dialogue game as a coherence space in the sense of
Girard or as a bistructure in the sense of Curien, Plotkin and Winskel. The coherence structure on
the set of positions results from a Kripke translation of tensorial logic into linear logic extended with
a necessity modality. The translation is done in such a way that every innocent strategy defines a
clique or a configuration in the resulting space of positions. This leads us to study the notion of
configuration designed by Curien, Plotkin and Winskel for general bistructures in the particular case
of a bistructure associated to a dialogue game. We show that every such configuration may be seen as
an interactive strategy equipped with a backward as well as a forward dynamics based on the interplay
between the stable order and the extensional order. In that way, the category of bistructures is shown
to include a full subcategory of games and coherent strategies of an interesting nature.

1 Introduction

An important dichotomy in the denotational semantics of a programming language like PCF is
provided by the distinction between the qualitative and the quantitative interpretations of the
language. The distinction is important but recent since the first quantitative model emerged
in the work by Girard on quantitative domains [9] only a few months before the discovery of
linear logic. All the denotational models of PCF were qualitative before that. This includes the
domain-theoretic models either based on continuous functions between Scott domains [24] or
on stable functions between dI-domains [2] as well as the precursor of game semantics based on
sequential algorithms between concrete data structures [3]. The difference between qualitative and
quantitative models is best understood today by translating the intuitionistic types of PCF into
formulas of linear logic. There, the distinction between the two classes of models boils down to
the way the exponential modality ! of linear logic is interpreted. As shown by Ehrhard in his work
on differential linear logic, the quantitative models of linear logic are usually better behaved and
closer to a mathematical understanding of resource (formal series, differential calculus) because
they incorporate the number of times a procedure is called by its environment. On the other
hand, the qualitative models are precious tools for automatic verification of software because they
interpret finite types (typically limited to booleans or to finite approximations of the natural
numbers) as finite mathematical structures, and thus provide mechanical procedures to decide
specific properties of programs.

Quite interestingly, most interactive models based on game semantics are quantitative, rather
than qualitative. There is a good reason for that: once understood how to track the several
copies of a game A in the game !A by using indices or pointers, it is generally easier to describe
the behaviour of a PCF program in exactly the same way as it proceeds in time, typically in
a Krivine machine. As a consequence, the number of times a program of type p!Aq( B calls
its procedure of type A is generally reflected in the game model. As we already mentioned, a
remarkable counter-example to this general principle is provided by the sequential algorithm
model of PCF [3] which is indeed operational and qualitative at the same time. Lamarche and
Curien [15, 5] have shown very early in the history of game semantics how to reformulate this
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model of PCF as a model of intuitionistic linear logic based on sequential data structures — which
we prefer to call here simple games in order to distinguish them among the more general dialogue
games. Because of the qualitative nature of the model, simple games are defined as alternating
decision trees, without the need for extra indexing or pointer structure. The key idea of the
model is to define the simple game !A as the tree of partial explorations of a given strategy σ of
the simple game A. The contraction !AÑ !Ag !A of linear logic is then interpreted by a clever
memoisation procedure which keeps track of the portion of the strategy σ of the game A on the
left explored by the two environments playing independently on the copies of !A on the right. In
this way, one obtains a qualitative model of intuitionistic linear logic whose co-Kleisli category
embeds in the category of sequential algorithms originally introduced by Berry and Curien. Note
that we write AgB for the tensor product of simple games defined by interleaving, in order to
distinguish it from the tensor product of dialogue games AbB.

The interest in this specific Curien-Lamarche modality ! has been recently revived by the
observation that the category of dialogue games and innocent strategies defined by Hyland and
Ong [12] may be reconstructed as a bi-Kleisli category from the category of simple games, using
a quantitative (or repetitive) version of the modality [11]. For the sake of completeness, we find
instructive to take the reverse point of view here, and to see the category Simple of simple games
as a specific full subcategory of a category Dialogue of dialogue games and innocent strategies.
This category Dialogue should be understood as a resource-aware and linear variant of the
original category in [12]. At this point, it is worth recalling the definition of a dialogue category,
see [23] for instance:

§ Definition 1 (Dialogue category). A dialogue category C is a symmetric monoidal category
equipped with an object K together with a functor

 : C op ÝÑ C (1)

and a family of bijections

ϕA,B : CpAbB,Kq – CpA, Bq

natural in A and B. A dialogue category is called affine when its tensorial unit 1 is terminal.

The category Dialogue of dialogue games and total innocent strategies may be concisely defined
as the free affine dialogue category with finite sums (and tensors distributing over these finite
sums). A more concrete definition will appear in §3 but the conceptual definition is convenient at
this introductory stage. Similarly,

§ Definition 2 (Negation category). A negation category C is a category equipped with a functor (1)
and with a family of bijections

νA,B : CpA, Bq – CpB, Aq

natural in A and B.

The category Simple of simple games and total sequential strategies may be concisely defined as
the free negation category with finite sums. Note that Simple coincides with the free category
FampGq with finite sums (or finite family construction) generated by the category G of finite
Opponent starting games and total strategies considered in [5]. As a dialogue category, the
category Dialogue is also a negation category. This implies the existence of a negation and finite
sum preserving functor

embedding : Simple ÝÑ Dialogue

The functor is full and faithful, and injective on objects. As such, it identifies the category
Simple of simple games to a full subcategory of the category Dialogue of dialogue games.
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The category Simple is symmetric monoidal closed with tensor product and linear implication
noted g and ´́˚ respectively. As such, it defines a dialogue category with negation defined as
 A “ A ´́˚ K where K is the simple game with one initial Player move ˚ (which may be also
seen as a unique initial position ˚ of the game) followed by a single Opponent move q. Again, by
the universal characterization of the category Dialogue, this induces a finite sum, tensor and
negation preserving functor

pathification : Dialogue ÝÑ Simple

which we call pathification because it transports every dialogue game A to a simple game
entirely defined by its alternating paths. Despite its name, the pathification functor is a brutal
transformation on the original dialogue game, since it destroys the asynchronous structure of the
asynchronous game A and only retains its alternating paths. On the other hand, every simple
game is already a tree, and thus the composite functor

Simple
embedding // Dialogue

pathification // Simple

is equal to the identity. One preliminary observation of the paper is that the tensor product AgB
between simple games factors as

AgB “ pathificationpembeddingpAq b embeddingpBqq

and similarly, that the Curien-Lamarche exponential modality ! factors as

Simple shriek // Dialogue
pathification // Simple (2)

Note that the transformation shriek is entirely described by the recursive equation

shriek
ˆ

à

iPI

 
à

jPJi

 Aij

˙

“
à

iPI

â

jPJi

  shriek pAijq

whose purpose is to replace every cartesian product (or negated sum indexed by j P Ji) by the
corresponding tensor product. We will illustrate the construction in (3) and (5). In particular,
for every pair of simple games A,B, there exists a bijection

Simplep!A,Bq – DialoguepshriekpAq, embeddingpBqq.

This basic observation seems to underlie a lot of work in the field of game semantics, in particular
the graph-theoretic formulation of the sequential algorithm model by Hyland and Schalk [13]. A
fundamental difficulty (or phenomenon) arises at this point of our analysis: the transformation
shriek is not functorial — and this is precisely the reason why we prefered to indicate it with a
dotted line in (2). In order to understand what is going wrong, let us define 1 as the simple game
with a unique Player move ˚ (or initial position) and the Sierpinski game Σ “   1 as the simple
game with a unique initial Player move ˚ (or initial position) followed by a unique Opponent
move done, itself followed by a unique Player move done. The cartesian product Σ & Σ in the
category Simple is equal to the simple game  

`

p 1q ‘ p 1q
˘

. Now, consider the morphism

σ
P

q

O

done

Σ Σ Σ&

PP

q

O

q
L R

done doneL R

O

(3)
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in the category Simple, where σ denotes the strategy which starts at the initial position pK,Kq
and consists of the two sequences of moves below:

sL : pK,Kq
O
ÝÑ pK, qLq

P
ÝÑ pq, qLq

O
ÝÑ pdone, qLq

P
ÝÑ pdone, doneLq

sR : pK,Kq
O
ÝÑ pK, qRq

P
ÝÑ pq, qRq

O
ÝÑ pdone, qRq

P
ÝÑ pdone, doneRq

(4)

together with their even-length prefixes. We indicate with a grey orb in (3) the fact that the
moves qL and qR are incompatible and thus cannot appear in the same play of the game Σ & Σ.
By definition, shriek transports the simple game Σ into itself, and the simple game Σ & Σ “

 
`

p 1q ‘ p 1q
˘

into the dialogue game Σb Σ “ p  1q b p  1q. We claim that shriek is not
functorial because it cannot transport the strategy σ to any innocent strategy

PP

q

O

q
L R

done doneL R

P

q

O

done

O

Σ Σ Σ
τ

(5)

in the category Dialogue. Note that we remove the grey orb between the moves qL and qR in
the case of the dialogue game Σb Σ to indicate that the two moves are compatible in the game.
Imagine that there exists such an innocent strategy τ “ shriekpσq. In order to make our argument
work, we will make the mild hypothesis that any reasonable functorial definition of shriek should
transport the projection πi : Σ & Σ Ñ Σ to the expected strategy shriekpπiq : Σb Σ Ñ Σ which
plays a copycat strategy between Σ and the first or second component of Σb Σ depending on
the value of i “ 1, 2. With this additional hypothesis, it is easy to deduce from the equality
πi ˝ σ “ idΣ (for i “ 1, 2) and from the totality of τ that the strategy τ “ shriekpσq coincides
with the strategy consisting of the two plays

sLR : pK,K,Kq
Op˚q
ÝÑ pK, qL,Kq

P p˚q
ÝÑ pq, qL,Kq

O
ÝÑ pdone, qL,Kq

P
ÝÑ pdone, doneL,Kq

O
ÝÑ pdone, doneL, qRq

P
ÝÑ pdone, doneL, doneRq

sRL : pK,K,Kq
O
ÝÑ pK,K, qRq

P
ÝÑ pq,K, qRq

O
ÝÑ pdone,K, qRq

P
ÝÑ pdone,K, doneRq

Op˚˚q
ÝÑ pdone, qL, doneRq

P p˚˚q
ÝÑ pdone, doneL, doneRq

together with their even-length prefixes. One recognizes here the contraction strategy Σ Ñ Σ g Σ
of the Curien-Lamarche model for the simple game Σ “ ! Σ. Our whole point is that the strategy τ
is not innocent as a strategy Σ Ñ Σ b Σ because it does not play in the same way in the move
P p˚q of the play sLR and in the move P p˚˚q of the play sRL although the Player views are the
same seen from the move Op˚q and from the move Op˚˚q.

In order to repair the situation, we introduce the notion of coherent strategy which relaxes the
familiar notion of innocent strategy between dialogue games in such a way that (1) there exists a
functor

Dialogue
embedding // Coherent

which enables one to transport every strategy σ : AÑ B between simple games into a coherent
strategy using the composite functor

Simple
embedding // Dialogue

embedding // Coherent

and moreover (2) a functor

Simple shriek // Coherent (6)
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making the diagram below commute

Dialogue

embedding

��

Simple

shriek
77

shriek ''
Coherent

(7)

One main purpose of this paper is thus to introduce the notion of coherent strategy on a dialogue
game. We proceed in the same (slightly unconventional) way as the notion emerged in our
work. First, we recall in §2 the relationship between dialogue games and tensorial logic, and
then define in §3 the notion of innocent strategy we have in mind. Then, we introduce in §4 a
Kripke translation of tensorial logic into linear logic extended with a necessity modality (noted l )
which enables us to interpret the set of positions of a dialogue game as a coherence space in the
sense of Girard or as a bistructure in the sense of Curien, Plotkin and Winskel [6]. After briefly
recalling in the Appendix this model of bistructures, we show in §5 that the configurations σ
of the bistructure rAs of positions of a dialogue game A are positional strategies extending the
familiar notion of innocent strategies. These strategies are precisely what we call the coherent
strategies of a dialogue game. Accordingly, the category Coherent is defined as the category of
coherent strategies between dialogue games. We thus obtain a series of functorial translations:

Simple
embedding// Dialogue // Coherent

forgetful // Bistr

where Bistr denotes the category of bistructures and configurations introduced by Curien,
Plotkin and Winskel [6] and where forgetful adapts to Coherent the forgetful functor U from the
category M of coalgebras of the comonad l to the category Bistr. One interesting observation is
that the functor

Simple shriek // Coherent
forgetful // Bistr l // Bistr (8)

transports every simple game A to the bistructure ! rAs where ! denotes the qualitative exponential
modality of Bistr. From this follows that the functor lifts to a functor between the Kleisli categories
associated to Simple and to Bistr. We deduce that every sequential algorithm σ : !A Ñ B

defines a stable and extensional function ΓpAq Ñ ΓpBq between the associated bidomains of
configurations.

2 Dialogue games and tensorial logic

Tensorial logic is a primitive logic of tensor and negation which refines linear logic by relaxing
the hypothesis that negation is involutive. At the same time, tensorial logic may be seen as
a resource-aware version of polarized linear logic developed by Laurent [17] which itself was
based on the ideas by Girard on polarities in classical logic [10]. In particular, it extends the
connection between polarized linear logic and dialogue games formulated in [16] to the positional
and resource-aware notion of dialogue game defined below.

§ Definition 3. A dialogue game is defined as a family of rooted trees (or forest) where every
node m is equipped with an equivalence relation conflictrms on its set of children. A node of the
forest A is called a move of the dialogue game. One writes m $A n when the node n is a child of
the node m in the forest A, and one declares in that case that the move m justifies the move n.
Accordingly, a root of the forest A is called an initial move of the dialogue game because it is not
justified by any other move. A position of the dialogue game A is then defined as a (non-empty)
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subtree x of the forest A containing only pairwise non-conflicting moves. The set of positions of a
dialogue game is denoted Pos pAq. By convention, we declare that every move of odd depth is
Player, and every move of even depth is Opponent. In other words, every initial move is Player,
and every branch of the forest is then alternating between Opponent and Player moves.

We will make use of the fact that every finite dialogue game A may be alternatively seen as a
formula of tensorial logic:

A,B ::“ 0 | 1 | A‘B | AbB |  A

modulo the equations:

Ab pB ‘ Cq – pAbBq ‘ pAb Cq 0bA – 0

together with the associativity and commutativity of ‘ and b and the fact that the formulas 0
and 1 are their respective units. Let us briefly explain how the correspondence works. The
dialogue game 0 is the empty forest and the sum A‘ B of two dialogue games is obtained by
putting the two forests A and B side by side. As already mentioned, the game 1 is the tree
with a unique Player move ˚. The negation  A of a dialogue game A is defined by “lifting” the
game A with a move ˚ which justifies the initial moves of the game A. The equivalence relation
conflictr˚s is defined as the total relation, hence every two moves justified by the unique initial
move ˚ are conflicting in the game  A. The tensor product of two dialogue games is required to
satisfy the distributivity law

à

iPI

Ai b
à

jPJ

Bj “
à

pi,jqPIˆJ

Ai b Bj

For that reason, the tensor product of two finite dialogue games is entirely described by the
equality

A “
â

iPI

 Ai

where the dialogue game A is defined as the coalesced sum of the trees  Ai. This coalesced
sum A is the dialogue game with unique initial move ˚ obtained (1) by taking the disjoint sum
of the trees  Ai and then (2) by identifying the unique initial move ˚i of each tree  Ai to the
unique initial move ˚ of the game A. By definition of a coalesced sum, this dialogue game A is a
tree whose unique initial move justifies the moves justified by the root ˚i in the game Ai. Its
compatibility relation is defined as follows:

conflictr˚As “
ě

iPI

conflictr˚is

Typically, the boolean formula 1‘ 1 is interpreted as the forest with only two nodes V and F
(for Vrai and Faux, true and false in French) whereas its double negation B “   p1‘ 1q and the
tensor product Bb B define the following dialogue games:

VF

P P

q

O

VF

P P

q

O

L R

VF

P P

q

O

A dialogue game is called simple when the conflict relation is full over every move of the game. For
instance, the dialogue game B is simple whereas the dialogue game Bb B is not simple because
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the two moves qL and qR are not in the same equivalence class of conflictr˚s. Note that the set
of positions of a dialogue game may be defined inductively as follows:

Pos p0q “ H

Pos p1q “ t ˚ u

Pos pA‘Bq “ Pos pAq ` Pos pBq
Pos pAbBq “ Pos pAq ˆ Pos pBq
Pos p Aq “ Pos pAq ` t ˚ u

Every such position x may be nicely depicted by drawing every move m in it as a circle (or as an
ellipse) containing the circles corresponding to the moves n justified by m. The colour convention
is to depict the Player moves as blue circles, and the Opponent moves as red circles. Typically,
the four positions tKu, tK, qRu, tK, qR, VR, qLu and tK, qL, FL, qR, VRu of the game B b B are
respectively depicted as

F VVq
Lq

R

Similarly, the maximal position of the dialogue game pB b Bq (B “  pB b B b  p1 ‘ 1qq is
depicted as

V F V (9)

where, by convention, we write A( B for the dialogue game  pAbB1q when B “  B1. The
intuition behind these pictures is that every move m of a dialogue game is a memory cell of a more
advanced technology than in the case of concrete data structures, since it may contain several
independent cells, each of them filled by a value. Quite obviously, each of these cells corresponds
to a specific equivalence class of conflictrms. This is typically the case of the Opponent move q
in the position (9) which is filled by the three independent “values” qL, qR and done. Note that
one recovers the traditional notion of memory cell when the dialogue game is simple, since in
that case every memory cell is filled by at most one value.

3 Innocent strategies

In order to define the notion of innocent strategy on dialogue games, we find convenient to recall
the asynchronous formulation of innocence formulated in [20]. The starting point of the approach
is the idea that every dialogue game A defines an asynchronous transition system

whose nodes are the positions of the game,
with a transition m : xÑ y between two positions whenever y “ xZ tmu where m is a move
of the game and Z means disjoint sum,
with a permutation pxÑ y1 Ñ zq „ pxÑ y2 Ñ zq whenever y1 “ xZ tmu, y2 “ xZ tnu and
z “ xZ tm,nu for two different moves m and n of the game.

Every transition m : xÑ y is polarized either as Player or Opponent depending on the polarity of
the move m added to the position x in order to obtain the position y. Every initial Player move ˚
of the dialogue game defines an initial position t˚u of the associated asynchronous transition
system. By convention, we generally identify the initial position t˚u with the initial Player move ˚.
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§ Definition 4. A sequential play of a dialogue game A is defined as a path

˚
m1
ÝÑ x1

m2
ÝÑ ¨ ¨ ¨

mk
ÝÑ xk

starting from an initial position ˚ of the asynchronous transition system and then alternating
between Opponent and Player moves. In particular, every move mk is Opponent when k is odd
and Player when k is even. The position x is called the target position of the play s. A play is
called empty when k “ 0. There is a one-to-one correspondence between the initial positions of a
dialogue game and its empty plays.
§ Definition 5. A sequential strategy σ of a dialogue game A is defined as set of even-length
sequential plays which

has a starting point: σ contains the empty play ˚ for exactly one initial position ˚,
is closed under even-length prefix: s ¨m ¨ n P σ implies that s P σ,
is deterministic: s ¨m ¨ n1 P σ and s ¨m ¨ n2 P σ implies that n1 “ n2

for all plays s and all moves m,n, n1, n2 of the dialogue game.
§ Definition 6. A sequential strategy is called backward innocent when every play s P σ, every
path t, every pair of Opponent moves m1, m2, and every pair of Player moves n1, n2 which satisfy
the properties:

s ¨m1 ¨ n1 ¨m2 ¨ n2 ¨ t P σ and  pn1 $ m2q and  pm1 $ m2q

satisfy also the properties:

 pn1 $ n2q and  pm1 $ n2q and s ¨m2 ¨ n2 ¨m1 ¨ n1 ¨ t P σ.

Backward innocence may be depicted as the following diagrammatic property:

s

t

n

m





mm

n

σ � ∈σ �

s

t

n

m





m

n n

m





m

n

σ⇒ (10)

§ Definition 7. A strategy σ is forward innocent when every play s P σ, every pair of Opponent
moves m1, m2, and every pair of Player moves n1, n2 satisfying the properties:

s ¨m1 ¨ n1 P σ and s1 ¨m2 ¨ n2 P σ and m1 ‰ m2

satisfy also the properties:

n1 ‰ n2 and s ¨m1 ¨ n1 ¨m2 ¨ n2 P σ.

Forward innocence may be depicted as the following diagrammatic property:

s

m

mm

n

σ � ∈σ �

s

n

m





m

n n

m





m

n

σ⇒
n

∈ σ
(11)
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§ Definition 8. A strategy is called innocent when it is backward and forward innocent.

One important property of innocence established in [20] is that every innocent strategy is positional,
in the sense that it is entirely described by its set of halting positions. By halting position of the
innocent strategy σ, we mean a position x of the dialogue game such that there exists a play s P σ
with target position x.

§ Definition 9. A sequential strategy σ of a dialogue game A is called total when for every
play s P σ, and for every Opponent move m such that s ¨m is a play of the dialogue game A,
there exists a Player move n such that s ¨m ¨ n P σ.

Note that the notion of total strategy considered here is weaker than in [23] since we do
not require that every maximal position px, yq of the strategy in DialoguepA,Bq reaches two
maximal positions x and y of the dialogue games A and B. A typical illustration is provided by
the strategy eA :  AÑ 1 which contains exactly the empty play on the unique initial position ˚.
Its unique maximal position is the pair p˚, ˚q of initial positions in  A and 1 although the
position ˚ is not maximal in the dialogue game  A.

One main application of tensorial logic is the following characterization of the category Dialogue
of dialogue games and total innocent strategies. The proof of the proposition may be done directly
in a proof-theoretic style or by extending to finite sums the combinatorial presentation of innocence
in [23].

§ Proposition 10. The category Dialogue is the free affine dialogue category with finite sums
(and tensor product distributing over these finite sums) generated by the empty category.

Although Proposition 10 looks like a purely conceptual statement, it provides a very useful tool
in order to relate game semantics to various models of tensorial or linear logic. In particular, it
states that there exists a canonical (and functorial) interpretation of dialogue games and total
innocent strategies

r´s : Dialogue // D (12)

in any affine dialogue category D with finite sums, where the tensor distributes over finite sums.
Moreover, by its mere construction, the functor A ÞÑ rAs preserves the monoidal structure, the
finite sums, the negation and the weakening map eA :  AÑ 1 up to coherent isomorphism.

4 A Kripke translation of tensorial logic into linear logic + necessity

One preliminary insight of the paper is that the construction A ÞÑ Pos pAq which transports a
dialogue game to its set of positions may be understood as an instance of the semantic functor (12).
After all, a simple example of such an affine dialogue category D is provided by the category Rel
of sets and relations with weakening eA : AK Ñ 1 defined as the empty relation. As in the case of
any such affine ˚-autonomous category, the tensorial negation  A is interpreted as the involutive
negation:

r As “ rAsK. (13)

In the specific case of Rel, this implies that rAs coincides with the set of maximal positions of the
dialogue game A. This preliminary observation leads to the idea of replacing the inappropriate
interpretation (13) of tensorial negation by the following one

r As “ l rAsK (14)

where the modality l would be typically defined as

lA “ A & K (15)
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in order to add a point to the relational interpretation of A. The idea is tempting, but there
remains to justify it from a logical and algebraic point of view. In order to understand where we
stand, it is worth recalling that tensorial logic enjoys the same position with respect to linear logic
as intuitionistic logic does with respect to classical logic. From that point of view, it makes sense
to translate tensorial logic into linear logic in just the same way as one translates intuitionistic
logic into classical logic. A typical solution is to adapt the well-known Kripke translation of
intuitionistic logic in the modal logic S4 consisting of classical logic extended with a necessity
modality l. Recall that the Kripke translation is based on the following interpretation of the
intuitionistic implication:

rA ñint B s “ l p rAsK _ rBs q (16)

Note that one recovers an intuitionistic variant of (14) by taking the formula B equal to false
in (16). Consequently, our next purpose will be to design a linear logic extended with a necessity
modality l in such a way as to make our tensorial version of the Kripke translation (14) work.
We could proceed syntactically and define a sequent calculus for the logic, which we will call linear
S4 for simplicity. Since this is essentially equivalent, we prefer to remain at an algebraic level, and
to define a categorical semantics of linear S4. To that purpose, we introduce the following notion:

§ Definition 11. A necessity modality on a symmetric monoidal category L is defined as a
symmetric monoidal comonad l. By this, one means a comonad l thus equipped with two
natural families of morphisms

εA : A ÝÑ lA δA : lA ÝÑ l lA

making the expected associativity and unit diagrams commute, together with a natural family of
coercions

mA,B : lAblB Ñ l pAbBq m1 : 1 ÝÑ l 1
making l a lax symmetric monoidal functor, and compatible with the structure of the comonad.

It is well-known and not difficult to check that in that case, the comonad factors as

l “ Forget ˝Necessary

where Forget and Necessary define a symmetric monoidal adjunction

pM,b, 1q

Forget

""
K

Necessary

bb pL,b, 1q (17)

and the category M is typically defined as the category of Eilenberg-Moore coalgebras of the
comonad. The adjunction is called a symmetric monoidal adjunction because it is the same thing
as a formal adjunction in the 2-category of symmetric monoidal categories and symmetric monoidal
functors in the lax sense, see [21] for details. The notion of symmetric monoidal adjunction is
important in tensorial logic because it enables one to transport the tensorial negations of the
category L into the category M. Suppose for instance that the category L is ˚-autonomous. In
this case, the category M inherits a tensorial negation

 A “ Necessary p pForget AqKq (18)

from the linear negation in the category L. Hence, M defines a dialogue category. This establishes
that every ˚-autonomous category L equipped with a necessity modality l induces a model of
tensorial logic, simply defined as its dialogue category M of Eilenberg-Moore coalgebras. Note
that the category M has finite sums as soon as the underlying category L has finite sums. One
shows moreover that the dialogue category M is affine when the necessity modality l is affine in
the following sense.



Paul-André Melliès 11

§ Definition 12. An affine necessity modality l on a symmetric monoidal category L is a necessity
modality equipped with a family of coalgebra maps eA : lA ÝÑ 1 natural in A and monoidal in
the sense that the equalities below are satisfied:

lAblB
eAbeB // 1b 1 iso // 1 “ lAblB

mA,B // lpAbBq
eAbB // 1

1 m1 // l 1 e1 // 1 “ id1.

The notion of affine necessity modality is quite familiar in models of linear logic. In particular,
the exponential modality ! of a linear category L defines an affine necessity modality, see [21] for
details. The ongoing discussion establishes that

§ Proposition 13. Every ˚-autonomous category with finite sums equipped with an affine necessity
modality l induces a functor pDialogue,b, 1q ÝÑ pM,b, 1q where M denotes the category of
Eilenberg-Moore coalgebras of the comonad l.

It is not very difficult to check that equation (15) defines an affine necessity modality l in the
category Rel, with weakening eA : A& 1 Ñ 1 defined as the projection on the second component.
Much more interesting is the fact that the same equation (15) defines an affine necessity modality
in the category Coh of coherence spaces. The resulting semantic functor A ÞÑ rAs enables us to
identity the set of positions Pos pAq as the web of the coherence space rAs. By way of illustration,
the dialogue game B “   p1‘ 1q is transported to the following coherence space:

VF

q

VF

P P

q

O

(19)

where the initial position K is coherent with the three other positions q “ tK, qu, F “ tK, q, F u
and V “ tK, q, V u which are themselves pairwise incoherent. One main benefit of our logical
approach to game semantics is that every innocent strategy σ playing on the dialogue game A is
shown to be interpreted as a clique of halting positions rσs in the coherence space of positions rAs.
This fact that the set of halting positions of an innocent strategy σ defines a clique in rAs is
reasonable, but it does not seem so easy to establish by a direct and purely combinatorial proof.

5 Dialogue categories and coherent strategies

Our next task is to apply our general method in order to interpret the positions of a dialogue
game A as the web of a bistructure. The bistructure model of linear logic was introduced by
Curien, Plotkin and Winskel about ten years ago [6] and it remains today one of the most clever
and enigmatic models ever designed for linear logic. Its main achievement is to integrate the
causality principles underlying Berry’s notion of stable function — later revisited by Girard in
his coherence space model of linear logic — to the information structure underlying the notion
of continuous function between Scott domains [24]. The definition of bistructure is recalled in
the appendix. In order to achieve our task on dialogue games, we introduce an affine necessity
modality on bistructures:

l : Bistr ÝÑ Bistr
simply defined by extending a given bistructure E with one element ˚ in such a way that ˚ ďR e
for all e P E. Note that by definition of a bistructure, this implies that ˚ ¨ e for all e P E.
We then apply Proposition 13 in order to interpret the set of positions of a dialogue game A
as the web of a bistructure rAs, and an innocent strategy σ : A Ñ B as a configuration rσs
defining a morphism rAs Ñ rBs in the category M of coalgebras of the comonad l. Typically,
the bistructure associated to the dialogue game B “   p1‘ 1q refines the coherence space (19)
with the extra ďL and ďR ordering information:
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VF

P P

q

O

VF

R

L L

q

R
R

The diagram should be read as follows: it states that F, V ďL q and that K ďR q, F, V . An easy
induction on the formulas of tensorial logic enables one to characterize the two orders ďL and ďR
on the set of positions of a dialogue game A.

§ Proposition 14. For every dialogue game A, two positions x, y P Pos pAq satisfy
x ďL y precisely when y Ď x and the position y may be obtained from x by removing subtrees
with Player moves as roots,
x ďR y precisely when x Ď y and the position x may be obtained from y by removing subtrees
with Opponent moves as roots.

Proposition 14 is important because it provides an elementary and purely combinatorial account
of the two orders ďL and ďR. A typical illustration of these orderings is provided by the three
positions of the dialogue game Bb B ( B considered earlier:

V F VVq
L

q
R

q
L

q

Unfortunately, the coherence relation ¨rAs between positions of a dialogue game A appears more
difficult to formulate in a similarly simple combinatorial way. We will not try to do that here.
Rather, we establish the following useful property.

§ Proposition 15. The set-theoretic intersection xX y of two positions x, y P Pos pAq included in
a position z P Pos pAq is itself a position of the dialogue game A. Moreover, the two positions x
and y are coherent in the bistructure rAs of positions in the sense that x ¨rAs y whenever they
satisfy the inequalities:

xX y ďR x xX y ďR y.

Dually, the two positions x and y are incoherent in the bistructure of positions in the sense that
x ˚rAs y whenever they satisfy the inequalities:

x ďL xX y y ďL xX y.

Proof. See the appendix. đ

An interesting and non trivial consequence of Proposition 13 is the following statement:

§ Proposition 16. The set of halting positions rσs of a total innocent strategy σ playing on a
dialogue game A defines a configuration of the bistructure of positions rAs.

Once this result established, a natural question is to understand more generally the behaviour
of any configuration σ of the bistructure rAs of positions associated to a dialogue game A. We
know already that every such configuration σ is secured, and thus has a backward dynamics which
recovers from every position x P σ the causal cascade which produced it from the initial position
of the dialogue game ˚. Indeed, in the case of a bistructure of positions rAs, securedness means
that for every position x in the configuration σ and for every position y obtained by removing
some Opponent information from x, there exists a position z P σ obtained by removing some
Player information from y. This interpretation of securedness follows from Proposition 14. The
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somewhat surprising observation is that every configuration σ of a bistructure of positions rAs is
also equipped with a forward dynamics and thus behaves like a (usually not sequential) strategy.
This last claim is formulated as the following result:

§ Proposition 17. For every configuration σ of the bistructure rAs of positions of a dialogue
game A, and for every pair of positions x P σ and z P σ, such that x Ď z, and for every Opponent
transition m : xÑ y to a position y P Pos pAq such that y Ď z, there exists a (possibly empty)
path of Player transitions t : y Ñ y1 Ñ ¨ ¨ ¨ Ñ yn Ñ y1 such that y1 P σ and y1 Ď z. The position y1
is moreover unique.

Proof. See the appendix. đ

The result of Proposition 17 justifies to introduce the following definition.

§ Definition 18. A coherent strategy on a dialogue game A is defined as a configuration on the
bistructure of positions rAs. Accordingly, the category Coherent is defined as the category with
dialogue games as objects and with configurations σ of the bistructure rAs( rBs making the
diagram below commute

rAs

dA
��

σ // rBs

dB
��

l rAs
lσ // l rBs

where dA and dB are the coalgebra structures
wrt. the comonad l

of the bistructures of positions rAs and rBs.

as morphisms. By construction, the category Coherent is an affine dialogue category with finite
sums, and its tensor product distributes over these finite sums. Moreover, there is a functor of
dialogue category

Dialogue
embedding // Coherent

and the category Coherent embeds fully and faithfully as a dialogue category in the dialogue
category M of coalgebras of the comonad l.

6 Sequential algorithms as stable extensional functions

The connection between dialogue games and bistructures provided by the functor r´s only works
at this stage for the linear fragment of tensorial logic. In particular, it does not include the
quantitative exponential modality of dialogue games and innocent strategies. However, we explain
that this connection is sufficient in order to interpret the qualitative exponential modality ! of
simple games. The connection is provided by the following observation:

§ Proposition 19. For every simple game A, there exists an isomorphism

λA : ! rAs Ñ l rshriekpAqs (20)

in the category of bistructures, where ! denotes the qualitative exponential modality on bistructures
introduced by Curien, Plotkin and Winskel.

Proof. See the appendix. đ

Just as announced in the introduction, using this result, one constructs a functor

shriek : Simple ÝÑ Coherent

making the diagram (7) commute. The functor shriek is constructed in such a way that the
composite functor (8) coincides with the functor

Simple
r´s // Coherent

forgetful // Bistr ! // Bistr
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One observes moreover that the bistructure rAs of positions of a simple game A is a B-bistructure
in the sense of Curien, Plotkin and Winskel, see [6]. From this follows that its set of configura-
tions ΓpAq equipped with the stable order ĎR and the extensional order Ď defines a bidomain in
the sense of Berry [2]. From all this, one deduces that

§ Proposition 20. There exists a functor

Γ : KleislipSimple, !q // KleislipBistr, !q

between the co-Kleisli categories induced by the Curien-Lamarche modality ! on simple games and
the Curien-Plotkin-Winskel modality ! on bistructures. The definition of the functor Γ is based on
the fact that every sequential algorithm

σ : A ñ B (21)

may be alternatively seen as a sequential strategy

σ : !A ÝÑ B

in the category Simple of simple games, which may be itself seen as an innocent strategy

ϕpσq : shriekpAq ÝÑ B

in the category Dialogue of dialogue games. By definition, the functor Γ transports the sequential
strategy (21) to the composite morphism

! rAs λA // l r shriekpAq s counit // r shriekpAq s
rϕpσqs // rBs

in the category of bistructures, which itself corresponds to the stable and extensional function

Γpσq : ΓpAq ñ ΓpBq

between the bidomains of configurations ΓpAq and ΓpBq induced by the bistructures of positions
rAs and rBs of the simple games A and B.

7 Conclusion

This work on coherent strategies between dialogue games is still at a pretty preliminary stage but
we find useful to share the general methodology of our approach based on tensorial logic as well
as the somewhat unexpected discovery that the category of bistructures contains a subcategory of
dialogue games and coherent strategies. Our final result that every sequential algorithm between
two simple games A and B induces a stable and extensional function ΓpAq Ñ ΓpBq between
the associated bidomains of configurations is related to the extensional description of sequential
algorithms investigated by Curien, Laird and Streicher [14, 7, 18]. In particular, Streicher made
the important observation that the set of sequential strategies with errors on a simple game
defines a bidomain in the sense of Berry. In that line of research, it should be possible to refine
our Proposition 20 in order to characterize the sequential algorithms between A and B as a
specific class of stable and extensional functions, but we prefer to leave that aspect for future
work. Note that such a characterization has already been given by Calderon and McCusker [4] for
sequential strategies between simple games. Another question of interest would be to understand
the relationship between the present work on dialogue games and bistructures with the tight
connection between sequential games and Ehrhard’s hypercoherence spaces [8, 22].
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Appendix: a short account of bistructures
We recall below the notion of bistructure as well as the main definitions of the theory.

§ Definition 21. A (countable) bistructure is a quadruple pE,ďL,ďR,¨q where E is a countable set
called the web of the bistructure, ďL, ďR are partial orders on E and ¨ is a binary reflexive, symmetric
relation on E such that:
1. defining ď as the transitive closure of pďL

Y ď
R
q, we have the following factorisation property:

e ď e1 ñ De2 P E, e ďL e2 ďR e1

2. defining ĺ as the transitive closure of pěL
Y ď

R
q, we have the following properties:

a. ĺ is finitary, i.e., te1|e1 ĺ eu is finite, for all e P E,
b. ĺ is a partial order,
3. (a) Ó

L
Ď˚ and (b) Ò

R
Ď¨.

Here, the two compatibility relations are defined by:

e ÓL e1 ðñ D e2 P E, e2 ďL e and e2 ďL e1

e ÒR e1 ðñ D e2 P E, e ďR e2 and e1 ďR e2.

and we write ˚ for the reflexive closure of the complementary of ¨. We then recall below the definition
of configuration.

§ Definition 22. A configuration of a bistructure pE,ďL,ďR,¨q is a subset σ Ď E which is:
consistent: @e, e1 P σ, e ¨ e1, and
secured: @e P σ, @e1 ďR e, De2 P σ, e1 ďL e2.

We write ΓpEq for the set of configurations of a bistructure E, and ΓfinpEq for the subset of finite
configurations. At this point, we recall how Curien, Plokin and Winskel [6] define a stable order Ď

R and
an extensional order Ď on the configurations σ, τ P ΓpEq of a given bistructure E.

§ Definition 23. Let E be a bistructure. The stable order Ď
R and the extensional order Ď on configurations

are defined as:
Ď

R is set-theoretic inclusion,
σ Ď τ ðñ @e P σ, De1 P τ, e ďL e1.

Note that it follows from the reflexivity of ďL that Ď
R is included in Ď. A third relation Ď

L is then
defined as follows:

σ Ď
L τ ðñ σ Ď τ and p@υ P ΓpEq, pσ Ď υ and υ Ď

R τq ñ τ “ υq

Thus, σ Ď
L τ means that τ is a Ď

R-minimal configuration such that σ Ď τ . We also write σ ÒR τ when
there exists a configuration υ P ΓpEq such that σ Ď

R υ and τ Ď
R υ.

We briefly recall from [6] that the category Bistr has bistructures as objects and configurations of A(B

as morphisms σ : AÑ B. The category is ˚-autonomous and has finite sums provided by the following
definitions.

the negation E K of a bistructure pE,ďL,ďR,¨q is defined as pE,ěR,ěL,˚q,
the sum E1‘E2 of two bistructures pE1,ď

L
1 ,ď

R
1 ,¨1q and pE2,ď

L
2 ,ď

R
2 ,¨2q is defined as pE1`E2,ď

L
1

` ď
L
2 ,ď

R
1 ` ď

R
2 ,¨1 ` ¨2q,

the tensor product E1 b E2 of two bistructures pE1,ď
L
1 ,ď

R
1 ,¨1q and pE,ďL

2 ,ď
R
2 ,¨2q is defined as

pE1 ˆ E2,ď
L
1 ˆ ď

L
2 ,ď

R
1 ˆ ď

R
2 ,¨1 ˆ ¨2q,

the bistructure 0 has an empty web, and the bistructure 1 has a singleton web,
the exponential !E of a bistructure pE,ďL,ďR,¨q is defined as pΓfinpEq,Ď

L,ĎR, ÒR
q where these

structures are introduced in Definition 23.

Appendix: Proof of Proposition 15

Proof. The proof is established by an easy induction on the formula defining the dialogue game A. The
property is obvious in the case of the two unit games 0 and 1. We treat in turn the inductive case of the
game AbB, of the game A‘B and of the game  A.



Paul-André Melliès 17

First inductive case: the dialogue game AbB.
By definition of the dialogue game AbB, the two positions x and y are of the form x “ xA b xB and
y “ yA b yB . Suppose that the two positions x and y are included in a position z “ zA b zB . In that
case, the positions xA and yA obtained by projecting x and y on the component A are included in the
position zA. By induction hypothesis, it follows that xA X yA is a position of the dialogue game A.
One establishes symmetrically that the intersection xB X yB is a position of the dialogue game B. The
set-theoretic intersection x X y is equal to pxA X yAq b pxB X yBq which is a position of the dialogue
game AbB. We conclude that xX y is a position of the game AbB.

Now, suppose that two positions x “ xAbxB and y “ yAb yB are included in a position z “ zAb zB

and moreover that xX y ďR x and xX y ďR y. In that case, the two positions xA and yA are included in
the position zA. Moreover, xAX yA ď

R xA and xAX yA ď
R yA since xX y “ pxAX yAq b pxB X yBq and

the order ďR is defined in the bistructure rAbBs “ rAs b rBs as the componentwise product of ďR in
the bistructures rAs and rBs. By induction hypothesis applied to the game A, it follows that xA ¨rAs yA.
One establishes symmetrically that xB ¨rBs yB . From this, we conclude by definition of coherence in the
bistructure rAbBs “ rAs b rBs that xA b xB ¨rAbBs yA b yB and thus, that x ¨rAbBs y.

There remains to establish the last statement of the proposition. Suppose that two positions x “
xA b xB and y “ yA b yB are included in a position z “ zA b zB and moreover that x ďL x X y and
y ďL x X y. The proof that x ˚rAbBs y is done in the same way as in the previous paragraph. In
that case, the two positions xA and yA are included in the position zA. Moreover xA ď

L xA X yA and
yA ď

L xA X yA because xX y “ pxA X yAq b pxB X yBq and the order ďL is defined in the bistructure
rAbBs “ rAs b rBs as a componentwise product of ďL in the bistructures rAs and rBs. By induction
hypothesis applied to the game A, it follows that xA ˚rAs yA. One establishes symmetrically that
xB ˚rBs yB. From this, we conclude by definition of coherence in the bistructure rAbBs “ rAs b rBs
that xA b xB ˚rAbBs yA b yB and thus, that x ˚rAbBs y.

Second inductive case: the dialogue game A‘B.
By definition of the dialogue game A ‘ B, the fact that the two positions x and y are included in a
position z implies that the three positions x, y, z lie in the same component A or B of the game A‘B. We
may suppose without loss of generality that the three positions x, y, z are positions of the component A.
From this, it follows easily by induction hypothesis applied to the dialogue game A that the intersection
xX y is a position in the game A and thus in the game A‘ B. The two remaining statements of the
proposition are just as easy to establish by induction.

Third inductive case: the dialogue game  A.
By definition of the dialogue game  A, we are in one of the two possible situations: either the three
positions x, y, z are in the component A or one of the two positions x, y is the initial position ˚ itself. The
first case is easily treated by induction hypothesis on A. In the second case, one of the two positions x
and y is equal to the initial position ˚. For the sake of discussion, we may suppose without loss of
generality that the position x is equal to the initial position ˚. The intersection xX y “ ˚ is a position of
the dialogue game  A. Moreover, it follows from the definition of the bistructure r As of positions of
the game  A as the bistructure l prAsKq that the two positions x and y are coherent in the bistructure
r As since x “ ˚ is the position added to the bistructure rAsK by the necessity modality. Note that, by
definition of l prAsKq, the position x “ ˚ also satisfies ˚ ďR y. Moreover, if y ďL

˚ then y “ ˚, and thus
x ˚r As y. This concludes the proof by induction of Proposition 15. đ

Appendix: Proof of Proposition 17
Proof. The proof is based on the very specific properties of the bistructure rAs associated to a dialogue
game A, and in particular on the two Propositions 14 and 15. Given the position x P σ and the Opponent
transition m : x Ñ y such that y Ď z for z P σ, let y` denote the smallest position (with respect to
inclusion) containing the position y as a subset: y Ď y`, and satisfying y` ďR z. This position y` exists
and is defined according to Proposition 14 by removing from the position z all the subtrees with an
Opponent root n not element of the position y. It is important to observe that the position y` only
contains Player moves besides the moves already in the position y. The situation may be depicted as
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follows. Note that the Opponent move m in the position y is depicted in red, and the layer of Player
moves between y and y` is depicted in blue.

m

x

z

m

x

y

z

y

By the securedness property of the configuration σ, there exists a position y1 P σ such that y` ďL y1. By
Proposition 14, the position y1 is obtained from the position y` by removing a series of subtrees with Player
roots. From this follows in particular that the position xX y1 is obtained from the position xX y` “ x

by removing a series of subtrees with Player roots. Hence, x ďL xX y1.

First claim: the move m appears in the position y1.
We claim that the move m appears in the position y1. Suppose that this is no the case, and that the
move m does not appear in the position y1. In that case, a simple argument shows that the position xX y1
is obtained from the position y1 by removing only subtrees with roots in the position y` but not in
the position y. An important point is that the roots of these subtrees removed from y1 in order to
obtain xX y1 are all Player moves. By Proposition 14, it thus follows that y1 ďL xX y1. Recall moreover
that the two positions x and y1 are included in the position z and that x ďL xX y1. All this put together
establishes thanks to Proposition 15 that the positions x and y1 are incoherent in the bistructure rAs.
Since the two positions x and y1 are also coherent as elements of the clique σ, they are necessarily equal.
This contradicts the definition of y and of y` and more specifically the fact that y` ďL y1. The point is
that the position x “ y1 can be obtained from the position y (and thus from the position y`) only at
the condition of removing the subtree with Opponent root m. From this, we conclude that the move m
necessarily appears in the position y1.

Second claim: the position x is a subset of the position y1.
Now, we want to prove that x Ď y1. Suppose that this is not the case, and let the position x` be
obtained by removing the subtree with Opponent root m from the position y1 P σ. By construction, one
has x` ďR y1. One also has x X x` “ x X y1 since m is not an element of x. From this follows that
x ďL xX x` since we already know that x ďL xX y1. By securedness of σ, there exists a position x1 P σ
such that x` ďL x1. By Proposition 14, the position x1 is obtained from the position x` by removing
subtrees with Player roots. From this follows that the position xXx1 is obtained from the position xXx`
by removing subtrees with Player roots. Hence, xXx` ďL xXx1 by Proposition 14 again. From this and
x ďL xX x`, we conclude by transitivity that x ďL xX x1. At this point, a simple argument shows that
the position xX x1 is obtained from the position x1 by removing subtrees whose roots stand among the
Player moves in y` but not in y. The fact that these moves are all Player moves implies that x1 ďL xXx1.
The two inequalities x ďL xX x1 and x1 ďL xX x1 together with the fact that the positions x and x1 are
included in the position z implies by Proposition 15 that x and x1 are incoherent in the bistructure rAs.
Since the two positions x and x1 are also coherent as elements of the clique σ, they are equal. The
equality x “ x1 establishes that x Ď y1 since x1 Ď x` Ď y1 by definition of the position x1 P σ.

From the two claims just established, we conclude that y “ xZ tmu is a subset of the position y1. By
construction, the position y1 is at the same time a subset of y` which only contains Player moves besides
the moves already in the position y. From this, we deduce that the position y1 only contains Player moves
besides the moves already in position y, and thus that there exists a path of Player transitions from the
position y to the position y1 P σ. đ

Appendix: Proof of Proposition 19
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Proof. We construct the isomorphism

λA : ! rAs Ñ l rshriekpAqs

in the category of bistructures, for every simple game A. The first step of the construction is to characterize
the configurations σ of the associated bistructure rAs of positions. A preliminary observation is that
there is a one-to-one relationship between (1) the positions of the simple game A seen as a dialogue game
(2) the sequential plays

˚
m1
ÝÑ x1

m2
ÝÑ ¨ ¨ ¨

mk
ÝÑ xk

of the simple game A and (3) the elements of the web of the bistructure rAs. Since every position x of
the bistructure rAs corresponds to a specific sequential play of the simple game A, every configuration σ
is alternatively described by a set of sequential plays (or positions) x P σ of the simple game A. We claim
that every configuration σ of the bistructure rAs is closed under even-length prefix in the sense that every
sequential play (or position) y which is even-length prefix of a sequential play (or position) x P σ is also
an element of the configuration σ. In order to establish our claim, we first observe that by Proposition 14,
a position y is an even-length prefix of the position x precisely when y ďR x. Suppose that we are in
that case, and that y ďR x. By securedness of σ, we know that there exists a position z P σ such that
y ďL z. We would like to prove that z “ y. Suppose that it is not the case and that z is a strict prefix
of y. In that case, z P σ is also a strict prefix of x P σ. By Proposition 14, the position z is obtained from
the position y by removing a subtree (in that case, a branch) with a Player root. Hence, the position z
is also obtained from the position x by removing a subtree with a Player root since y is a prefix of x.
From this, we conclude by Proposition 14 that x ďL z. By definition of a bistructure, the two positions x
and z are thus incoherent in the bistructure rAs. The two positions x and z are also coherent as elements
of the configuration σ. From this, we conclude that x “ z. This contradicts the fact that the position z
is a strict prefix of the position y and thus of the position x. From this, we conclude that z “ y, and
thus, that the configuration σ is closed under even-length prefix.

Similarly, we may establish a complementary property of the configuration σ, which states that every
strict prefix y P σ of a position x P σ is of even length. The reason is that the two positions x and y of the
configuration σ are coherent, whereas the relation x ďL y (and thus x ˚rAs y) would hold if the position
y was of odd length. This second observation leads us to introduce a useful variant of our Definition 5 of
sequential strategy on a dialogue game A, see for instance [19].

§ Definition 24 (sequential strategy with errors). A sequential strategy σ with errors on a dialogue game A
is defined as set of sequential plays which

has a starting point: σ contains the empty play ˚ for exactly one initial position ˚,
is closed under even-length prefix, in the sense that for every even-length prefix s of a sequential
play t, one has t P σ ñ s P σ,
has no intermediate errors, in the sense that for every odd-length prefix s of a sequential play t, one
has ps P σ and t P σq ñ s “ t,
is deterministic, in the sense that for every even-length sequential play s, s ¨m ¨n1 P σ and s ¨m ¨n2 P σ

implies that n1 “ n2,
for all plays s and all moves m,n, n1, n2 of the dialogue game.

Note that by definition of a strategy σ with errors, every odd-length position s of the strategy σ is
maximal among the positions in σ. Such an odd-length position of the strategy σ is called an error of the
strategy. We have just established that every non-empty configuration σ of the bistructure rAs of positions
of a simple game A satisfies the three first properties of Definition 5. We prove the fourth property
(determinism) below. Suppose given an even-length position x of the configuration σ, alternatively seen
as a sequential play:

s “ ˚
m1
ÝÑ x1

m2
ÝÑ ¨ ¨ ¨

m2k
ÝÑ x2k “ x

and suppose that the two sequential plays y1 “ s ¨ m ¨ n1 and y2 “ s ¨ m ¨ n2 are positions in the
configuration σ. We claim that n1 “ n2. The proof is very easy, since it simply consists in observing
that the two positions y1 and y2 are strictly incoherent in the bistructure rAs when the moves n1 and
n2 are different. Since the positions y1 and y2 are elements of the configuration σ, and thus coherent,
we conclude that n1 “ n2. This establishes that every non-empty configuration σ of the bistructure rAs
defines a sequential strategy with errors of the underlying simple game A. Conversely, it is easy to check
that every sequential strategy σ with errors of the simple game A defines a non-empty configuration of
the bistructure rAs of configurations. From this we conclude that
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Fact: there is a one-to-one relationship between the non-empty configurations of the
bistructure rAs and the sequential strategies with errors of the simple game A.
At this point, an obvious but important observation is that every sequential strategy σ with errors of the
simple game A may be alternatively seen as a non-empty subtree of A which only branches on Opponent
moves. This subtree is entirely described by its set maxpospσq of maximal positions. Note that the
positions in maxpospσq may be either of even-length or of odd-length. The sequential strategy σ with
errors is then recovered from maxpospσq as

σ “ maxpospσq Y even-length-prefixpmaxpospσqq

where even-length-prefixpXq denotes the set of even-length prefixes of a position in X. This establishes
that there is a one-to-one relationship between the non-empty configurations of rAs and the non-empty
subtrees of the simple game A which only branch on Opponent moves. Now, such a non-empty subtree
which only branches on Opponent moves in the simple game A is the same thing as a position in the
dialogue game shriekpAq. From this, we conclude that:

Fact: there is a one-to-one relationship between the non-empty configurations of the
bistructure rAs and the positions of the dialogue game shriekpAq.
We use the notation configpxq for the non-empty configuration σ of the bistructure rAs associated to the
position x in the dialogue game shriekpAq. At this point, starting from Proposition 14, it is not difficult
to establish that

configpxq Ď
R configpyq ðñ x ďR y

because configpxq Ď configpyq precisely when x Ď y and the position x may be obtained from the
position y by removing subtrees with Opponent moves as roots ; that

configpxq Ď
L configpyq ðñ x ďL y

precisely when y Ď x and the position y may be obtained from the position x by removing subtrees with
Player moves as roots ; and finally that

configpxq ÒR configpyq ðñ x ¨rshriekpAqs y

for every two positions x, y of the dialogue game shriekpAq. This establishes that the bistructure
rshriekpAqs of positions of the dialogue game shriekpAq is isomorphic to the bistructure ! rAs restricted
to its non-empty configurations. As for the empty configuration, one has that

H Ď
R σ H ¨! A σ

for every configuration σ of the bistructure ! rAs. This concludes our proof that the bistructure ! rAs is
isomorphic to the bistructure l rshriekpAqs for every simple game A. đ
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