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Covariant and contravariant presheaves

A few opening words on Isbell conjugacy



Ideal completion

Every partial order A generates a free complete \/-lattice &2 A
A — LA

whose elements are the downward closed subsets of A, with

p <ppa Y = @ < .

A = AP = (0,1}




Free colimit completions of categories

Every small category ‘A generates a free cocomplete category & A

A — A
whose elements are the presheafs over A, with

natural

¢ —pa Y = o —




Contravariant presheaves

Replaces downward closed sets



Filter completion

Every partial order A generates a free complete /\-lattice £ A
A — 2A

whose elements are the upward closed subsets of A, with

P <94 Y =S ¢ 2 V.

9A = (A = {0,1))P




Free limit completions of categories

Every small category ‘A generates a free complete category 2 A

A — 2A
whose elements are the covariant presheafs over ‘A, with

natural
¢ —oa Y — ¢ — .

QA = (PAPYP = (A = Set)




Covariant presheaves

Replaces upward closed sets



Related to the Dedekind-MacNeille completion

A Galois connection

L
/\ L((p) = {ylVXEQO, XSAy}

P A 1 2A
{x|Vyey, x<pvy}

R(¥)
v

pCRY) & Vxepuyey x4y & L2y

The completion keeps the pairs (¢, 1) such that ¥ = L(¢) and ¢ = R(y)
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The Isbell conjugacy

An adjunction

L

/\ Lp) : Y » PA@Y) = [_.¢X) = hom(X,Y)

P A 1 2 A
\/ RW) : X » 2AXY) = [, p(Y) = hom(X,Y)
R

PAPRY) = [iyeq PX)XYPY) = hom(X,Y) = 2AL(p),¢)
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Yoneda structures

An axiomatic approach by Street and Walters
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General idea
Suppose a universe 7/ inside a larger universe %.

— Set is the category of sets in the universe %4,

—  ©o/7 is the 2-category of categories in the universe %.

In particular, the category Set is an object of €.&7. 7.
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Admissible functors

An object A of €77 is called admissible when its homsets
A (AA))
are all in the category Set. More generally, an arrow in ¢.o/.
F : A—8B
Is called admissible when the homsets
B (FA, B)

are all in the category Set.
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Yoneda structures
A Yoneda structure in a 2-category %" is defined as

— a class of admissible arrows such that the composite arrow
A £ B G C

is admissible whenever the arrow

B G C

is admissible.
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Admissible objects

An object A is called admissible when the identity arrow

is admissible.

In the case of the 2-category 4.<7.7 equipped with its Yoneda structure:

admissible objects = locally small categories
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Yoneda structures

— every admissible object

iInduces an admissible arrow

yag : A — LA
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Yoneda structures

— every admissible arrow

F : A — B

from an admissible object A induces a diagram
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F
Xa2

In the traditional case

P A
Y/ \BED
iF
A - B

BFEL1) : b

Aaq . A(aq,ay)

—  Aa.B(Fa,b)

— /\611 .B (F&ll, Félz)
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In the traditional case

P A
Y/ \BED
iF
A - B

BF1) : b v Aa.B(Fa,b)

F
Xalaz

Alay,ap) —  B(Fay, Fap)
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Axiom 1

For A and F accessible, the 2-cell

exhibits the arrow B(F, 1) as a left extension of y 4 along the arrow F.
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In other words, every 2-cell

factors uniquely as

/-

A

Axiom 1

9”;7(7?
XF\ /
T B
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In the traditional case

A natural transformation

is the same thing as a family of functions

Ual an : A (Ell, aZ) - (10 (Faz) (611)

natural in a; contravariantly and in a, covariantly.
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In the traditional case

A natural transformation

is the same thing as a family of functions

Ual an : A (Ell, aZ) - (10 (Faz) (611)

natural in a; contravariantly and in a, covariantly.
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In the traditional case

A natural transformation 6 in

Is the same thing as a family of functions

Oy © B(Fab) — ob)@

natural in a contravariantly and in b covariantly.

25



In the traditional case

This means that every natural transformation

Gal an : A (Ell, aZ) - (10 (Fa2) (611)
factors as
Xaya, © Alay,ay) —  B(Fay, Fap)
followed by
Op,Fay,  B(Fay,Fap) —  @(Fap)(ag)

for a unique natural transformation 6 which remains to be defined.
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Existence

Given the natural transformation o, the natural transformation
O @ BEFab) —  @Fa)b)
transports every morphism
f + Fa — b
to the result of the action of f on the element

caa (a5 a) € ¢ (Fa) @)
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Uniqueness

28



Axiom 2

For A and F accessible, the 2-cell

exhibits the arrow F as an absolute left lifting of y 4 through B(F, 1).
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Axiom 3(i)

For A accessible, the identity 2-cell

P A

P A

exhibits the identity arrow as a left extension of y 4 along y 4.
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Axiom 3(ii)

For A, B, F, G accessible, the 2-cell

pA-——F P B
/%B /VX(GJ)
G
X
- C

A - B

exhibits the arrow F* o C(G, 1) as a left extension of y 4 along G o F.
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The inverse arrow

Given an arrow between admissible objects A and
F : A — B
the arrow
r . 28 — YA
Is defined as follows:
P A

F*= 28 (B(1,F),1)

A—r—B— P B

where B (1, F) denotes the composite arrow y o F.
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The inverse arrow

The 2-dimensional cell
P A

y F'= 28 (8(1F),1)

>

B
A5 B v -8B
factors as a pair of Kan extensions:

P A P A

B(F1) B(F1)

B By P8



Existential image

Given an arrow between admissible objects A and
F : A — B
the arrow
I @ A — B

Is defined as follows:

pAa——F  _pg
/ /
A . B
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Universal image

Given an arrow between admissible objects A and
F : A — B
the arrow
Vg : PA — DB
is defined as follows:

v

A E 78
(
F
A - B
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Monads with arity

An idea by Mark Weber
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Category with arity

A fully faithful and dense functor
io : @0 — A

where Qg is a small category.
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Category with arity

This induces a fully faithful functor

ﬂ(iO/ 1)

which transports every object A of the category ‘A into the presheaf

A — YO

ﬂ(iO/ A)

SN

p

—

Set

ﬂ(iop, A)
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Monads with arity
A monad T on a category with arity (A, ip) such that:

(1) the natural transformation exhibits the functor T

as a left kan extension of the functor T o iy along the functor iy,
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Monads with arity

(2) this left kan extension is preserved by the inclusion functor to &2 ©,,.

20,

ﬂ(l()/l)
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Equivalently...

The natural transformation P 0
Alip,1)
A
Toig/ T
id
O A

exhibits A(ip, 1) o T as a left kan extension of A(ip, 1) o T o iy along 1.
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Equivalently...

For every object A, the canonical morphism

peBy
f ﬂ(ion, Tiop) X ﬂ(i()p, A) — ﬂ(i()n, TA)

IS an isomorphism.
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Unique factorization up to zig-zag

Every morphism
ion — TA
in the category ‘A decomposes as

. e . T'f
ion —> Tigp — TA

for a pair of morphisms e : ign — Tigp and f : igp — A.
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Unique factorization up to zig-zag

The factorization should be unique up to zig-zag of

ion

Tiop

/
N

Tipq

Tiou

ThH
TA

Tf
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An abstract Segal condition

A general theorem by Mark Weber
axiomatizing a theorem by Clemens Berger
on higher dimensional categories
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Motivating example: the free category monad

A Cat

Ag Graph
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Morphism between categories with arity

A morphism between categories with arity

E6H = (Ai) — (Bih)

Is defined as a pair of functors (F, £) making the diagram

G g
4 F
@0 o A

commute.
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Morphism between categories with arity

This induces a commutative diagram

%

P O 1 Z B

r* wd F*

A\
— P A

0

20,

1

which is required to be an exact square in the sense of Guitart.
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Morphism between categories with arity

This means that the Beck-Chevalley condition holds, which states that the
canonical natural transformation

Vi,
P 0 P B

- F*

P

v

Z 0O P A

Vio

IS reversible.
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Proposition A.

For every morphism (F, {) between categories with arity

(P/ 5) : (ﬂ/ Z0) — (B/ Zl)
the adjunction 7} 4 ¥; induces an adjunction between
— the full subcategory of presheaves of 8 whose restriction along F
IS representable in A,

— the full subcategory of presheaves of ®; whose restriction along ¢
IS representable along i.

Moreover, this adjunction defines an equivalence when the functor F is
essentially surjective.
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Proposition B.

Every monad T with arity iy induces a commutative diagram

.

Or T -Ar
I
@0 ‘0 A

where the pair (F, £) defines a morphism

(6 (Ai) — (A

of categories with arity.
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Algebraic theories with arity

A 2-dimensional approach to Lawvere theories
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Algebraic theory with arity

An algebraic theory IL with arity
i0:0g — A
is an identity-on-object functor
L : 6 — 0
such that the endofunctor

dr,

P 0, 7S — Y ¢

maps a presheaf representable along iy to a presheaf representable along 1.
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Algebraic theories with arity

Set

Kan extension

=7

op op
®O L ®1L
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Model of an algebraic theory

A model A of a Lawvere theory L is a presheaf

A:@gf’—>3et

such that the induced presheaf
op I op A
Sh o, Set
IS representable along i.
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Main theorem

the category of algebraic theories with arity (A, ip)
IS equivalent to

the category of monads with arity (A, ip)

o6



