An introduction to Yoneda structures

Paul-André Melliès

CNRS, Université Paris Denis Diderot

Groupe de travail

Catégories supérieures, polygraphes et homotopie

Paris 21 May 2010

Bibliography

Ross Street and Bob Walters Yoneda structures on 2-categories Journal of Algebra 50:350-379, 1978

Mark Weber Yoneda structures from 2-toposes Applied Categorical Structures 15:259-323, 2007

Covariant and contravariant presheaves

A few opening words on Isbell conjugacy

Ideal completion

Every partial order A generates a free complete \vee -lattice $\mathscr{P}A$

$$A \longrightarrow \mathscr{P}A$$

whose elements are the downward closed subsets of A, with

$$\varphi \leq \mathscr{P}_A \quad \psi \qquad \Longleftrightarrow \qquad \varphi \subseteq \psi.$$

$$\mathcal{P}A = A^{op} \Rightarrow \{0,1\}$$

Free colimit completions of categories

Every small category $\mathcal A$ generates a free cocomplete category $\mathcal P \mathcal A$

$$\mathcal{A} \longrightarrow \mathscr{P} \mathcal{A}$$

whose elements are the presheafs over \mathcal{A} , with

$$\rho \longrightarrow_{\mathscr{P}_{\mathcal{A}}} \psi \iff \varphi \xrightarrow{\text{natural}} \psi.$$

$$\mathscr{P}\mathcal{A} = \mathcal{A}^{op} \Rightarrow Set$$

Contravariant presheaves

Replaces downward closed sets

Filter completion

Every partial order A generates a free complete \wedge -lattice $\mathcal{Q}A$

$$A \longrightarrow \mathcal{Q}A$$

whose elements are the upward closed subsets of A, with

$$\varphi \leq \mathcal{Q}_A \quad \psi \qquad \Longleftrightarrow \qquad \varphi \supseteq \psi.$$

$$\mathcal{Q}A = (A \Rightarrow \{0,1\})^{op}$$

Free limit completions of categories

Every small category \mathcal{A} generates a free complete category $\mathcal{Q} \mathcal{A}$

$$\mathcal{A} \longrightarrow \mathcal{Q}\mathcal{A}$$

whose elements are the covariant presheafs over \mathcal{A} , with

$$\varphi \longrightarrow_{\mathscr{Q}\mathcal{A}} \psi \iff \varphi \overset{natural}{\longleftarrow} \psi$$

$$\mathcal{Q}\mathcal{A} = (\mathcal{P}\mathcal{A}^{op})^{op} = (\mathcal{A} \Rightarrow Set)^{op}$$

Covariant presheaves

Replaces upward closed sets

Related to the Dedekind-MacNeille completion

A Galois connection

$$L(\varphi) = \{ y \mid \forall x \in \varphi, x \leq_A y \}$$

$$R(\psi) = \{ x \mid \forall y \in \psi, x \leq_A y \}$$

$$R(\psi) = \{ x \mid \forall y \in \psi, \ x \leq_A y \}$$

$$\varphi \subseteq R(\psi) \iff \forall x \in \varphi, y \in \psi, x \leq_A y \iff L(\varphi) \supseteq \psi$$

The completion keeps the pairs (φ, ψ) such that $\psi = L(\varphi)$ and $\varphi = R(\psi)$

The Isbell conjugacy

An adjunction

$$L(\varphi) : Y \mapsto \mathscr{P} \mathcal{A}(\varphi, Y) = \int_{x \in \mathcal{A}} \varphi(X) \Rightarrow hom(X, Y)$$

$$R(\psi) : X \mapsto \mathcal{Q} \mathcal{A}(X, \psi) = \int_{Y \in \mathcal{A}} \psi(Y) \Rightarrow hom(X, Y)$$

$$\mathscr{P}\mathcal{A}(\varphi,R(\psi)) \cong \int_{X,Y\in\mathcal{A}} \varphi(X) \times \psi(Y) \Rightarrow hom(X,Y) \cong \mathscr{Q}\mathcal{A}(L(\varphi),\psi)$$

Yoneda structures

An axiomatic approach by Street and Walters

General idea

Suppose a universe \mathcal{U}_1 inside a larger universe \mathcal{U}_2 .

- **Set** is the category of sets in the universe \mathcal{U}_1 ,
- \mathscr{CAT} is the 2-category of categories in the universe \mathscr{U}_2 .

In particular, the category **Set** is an object of \mathscr{CAT} .

Admissible functors

An object \mathcal{A} of \mathcal{CAT} is called **admissible** when its homsets

$$\mathcal{A}(A,A')$$

are all in the category **Set**. More generally, an arrow in \mathscr{CAT}

$$F : \mathcal{A} \longrightarrow \mathcal{B}$$

is called admissible when the homsets

$$\mathcal{B}(FA,B)$$

are all in the category **Set**.

Yoneda structures

A Yoneda structure in a 2-category ${\mathscr K}$ is defined as

- a class of **admissible** arrows such that the composite arrow

$$\mathcal{A} \stackrel{F}{\longrightarrow} \mathcal{B} \stackrel{G}{\longrightarrow} \mathcal{C}$$

is admissible whenever the arrow

$$\mathcal{B} \longrightarrow \mathcal{C}$$

is admissible.

Admissible objects

An object \mathcal{A} is called **admissible** when the identity arrow

 $id_{\mathcal{A}}$: \mathcal{A} \longrightarrow \mathcal{A}

is admissible.

In the case of the 2-category \mathscr{CAT} equipped with its Yoneda structure:

admissible objects = locally small categories

Yoneda structures

– every admissible object

 \mathcal{A}

induces an admissible arrow

 $y_{\mathcal{H}}$: \mathcal{H} \longrightarrow $\mathscr{P}\mathcal{H}$

Yoneda structures

- every admissible arrow

$$F : \mathcal{A} \longrightarrow \mathcal{B}$$

from an admissible object $\mathcal {A}$ induces a diagram

$$\mathcal{B}(F,1)$$
 : $b \mapsto \lambda a \cdot \mathcal{B}(Fa,b)$

$$\chi_{a_2}^F : \lambda a_1 . \mathcal{A}(a_1, a_2) \longrightarrow \lambda a_1 . \mathcal{B}(Fa_1, Fa_2)$$

$$\mathcal{B}(F,1)$$
 : $b \mapsto \lambda a \cdot \mathcal{B}(Fa,b)$

$$\chi^F_{a_1 a_2} : \mathcal{A}(a_1, a_2) \longrightarrow \mathcal{B}(Fa_1, Fa_2)$$

Axiom 1

For \mathcal{A} and F accessible, the 2-cell

exhibits the arrow $\mathcal{B}(F,1)$ as a left extension of $y_{\mathcal{H}}$ along the arrow F.

Axiom 1

In other words, every 2-cell

factors uniquely as

A natural transformation

is the same thing as a family of functions

$$\sigma_{a_1 a_2} : \mathcal{A}(a_1, a_2) \longrightarrow \varphi(Fa_2)(a_1)$$

natural in a_1 contravariantly and in a_2 covariantly.

A natural transformation

is the same thing as a family of functions

$$\sigma_{a_1 a_2} : \mathcal{A}(a_1, a_2) \longrightarrow \varphi(Fa_2)(a_1)$$

natural in a_1 contravariantly and in a_2 covariantly.

A natural transformation θ in

is the same thing as a family of functions

$$\theta_{ab}$$
 : $\mathcal{B}(Fa,b)$ \longrightarrow $\varphi(b)(a)$

natural in a contravariantly and in b covariantly.

This means that every natural transformation

$$\sigma_{a_1 a_2} : \mathcal{A}(a_1, a_2) \longrightarrow \varphi(Fa_2)(a_1)$$

factors as

$$\chi^F_{a_1 a_2} : \mathcal{A}(a_1, a_2) \longrightarrow \mathcal{B}(Fa_1, Fa_2)$$

followed by

$$\theta_{a_1 F a_2} : \mathcal{B}(F a_1, F a_2) \longrightarrow \varphi(F a_2)(a_1)$$

for a unique natural transformation θ which remains to be defined.

Existence

Given the natural transformation σ , the natural transformation

$$\theta_{ab}$$
 : $\mathcal{B}(Fa,b)$ \longrightarrow $\varphi(Fa)(b)$

transports every morphism

$$f : Fa \longrightarrow b$$

to the result of the action of f on the element

$$\sigma_{aa} (a \xrightarrow{id} a) \in \varphi(Fa)(a)$$

Uniqueness

. . .

Axiom 2

For \mathcal{A} and F accessible, the 2-cell

exhibits the arrow F as an absolute left lifting of $y_{\mathcal{A}}$ through $\mathcal{B}(F,1)$.

Axiom 3(i)

For \mathcal{A} accessible, the identity 2-cell

exhibits the identity arrow as a left extension of $y_{\mathcal{A}}$ along $y_{\mathcal{A}}$.

Axiom 3(ii)

For $\mathcal{A}, \mathcal{B}, F, G$ accessible, the 2-cell

exhibits the arrow $F^* \circ C(G, 1)$ as a left extension of $y_{\mathcal{A}}$ along $G \circ F$.

The inverse arrow

Given an arrow between admissible objects \mathcal{A} and \mathcal{B}

$$F : \mathcal{A} \longrightarrow \mathcal{B}$$

the arrow

$$F^* : \mathscr{P} \mathscr{B} \longrightarrow \mathscr{P} \mathscr{A}$$

is defined as follows:

where $\mathcal{B}(1,F)$ denotes the composite arrow $\mathbf{y} \circ F$.

The inverse arrow

The 2-dimensional cell

factors as a pair of Kan extensions:

Existential image

Given an arrow between admissible objects ${\mathcal A}$ and ${\mathcal B}$

$$F : \mathcal{A} \longrightarrow \mathcal{B}$$

the arrow

$$\exists_F : \mathscr{P} \mathscr{A} \longrightarrow \mathscr{P} \mathscr{B}$$

is defined as follows:

Universal image

Given an arrow between admissible objects ${\mathcal A}$ and ${\mathcal B}$

$$F : \mathcal{A} \longrightarrow \mathcal{B}$$

the arrow

$$\forall_F : \mathscr{P} \mathscr{A} \longrightarrow \mathscr{P} \mathscr{B}$$

is defined as follows:

Monads with arity

An idea by Mark Weber

Category with arity

A fully faithful and dense functor

$$i_0 : \Theta_0 \longrightarrow \mathcal{A}$$

where Θ_0 is a small category.

Category with arity

This induces a fully faithful functor

$$\mathcal{A}(i_0,1)$$
 : $\mathcal{A} \longrightarrow \mathscr{P}\Theta_0$

which transports every object A of the category \mathcal{A} into the presheaf

$$\mathcal{A}(i_0,A)$$
 : $\Theta_0 \longrightarrow \mathbf{Set}$ $p \mapsto \mathcal{A}(i_0p,A)$

Monads with arity

A monad T on a category with arity (\mathcal{A}, i_0) such that:

(1) the natural transformation exhibits the functor T

as a left kan extension of the functor $T \circ i_0$ along the functor i_0 ,

Monads with arity

(2) this left kan extension is preserved by the inclusion functor to $\mathscr{P} \Theta_0$.

Equivalently...

The natural transformation

exhibits $\mathcal{A}(i_0, 1) \circ T$ as a left kan extension of $\mathcal{A}(i_0, 1) \circ T \circ i_0$ along i_0 .

Equivalently...

For every object A, the canonical morphism

$$\int^{p \in \Theta_0} \mathcal{A}(i_0 n, Ti_0 p) \times \mathcal{A}(i_0 p, A) \longrightarrow \mathcal{A}(i_0 n, TA)$$

is an isomorphism.

Unique factorization up to zig-zag

Every morphism

$$i_0 n \longrightarrow TA$$

in the category \mathcal{A} decomposes as

$$i_0 n \xrightarrow{e} Ti_0 p \xrightarrow{Tf} TA$$

for a pair of morphisms $e: i_0 n \to Ti_0 p$ and $f: i_0 p \to A$.

Unique factorization up to zig-zag

The factorization should be unique up to zig-zag of

An abstract Segal condition

A general theorem by Mark Weber axiomatizing a theorem by Clemens Berger on higher dimensional categories

Motivating example: the free category monad

Morphism between categories with arity

A morphism between categories with arity

$$(F,\ell)$$
 : (\mathcal{A},i_0) \longrightarrow (\mathcal{B},i_1)

is defined as a pair of functors (F, ℓ) making the diagram

commute.

Morphism between categories with arity

This induces a commutative diagram

which is required to be an exact square in the sense of Guitart.

Morphism between categories with arity

This means that the Beck-Chevalley condition holds, which states that the canonical natural transformation

is reversible.

Proposition A.

For every morphism (F, ℓ) between categories with arity

$$(F,\ell)$$
 : (\mathcal{A},i_0) \longrightarrow (\mathcal{B},i_1)

the adjunction $i_1^* \dashv \forall_{i_1}$ induces an adjunction between

- the full subcategory of presheaves of \mathcal{B} whose restriction along F is representable in \mathcal{A} ,
- the full subcategory of presheaves of Θ_1 whose restriction along ℓ is representable along i_0 .

Moreover, this adjunction defines an equivalence when the functor F is essentially surjective.

Proposition B.

Every monad T with arity i_0 induces a commutative diagram

where the pair (F, ℓ) defines a morphism

$$(F,\ell)$$
 : (\mathcal{A},i_0) \longrightarrow (\mathcal{A}_T,i_T)

of categories with arity.

Algebraic theories with arity

A 2-dimensional approach to Lawvere theories

Algebraic theory with arity

An algebraic theory L with arity

$$i_0:\Theta_0\longrightarrow\mathcal{A}$$

is an identity-on-object functor

$$\mathbb{L} : \Theta_0 \longrightarrow \Theta_{\mathbb{L}}$$

such that the endofunctor

$$\mathscr{P}\Theta_0 \xrightarrow{\exists_{\mathbb{L}}} \mathscr{P}\Theta_{\mathbb{L}} \xrightarrow{\mathbb{L}^*} \mathscr{P}\Theta_0$$

maps a presheaf representable along i_0 to a presheaf representable along i_0 .

Algebraic theories with arity

Model of an algebraic theory

A model A of a Lawvere theory \mathbb{L} is a presheaf

$$A: \Theta^{op}_{\mathbb{L}} \longrightarrow \mathbf{Set}$$

such that the induced presheaf

$$\Theta_0^{op} \xrightarrow{i_0} \Theta_{\mathbb{L}}^{op} \xrightarrow{A} \mathbf{Set}$$

is representable along i_0 .

Main theorem

the category of algebraic theories with arity (\mathcal{A}, i_0)

is equivalent to

the category of monads with arity (\mathcal{A}, i_0)