
Higher-order parity automata
Paul-André Melliès

CNRS and Université Paris Diderot

Abstract—We introduce a notion of higher-order par-
ity automaton which extends to the infinitary simply-
typed λ-calculus the traditional notion of parity tree
automaton on infinitary ranked trees. Our main result is
that the acceptance of an infinitary λ-term by a higher-
order parity automaton A is decidable, whenever the
infinitary λ-term is generated by a finite and simply-
typed λY -term. The decidability theorem is established
by combining ideas coming from denotational semantics
and from infinitary rewriting theory.

I. INTRODUCTION

A. Higher-order model-checking on infinite trees
Higher-order model-checking is understood today as

the description of infinitary properties of ranked trees
generated by higher-order recursion schemes. By way
of illustration, consider the higher-order recursion
scheme G on the signature Σ = {a : 2, b : 1, c : 0}

G =
{
S 7→ F a b c
F x y z 7→ x z (F x y (y z)) (1)

which generates the infinite tree

〈G〉 =

a

c a

c

b a

b

b

c

(2)

Imagine that one wants to check the following infinitary
property (∗) on the higher-order recursion scheme G: that
the ranked tree 〈G〉 it generates consists of an infinite
path of letters a expanding on the right:

〈G〉 = a(w0, a(w1, a(w2, a(w3, . . .))))

where each subtree wn is a finite word (= filiform tree)
consisting of a finite sequence of letters b ended by a
letter c. In order to answer that question using the
tools of higher-order model-checking, one may for in-
stance construct a parity tree automaton A with same
signature Σ, with a set Q consisting of two states q0
and q1, with initial state q0, with transition function δ
represented as

a

q

q

q

b

q

q

c

q

(3)

and with coinductive parity 2 on the state q0 and in-
ductive parity 1 on the state q1. It is then not diffi-
cult to check that a higher-order recursion scheme G
on the signature Σ satisfies the property (∗) if and
only if the ranked tree 〈G〉 it generates is accepted by
the automaton A. Typically, the higher-order recursion
scheme G defined in (1) satisfies the property (∗) because
there exists an accepting run-tree R of the parity tree
automaton A on the ranked tree 〈G〉, represented below

R =

a

c a

c

b a

b

b

c

q

q


q


q


q
q

q

q

q

q

(4)

One important observation of higher-order model-
checking is that given any finite signature Σ, and
• any higher-order recursion scheme G
• any alternating parity tree automaton A

on that signature Σ, the problem (∗∗) whether the
ranked tree 〈G〉 generated by G is accepted by A is decid-
able. For instance, the question whether a given higher-
order scheme G on the signature Σ = {a : 2, b : 1, c : 0}
generates a ranked tree 〈G〉 satisfying the property (∗)
reduces to the question (∗∗) instantiated with the parity
tree automaton A on two states q0, q1 described in (3) ;
from this, it follows that the property (∗) is decidable.

In the present paper, we will develop this idea and
bring to light the notion of higher-order parity automa-
ton which extends and adapts to higher-order model-
checking the primary notion of alternating tree automa-
ton. Our main task here will be to formulate the notion of
higher-order automaton we have in mind, and to justify
it by establishing a general decidability theorem, broader
in scope than the traditional decidability theorem illus-
trated above.

B. Higher-order arities and alphabets
As we will see, our intended notion of higher-order

automaton is designed to analyse infinitary properties
of typically infinite simply-typed λ-terms. Recall that a
simple type A,B ∈ Type is a binary tree defined by the
grammar below:

A,B := o | A×B | A⇒ B | 1 (5)

where o is a fixed ground type. A higher-order alphabet
is then defined as a finite set Σ of letters together with
a function

Σ : Σ→ Type

which transports every letter a ∈ Σ to its higher-order
arity Σ(a) ∈ Type, defined as a simple type of the λ-
calculus. It is a good practice to write down such a
higher-order alphabet Σ as the sequence of letters of the
finite alphabet Σ, each of them attached to the specific
simple type Ak = Σ(ak) defining its arity:

a1 : A1, . . . , an : An.

The letters a1, . . . , an of the alphabet are all different,
and the order in which they appear in the sequence
does not matter. A higher-order alphabet in our sense
is thus the same thing as what one traditionally calls a
context of simply-typed variables a1, . . . , an in the simply-
typed λ-calculus. We choose this terminology derived
from automata theory in order to prepare our definition
of higher-order automaton next.

C. The Church encoding taken seriously
As a matter of fact, we will make a great use of the

following dictionary between automata theory and the
simply-typed λ-calculus:

higher-order alphabet ↔ simply-typed context
higher-order arity ↔ simple type

letter ↔ variable

The dictionary extends to letters a ∈ Σ of arbitrary
higher-order arity Σ(a) = A the familiar Church encod-
ing of a finite ranked tree as a simply-typed λ-term. In
this encoding, every letter a of arity k ∈N in the original
tree signature is translated into a letter a ∈ Σ of higher-
order arity

Σ(a) = (o × . . . × o)︸ ︷︷ ︸
k-fold product

⇒ o (6)

the arity of a k-ary function on the ground type o. The
Church encoding induces a one-to-one correspondence
between

1. the ranked trees of a given signature Σ,
2. the simply-typed λ-terms in normal form

of the corresponding higher-order alphabet Σ.

By way of illustration, there is a one-to-one relationship
between the finite trees on the signature Σ = {a : 2, b :
1, c : 0} mentioned earlier in the introduction, and the
simply-typed λ-terms M in normal form of higher-order
alphabet Σ and type

a : (o× o)⇒ o , b : o⇒ o , c : o ` M : o. (7)

This correspondence between trees and λ-terms is also
relevant to higher-order model-checking. The reason is
that every higher-order recursion scheme G on a signa-
ture Σ may be translated into a λY -term M of higher-
order alphabet Σ and of type o, in the same way

as we did for finite trees in (7). The infinitary Böhm
tree N = BT (M) generated by the λY -term M coincides
then via the Church encoding with the infinitary ranked
tree 〈G〉 generated by G. See §VI for a discussion on a
definition of Böhm trees more suitable to higher-order
model-checking. Typically, the λY -term M associated to
the higher-order recursion scheme G in (1) is defined as

M =
(
Y
[
λF.λx.λy.λz. x z (F x y (y z))

])
a b c (8)

The infinite tree 〈G〉 depicted in (2) coincides then with
the infinitary Böhm tree N = BT (M) of same higher-
order alphabet Σ and same type o

a : (o× o)⇒ o , b : o⇒ o , c : o ` N : o

generated by the simply-typed λY -term M .

D. Infinitary λ-terms and infinitary rewriting
At this point, we find convenient to take advantage

of the foundational work on infinitary rewriting theory
developed in [11], [4], and to regard the λY -term M as
an infinitary simply-typed λ-term, obtained by applying
the unfolding rule

Y P ' P
(
Y P

)
as many times as necessary (typically a countable num-
ber of times) in order to make the fixpoint operator Y dis-
appear. One main benefit of this infinitary point of view
is that both M and the infinitary Böhm tree N = BT (M)
define infinitary simply-typed λ-terms. Moreover, the two
infinitary λ-terms M and N are related by an infinite and
strongly convergent sequence of β-rewriting steps in the
sense of [11], [4], what we write:

f : M �β N (9)

In particular, the fact that M and N have the same
higher-order alphabet Σ and the same type o may be
seen as a consequence of the existence of this infinitary
rewriting path f between them.

E. Higher-order automata
This formulation of the theory based on the Church en-

coding of infinitary trees into infinitary λ-terms reveals
an intriguing limitation of higher-order model-checking:
the fact that the λ-terms M and N have higher-order
alphabet Σ restricted to letters of first-order arity — that
is, of the specific form specified in (6). As a matter of fact,
this limitation comes from the notion of tree automaton
A itself, since it requires that the Böhm tree N = BT (M)
generated by M is [via the Church encoding] a ranked
tree on a given signature Σ whose letters are thus of
first-order arity.

This raises an interesting question: would it be pos-
sible to extend the notion of alternating parity tree
automaton to an arbitrary higher-order alphabet, not
limited any more to first-order letters? In short, the
purpose of such a higher-order notion of automaton A
would be to explore an infinitary simply-typed λ-term M

of arbitrary higher-order alphabet Σ and of arbitrary
type A, and to tell us whether the λ-term M is accepted
or rejected according to the inductive and coinductive
conditions of the parities. Moreover, the automaton A
should behave in the same way as an alternating parity
tree automaton when all the letters of the alphabet Σ
are of first-order arity.

We are ready at this stage to introduce the notion
of higher-order parity automaton we have in mind. In
its most basic acception, a higher-order automaton is
defined as a tuple A = (Q,Σ, A, δ, q0) where
• Q is a finite set of ground states,
• Σ is the higher-order alphabet of the automaton,
• A is the simple type of the automaton,
• δ is a transition function of the alphabet Σ,
• q0 is an initial state of type A.

This definition relies on the idea that every simple type A
should come with its own set QA of higher-order states,
defined by induction from the set Q of ground states:

Qo = Q QA⇒B = Pfin(QA)×QB
where Pfin(QA) denotes the set of finite subsets of QA. A
higher-order state q of type A ⇒ B is thus a pair of the
form

q = ({q1, . . . , qn} , q′) (10)

where q′ ∈ QB is a state of type B and each element qi ∈
QA of the finite set {q1, . . . , qn} is a state of type A. The
idea of defining a higher-order state of type A⇒ B in this
way comes from linear logic, and its linear decomposition
of the intuitionistic implication

A⇒ B = (!A)(B. (11)

into a linear implication A(B and !A the exponential
modality of the logic. The connection between linear logic
and our notion of higher-order automaton is extremely
strong. In particular, the set QA of higher-order states
of type A coincides with the interpretation of the simple
type A in a specific extensional semantics of linear logic,
decomposing the Scott lattice semantics, see §III for a
discussion. For that reason, we find convenient to use
the notation

q = {q1, . . . , qn}(q′

for the higher-order state q ∈ QA⇒B described in (10).

A higher-order automaton A of alphabet Σ and of type A
is designed to explore an infinitary λ-term M of same
alphabet Σ and of same type A. Its transition function δ
associates to every letter ai ∈ Σ a finite set

δ(ai) ∈ Pfin(QAi)

of higher-order states of type Ai = Σ(ai). Accordingly, its
initial state q0 ∈ QA is a higher-order state of type A.
Now, the distinctive feature of higher-order automata
with respect to traditional tree automata is what hap-
pens when a higher-order automaton

A = (Q,Σ, A⇒ B, δ, q0)

with initial state q0 = {q1, . . . , qn}(q starts exploring an
infinitary λ-term Σ ` λa.M : A⇒ B of same alphabet Σ
and of same type A⇒ B, whose node λa at the root binds
the letter a of arity A in the infinitary λ-term M . In that
situation, the higher-order automaton A behaves in the
following way: it starts by extending its alphabet Σ with
the letter a of arity A, and its transition function δ with
the assignment

δ : a 7→ {q1, . . . , qn} ∈ Pfin(QA)

Now that the value of the transition function δ has been
defined for the letter a, the automaton A may carry on
and explore with initial state q ∈ QB the infinitary λ-
term Σ , a : A ` M : B of type B in the extended
alphabet Σ, a : A. By way of illustration, consider the
infinitary λ-term

` λa.λb.λc.N :
(
((o× o)⇒ o) × (o⇒ o) × o

)
⇒ o

derived from the Church encoding N = BT (M) of the
infinite tree 〈G〉 depicted in (2) and generated by the
λY -term M in (8) encoding the higher-order recursion
scheme G. We find convenient to write its type as

(o⇒ o⇒ o) ⇒ (o⇒ o) ⇒ o ⇒ o.

We depict in Figure 1 a run-tree of a higher-order au-
tomaton Σ with empty alphabet and thus empty transi-
tion function δ, starting from the initial state

{{q1}({q0}(q0}({{q1}(q1}({q1}(q0

of high-order state A, in the hierarchy of states generated
by the set Q = {q0, q1} of two ground states q0 and q1.
Each time the initial state encounters a binder λa, λb or
λc, it declares the new letter a, b or c in the alphabet,
and extends its transition function δ accordingly. Once
it has declared the three letters a, b or c and reached
the root of the infinitary λ-term N = 〈G〉, the higher-
order automaton has q0 ∈ Qo as its current state, and
the same transition function δ as the tree automaton
described in (3), formulated here in a type-theoretic way:

δ(a) = {{q1}({q0}(q0} ∈ Pfin(Qo⇒o⇒o)
δ(b) = {{q1}(q1} ∈ Pfin(Qo⇒o)
δ(c) = {q1} ∈ Pfin(Qo).

Note that when the higher-order alphabet Σ only
contains letters of first-order arity, such a higher-order
automaton Ã is the same thing as an alternating tree
automaton on the corresponding signature Σ. This cor-
respondence can be seen as the automata-theoretic coun-
terpart of the Church encoding of trees into λ-terms.

F. Higher-order parity automata
A higher-order parity automaton A on a finite set of

parities or colors Ω = {1, . . . , k} is defined as a tuple

A = (Q,Σ, A, δ, q0)

in just the same way as a higher-order automaton, except
that the set QA of higher-order states is replaced in all

a

c a

c

b

λc

λb

λa

q
 q

{ }q
{ }{ } q


q
{ }{ } q

{ } q


q


q
{ }{ } q

{ } q


q
{ } q



q


q


q


q


q

q

δ

� �

a = q
 q

{ }q
{ }{ }

δ

� �

b = q


q
{ }{ }

δ

� �

c = q
{ }

declaration of the letter a

declaration of the letter b

declaration of the letter c

Fig. 1. Illustration of a run-tree of a higher-order automaton A with
an empty alphabet, with type (o ⇒ o ⇒ o) ⇒ (o ⇒ o) ⇒ o ⇒ o and
with initial state {{q1}({q0}(q0}({{q1}(q1}({q1}(q0.

definitions by the set QA of colored higher-order states,
defined by induction on the simple type A:

Qo = Q QA⇒B = Pfin(Ω×QA)×QB
A colored state q ∈ QA⇒B is thus of the form

q = {(c1, q1), . . . , (cn, qn)}(q′

where q′ ∈ QB is a colored state of type B and where
ci ∈ Ω is a color and qi ∈ QA is a colored state of type A,
for all 1 ≤ i ≤ n. Accordingly, the transition function of
a higher-order parity automaton A associates to every
letter ai ∈ Σ a finite set

δ(ai) ∈ Pfin(Ω×QAi
)

of pairs (c, q) consisting of a color c ∈ Ω and of a colored
state q ∈ QAi of type Ai = Σ(ai). By way of illustration,
the parity automaton A with transitions defined in (3) is
encoded by the colored transitions below:

a

q

q

b

q

c

q

� �

 , q
� �

 , q

� �

 ,

δ

� �

a = q
}{{

δ

� �

b =

δ

� �

c = q
{

}} {q

� �

 , q

� �

 ,

q
{{ }}q

� �

 ,

}

where the coinductive parity 2 on the state q0 and
the inductive parity 1 on the state q1 appear now on
the edges of the transitions, rather than on the states
themselves, see [5], [6], [7], [8] for a discussion. Every
run-tree R of the higher-order parity automaton A has
its edges labelled by colors ci ∈ Ω and one requires that
it satisfies the familiar conditions that in every infinite
branch p of the run-tree R, the maximum color c ∈ Ω
appearing infinitely often on the edges of p is even (that
is, coinductive).

G. The decidability theorem
Once the notion of higher-order parity automaton A

has been formulated as above, we justify it by establish-
ing a general decidability result for its model-checking
problem:

Theorem 1 (Decidability): Suppose given a higher-order
parity automaton A and a finite λY -term M of same
higher-order alphabet Σ and of same type A. Then,
the question whether the infinitary simply-typed λ-term
with boundary N = BT (M) generated by M is accepted
by A is decidable.

The decidability theorem is established in a clean and
modular fashion, by combining ideas coming from deno-
tational semantics and from infinitary rewriting theory.

a) Unfolding theorem: Suppose given a higher-order
parity automaton A = (Q,Ω,Σ, A, δ, q0) and a λY -term M
with same higher-order alphabet Σ and same type A. We
start by establishing that

Theorem 2 (Unfolding): The question whether the in-
finitary simply-typed λ-term [M]∞ obtained by infinitary
unfolding of M is accepted by the automaton A is decid-
able.

We will establish this result by translating the λY -
calculus into the λYµν-calculus, an inductive and coin-
ductive refinement of the λY -calculus where each fix-
point operator Y in a term is treated as either induc-
tive (Yµ) or coinductive (Yν). Our translation of the λY -
calculus into the λYµν-calculus will follow very closely
the semantic and comonadic recipe prescribed by Grellois
and Melliès in [5], [6], [7]. In particular, the fixpoint oper-
ator Y will be interpreted as an alternation of inductive
and coinductive fixpoint operators Yµ and Yν , reflecting
the parity structure of the higher-order automaton.

b) Invariance theorem: The second and most diffi-
cult part in our proof of decidability (Thm. 1) consists in
establishing an invariance theorem for our higher-order
notion of acceptance.

Theorem 3 (Invariance): Suppose that two simply-
typed infinitary λ-terms M and N with higher-order
alphabet Σ and arity A are related by an infinitary
and strongly convergent β-rewriting path M �β N . In
that case, a higher-order automaton A = (Q,Σ, A, δ, q0)
accepts M if and only if it accepts N .

The property relies on the notion of strongly conver-
gent β-rewriting path introduced in [11] which plays
today a central role in infinitary rewriting theory, see
also [4]. We see the invariance theorem as the corner-
stone of higher-order model-checking, in the same way as
the invariance modulo βη-reduction of the interpretation
of a simply-typed λ-terms in the finitary case. As it
will appear, proving the invariance theorem is far from
trivial, and it will be one of the main tasks of the paper.

Put together, the unfolding theorem and the invariance
theorem imply the decidability theorem. Indeed, given
a finite λY -term M and a higher-order parity automa-
ton A, the first theorem tells us that the acceptance of
the infinite unfolding [M]∞ of M . Then, there exists an
infinitary strongly convergent β-rewriting path

[M]∞ �β N

to the Böhm tree N = BT (M) generated by M . The
invariance theorem (adapted to parity automata) en-
sures then that the acceptance of N = BT (M) by A
is equivalent to the acceptance of [M]∞ and is thus
decidable.

Plan of the paper

After describing in §II the infinitary simply-typed λ-
calculus, we develop in §III the notion of higher-order
automaton. We then prove the “forward” and “backward”
part of the invariance theorem in §IV and in §VI. The
backward part is the more difficult to prove, and we
develop in §V a residual theory of diffraction patterns
in order to establish it rigorously. We then lift in §VII
the invariance theorem from bare λ-terms to λ-terms
with boundary. We establish our main theorem (Thm. 1)
in §VIII by a translation of the original model-checking
problem in λYµν-calculus, following the ideas of [7].

II. INFINITARY SIMPLY-TYPED λ-TERMS

We introduce now the infinitary simply-typed λ-
calculus which will be used in the paper. The notion of
simply-typed λ∞-term is defined in two stages: we start
by recalling the coinductive notion of untyped infinitary
λ-term formulated in [13], and then refine it into a
notion of simply-typed infinitary λ-term. Depending on
the situation, the terms of the calculus are called simply-
typed and infinitary λ-terms, or simply-typed λ∞-terms.

A. Untyped infinitary λ-terms

We suppose from now on that V ar denotes a countable
infinite set of variables, which we find convenient to
see as a nominal set, following [13]. The nominal set of
untyped λ∞-terms is then defined coinductively by the
grammar

M,N ::= λa.M | App(M,N) | a ∈ V ar

where the constructor λa.M binds the variable a in the
λ∞-term M , in the nominal sense. One consequence
of this nominal and coinductive definition is that the
set fv(M) ⊆ V ar of free variables of an untyped λ∞-
term M is always finite, see [13] for a discussion. On
the other hand, an untyped λ∞-term M in that sense
may contain an infinite countable number of bounded
variables, which is precisely what happens when one
unfolds a λY -term M into an infinitary λ-term [M]∞,
see an illustration in the Appendix, §F. Moreover, a free
variable a ∈ fv(M) may appear at a countable (finite or
infinite) number of occurrences of the λ∞-term M . Hence,
a binder λa.M may bind a countable (finite or infinite)
set of occurrences of the free variable a in M . Note also
that we prefer to use here the notation App(M,N) for the
application, instead of the more familiar notation MN
used in the introduction.

B. Simply-typed infinitary λ-terms
A typing judgment

Σ ` M : A

is defined as a triple consisting of a higher-order alpha-
bet Σ, of an untyped λ∞-term M and of a simple type A,
such that all the free variables of M are letters in the
alphabet Σ. A typing derivation Υ is a syntactic tree
defined coinductively using the three typing rules below:

AVariable Σ, a : A ` a : A

Σ, a : A `M : B
Abstraction Σ ` λa.M : A⇒ B

Σ `M : A⇒ B Σ ` N : AApplication
Σ ` App(M,N) : B

The conclusion of a typing derivation Υ is defined as the
typing judgment Σ ` M : A labelling the root of Υ.
A simply-typed λ∞-term of type A in the higher-order
alphabet Σ is defined as a pair (M,ΥM) consisting of an
untyped λ∞-term M and of a typing derivation ΥM with
conclusion Σ ` M : A. Note that the typing derivation
ΥM assigns a unique type to every node of the infinitary
λ-term M . As it is customary in the λ-calculus, we often
identify the simply-typed λ∞-term (M,ΥM) with the
underlying untyped λ∞-term M , and keep the derivation
tree ΥM implicit.

C. Infinitary rewriting
In order to establish our decidability theorems for

higher-order automata, we will need to study very closely
the infinitary rewriting paths f : M �β N which trans-
form an infinitary λ-term M , typically the unfolding a
simply-typed λY -term, into another infinitary λ-term N .
A typical example is provided by the rewriting process
which transforms a higher-order recursion scheme M
seen as an infinitary λ-term into the infinitary tree N it
generates. In order to define such a notion of infinitary
rewriting, we follow [11] and thus start by introducing
the notion of occurrence. An occurrence is a finite word
constructed on the grammar

o ::= ε | body · o | fun · o | arg · o.

The set occ(M) of occurrences of an simply-typed and
infinitary λ-term M is defined by coinduction

occ(a) = { ε }
occ(λa.M) = { ε }] { body · o | o ∈ occ(M) }
occ(App(M,N)) = { ε }] { fun · o | o ∈ occ(M) }

] { arg · o | o ∈ occ(N) }

The purpose of an occurrence is to designate a specific
position in an infinitary λ-term M . Given two occur-
rences o, o′ ∈ occ(M), we write o �M o′ and say that
the occurrence o nests the occurrence o′ when o is a
prefix of o′. Every occurrence o ∈ occ(M) induces a
context C(M,o)[−] defined as the infinitary λ-term M with

a unique hole at the occurrence o ; and an infinitary λ-
term M|o defined as the subterm at occurrence o of the
infinitary λ-term M . We write type(M,o) for the type
of the subterm M|o of M . One recovers the infinitary λ-
term M by plugging the infinitary λ-term M|o inside the
unique hole of the context C(M,o)[−] in the following way:

M = C(M,o)[M|o]

A β-redex R is defined as a triple (M,o,N) consisting of
a simply-typed infinitary λ-term M and of an occurrence
o ∈ occ(M) such that M restricted to the occurrence o is
a β-reduction pattern

M|o = App(λa. P,Q)

with the infinitary λ-term N = C(M,o)[P [a := Q]]
obtained by plugging the infinitary λ-term P [a := Q]
inside the unique hole of the context C(M,o)[−]. See [11],
[4], [13] for the definitions of context and of substitution
in the infinitary λ-calculus. An important property of the
simply-typed λ∞-calculus is the following

Proposition 1 (Subject Reduction): Suppose that a
simply-typed λ∞-term M is defined by the typing deriva-
tion ΥM of the typing judgment Σ ` M : A and that
(M,o,N) is a β-redex. Then, there exists a canonical
typing derivation ΥN of the typing judgment Σ ` N : A
which turn N into a simply-typed infinitary λ-term, with
the same alphabet Σ and the same type A as the original
λ-term M .

From this, one defines a graph G(Σ, A) whose vertices
are the infinitary simply-typed λ-terms M,N of alpha-
bet Σ and of type A, and whose edges M → N are the
β-redexes (M, o,N). The graph G(Σ, A) is called the β-
rewriting graph associated to Σ and A. The depth of a
β-redex (M,o,N) is the length of its occurrence o. This
notion of depth counts every tag body, fun and node in the
occurrence, and thus coincides with the depth associated
to the triple abc = 111 and noted D111 in Def. 6 of [11].
The diameter ||R|| of a β-redex R = (M,o,N) is defined
as the fraction

||R|| = 1
2n

where n is the depth of the β-redex. By extension, the
diameter of a finite path

f = M0 M1 · · · Mp−1 Mp
R0 R1 Rp−1

in the rewriting graph G(Σ, A) is defined as the maxi-
mum ||f || = max{||Ri||, 0 ≤ i ≤ p− 1} of the diameters of
its edges. Accordingly, the diameter of an empty path is
zero. Now, consider an infinite path

f = M0 M1 · · · Mn−1 Mp · · ·R0 R1 Rp−1 Rp

in the rewriting graph G(Σ, A). Every pair of natural
numbers p, q ∈ N with p ≤ q induces a finite rewriting
path, obtained by restriction:

f|p,q = Mp Mp+1 · · · Mq−1 Mq
Rp Rp+1 Rq−1

An infinite path in the graph G(Σ, A) is strongly conver-
gent when for every natural number n ∈N, there exists
a natural number N(n) ∈N such that

∀p, q ∈N, N(n) < p ≤ q ⇒ ||f|p,q|| <
1
2n .

Our notion of strong convergence coincides with the
notion of strong convergence associated to the measure
of depth abc = 111 formulated in [11], see also [4]. The
definition of strong convergence enables us to establish
an infinitary version of the Subject Reduction property:

Proposition 2 (Infinitary Subject Reduction): Suppose
that the simply-typed λ∞-term M is defined by the
typing derivation ΥM of the typing judgment Σ `M : A
and that f : M �β N is a strongly convergent β-
rewriting path. Then, there exists a canonical typing
derivation ΥN of the typing judgment Σ ` N : A which
turn N into a simply-typed infinitary λ-term, with the
same alphabet Σ and the same type A as the original
λ-term M .

III. HIGHER-ORDER AUTOMATA

A. Higher-order states

Recall that a preorder is a transitive and reflexive bi-
nary relation and that a preordered set (X,v) is a set X
equipped with a preorder v. From now on, we suppose
given a finite preordered set of ground states (Q,vQ).
Every simply type A induces a preordered set (QA,vA)
of higher-order states of type A, defined by structural
induction on the type A. The preordered set (Qo,vo) of
ground states is defined as the set Q equipped with the
preorder vQ:

∀q, q′ ∈ Qo, q vo q′ ⇐⇒ q vQ q′.

The preordered set (QA⇒B ,vA⇒B) is defined in two
stages, using the linear decomposition formula (11) of
the intuitionistic arrow. Given a simple type A, the
preordered set (Q!A,v!A) is defined as the set of finite
subsets of higher-order states of A

Q!A = Pfin(QA)

equipped with the following preorder:

{a1, . . . , am} v!A {b1, . . . , bn}

if and only if there exists a functor f : [m] → [n] such
that ai vA bf(i) where [m] = {1, . . . ,m} denotes the finite
set of natural numbers with m elements. The preordered
set (QA⇒B ,vA⇒B) of higher-order states of type A⇒ B
is then defined as the product:

QA⇒B = Q!A ×QB vA⇒B = v op
!A × vB .

where v op
!A denotes the preorder obtained by reversing

the orientation of the preorder v!A.

B. Higher-order automata
A higher-order automaton A with type B and with

higher-order alphabet

Σ : Σ −→ Type

is defined as a tuple (Q,Σ, B, δ, q0) where Q is a set
of states ; where the transition function δ associates to
every letter a ∈ Σ a finite set

δ(a) ∈ Pfin(QA)

of higher-order states of type A = Σ(a) in the hierarchy
of higher-order states generated by the set of ground
states Qo = Q ; where B is a type ; and where q0 ∈ QB is
a higher-order state of type B called the initial state of
the automaton. Note that the transition function δ may
be equivalently seen as a vector of finite sets of higher-
order states:

δ ∈
∏
a∈Σ

Pfin(QΣ(a))

indexed by letters of the finite alphabet Σ of the au-
tomaton A. This remark enables us to define a preorder
relation vΣ on transition functions δ, δ′ of the same
alphabet Σ, using the preorder relation v!A on finite sets
of higher-order states of type A, in the following way: we
write δ vΣ δ′ when ∀a ∈ Σ, δ(a) v!Σ(a) δ

′(a). This leads us
to the following preorder relation between higher-order
automata:

Definition 1 (Preorder on automata): Given two
higher-order automata A = (Q,Σ, A, δ, q) and A′ =
(Q,Σ, A, δ′, q′) with same alphabet Σ and same type A,
one writes A′ vΣ,A A precisely when δ vΣ δ′ and q′ vA q.

C. Run-trees
We find convenient to define in a type-theoretic fashion

the set of run-trees 〈Σ ` M : A | δ, q 〉 of an higher-
order automaton A = (Q,Σ, A, δ, q) against a simply-
typed infinitary λ-term Σ `M : A with same alphabet Σ
and same type A. The reader more inclined towards an
automata-theoretic style will find an equivalent formu-
lation in the Appendix, §B.

Definition 2 (Run-trees): A run-tree R of the automaton
A against the infinitary λ-term M is defined as a possibly
infinite derivation tree of the judgment

〈Σ `M : A | δ, q 〉
in the deduction system generated by the rules below:

q vA q′ q′ ∈ δ(a)
Var 〈 Σ, a : A ` a : A | δ, q 〉

〈 Σ , a : A ` M : B | δ + a 7→ {q1, . . . , qn} , q 〉
Abs 〈 Σ ` λa.M : A ⇒ B | δ , {q1, . . . , qn}(q 〉

〈 Σ ` M : A ⇒ B | δ, u(q 〉 〈〈 Σ ` N : A | δ, u 〉〉
App

〈 Σ ` App(M,N) : B | δ, q 〉

〈 Σ ` M : A | δ, q1 〉 . . . 〈 Σ ` M : A | δ, qn 〉
Bag

〈〈 Σ ` M : A | δ, {q1, . . . , qn} 〉〉

In the rule App, u = {q1, . . . , qn} denotes a finite set
of higher-order states q1, . . . , qn of type A. The Bag rule
then reflects the alternating nature of our higher-order
automata. In particular, we use the notation

〈〈Σ `M : A | δ, {q1, . . . , qn} 〉〉 (12)

to denote the set of n-tuples of run-trees:∏
1≤i≤n

〈Σ `M : A | δ, qi 〉

Note that such a n-tuple of run-trees is the same thing
as an infinitary derivation tree with conclusion (12) in
the deduction system just defined. We will use in §VI
(proof of Thm. 5) an infinite-branching variant of run-
tree, where the Bag is rule is replaced by the ∞-Bag
rule:

∀i ∈ I, 〈 Σ ` M : A | δ, qi 〉
∞-Bag

〈〈 Σ ` M : A | δ, u 〉〉

with a countable (finite or infinite) family of premises
indexed by i ∈ I, and with u ∈ Pfin(QA) defined as
the finite set u = {q ∈ QA | ∃ i ∈ I, q = qi}. Note
that the existence of a run-tree is equivalent to the
existence of an infinite-branching run-tree for a higher-
order automaton.

D. Acceptance

This leads us to the following definition of acceptance
for a higher-order automaton.

Definition 3: A simply-typed and infinitary λ-term M of
alphabet Σ and of type A is accepted by a higher-order
automaton A = (Q,Σ, A, δ, q) precisely when the set of
run-trees 〈Σ ` M : A | δ, q 〉 is non-empty.

The next statement shows that acceptance is closed
under the preorder relation between higher-order au-
tomata formulated at the end of §III-B (Def. 1).

Proposition 3: Suppose given two higher-order au-
tomata A and A′ with same alphabet Σ and same type A,
such that A′ = (Q,Σ, A, δ′, q′) vΣ,A A = (Q,Σ, A, δ, q). In
that case, every simply-typed and infinitary λ-term of
alphabet Σ and of type A accepted by A is also accepted
by A′.

Proof. Technically speaking, an easy proof by coinduction
on the four rules Abs, App, Var and Bag of the deduction
system enables one to replace every run-tree R in 〈Σ `
M : A | δ, q 〉 by a run-tree R′ in 〈Σ `M : A | δ′, q′ 〉 defined
by increasing the transition function and by decreasing
the initial state at each node of the run-tree R. More
conceptually, the preorder reflects the fact that a run-
tree does not have to use all the transitions offered by
the transition function of the higher-order automaton.

IV. FORWARD PRESERVATION THEOREM

We prove the first and easier direction of the invari-
ance theorem (Thm. 3) by establishing that

Theorem 4 (Forward Preservation): Suppose that two
simply-typed infinitary λ-terms M and N with alpha-
bet Σ and type A are related by a strongly convergent
β-rewriting path f : M �β N . In that case, every higher-
order automaton A with alphabet Σ and type A which
accepts M also accepts N .

Proof. The proof is based on an easy adaptation to
the deduction system in §III-C of the Infinitary Subject
Reduction theorem (Prop. 2) established for the original
deduction system of the simply-typed λ-calculus in §II-B.
The key observation is that one can substitute run-trees
in variable occurrences of run-trees, in the same way
as one substitutes infinitary simply-typed λ-terms in
variable occurrences of infinitary simply-typed λ-terms.
In this way, it is possible to transform the original run-
tree R of the automaton A on M into a run-tree Rp+1
of the same automaton A on the infinitary λ-term Mp+1
obtained after computing the prefix

f|0,p = M0 M1 · · · Mp−1 Mp
R0 R1 Rp−1

of length p of the infinitary β-rewriting path f . The fact
that f is a strongly convergent infinitary β-rewriting
path ensures that the family of run-trees (Rp)p∈N con-
verges towards a run-tree R∞ of the simply-typed infini-
tary λ-term N . This establishes the theorem.

V. A DIFFRACTION THEORY

In this section, we introduce the notion of diffraction
pattern which extends the familiar notion of occurrence
of a simply-typed λ∞-term. We then develop a residual
theory for diffraction patterns which refines the residual
theory for occurrences. This “diffraction theory” will be
the main tool to prove in §VI the most difficult direc-
tion: backward preservation, of our invariance theorem
(Thm. 3). We start by defining the notion in §V-A and
§V-B and then illustrate it in §V-C ; although the notion
of diffraction pattern is extremely natural, it is also new,
and we thus advise the reader to read §V-A, §V-B and
§V-C simultaneously, and to look at the diffraction of an
occurrence of M along a strongly convergent rewriting
path f : M �β N illustrated in the Appendix, §F.

A. Diffraction patterns

We define the notion of a diffraction pattern of type A
in a simply-typed λ∞-term M , by structural induction on
the type A. We recall that the set of occurrences of M is
denoted by occ(M) and that every occurrence o ∈ occ(M)
has a simple type in M , noted type(M,o).

Definition 4 (Diffraction pattern of ground type): A
diffraction pattern D of type o in M is an occurrence o ∈
occ(M) of ground type o in M ; the head occurrence of
the diffraction pattern D = o is defined as hdocc(D) = o.

Definition 5 (Diffraction pattern of arrow type): A
diffraction pattern D of type A⇒ B in M is either

• an occurrence D = o of type A⇒ B in M ; the head
occurrence of the diffraction pattern D is defined in
that case as hdocc(D) = o,

• a pair D = ({DA,i | i ∈ I}, DB) also noted

D = {DA,i | i ∈ I} (DB

consisting of a family {DA,i | i ∈ I} of diffraction
patterns DA,i of type A in M , indexed by a countable
(finite or infinite) set I, together with a diffraction
pattern DB of type B in M ; one requires moreover
that the head occurrence of the diffraction pattern
DB nests in M the head occurrences of the diffrac-
tion patterns DA,i, as follows:

∀i ∈ I, hdocc(DB) �M hdocc(DA,i)

the head occurrence of the diffraction pattern D is
then defined as the head occurrence hdocc(D) =
hdocc(DB) of the diffraction pattern DB in M .

The definition of a diffraction pattern of ground type o
and of arrow type A⇒ B ensures that every occurrence
o ∈ occ(M) of the simply-typed λ∞-term M may be
understood as a specific kind of diffraction pattern D = o
with the same type type(M,o) as the occurrence o in
M . We are thus allowed to see diffraction patterns as a
generalisation of occurrences, and to write

occ(M) ⊆ diff(M)

where diffA(M) denotes the set of diffraction patterns of
type A in M , and denotes the set of diffraction patterns
of arbitrary type A ∈ Type in M .

B. The shape of a diffraction pattern
What makes the notion of diffraction pattern D so

interesting for higher-order model-checking is that ev-
ery such D ∈ diff(M) comes together with a rooted
tree shape(D) called the shape of D. The rooted
tree shape(D) is defined by induction on the diffraction
pattern D:
• when the diffraction pattern D of ground type o

or of arrow type A ⇒ B is equal to an occurrence
o ∈ occ(M) of the same type, the rooted tree shape(D)
is equal to the trivial rooted tree with one root
labelled ∗ and no other node,

• when the diffraction pattern D of type A ⇒ B is
equal to an arrow D = {DA,i | i ∈ I} (DB , the
rooted tree shape(D) is defined as the rooted tree
shape(DB) with root ∗B , extended with the rooted
trees shape(DA,i) with their roots ∗A,i connected as
children to the root ∗B of shape(DB).

Note that every node of shape(D) is a diffraction pattern
of M . This enables us to define the function

embedD : (shape(D),�D) −→ (occ(M),�M)

which maps every node ∗E ∈ shape(D) to the head oc-
currence hdocc(E) ∈ occ(M) of the underlying diffraction
pattern E. Note that embedD defines a monotone function

embedD from the set of nodes of shape(D) equipped with
its tree nesting order �D, to the set of occurrences
occ(M) of the simply-typed λ∞-term M , equipped with
the nesting order �M .

C. Residuals of diffraction patterns
Suppose given a β-redex R = (M, o,N) with occur-

rence oR = o of type A⇒ B of the form

M = C(M,o)[(λa.P)Q] R−→β C(M,o)[P [a := Q]] = N

where C(M,o)[−] is the context with unique hole at oc-
currence o defined in §II-C, and where the λ-term P has
type A and the λ-term Q has type B.

We are interested now in what happens to the oc-
currence oR of the β-redex R of type A ⇒ B after β-
reduction of R. In the traditional theory of residuals, the
occurrence oR of type A⇒ B has no residual along the β-
reduction of R. The intuition is that the occurrence o has
been “consumed” during the process of β-reduction, and
thus disappears. The intuition underlying our diffraction
theory is quite different: our idea is that the occurrence
oR has not really disappeared, but rather that it has been
“diffracted” by the β-redex R into a diffraction pattern
E = {DA,i | i ∈ I} (DB defined with the following
components: the occurrence DB = oB of P of type B in N ,
and an occurrence DA,i = oA,i in N for each occurrence of
the free variable a in M , and thus, for each occurrence of
a copy Q in N . The situation can be depicted as follows:

App

λa

a a a

R
D

P

Q

M

R−→β

D

DA, DA,DA,

B

P

Q Q Q

N

where we depict the occurrence D = oR as a white circle
in the λ∞-term M , and similarly for the occurrence DB =
oB and each occurrence DA,i = oA,i in the λ-term N , for
i ∈ I. Note that the shape of the diffraction pattern E
in N residual of D along the β-redex R looks as follows:

shape(E) =
B*

*A, *A, *A,

and that the monotone function embedD transports every
node of shape(E) to the following occurrences: ∗B 7→ oB
and ∗A,i 7→ oA,i. Note that the function embedD is indeed
monotone, since oB �N oA,i for all i ∈ I.

Given a β-redex R = (M,o,N) as above, the definition
of a residual E ∈ diff(N) of a diffraction pattern D ∈
diff(M) along a β-redex M →β N is done by induction
on the type of D. As a matter of fact, the definition is
not difficult to reconstruct starting from the key example
just described. It is given in the Appendix, §E. We write

D[R]E when E ∈ diff(N) is a residual of D ∈ diff(M)
along a β-redex R : M →β N . By extension, we write
D[f]E when E ∈ diff(N) is a residual of D ∈ diff(M) along
a finite β-rewriting path from M to N , in the expected
sense, see the Appendix, §D. An important observation
is that

Proposition 4: Every strongly convergent infinitary β-
rewriting path M �β N induces a residual relation

[f] ⊆ diff(M)× diff(N).

This residual relation will play a central role in the
proof of the backward preservation theorem (Thm. 5)
next section.

VI. BACKWARD PRESERVATION THEOREM

We are ready now to establish the second (and more
difficult) direction of our invariance theorem:

Theorem 5 (Backward preservation): Suppose that two
simply-typed and infinitary λ-terms M and N with
higher-order alphabet Σ and arity A are related by a
strongly convergent β-rewriting path M �β N . In that
case, a higher-order automaton A = (Q,Σ, A, δ, q) which
accepts N also accepts M .

Proof. In order to establish the theorem, we need to
deduce the existence of a run-tree RM of the automaton
A = (Q,Σ, A, δ, q) on the λ∞-term M from the existence
of a run-tree RN of A on the λ∞-term N , using the fact
that M and N are related by a strongly convergent β-
rewriting path f : M �β N . The diffraction theory
formulated in §V plays a key role in that reconstruction.
First of all, it follows from Prop. 4 that every occurrence
o ∈ occ(M) has a countable set o[f] ⊆ diff(N) of diffrac-
tion patterns E as residuals along the strongly conver-
gent path f . Every such diffraction pattern E ∈ o[f]
residual of D = o along f induces a set E[RN] of diffrac-
tion patterns F in the run-tree RN . The key observation
is that every such diffraction pattern F ∈ diff(RN) comes
equipped with a higher-order state qF ∈ QA, where
A = type(M,o) denotes the type of the occurrence o inM .
The higher-order state qF is defined by collecting the
states appearing on the nodes of the rooted tree shape(F)
embedded in the run-tree RN . If we write [f ·RN] for the
composite relation [f] ◦ [RN], we associate in this way
to every occurrence o ∈ occ(M) of type A = type(M,o)
in M a countable set Do = o[f · RN] of diffraction
patterns F in RN , each of them labelled by a higher-
order state qF ∈ QA. A careful inspection establishes that
the elements of the Do’s combine together to define an
infinite-branching run-tree RM of the automaton A on
the λ∞-term M , in the sense of §III-C. The construction
of RM from D is a variant of the Grothendieck construc-
tion. The equivalence in §III-C between run-trees and
infinite-branching run-trees concludes the proof.

The invariance theorem (Thm. 3) follows immedi-
ately, as a consequence of the forward and backward

preservation theorems (Thm. 4 and 5). This invariance
theorem enables us to establish a primary decidability
theorem (Thm. 6) for λY -terms and higher-order au-
tomata. The theorem relies on a refined notion of Böhm
tree, better adapted to higher-order model-checking, and
parametrized by the set of ground states Q.

Definition 6 (Böhm tree): A Böhm tree N is defined by
the coinductive grammar

N ::= λa1 . . . λam.aN1 . . . Nn | ⊥Σ`u:A

where ⊥Σ`u:A is a constant of the calculus indexed by a
higher-order alphabet Σ, a type A, and a finite subset u
of higher-order states of type Σ⇒ A.

Using the infinitary Church-Rosser property in [11],
one establishes that given a finite set Q of ground states,
every simply-typed λ∞-term M has a unique Böhm
tree BT (M). The usual (inductive) notion of Böhm tree
corresponds to the case where u = ∅ for every con-
stant ⊥Σ`u:A ; an λ∞-term M is called productive when
its Böhm tree BT (M) does not contain any constant of
the form ⊥Σ`u:A.

Theorem 6 (Decidability): Suppose given a higher-order
automaton A and a simply-typed λY -term M of same
higher-order alphabet Σ and of same type A. Then, the
question whether the infinitary simply-typed λ-term N =
BT (M) generated by M is accepted by A is decidable.

VII. LAMBDA-TERMS WITH BOUNDARY

The invariance theorem (Thm. 3) has been established
in §VI for a very primitive notion of infinitary λ-term, of
a purely coinductive nature. In this section, we extend
the theorem to an inductive and coinductive notion of
infinitary λ-term, called λ-term with boundary.

Definition 7 (Infinite Path): An infinite path p in an in-
finitary λ-term M is an infinite sequence p = (on)n∈N of
occurrences of M such that o0 is the empty occurrence ε,
the occurrence on+1 ∈ occ(M) immediately extends the
occurence on ∈ occ(M) for all n ∈ N, in the sense that
one of the three following cases occurs: on+1 = on · body,
on+1 = on · fun or on+1 = on · arg. We write ∞-path(M) for
the set of infinite paths of M . Given p = (on)n∈N in M ,
we write p|n for the occurrence on ∈ occ(M).

Definition 8 (Boundary): A boundary Þ of a simply-
typed infinitary λ-term M is defined as a set Þ ⊆
∞-path(M) of infinite paths of M . A simply-typed infini-
tary λ-term with boundary is a triple

(M,ΥM ,ÞM)

consisting of a simply-typed infinitary λ-term (M,Υ(M))
together with a boundary ÞM of the infinitary λ-term M .

The intuition is that an infinite path p should be
considered as part of the λ-term M precisely when p

is an element of the boundary ÞM , and not otherwise.
The notion of boundary is inspired by the definition of a

topological game whose winning condition is described by
a subset Ω (e.g. borelian or projective) of an underlying
topological space, see [9] for details. It is worth men-
tioning that every such infinite game may be encoded
as a boundary Þ on the Church encoding BinTree of the
infinite binary tree of signature Σ = {a : 2}.

The purpose of λ-terms with boundary is to provide an
interpretation of terms of the λYµν-calculus, defined as
the simply-typed λ-calculus extended with

– an inductive fixpoint operator Yµ : (A⇒ A)⇒ A
– a coinductive fixpoint operator Yν : (A⇒ A)⇒ A

Proposition 5: Every simply-typed λYµν-term M de-
fines an infinitary simply-typed λ-term with boundary

[M]∞ = ([M]∞,Υ[M]∞ ,Þ[M]∞)

by structural induction on the λYµν-term M .

The construction is easy to describe. The infinitary
simply-typed λ-term [M]∞ is obtained by infinite un-
folding of M , using the equations Yµ P ' P (Yµ P) and
Yν P ' P (Yν P). The typing derivation Υ[M]∞ is de-
fined similarly. The boundary Þ[M]∞ is also defined by
structural induction on M . The two important cases by
induction are the definition of the boundary of a λYµν-
term of the form YµM or YνM . The λYµν-terms YµM
and YνM are unfolded as the same infinitary λ-term
[YµM]∞ = [YνM]∞ depicted as

App

App

M

M

(13)

where [M]∞ denotes the infinitary unfolding of M . The
boundary of [YµM]∞ consists of all the infinite paths p of
the λ-term (13) which start by exploring a finite number
of application nodes depicted in (13), and then enter in
one copy of [M]∞ and implement in it an infinite path
q ∈ Þ[M]∞ of the boundary of [M]∞. The boundary of
[YνM]∞ consists of the boundary of [YµM]∞ extended
with the infinite path which explores an infinite number
of application nodes depicted in (13) without ever enter-
ing into any copy of [M]∞. Since the three other induction
cases V ar, Abs and App are straighforward, this defines
for every simply-typed λYµν-term M the boundary Þ[M]∞
of the infinitary λ-term [M]∞ associated to M . Although
it is clear at this stage, it is worth mentioning that the
inductive or coinductive nature of the fixpoint operators
Yµ and Yν is not detected by the infinitary λ-term [M]∞
itself, but by its boundary Þ[M]∞ .

Now, suppose given a strongly convergent β-rewriting
path f : M �β N . By definition of strong convergence,
there exists for every n ∈N a natural number N(n) such
that the path f|p,q is of diameter ||f|p,q|| strictly smaller

than ε = 1/2n for every p, q ∈ N such that N(n) < p ≤ q.
This leads us to the following definition

Definition 9: An infinite path p ∈ ∞-path(M) is called
necessary to an infinite path q ∈ ∞-path(N) along f :
M �β N when for every m ∈N, there exists n ∈N such
that the occurrence p|m is necessary (in the traditional
sense) to the computation of the occurrence q|n along the
finite β-rewriting path f|0,N(n) prefix of length N(n) of f .

From this follows the important observation that

Proposition 6: Every strongly convergent β-rewriting
path f : M �β N starting from a simply-typed λ∞-
term M with boundary ÞM induces a boundary ÞN on
the simply-typed λ∞-term N .

The boundary ÞN is defined as the set of all the infinite
paths q ∈ ∞-path(N) such that every infinite path
p ∈ ∞-path(M) necessary to q along f : M �β N is an
element p ∈ ÞM of the original boundary ÞM . This con-
struction applies in particular to the strongly convergent
β-rewriting path f : M �β N which computes the Böhm
tree N = BT (M) generated by the unfolding [M]∞ of
a simply-typed λYµν-term M . This defines the boundary
of the simply-typed λ∞-term N = BT (M) generated by
a simply-typed λYµν-term M . An essentially straight-
forward adaption of the techniques developed in §IV,
§V, §VI to the λYµν-calculus and to the λ∞-terms with
boundary enables us to refine Thm. 6 and to establish
the following decidability theorem:

Theorem 7 (Decidability): Suppose given a higher-order
automaton A and a simply-typed λYµν-term M of same
higher-order alphabet Σ and of same type A. Then,
the question whether the infinitary simply-typed λ-term
with boundary N = BT (M) generated by M is accepted
by A is decidable.

VIII. HIGHER-ORDER PARITY AUTOMATA

In this section, we deduce the decidability theorem
for λY -terms and higher-order parity automata from the
decidability theorem (Thm. 7) just established in §VII for
λYµν-terms and higher-order automata. To that purpose,
we follow a translation [[−]] from the simply-typed λ-
calculus into itself, formulated for the first time in [7].
Suppose given a set of parities Ω = {1, . . . , k}, and define
the �-modality as follows:

�A = (A × . . . × A)︸ ︷︷ ︸
k-fold product

(14)

The translation [[−]] transports every typing judgment
Σ ` M : A into a typing judgment � [[Σ]] ` [[M]] : [[A]]
where the translation [[−]] on simple types is defined as

[[1]] = 1 [[A×B]] = [[A]] × [[B]]
[[o]] = o [[A⇒ B]] = (� [[A]]) ⇒ [[B]]

and the translation [[−]] on λ-terms applies the recipe
of the translation of a simply-typed λ-term in a model
of linear logic where × denotes at the same time the

tensor product ⊗ and the cartesian product & of the
free cartesian-closed category generated by o, and the
exponential modality ! is defined as the modality �. Note
that in this purely syntactic translation, the comonadic
structure of � is provided by two maps

δA : �A −→ ��A εA : �A −→ A
defined as the simply-typed λ-terms δA and εA below:

(a1, . . . , ak) : �A `
(

(amax(i,j))1≤i≤k
)

1≤j≤k : ��A
(a1, . . . , ak) : �A ` a1 : A

Note that the max operator appearing in the definition
of δA coincides with the max operator used in the com-
putation of the parity of a branch in the higher-order
automaton ; while the definition of εA as the projection
on the variable a1 reflects the fact that the parity 1 is
the neutral element of max in the set of parities Ω, see
[5], [6], [7] for details. Then, we take advantage of the
elementary fact that every simply-typed λY -term M is
βη-equivalent to a λY -term of the form Y (λF.P), where
P is a simply-typed λ-term, not containing any fixpoint
operator. The translation of such a λ-term P of alphabet
and type

F : A , Σ ` P : A
defines a simply-typed λ-term [[P]] of alphabet and type

F1 : A , F2 : A , . . . , Fk : A , � [[Σ]] ` [[P]] : [[A]]
where we use implicitly the definition of the modality �
in (14). We may suppose without loss of generality that
the highest parity k is odd, and construct the λYµν-term:

N = YµYνYµYν . . . YνYµ︸ ︷︷ ︸
k fixpoints

(
[[P]]

)
We have just explained how to translate a λY -term M
into a λYµν-term N whose structure reflects the inductive
and coinductive nature of parities in Ω. Let us turn on
the other side of higher-order automata, and make the
following key observation:

Proposition 7: A higher-order parity automaton A with
higher-order alphabet Σ and type A is the same thing as
a higher-order automaton [[A]] with higher-order alpha-
bet [[Σ]] and type [[A]].

Moreover, the acceptance of the simply-typed λY -
term M by a higher-order parity automaton A is equiva-
lent to the acceptance of the λYµν-term N defined above
by the higher-order automaton [[A]]. The decidability
theorem (Thm. 1) follows immediately from this, and the
decidability theorem established in §VII.

IX. RELATED WORKS

The model-checking problem discussed in the introduc-
tion was originally established by Knapik, Niwinski and
Urzyczyn [16] for safe higher-order recursion schemes.
The safety condition on recursion schemes was then
relaxed in subsequent works, using a large variety of
approaches and techniques: game semantics [19], inter-
section types [18], collapsible pushdown automata [15]
or Krivine environment machines [21].

A second generation of proofs then emerged, based
on a tight connection with denotational semantics, and
with earlier ideas by Aehlig [1] and Salvati [20] on the
relationship between language recognizability and finite
models of the simply-typed λ-calculus. Two research
groups developed simultaneously this denotational re-
construction of higher-order model-checking, with a se-
ries of mutual influences and crossed inspirations: Sal-
vati and Walukiewicz [22], [23] and Grellois and Melliès
[5], [6], [7], [8]. Looking in retrospect, the discovery of
a connection between higher-order model-checking and
linear logic played a decisive role in the success of the
denotational approach, see [23], [7] for a discussion.
This connection with linear logic is not accidental, and
relies on a series of foundational works by Ehrhard [3]
and Terui [24] on the Scott semantics of linear logic.
The work presented here combines this denotational
approach with fundamental ideas in infinitary rewriting
theory [11], [4], most notably strong convergence, diffrac-
tion patterns and infinitary λ-terms with boundary.

The notion of higher-order parity automaton was pre-
sented for the first time during a talk at IHP in June
2014, more than two years and a half ago. The rea-
son for delaying the publication is that we wanted a
clean and transparent proof of decidability. Although
we focus here on the “local” model-checking problem,
we believe that the automata-theoretic approach to the
“global” model-checking selection problem elaborated by
Haddad [14] can be adapted to higher-order parity au-
tomata, as was done in [5] for traditional (first-order) au-
tomata. Finally, a recent translation [2] between higher-
order model-checking and higher-order modal fixpoint
logic [25] seems to share a number of primary ingredi-
ents with [5], [6], [7] and with our proof of decidability.
A comparison would deserve further investigations.

X. CONCLUSION

We have introduced a notion of higher-order parity
automaton designed to express inductive and coinductive
properties of simply-typed infinitary λ-terms. We have
then justified our notion of automaton by establishing a
general decidability theorem. The theorem extends the
scope of traditional higher-order model-checking from
alphabets with letters of first-order arities, to alphabets
with letters of arbitrary higher-order arities. One main
technical contribution of the paper is to articulate a
simple and conceptually rigorous proof of decidability,
combining ideas coming from denotational semantics,
linear logic and infinitary rewriting. In particular, the
notion of diffraction pattern introduced in the paper is
interesting for its own sake, and would deserve further
study.

Acknowledgments.
Many ideas developed in the present paper emerged

in my work with Charles Grellois on linear logic and
higher-order model-checking, and I thus want to thank

him warmly here. I am also grateful to Arnaud Carayol,
Thomas Colcombet, Etienne Lozes, Sylvain Salvati,
Olivier Serre and Igor Walukiewicz for discussions and
feedbacks on this work.

REFERENCES

[1] Klaus Aehlig. A finite semantics of simply-typed lambda terms for
infinite runs of automata. Logical Methods in Computer Science,
3(3), 2007.

[2] Florian Bruse, Naoki Kobayashi, Étienne Lozes. On the Relation-
ship between Higher-Order Recursion Schemes and Higher-Order
Fixpoint Logic. Proceedings of POPL 2017.

[3] Thomas Ehrhard. The Scott model of linear logic is the extensional
collapse of its relational model. Theor. Comput. Sci., 424:20–45,
2012.

[4] Jörg Endrullis, Dimitri Hendriks, Jan Willem Klop. Highlights in
Infinitary Rewriting and Lambda Calculus. Theoretical Computer
Science, Volume 464, 2012, Pages 48-71.

[5] Charles Grellois and Paul-André Melliès. An infinitary model of
linear logic. Proceedings of FOSSACS 2015.

[6] Charles Grellois and Paul-André Melliès. Relational semantics of
linear logic and higher-order model checking. Proceedings of CSL
2015.

[7] Charles Grellois and Paul-André Melliès. Finitary semantics of
linear logic and higher-order model-checking. Proceedings of MFCS
2015.

[8] Charles Grellois. Semantics of linear logic and higher-order model-
checking. PhD Thesis, Université Paris Diderot, April 2016.

[9] Alexander S. Kechris. Classical Descriptive Set Theory. Graduate
Texts in Mathematics, Springer Verlag, 1995.

[10] Richard Kennaway and Fer-Jan de Vries. Infinitary Lambda
Calculus. Theoretical Computer Science, 175(1):93Ű125, 1997.

[11] Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de
Vries. Infinitary Lambda Calculus. Theoretical Computer Science,
175(1):93Ű125, 1997.

[12] Richard Kennaway, Vincent van Oostrom, Fer-Jan de Vries. Mean-
ingless terms in rewriting, The Journal of Functional and Logic
Programming 1 (1999).

[13] Alexander Kurz, Daniela Petrisan, Paula Severi, Fer-Jan de Vries.
An alpha-corecursion principle for the infinitary lambda calculus,
in: Proc. 11th Int. Workshop on Coalgebraic Methods in Computer
Science, Springer, 2012.

[14] Axel Haddad. Shape-preserving transformations of higher-order
recursion schemes. PhD thesis, Université Paris Diderot, 2013.

[15] Matthew Hague, Andrzej S. Murawski, Luke Ong, and Olivier
Serre. Collapsible pushdown automata and recursion schemes. In
LICS, 2008.

[16] Teodor Knapik, Damian Niwinski, Pawel Urzyczyn. Higher-order
pushdown trees are easy. Proceedings of FoSSaCS. LNCS, vol. 2303
(2002)

[17] Naoki Kobayashi. Types and higher-order recursion schemes
for verification of higher-order programs. In Zhong Shao and
Benjamin C. Pierce, editors, POPL, 2009.

[18] Naoki Kobayashi and Luke Ong. A type system equivalent to
the modal mu-calculus model checking of higher-order recursion
schemes. In LICS, 2009.

[19] Luke Ong. On model-checking trees generated by higher-order
recursion schemes. Proceedings of LICS, pages 81–90, 2006.

[20] Sylvain Salvati. Recognizability in the Simply Typed Lambda-
Calculus Logic. Proceedings of Language, Information and Compu-
tation, 16th International Workshop, WoLLIC 2009.

[21] Sylvain Salvati and Igor Walukiewicz. Krivine machines and
higher-order schemes. In Proceedings of ICALP 2011, LNCS vol.
6756, pages 162–173. Springer, 2011.

[22] Sylvain Salvati and Igor Walukiewicz. Using models to model-
check recursive schemes. In TLCA, LNCS vol. 7941. Springer 2013.

[23] Sylvain Salvati and Igor Walukiewicz. A model for behavioural
properties of higher-order programs. In Proceedings of CSL 2015,
volume 41 of LIPIcs, pages 229–243.

[24] Kazushige Terui. Semantic evaluation, intersection types and
complexity of simply typed lambda calculus. In RTA, volume 15
of LIPIcs, 2012.

[25] M. Viswanathan and R. Viswanathan. A higher order modal
fixed point logic. In Proceedings of CONCUR 2004, volume 3170 of
Lecture Notes in Computer Science, pages 512-528. Springer, 2004.

APPENDIX

A. A glimpse on the expressive power of higher-order
parity automata

Although we will not study here their expressive power
we would like to illustrate with a very elementary ex-
ample how the notion of higher-order parity automa-
ton extends the traditional boundaries of higher-order
model-checking. Consider the higher-order alphabet Σ
consisting of a unique letter cons of higher-order arity

cons : ω ⇒ o⇒ o

where ω = (o ⇒ o) ⇒ o ⇒ o denotes the simple type
of natural numbers used in the Church encoding. An
infinitary λ-term in normal form of type o in the higher-
order alphabet Σ is the same thing as an infinite stream

[n0, n1, n2, . . .] = cons(n0, cons(n1, cons(n2, . . .)))

of completed natural numbers nk ∈ N] {∞}. Every
higher-order parity automaton A of alphabet Σ and of
type o thus describes a specific infinitary property of
these streams. When instantiated at the higher-order
alphabet Σ, the main result of the paper (Thm. 1) es-
tablishes that for every finite λY -term M of type

cons : ω ⇒ o⇒ o ` M : o

the question whether M generates an infinite stream
N = BT (M) of completed natural numbers accepted by
the automaton A is decidable.

B. Run-trees
One main novelty of our notion of higher-order au-

tomaton with respect to the traditional notion of al-
ternating tree automaton is that the alphabet Σ and
transition function δ of the automaton may be altered
(and in fact extended) in the course of the exploration of
the simply-typed λ∞-term. This typically happens when
a higher-order automaton with alphabet Σ, transition
function δ and initial state q0 = {q1, . . . , qn}(q reaches
a simply-typed λ∞-term of the form

Σ ` λa.M : A⇒ B.

Recall that the purpose of the abstraction node λa.M
is to declare a new variable in the context, using the
Abstraction rule:

Σ, a : A `M : B
Abstraction Σ ` λa.M : A⇒ B

The higher-order automaton should thus behave accord-
ingly and declare a new letter a in its alphabet in order to
adapt to the situation. This extra letter a should come
together with an extension of the transition function δ
with

δ(a) = {q1, . . . , qn} ∈ Pfin(QA).

This ability to extend the alphabet in the course of ex-
ploration of the simply-typed λ∞-term makes the notion
of run-tree more sophisticated but also more expressive
than in the usual notion of run-tree in an alternating

tree automaton. We find convenient to give a coinductive
definition of the set of run-trees of an automaton A =
(Q,Σ, A, δ, q0) against a simply-typed λ∞-term Σ `M : A
of context Σ and of type A. By definition, the set of run-
trees is only defined when:
• the context Σ of the simply-typed λ∞-tree M coin-

cides with the alphabet Σ of the automaton A,
• the type A of the simply-typed λ∞-tree M coincides

with the type A of the automaton A.
For that reason, we generally find convenient to write

〈Σ `M : A | δ, q 〉

for the set of run-trees of the higher-order automaton
A = (Q,Σ, A, δ, q) against the infinitary simply-typed λ-
term Σ `M : A. This notation makes sense because the
preordered set of ground states (Q,vQ) remains fixed in
the course of the definition of the run-tree.

1) Abstraction: Suppose given a simply-typed λ∞-term

Σ ` λa.M : A⇒ B

and an automaton A = (Q,Σ, δ, q0) of same type A⇒ B.
By definition, the initial state q0 of the automaton A is
a higher-order state of type A⇒ B, and it is thus of the
form

q0 = {q1, . . . , qn}(q

where the qi’s are higher-order states of type A and q is
a higher-order state of type B. The set of run-trees

〈Σ ` λa.M : A⇒ B | δ, {q1, . . . , qn}(q 〉 (15)

is defined coinductively as

(Lam, q0) · 〈 Σ, a : A `M | δ + a 7→ {q1, . . . , qn} , q 〉

The intuition behind this definition is that a run-tree
exploring λa.M with initial state {q1, . . . , qn} (q starts
by declaring the letter a with transition function δ(a) =
{q1, . . . , qn}, and then explores the simply-typed λ∞-
term M with initial state q. Note that every state qi is
of type A and that the state q is of type B. This ensures
that our coinductive definition of (15) is valid. Finally, the
notation (Lam, q) · Z stands for the set {(Lam, q)} × Z
where Lam is a tag, q is a state and Z is a set ; this
addition to the bare construction is only here to label
the run-trees in a clear and non-equivocal way.

2) Application: Suppose given a simply-typed λ∞-term

Σ ` App(M,N) : B

whose underlying typing derivation ΥApp(M,N) has last
rule

Σ `M : A⇒ B Σ ` N : AApplication
Σ ` App(M,N) : B

Suppose that A = (Q,Σ, δ, q) is an automaton of same
alphabet Σ and of same type B. The set of run-trees

〈 Σ ` App(M,N) : B | δ , q 〉 (16)

is defined coinductively as the set∐
u ∈ Pfin(QA)

u = {q1, . . . , qn}

(App, u(q) · 〈Σ `M | δ, u(q 〉×
i=n∏
i=1
〈Σ ` N | δ, qi 〉

The intuition behind this definition is that a run-tree
exploring App(M,N) with initial state q is provided by
a run-tree exploring the simply-typed λ∞-term M with
initial state u (q for some finite set u = {q1, . . . , qn}
of states qi ∈ QA, together with a vector of n run-trees
exploring the simply-typed λ∞-term N , each run-tree
starting with the initial state qi ∈ QA, for 1 ≤ i ≤ n.
Note the state u (q has the same type A ⇒ B as the
function M , and that each state qi ∈ QA has the same
type A as the argument N . This ensures that our coin-
ductive definition of (16) is valid. The notation (App, q)·Z
stands for the set {(App, q)} × Z where App is a tag, q
is a state and Z is a set.

3) Variable: Suppose given a simply-typed λ∞-term

Σ , a : A ` a : A

with underlying typing derivation Υa is defined by
a Variable rule. Suppose given an automaton A =
(Q,Σ, δ, q) of the same alphabet and of same type A. In
that case, the set of run-trees of the automaton is defined
as

〈Σ , a : A ` a : A | δ + a 7→ {q1, . . . , qn}, q 〉 = (Var, q)

when q ∈ QA satisfies

q vA qi
for an element qi ∈ QA of the finite set {q1, . . . , qn}, and

〈Σ , a : A ` a : A | δ + a 7→ {q1, . . . , qn}, q 〉 = ∅

otherwise, when q is not an element of {q1, . . . , qn}.
Here, the notation (Var, q) stands for the singleton set
{(Var, q)} where Var is a tag and q is a state.

This concludes our coinductive definition of the set of
run-trees of an automaton A = (Q,Σ, A, δ, q) against
an infinitary and simply-typed λ-term Σ ` M : A of
same higher-order alphabet Σ and of same higher-order
arity A.

C. Run-trees as an intersection type system
The two figures (Fig. 3 and Fig. 2) illustrate why it is

important to equip the deduction system of §III-C (Def. 2)
with a subtyping relation q vA q′ in the Var rule

q vA q′ q′ ∈ δ(a)
Var 〈Σ, a : A ` a : A | δ, q 〉

By way of illustration, this subtyping relation q vA q′

appearing in the Var rule ensures that the automaton A
with empty alphabet, with type

(A⇒ B)⇒ A⇒ B

and with initial state

{{ }(qB}({qA}(qB

accepts the simply-typed λ-term

` λf.f : (A⇒ B)⇒ A⇒ B

in the same way as it accepts without the need of any
explicit subtyping relation its η-expansion, the simply-
typed λ-term

` λf.λa.App(f, a)

The subtyping relation q vA q′ appearing in the rule
Var is thus necessary to have a typing system invariant
under η-conversion, even when the preorder v=vo on
the set Q of ground states is defined as the identity
relation:

∀q, q′ ∈ Q, q v q′ ⇐⇒ q = q′.

This formulation of the intersection type system for
infinitary run-trees (based on subtyping v) comes from
a fundamental connection between higher-order model-
checking and linear logic, discovered and developed
in [5], [6], [7]. This formulation which improves the
intersection type systems originally formulated without
subtyping in [17], [18] has been recently adopted in [2].

D. Diffraction patterns in run-trees
In our proof of the backward preservation theorem

(Thm. 5) in §VI, we use the notion of diffraction pattern

D ∈ diff(R)

living in a run-tree R of an automaton A on a simply-
typed λ∞-term M . The notion of diffraction pattern in a
run-tree

R ∈ 〈Σ `M : B | δ, q 〉 (17)

is defined in just the same way as the notion of diffrac-
tion pattern in a simply-typed λ∞-term

Σ `M : B

using a structural induction on the type A of the
diffraction pattern D. In particular, every diffraction
pattern D ∈ diff(R) comes equipped with a monotone
function

embedD : (shape(D),�D) −→ (occ(R),�R)

which transports every node of the rooted tree shape(D)
to its occurrence in the run-tree R. A remarkable fact is
that every run-tree R in (17) induces a residual relation

[R] ⊆ diff(M)× diff(R)

which relates a diffraction pattern D ∈ diff(M) to its
residuals in diff(R), defined in the expected way. Note
that every residual E ∈ diff(R) of the diffraction pat-
tern D ∈ diff(M) has the same underlying rooted tree

shape(E) = shape(D).

Moveover, the embedding of a node in shape(E) is an oc-
currence of R above the embedding of the corresponding
node in shape(D).

{qA}(qB vA⇒B { }(qB { }(qB ∈ δ(f)
Var 〈 f : A⇒ B ` f : A⇒ B | f 7→ {{ }(qB}, {qA}(qB 〉

Abs 〈 ` λf.f : (A⇒ B)⇒ A⇒ B | {{ }(qB}({qA}(qB 〉
Fig. 2. Run-tree exploring the typing judgement ` λf.f : (A ⇒ B) ⇒ A ⇒ B

{ }(qB ∈ δ(f)
Var 〈 f : A⇒ B, a : A ` f : A⇒ B | f 7→ {{ }(qB}, a 7→ {qA}, { }(qB 〉 empty set of derivations
App

〈 f : A⇒ B, a : A ` App(f, a) : B | f 7→ {{ }(qB}, a 7→ {qA}, qB 〉
Abs 〈 f : A⇒ B ` λa.App(f, a) : A⇒ B | f 7→ {{ }(qB}, {qA}(qB 〉

Abs 〈 ` λf.λa.App(f, a) : (A⇒ B)⇒ A⇒ B | {{ }(qB}({qA}(qB 〉
Fig. 3. Run-tree exploring the η-expansion of the typing judgement ` λf.f : (A ⇒ B) ⇒ A ⇒ B

E. Residuals of diffraction patterns
Suppose given a β-redex R = (M,o,N) between

simply-typed λ∞-terms M and N . The residual relation
between diffraction patterns

[R] ⊆ diff(M)× diff(N)

along the β-redex R is defined by induction on the type
of the diffraction pattern D ∈ diff(M).

Definition 10 (residual of ground type): The residual of
a diffraction pattern D = oD of type o is any residual E
of the occurrence oD along R.

Definition 11 (residual of arrow type, occurrence case):
A residual E ∈ diff(N) of a diffraction pattern D ∈
diff(M) defined as an occurrence D = oD of type A ⇒ B
in M is either defined as
• an occurrence residual oE ∈ occ(N) of the occur-

rence oD ∈ occ(M) along the β-redex R,
• when the occurrence o of the β-redex coincides with

the occurrence D = oD of the diffraction pattern,
then D has a unique residual E defined as E =
{DA,i | i ∈ I} (DB where DB = oB is the unique
occurrence of type B in N such that o = oB · body,
where I denotes the countable (finite or infinite) set
of occurrences of the free variable a in M , and where
each DA,i denotes the occurrence of the root of one
copy of the λ-term Q in N .

Note that the second case of Def. 11 corresponds to the
illustration given at the beginning of the section.

Definition 12 (residual of arrow type, arrow case): The
residuals of a diffraction pattern D of type A⇒ B defined
as a pair D = {DA,i | i ∈ I}(DB along a β-redex R are
defined as
• the copies E of the diffraction pattern D when the

head occurrence hdocc(D) is duplicated by the β-
redex R,

• otherwise, the unique residual E = {EA,i | j ∈ J} (
EB where EB is the unique residual of DB along R,
and where {EA,i | j ∈ J} denotes the set of residuals
of the diffraction patterns DA,i along R, for i ∈ I.

The residual relation

[f] ⊆ diff(M)× diff(N)

associated to a finite β-rewriting path

f = M M1 · · · Mp−1 N
R0 R1 Rp−1

is simply defined by composing the residual relations
together [f] = [R0] ◦ · · · ◦ [Rp−1]

F. An illustration of diffraction patterns

The encoding of the higher-order recursion scheme G
in (8) can be simplified, and replaced by the simply-typed
λY -term below

M =
(
Y
[
λF.λz. a z (F (b z))

])
c (18)

where the functional F is of type o ⇒ o. We use that
λY -term M to illustrate the notion of diffraction pattern
developed in §V. The λY -term may be unfolded into
a simply-typed λ-term [M]∞ obtained by plugging the
context

App

App

a

App

App

b

λz

zz

into itself, coinductively. Note that the letters a, b are
treated in our diagrams as variables of first-order arities:

a : o⇒ o⇒ o b : o⇒ o

which behave as functions, and thus do have any child
in the λ-term. One obtains in that way the simply-
typed infinitary λ-term [M]∞ below. In this infinitary λ-
term [M]∞, we encircle the three β-redexes R, S and T
within a brown area:

[M]∞ =

App

App

a

App

App

b

λz

S

App

App

a

App

App

b

T

App

App

a

App

App

b

λz

zz

λz

z z

App

λz

R

c

zz

For notational convenience, we identify from now on
[M]∞ with the original λY -term M . We also indicate
in the picture the occurrences oR, oS and oT of the
three β-redexes R = (M,oR, NR), S = (M,oS , NS) and
T = (M,oT , NT) with a white circle, a red circle and a
black circle, respectively. The Böhm tree N = BT (M)
generated by M coincides with the Church encoding of
the infinite tree 〈G〉 described in the introduction, and
depicted in (2). The diffraction patterns D, E and F
residual in the infinitary λ-term N of the occurrences
oR, oS and oT in M are represented in the picture using
white circles, red circles and black circles, respectively.

N =

App

a

App

c
App

App

a App

b c
App

App

a App

b App

b c

E

E

D

F

E

D

D

D

F

Note that the three diffraction patterns D, E and F have
the same infinitary shape

D

D D D Dn

E

E E E En

F

F  F  F  F n

Typically, the diffraction pattern D ∈ diff(N) residual in
N = BT (M) of the occurrence oR ∈ diff(M) is depicted
by attaching every node x of the rooted tree shape(D)
to its occurrence embedD(x) ∈ occ(N) in the infinitary
λ-term N , as follows:

App

a

App

c
App

App

a App

b c
App

App

a App

b App

b c

E

E

F

E

F

D

D

D

D

In the same way, the diffraction pattern E residual in
N = BT (M) of the occurrence oS of the β-redex S in M
is represented as follows:

App

a

App

c
App

App

a App

b c
App

App

a App

b App

b c

F

F

D

D

D

D

E

E

E

while the diffraction pattern F residual in N = BT (M)
of the occurrence oT of the β-redex T in M is represented
as follows:

App

a

App

c
App

App

a App

b c
App

App

a App

b App

b c

D

D

D

D

E

E

E

F

F

Note that the diffraction patterns D, E and F indicate
very clearly which part each β-redex R, S and T took in
the construction of the infinitary λ-term N = BT (M). In
particular, we have shown in §VI that this information
is sufficient to reconstruct a run-tree over M from a run-
tree over N , for every higher-order automaton A of same
higher-order alphabet and type as M and N .

G. Another illustration of diffraction patterns

We illustrate the fact that an occurrence o of M may be
very well be erased by an infinitary strongly convergent
β-rewriting path f : M �β N although none of the finite
prefixes f|0,n of f erases it, see [8] for a discussion. To
that purpose, consider the higher-order recursion scheme
G below:

G =
{
S 7→ F b c
F y z 7→ y (F z) (19)

The higher-order recursion scheme G generates the fol-
lowing infinite word (filiform tree)

〈G〉 = b

b

b

b

(20)

The higher-order recursion scheme (19) may be encoded
as the following λY -term

M =
(
Y
[
λF.λz. b (F z)

])
c (21)

where the functional F is of type o⇒ o. The λY -term M
may be then unfolded into a simply-typed infinitary λ-
term [M]∞ obtained by plugging the context below into

itself, coinductively:

App

b

App

λz

z

The resulting simply-typed infinitary λ-term [M]∞ is de-
picted as follows, where we depict the occurrence D = oR
of the β-redex R with a white circle, and the occurrence
E with a black circle:

[M]∞ =

App

b

App

App

b

App

App

b

App

App

R

c

E

D

λz

λz

z
λz

z

z

The [M]∞ rewrites then into the Böhm tree N = BT (M)
by a strongly convergent β-rewriting path f : M �β N .
The generated λ-term N is the Church encoding of the
infinitary filiform tree (20) generated by the higher-order
recursion scheme G:

N =

App

b App

App

E

b

b



E

E

Note that the occurrence D = oR in M has no residual in
the generated Böhm tree N = BT (M). This reflects the
fact that the letter c does not appear in the infinite word
or filiform tree (20). On the other hand, the occurrence E
in M has an infinite countable set of residual occurrences
in N , depicted as the occurrences E1, . . . , En, . . . in the
graphical description of N above.

	Introduction
	Higher-order model-checking on infinite trees
	Higher-order arities and alphabets
	The Church encoding taken seriously
	Infinitary -terms and infinitary rewriting
	Higher-order automata
	Higher-order parity automata
	The decidability theorem

	Infinitary simply-typed -terms
	Untyped infinitary -terms
	Simply-typed infinitary -terms
	Infinitary rewriting

	Higher-order automata
	Higher-order states
	Higher-order automata
	Run-trees
	Acceptance

	Forward preservation theorem
	A diffraction theory
	Diffraction patterns
	The shape of a diffraction pattern
	Residuals of diffraction patterns

	Backward preservation theorem
	Lambda-terms with boundary
	Higher-order parity automata
	Related works
	Conclusion
	References
	Appendix
	A glimpse on the expressive power of higher-order parity automata
	Run-trees
	Abstraction
	Application
	Variable

	Run-trees as an intersection type system
	Diffraction patterns in run-trees
	Residuals of diffraction patterns
	An illustration of diffraction patterns
	Another illustration of diffraction patterns

