Lambda calculs et catégories

Paul-André Melliès

Master Parisien de Recherche en Informatique

Ecole Normale Supérieure

Synopsis of the lecture

1 - Adjunctions
2 - Monads

Adjunctions

A notion of duality between functors

Adjunction

An adjunction is a triple (L, R, ϕ) where L and R are two functors

$$
L: \mathscr{A} \longrightarrow \mathscr{B} \quad R: \mathscr{B} \longrightarrow \mathscr{A}
$$

and ϕ is a family of bijections, for all objects A in \mathscr{A} and B in \mathscr{B},

$$
\phi_{A, B}: \mathscr{B}(L A, B) \cong \mathscr{A}(A, R B)
$$

natural in A et B. One also writes

$$
\frac{L A \longrightarrow \mathscr{B} B}{A \longrightarrow \mathscr{A} R B} \quad \phi_{A, B}
$$

One says that L is left adjoint to R, noted $L \dashv R$.

> The 2-dimensional version of isomorphism

The naturality of the bijection ϕ

Natural in A and B means that the family of bijections

$$
\phi_{A, B}: \quad \mathscr{B}(L A, B) \cong \mathscr{A}(A, R B)
$$

transforms every commutative diagram

into a commutative diagram

Example: the free vector space

where

$$
\begin{array}{cl}
\mathscr{A}=\text { Set } & : \text { the category of sets and functions } \\
\mathscr{B}=\text { Vect } & \text { the category of vector spaces on a field } k \\
R & : \text { the «forgetful» functor } V \mapsto U(V) \\
L & : \text { the «free vector space» functor } X \mapsto k X \\
k X:=\left\{\sum_{x \in X} \lambda_{x} x \quad \mid \quad \lambda_{x} \in k \text { null almost everywhere. }\right\}
\end{array}
$$

Illustration: the tensor algebra

where
$\mathscr{A}=$ Vect : the category of vector spaces
$\mathscr{B}=\mathrm{Alg}$: the category of algebras and homomorphisms,
$R \quad$: the «forgetful» functor $A \mapsto U(A)$.
$L \quad: \quad$ the « free algebra» functor $V \mapsto T V$.

$$
T V:=\bigoplus_{n \in \mathbb{N}} V^{\otimes n}
$$

Definition of a Lie algebra

Vector space g equipped with a Lie bracket

Anti-symmetry:

$$
[x, y]=-[y, x]
$$

Jacobi identity:

$$
[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0
$$

Example: the vector space of vector fields on a smooth manifold.

Illustration: the enveloping algebra of a Lie algebra

where
$\mathscr{A}=$ Lie : the category of Lie algebras,
$\mathscr{B}=\mathrm{Alg}$: the category of algebras,
$R \quad: \quad$ equips A with the canonical Lie bracket $[a, b]=a b-b a$,
$L \quad: \quad$ "enveloping algebra » functor $\mathrm{g} \mapsto U(\mathrm{~g})$.

$$
U(\mathfrak{g}):=\quad T g \quad I(g)
$$

where $I(g)$ is the ideal generated by $a b-b a-[a, b]$.

Illustration: the free category

where
$\mathscr{A}=$ Graph : the category of graphs,
$\mathscr{B}=$ Cat : the category of categories and functors,
$R \quad$: the «forgetful» functor
$L \quad: \quad$ the « free category » functor

Illustration: the terminal object

where
$\mathscr{A}=\mathscr{C} \quad: \quad$ any category equipped with a terminal object 1
$\mathscr{B}=\mathbb{1} \quad$: the singleton category
$L \quad$: the canonical (and unique) functor
$R \quad: \quad$ the functor whose image is the terminal object 1

Illustration: cartesian categories

where

$$
\begin{array}{cl}
\mathscr{A}=\mathscr{C} & : \text { any cartesian category } \\
\mathscr{B}=\mathscr{C} \times \mathscr{C} & : \text { the product category } \\
L & : \text { the diagonal functor } A \mapsto(A, A) \\
R & : \text { the functor }(A, B) \mapsto A \times B
\end{array}
$$

Illustration: cartesian closed categories

where

$$
\begin{array}{cl}
\mathscr{A}=\mathscr{B}=\mathscr{C} & \text { : } \text { any cartesian closed category } \mathscr{C} \\
L & : \text { the functor } B \mapsto A \times B \\
R & \\
\text { : the functor } B \mapsto A \Rightarrow B
\end{array}
$$

for a given object A of the cartesian closed category \mathscr{C}.

Illustration: negation

where

\[

\]

for a given object \perp of the cartesian closed category \mathscr{C}.

Adjunction in the 2-category Cat

A bijection ϕ between the natural transformations

Here, a morphism $X \longrightarrow Y$ in the category \mathscr{C} is seen as a natural transformation $[X] \longrightarrow[Y]$.

Adjunction in the 2-category Cat

A bijection ϕ between the natural transformations

Here, a morphism $X \longrightarrow Y$ in the category \mathscr{C} seen as a natural transformation $[X] \longrightarrow[Y]$.

A 2-dimensional naturality condition

One reformulates the naturality conditionin that way:

The bijection ϕ is natural with respect to the natural transformations α and β.

Adjunction in the 2-category Cat

This point of view leads to a more satisfactory definition of adjunction:

A bijection ϕ between the natural transformations

Adjunction in the 2-category Cat

One reformulates the naturality condition as follows:

The bijection ϕ is natural with respect to the natural transformations α et β.

Algebraic presentation of the adjunction

An adjunction is a quadruple $(L, R, \eta, \varepsilon)$ where L and R are functors

$$
L: \mathscr{A} \longrightarrow \mathscr{B} \quad R: \mathscr{B} \longrightarrow \mathscr{A}
$$

and η and ε are natural transformations:

$$
\eta: I d_{\mathscr{A}} \dot{\longrightarrow} R L \quad \varepsilon: L R \longrightarrow I d_{\mathscr{B}}
$$

such that the composite

depicted as

are the natural identities

$$
I d_{R}: R \Rightarrow R \quad I d_{L}: L \Rightarrow L
$$

of the functors R and L.

Dual definition (but equivalent) of adjunction

By duality, an adjunction is given by a family of bijections ψ between the sets of 2-cells

natural in A and B.

The 2-dimensional topology of adjunctions

The unit and counit of the adjunction $L \dashv R$ are depicted as

$$
\eta: I d \Rightarrow R \circ L \quad \varepsilon: L \circ R \Rightarrow I d
$$

A typical 2-cell generated by an adjunction

A purely diagrammatic composition

The 2-dimensional dynamics of adjunctions

String diagrams

The λ-term

$$
\varphi: \neg \neg A, \psi: \neg \neg B \quad \vdash \quad \lambda k . \varphi(\lambda a . \psi(\lambda b . k(a, b)): \neg \neg(A \otimes B)
$$

has the following control flow diagram

Illustration: the 2-category of sets and relations

Show that a relation

$$
f: A \longrightarrow B
$$

is left adjoint if and only if it is functional:

$$
\forall a \in A . \quad \exists!b \in B . \quad a[f] b
$$

Show that its right adjoint g is the relation defined as

$$
\forall a \in A . \quad \forall b \in B . \quad a[f] b \quad \Longleftrightarrow \quad b[g] a .
$$

Monads

Kleisli category, Eilenberg-Moore category

Monads

Suppose given a 0 -cell \mathscr{C} in a 2 -category \mathscr{W}.

A monad T on a 0 -cell \mathscr{C} is a 1 -cell

$$
T: \mathscr{C} \longrightarrow \mathscr{C}
$$

equipped with a multiplication

$$
\mu: T \circ T \Rightarrow T: \mathscr{C} \longrightarrow \mathscr{C}
$$

and with a unit

$$
\eta: I d_{\mathscr{C}} \Rightarrow T: \mathscr{C} \quad \longrightarrow \mathscr{C}
$$

satisfying the expected associativity and unit laws.

Monads

- Associativity law:

$\triangleright \quad$ Left and right unit laws:

Every adjunction defines a monad

(with a graphical proof)

Illustration: the state monad

Every set S induces a monad

$$
X \mapsto S \Rightarrow(S \times X) \quad: \quad \text { Set } \longrightarrow \quad \text { Set }
$$

called the state monad. This monad is induced by the adjunction

where

$$
\begin{array}{l:l}
L & : X \mapsto S \times X \\
R: & : X \mapsto S \Rightarrow X .
\end{array}
$$

Algebra

Suppose given a monad T on a category \mathscr{C}.
An algebra of the monad (T, μ, η) is a pair (A, h) consisting of
$\triangleright \quad$ an object A of the category \mathscr{C}
\triangleright a morphism

$$
h \quad: \quad T A \longrightarrow A
$$

making the diagrams

commute.

Algebra homomorphism

An algebra homomorphism

$$
f:\left(A, h_{A}\right) \longrightarrow\left(B, h_{B}\right)
$$

is a morphism

$$
f: A \longrightarrow B
$$

making the diagram

commute in the category \mathscr{C}.

Kleisli category

The Kleisili category \mathscr{C}_{T} of a monad (T, μ, η) is the category \mathscr{C}
$\triangleright \quad$ with the same objects as the category \mathscr{C},
$\triangleright \quad$ with the morphisms

$$
A \longrightarrow T B
$$

in the category \mathscr{C} as morphisms

$$
A \longrightarrow B
$$

in the Kleisli category.

Kleisli category

The identities

$$
i d_{A}: A \longrightarrow A
$$

are given by the morphisms

$$
\eta_{A}: \quad A \longrightarrow T A .
$$

The two morphisms

$$
f: A \longrightarrow B \quad g: B \longrightarrow C
$$

are composed as follows

Exercise

Show that:
$\triangleright \quad$ that the identities of the Kleisli category are identities
\triangleright that its composition is associative.
Remark: checking associativity requires to consider the diagram

and to show that the two maps from A to $T D$ coincide.

Short bibliography of the course

On categorical semantics of linear logic and 2-categories:
Categorical semantics of linear logic.
Survey published in
«Interactive models of computation and program behaviour».
Pierre-Louis Curien, Hugo Herbelin, Jean-Louis Krivine, Paul-André Melliès.
Panoramas et Synthèses 27, Société Mathématique de France, 2009.
On string diagrams:
Christian Kassel
Quantum groups
Graduate Texts in Mathematics 155
Springer Verlag 1995.
Peter Selinger
A survey of graphical languages for monoidal categories.
New Structures for Physics
Springer Lecture Notes in Physics 813, pp. 289-355, 2011.
Functorial boxes in string diagrams
Proceedings of CSL 2006.
Lecture Notes in Computer Science 4207.

