Shncpd The Simple, Stupid, Slow HNCP Daemon An HNCP Implementation Report

Juliusz Chroboczek University of Paris-Diderot

22 July 2015

How it happened

In November 2007, I decided to explain routing to myself:

- I started implementing RIPng;
- two months later, I had designed and implemented Babel version 0.

How it happened

In November 2007, I decided to explain routing to myself:

- I started implementing RIPng;
- two months later, I had designed and implemented Babel version 0.

In June 2015, I decided to explain DNCP to myself:

- I started implementing DNCP and just enough HNCP to get *hnetd* to speak to me;
- three weeks later, I had implemented a useful subset of HNCP(+DNCP+PA)+RA+DHCPv4.

It was a lot of fun, and I have plenty of things to say. But I only have 10 minutes. Please ask questions at the end (if any).

Hnetd

Hnetd is the standard implementation of HNCP. Hnetd is highly polished and well integrated into OpenWRT. It is indistinguishable from magic.

Quick howto:

- install OpenWRT;
- opkg install hnet-full;
- edit /etc/config/network;
- /etc/init.d/network restart.

Highly polished and modular:

- depends on odhcpd, udhcpd, pcpproxy, etc.
- all of this stuff interacts over a combination of ubus (JSON over Unix sockets) and shell scripts;
- highly modular code written by professionals.

SHNCPD (1)

Shncpd is the simple, stupid and slow implementation of HNCP. Quick howto:

Shncpd implements HNCP (DNCP, PA), RA server, DHCPv4 server in a single process:

- single event loop (no threads);
- simple and stupid data structures (linear search);
- no fancy callbacks (no attempt at modularity).

SHNCPD (2)

Unlike hnetd, shncpd implements as many protocols as reasonable within a single binary, in a single event loop.

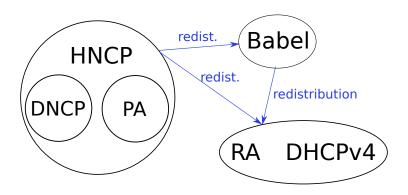
The only dependency is *babeld*. No changes were required to *babeld* — the normal redistribution mechanisms are good enough.

Important lesson: just because they are separate protocols doesn't mean that you need to implement them in separate daemons. Single process with shared data structures also works.

Shncpd status

Status:

- interoperates with hnetd;
- complies with dncp-06 with one exception;
- should comply with pa-07 (needs checking);
- currently no claims about HNCP compliance.


	Lines of code	Binary kB
shncpd	4 000	40
babeld	10000	100
total	14000	140

Shncpd does not implement:

- edge detection (MUST with loophole);
- DHCPv6-PD client;
- DNS-SD proxying.

Protocol walkthrough

How the pieces fit together

- DNCP and PA are triggered by various events;
- interaction between the protocols is redistribution;
- redistribution into DHCPv4 feels weird.

DNCP

DNCP contains both exciting and boring bits:

- flooding algorithm (look, Ma, no timeouts!);
- TLV format.

The protocol became clear once I understood the following:

- DNCP's Trickle is not what I think of as Trickle (much more subtle);
- DNCP's keepalives are not what I think of as keepalives (somewhat more subtle).

Prefix Assignment

PA describes how the set of prefixes assigned to a link are negotiated.

Very general algorithm:

- ability to veto a prefix;
- ability to use different prefix lengths (important for IPv4);
- ability to statically configure a prefix for a link.

The proof of convergence has not been published.

The algorithm became clear once I understood the following:

 "best prefix" is a function, but "assigned prefix" is hard state (a variable).

HNCP

HNCP contains the "boring bits":

- a lot of different TLVs;
- a lot of MUST.

The protocol became clear once I understood the following:

 MUST means "We are Homenet, and we require that you do that", it doesn't mean "If you don't, the protocol will break".

Conclusion (1)

Shncpd is a from scratch reimplementation of a useful subset of the Homenet protocol stack.

A useful subset of the Homenet stack can be implemented from scratch in finite time:

- Markus Stenberg implemented Babel in 2 nights;
- Juliusz Chroboczek implemented HNCP(+DNCP+PA)+RA+DHCPv4 in 3 (long) week-ends.

This was possible because these are well-defined, mostly self-contained specifications.

Conclusion (2)

I am very happy with the subset of HNCP+DNCP+PA that shncpd implements:

- elegant and correct algorithms;
- well-defined, accurate protocol specifications;
- I only requested minor protocol changes (Markus and Steven agreed);
- while some clarifications and loosenings would be welcome, the specifications appear to be complete.

(I hold no opinion on the bits that I haven't implemented.)

Let's move forward!