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XML is just tree-structured data:

<biblio>
<book status="available">

<title>Object-Oriented Programming</title>
<author>Giuseppe Castagna</author>

</book>
<book>

<title>A Theory of Objects</title>
<author>Martín Abadi</author>
<author>Luca Cardelli</author>

</book>
<biblio>
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<biblio>
<book status="available">

<title>Object-Oriented Programming</title>
<author>Giuseppe Castagna</author>

</book>
<book>

<title>A Theory of Objects</title>
<author>Martín Abadi</author>
<author>Luca Cardelli</author>

</book>
<biblio>

Types describe the set of valid documents

<?xml version="1.0"?>
<!DOCTYPE biblio [
<!ELEMENT biblio (book*)>
<!ELEMENT book (title, (author|editor)+, price?)>
<!ATTLIST book status (available|borrowed) #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT editor (#PCDATA)>
<!ELEMENT price (#PCDATA)>

]>
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Examples

Level 1: DOM in Javascript

Print the titles of the book in the bibliography

<script>
xmlDoc=loadXMLDoc("biblio.xml");
x=xmlDoc.getElementsByTagName("book");
for (i=0;i<x.length;i++){

document.write(x[i].childNodes[0].nodeValue);
document.write("<br>");

}
</script>
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Level 1: DOM in Javascript

Print the titles of the book in the bibliography

<script>
xmlDoc=loadXMLDoc("biblio.xml");
x=xmlDoc.getElementsByTagName("book");
for (i=0;i<x.length;i++){

document.write(x[i].childNodes[0].nodeValue);
document.write("<br>");

}
</script>

Level 2: XPath

The same in XPath:

/biblio/book/title

Select all titles of books whose price > 35

/biblio/book[price>35]/title
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Level 2: XSLT

XSLT uses XPath to extract information (as a pattern in pattern matching)

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<html>
<body>
<h2>Books Price List</h2>
<table border="1">

<tr bgcolor="#9acd32">
<th>Title</th>
<th>Price</th>

</tr>
<xsl:for-each select="biblio/book">
<tr>

<td><xsl:value-of select="title"/></td>
<td><xsl:value-of select="price"/></td>

</tr>
</xsl:for-each>

</table>
</body>
</html>

</xsl:template>
</xsl:stylesheet>
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Types are ignored

In DOM nothing ensures that the read of a next node suceeds

In XPath /biblio/title/book return an empty set of nodes

rather than a type error

Likewise the use of wrong XPath expressions in XSLT is unnoticed and

yields empty XML documents as result (in the previous example the fact

that price is optional is not handled).
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rather than a type error

Likewise the use of wrong XPath expressions in XSLT is unnoticed and

yields empty XML documents as result (in the previous example the fact

that price is optional is not handled).

Level 3: Recent languages take types seriously

XDuce, Xtatic

XQuery

CDuce

Cω

. . .

How to add XML types in programming languages?
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Set-theoretic types

We consider the following possibly recursive types:

T ::“ Bool | Int | Any | (T,T) | T_T | T & T | not(T) | T-->T

Useful for:

1 XML types

2 Precise typing of pattern matching

3 Overloaded functions

4 Mixins

5 General programming paradigms

Let us see each point more in detail

Note: henceforward I will sometimes use T1|T2 to denote T1 _T2

G. Castagna (CNRS) Cours de Programmation Avancée 452 / 593



453/593

1. XML types

<?xml version="1.0"?>
<!DOCTYPE biblio [
<!ELEMENT biblio (book*)>
<!ELEMENT book (title, (author|editor)+, price?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT editor (#PCDATA)>
<!ELEMENT price (#PCDATA)>

]>

Can be encoded with union and recursive types

type Biblio = (‘biblio,X)
type X = (Book,X)_‘nil

type Book = (‘book,(Title, Y_Z))
type Y = (Author,Y_(Price,‘nil)_‘nil)
type Z = (Editor,Z_(Price,‘nil)_‘nil)

type Title = (‘title,String)
type Author = (‘author,String)
type Editor = (‘editor,String)
type Price = (‘price,String)

G. Castagna (CNRS) Cours de Programmation Avancée 453 / 593



454/593

2. Precise typing of pattern matching (I)

Consider the following pattern matching expression

match e with p1 -> e1 | p2 -> e2

where patterns are defined as follows:

p ::“ x | (p,p) | p |||p | p&&&p
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2. Precise typing of pattern matching (I)

Consider the following pattern matching expression

match e with p1 -> e1 | p2 -> e2

where patterns are defined as follows:

p ::“ x | (p,p) | p |||p | p&&&p

If we interpret types as set of values

t “ tv | v is a value of type tu

then the set of all values that match a pattern is a type

***p+++ “ tv | v is a value that matches pu

***x+++ “ Any

***(p1 ,p2)+++ “ (***p1 +++ , ***p2 +++)

***p1 |||p2+++ “ ***p1+++_***p2+++

***p1&&&p2+++ “ ***p1+++ & ***p2+++

Let us see how to type pattern matching.G. Castagna (CNRS) Cours de Programmation Avancée 454 / 593
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2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:
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2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with p1 -> e1 | p2 -> e2

Suppose that e : T and let us write T1zT2 for T1&not(T2)

- To infer the type T1 of e1 we need T&&& ***p1+++;

- To infer the type T2 of e2 we need pTzzz***p1+++q&&& ***p2+++;

- The type of the match expression is T1___T2 .

- Pattern matching is exhaustive if T ď ***p1 +++___***p2+++;

Formally:

[MATCH]

Γ $ e : T Γ,T& ***p1+++ {p1 $ e1 : T1 Γ,Tz***p1+++ {p2 $ e2 : T2

Γ $ match e with p1->e1 | p1->e2 : T1 _T2

(T ď ***p1+++_***p2+++)

where T{p is the type environment for the capture variables in p when the

pattern is matched against values in T.

(e.g., p(Int,Int)_(Bool,Char)q{(x ,y) is

x : Int_Bool,y : Int_Char)
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3. Overloaded functions

Intersection types are useful to type overloaded functions (in the Go language):

package main
import "fmt"
func Opposite (x interface{}) interface{} {

var res interface{}
switch value := x.(type) {

case bool:
res = (!value) // x has type bool

case int:
res = (-value) // x has type int

}
return res

}

func main() { fmt.Println(Opposite(3) , Opposite(true)) }

In Go Opposite has type Any-->Any (every value has type interface{}).

Better type with intersections Opposite: (Int-->Int)& (Bool-->Bool)
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Intersection types are useful to type overloaded functions (in the Go language):

package main
import "fmt"
func Opposite (x interface{}) interface{} {

var res interface{}
switch value := x.(type) {

case bool:
res = (!value) // x has type bool

case int:
res = (-value) // x has type int

}
return res

}

func main() { fmt.Println(Opposite(3) , Opposite(true)) }

In Go Opposite has type Any-->Any (every value has type interface{}).

Better type with intersections Opposite: (Int-->Int)& (Bool-->Bool)

Intersections can also to give a more refined description of standard functions:

func Successor(x int) { return(x+1) }

which could be typed as Successor:(Odd-->Even)& (Even-->Odd)
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2+3. Precise typing of OCaml

Exercise:

1 What is the type returned by

let foo = function

| (‘A,‘B) -> true

| (‘B,‘A) -> false

and what is the problem ?

[< ‘A | ‘B ] * [< ‘A | ‘B ] -> bool thus foo( ‘A , ‘A) fails

2 Which type could we give if we had full-fledged union types?

(‘A * ‘B )| ( ‘B * ‘A) -> bool

3 Give an intersection type that refines the previous type

((‘A * ‘B ) -> true) & (( ‘B * ‘A) -> false)
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4. Typing of Mixins

Intersection types are used in Microsoft’s Typescript to type mixins.

function extend<T, U>(first: T, second: U): T & U {
/* <T> exp is a type cast (equivalent: exp as T) */
let result = <T & U>{};
for (let id in first) {

(<any>result)[id] = (<any>first)[id]; }
for (let id in second) { if (!result.hasOwnProperty(id)) {

(<any>result)[id] = (<any>second)[id]; } }
return result;

}
class Person {

constructor(public name: string) { }
}

interface Loggable {
log(): void;

}

class ConsoleLogger implements Loggable {
log() { ... }

}

var jim = extend(new Person("Jim"), new ConsoleLogger());
var n = jim.name;
jim.log();
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5. General programming paradigms

Consider red-black trees. Recall that they must satisfy 4 invariants.

1 the root of the tree is black

2 the leaves of the tree are black

3 no red node has a red child

4 every path from root to a leaf contains the same number of black nodes
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The key of Okasaki’s insertion is the function balance which transforms an
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Consider red-black trees. Recall that they must satisfy 4 invariants.

1 the root of the tree is black

2 the leaves of the tree are black

3 no red node has a red child

4 every path from root to a leaf contains the same number of black nodes

The key of Okasaki’s insertion is the function balance which transforms an

unbalanced tree, into a valid red-black tree (as long as a, b, c, and d are valid):

In ML we need GADTs to enforce the invariants.
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type α RBtree =
| Leaf
| Red( α , RBtree , RBtree)
| Blk( α , RBtree , RBtree)

let balance =
function
| Blk( z , Red( x, a, Red(y,b,c) ) , d )
| Blk( z , Red( y, Red(x,a,b), c ) , d )
| Blk( x , a , Red( z, Red(y,b,c), d ) )
| Blk( x , a , Red( y, b, Red(z,c,d) ) )

-> Red ( y, Blk(x,a,b), Blk(z,c,d) )
| x -> x

let insert =
function ( x , t ) ->
let ins =
function

| Leaf -> Red(x,Leaf,Leaf)
| c(y,a,b) as z ->

if x < y then balance c( y, (ins a), b ) else
if x > y then balance c( y, a, (ins b) ) else z

in let _(y,a,b) = ins t in Blk(y,a,b)
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type RBtree = Btree | Rtree
type Rtree = Red(α, Btree , Btree )
type Btree = Blk(α, RBtree, RBtree) | Leaf

type Wrong = Red( α, (Rtree,RBtree) | (RBtree,Rtree) )
type Unbal = Blk( α, (Wrong,RBtree) | (RBtree,Wrong) )

let balance: (UnbalÑRtree) & ( (βββzzzUnbal)Ñ(βββzzzUnbal) ) =
function
| Blk( z , Red( y, Red(x,a,b), c ) , d )
| Blk( z , Red( x, a, Red(y,b,c) ) , d )
| Blk( x , a , Red( z, Red(y,b,c), d ) )
| Blk( x , a , Red( y, b, Red(z,c,d) ) )

-> Red ( y, Blk(x,a,b), Blk(z,c,d) )
| x -> x

let insert: (ααα, Btree)ÑBtree =
function ( x , t ) ->
let ins: (LeafÑRtree) & (BtreeÑRBtreezzzLeaf) & (RtreeÑRtree|Wrong) =
function

| Leaf -> Red(x,Leaf,Leaf)
| c(y,a,b) as z ->

if x < y then balance c( y, (ins a), b ) else
if x > y then balance c( y, a, (ins b) ) else z

in let _(y,a,b) = ins t in Blk(y,a,b)
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Cutting edge research

Type checking the previous definitions is not so difficult.

The hard part is to type partial applications:

map : ( ααα Ñ βββ ) Ñ [ ααα ] Ñ [ βββ ]

balance : (UnbalÑRtree) & ( (βββzzzUnbal)Ñ(βββzzzUnbal) )

map balance : ( [ Unbal ] Ñ [ Rtree ] )
& ( [ αααzzzUnbal ] Ñ [ αααzzzUnbal ] )
& ( [ ααα|||Unbal ] Ñ [(αααzzzUnbal)|||Rtree ] )

Fortunately, programmers (and you) are spared from these gory details.
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New languages use union and intersections

Facebook’s Flow:

// @flow

function toStringPrimitives(val: number | boolean | string) {

return String(val);

}

type One = { foo: number };

type Two = { bar: boolean };

type Both = One & Two;

var value: Both = {

foo: 1,

bar: true

};
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New languages use union and intersections

Typed-Racket

(let ([a-number 37])

(if (even? a-number)

’yes

’no))

- : Symbol [more precisely: (U ’no ’yes)]

’no

(: f : (case-> (-> True Integer Integer)

(-> False Boolean Boolean)))

(define (f condition x)

(if condition

(add1 x)

(not x)))
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How to understand/explain set-theoretic type connectives?

The type connectives union, intersection, and negation are completely

defined by the subtyping relation:

T1 _T2 is the least upper bound of T1 and T2

T1 & T2 is the greatest lower bound of T1 and T2

not(T) is the only type whose union and intersection with T yield the Any

and Empty types, respectively.

Defining (and deciding) subtyping for type connectives (i.e., _, & , not())

is far more difficult than for type constructors (i.e., -->,ˆ,t...u, . . . ).

Understanding connectives in terms of subtyping is out of reach of simple

programmers
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defined by the subtyping relation:

T1 _T2 is the least upper bound of T1 and T2

T1 & T2 is the greatest lower bound of T1 and T2

not(T) is the only type whose union and intersection with T yield the Any
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Defining (and deciding) subtyping for type connectives (i.e., _, & , not())

is far more difficult than for type constructors (i.e., -->,ˆ,t...u, . . . ).

Understanding connectives in terms of subtyping is out of reach of simple

programmers

Give a set-theoretic semantics to types
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Types as sets of values and semantic subtyping

T ::“ Bool | Int | Any | (T,T) | T_T | T& T | not(T) | T-->T

Each type denotes a set of values:

Bool is the set that contains just two values ttrue ,falseu
Int is the set of all the numeric constants: t0, -1, 1, -2, 2, -3,...u.

Any is the set of all values.

(T1 ,T2) is the set of all the pairs pv1,v2q where v1 is a value in T1 and v2 a

value in T2, that is tpv1,v2q | v1 P T1 , v2 P T2u.

T1 _ T2 is the union of the sets T1 and T2, that is tv | v P T1 or v P T2u
T1 & T2 is the intersection of the sets T1 and T2, i.e. tv | v P T1 and v P T2u.

not(T) is the set of all the values not in T, that is tv | v R Tu.

In particular not(Any)is the empty set (written Empty).

T1-->T2 is the set of all function values that when applied to a value in T1, if

they return a value, then this value is in T2.
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Types as sets of values and semantic subtyping

T ::“ Bool | Int | Any | (T,T) | T_T | T& T | not(T) | T-->T

Each type denotes a set of values:

Bool is the set that contains just two values ttrue ,falseu
Int is the set of all the numeric constants: t0, -1, 1, -2, 2, -3,...u.

Any is the set of all values.

(T1 ,T2) is the set of all the pairs pv1,v2q where v1 is a value in T1 and v2 a

value in T2, that is tpv1,v2q | v1 P T1 , v2 P T2u.

T1 _ T2 is the union of the sets T1 and T2, that is tv | v P T1 or v P T2u
T1 & T2 is the intersection of the sets T1 and T2, i.e. tv | v P T1 and v P T2u.

not(T) is the set of all the values not in T, that is tv | v R Tu.

In particular not(Any)is the empty set (written Empty).

T1-->T2 is the set of all function values that when applied to a value in T1, if

they return a value, then this value is in T2.

Semantic subtyping

Subtyping is set-containment
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Outline
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Set-theoretic types in Perl 6

A function value is a λ-abstraction. In Perl6 it is any expression of the form:

sub (parameters){body}

For instance (functions can be named):

sub succ(Int $x){ $x + 1 }

the succ function is a value in/of type Int-->Int.
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Set-theoretic types in Perl 6

A function value is a λ-abstraction. In Perl6 it is any expression of the form:

sub (parameters){body}

For instance (functions can be named):

sub succ(Int $x){ $x + 1 }

the succ function is a value in/of type Int-->Int.

Subtypes can be defined intensionally:

subset Even of Int where { $_ % 2 == 0 }

subset Odd of Int where { $_ % 2 == 1 }

Clearly:

both succ:Even-->Odd and succ:Odd-->Even

therefore:

succ : (Even-->Odd) & (Odd-->Even)
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Subtyping

Notice that every function value in (Even-->Odd) & (Odd-->Even) is also in

Int-->Int. Thus:

(Even-->Odd) & (Odd-->Even) <: Int-->Int

The converse does not hold: identity sub(Int $x){ $x } is a

counterexample.
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Subtyping

Notice that every function value in (Even-->Odd) & (Odd-->Even) is also in

Int-->Int. Thus:

(Even-->Odd) & (Odd-->Even) <: Int-->Int

The converse does not hold: identity sub(Int $x){ $x } is a

counterexample.

The above is just an instance of the following relation

pS1-->T1q & pS2-->T2q <: pS1 _S2q-->pT1 _T2q (4)

that holds for all types, S1, S2, T1, and T2,
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Subtyping

Notice that every function value in (Even-->Odd) & (Odd-->Even) is also in

Int-->Int. Thus:

(Even-->Odd) & (Odd-->Even) <: Int-->Int

The converse does not hold: identity sub(Int $x){ $x } is a

counterexample.

The above is just an instance of the following relation

pS1-->T1q & pS2-->T2q <: pS1 _S2q-->pT1 _T2q (4)

that holds for all types, S1, S2, T1, and T2,

The relation (4) shows why defining subtyping for type connectives is far more

difficult than just with constructors: connectives mix types of different forms.
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Overloaded functions

Overloaded functions are defined by giving multiple definitions of the same

function prefixed by the multi modifier:

multi sub sum(Int $x, Int $y) { $x + $y }
multi sub sum(Bool $x, Bool $y) { $x && $y }

sum : p(Int,Int)-->Intq & p(Bool,Bool)-->Boolq, (5)
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Overloaded functions

Overloaded functions are defined by giving multiple definitions of the same

function prefixed by the multi modifier:

multi sub sum(Int $x, Int $y) { $x + $y }
multi sub sum(Bool $x, Bool $y) { $x && $y }

sum : p(Int,Int)-->Intq & p(Bool,Bool)-->Boolq, (5)

Just one parameter is enough for selection. The curried form is equivalent.

multi sub sumC(Int $x){ sub (Int $y){$x + $y } }
multi sub sumC(Bool $x){ sub (Bool $y){$x && $y} }
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Overloaded functions

Overloaded functions are defined by giving multiple definitions of the same

function prefixed by the multi modifier:

multi sub sum(Int $x, Int $y) { $x + $y }
multi sub sum(Bool $x, Bool $y) { $x && $y }

sum : p(Int,Int)-->Intq & p(Bool,Bool)-->Boolq, (5)

Just one parameter is enough for selection. The curried form is equivalent.

multi sub sumC(Int $x){ sub (Int $y){$x + $y } }
multi sub sumC(Bool $x){ sub (Bool $y){$x && $y} }

In Perl we can use “;;” to separate parameters used for code selection from

those passed to the selected code:

multi sub sumC(Int $x ;; Int $y) { $x + $y }
multi sub sumC(Bool $x ;; Bool $y) { $x && $y }

Both definitions of sumC have type

pInt-->pInt-->Intqq & pBool-->pBool-->Boolqq. (6)

though partial application is possible only with the first definition of sumC
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Dynamic dispatch

Dynamic dispatch

The code to execute for a multisubroutine is chosen at run-time according to

the type of the argument.

The multi-subroutine with the best approximating input type is executed
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Dynamic dispatch

Dynamic dispatch

The code to execute for a multisubroutine is chosen at run-time according to

the type of the argument.

The multi-subroutine with the best approximating input type is executed

All examples given so far can be resolved at static time

Dynamic dispatch is sensible only when types change during computation.
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Dynamic dispatch

Dynamic dispatch

The code to execute for a multisubroutine is chosen at run-time according to

the type of the argument.

The multi-subroutine with the best approximating input type is executed

All examples given so far can be resolved at static time

Dynamic dispatch is sensible only when types change during computation.

In a statically-typed language with subtyping, the type of an expression may

decrease during the computation.
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Dynamic dispatch

Dynamic dispatch

The code to execute for a multisubroutine is chosen at run-time according to

the type of the argument.

The multi-subroutine with the best approximating input type is executed

All examples given so far can be resolved at static time

Dynamic dispatch is sensible only when types change during computation.

In a statically-typed language with subtyping, the type of an expression may

decrease during the computation.

Example:

( sub(Int $x){ $x % 4 } )(3+2)

Int at compile time; Even after the reduction.

G. Castagna (CNRS) Cours de Programmation Avancée 470 / 593



471/593

Dynamic dispatch

Example

multi sub mod2sum(Even $x , Odd $y) { 1 }

multi sub mod2sum(Odd $x , Even $y) { 1 }

multi sub mod2sum(Int $x , Int $y) { 0 }
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Dynamic dispatch

Example

multi sub mod2sum(Even $x , Odd $y) { 1 }

multi sub mod2sum(Odd $x , Even $y) { 1 }

multi sub mod2sum(Int $x , Int $y) { 0 }

Its type (with singleton types: v is the type that contains just value v )

p(Even,Odd)-->1q
& p(Odd,Even)-->1q
& p(Int,Int)-->0_1q

Exercise

Find a more precise type and justify how the type checker can deduce it.
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Formation rules for multi-subroutines: Ambigous Selection

Alternative definition for mod2sum:

multi sub mod2sum(Even $x , Int $y){ $y % 2 }

multi sub mod2sum(Int $x , Odd $y){ ($x+1) % 2 }

Mathematically correct but selection is ambigous: the computation is stuck on

arguments of type (Even,Odd).
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Formation rules for multi-subroutines: Ambigous Selection

Alternative definition for mod2sum:

multi sub mod2sum(Even $x , Int $y){ $y % 2 }

multi sub mod2sum(Int $x , Odd $y){ ($x+1) % 2 }

Mathematically correct but selection is ambigous: the computation is stuck on

arguments of type (Even,Odd).

Formation rule 1: Ambiguity

A multi-subroutine is free from ambiguity if whenever it has definitions for input

S and T, and S & T is not empty, then it has a definition for input S & T.
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Formation rules for multi-subroutines: Ambigous Selection

Alternative definition for mod2sum:

multi sub mod2sum(Even $x , Int $y){ $y % 2 }

multi sub mod2sum(Int $x , Odd $y){ ($x+1) % 2 }

Mathematically correct but selection is ambigous: the computation is stuck on

arguments of type (Even,Odd).

Formation rule 1: Ambiguity

A multi-subroutine is free from ambiguity if whenever it has definitions for input

S and T, and S & T is not empty, then it has a definition for input S & T.

It is a formation rule. It belongs to language design not to the type system:

( (Even,Int) --> 0_1 ) & ( (Int,Odd) --> 0_1 )

the type above is perfectly ok (and a correct type for mod2sum).
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Formation rules for multi-subroutines: Specialization

Because of dynamic dispatch during the execution:

the type of the argument changes,
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Formation rules for multi-subroutines: Specialization

Because of dynamic dispatch during the execution:

the type of the argument changes, ñ

the code selected for a multi-subroutine changes,
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Formation rules for multi-subroutines: Specialization

Because of dynamic dispatch during the execution:

the type of the argument changes, ñ

the code selected for a multi-subroutine changes, ñ

the type of application changes

Types may only decrease along the computation
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Formation rules for multi-subroutines: Specialization

Because of dynamic dispatch during the execution:

the type of the argument changes, ñ

the code selected for a multi-subroutine changes, ñ

the type of application changes

Types may only decrease along the computation

Consider again:

multi sub mod2sum(Even $x , Odd $y) { 1 }
multi sub mod2sum(Odd $x , Even $y) { 1 }
multi sub mod2sum(Int $x , Int $y) { 0 }

which has type

p(Even,Odd)-->1q & p(Odd,Even)-->1q & p(Int,Int)-->0_1q
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Formation rules for multi-subroutines: Specialization

Because of dynamic dispatch during the execution:

the type of the argument changes, ñ

the code selected for a multi-subroutine changes, ñ

the type of application changes

Types may only decrease along the computation

Consider again:

multi sub mod2sum(Even $x , Odd $y) { 1 }
multi sub mod2sum(Odd $x , Even $y) { 1 }
multi sub mod2sum(Int $x , Int $y) { 0 }

which has type

p(Even,Odd)-->1q & p(Odd,Even)-->1q & p(Int,Int)-->0_1q

For the application mod2sum(3+3,3+2):

static time: third code selected; static type is 0_1

run time: first code selected; dynamic type is 1 (notice 1 <: 0_1)

G. Castagna (CNRS) Cours de Programmation Avancée 473 / 593



474/593

Formation rules for multi-subroutines: Specialization

“Types may only decrease along the computation”
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Formation rules for multi-subroutines: Specialization

“Types may only decrease along the computation”

Why does it matter?

multi sub foo(Int $x) { $x+42 }
multi sub foo(Odd $x) { true }

Consider 10+(foo(3+2)): statically well-typed but yields a runtime type error.
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Formation rules for multi-subroutines: Specialization

“Types may only decrease along the computation”

Why does it matter?

multi sub foo(Int $x) { $x+42 }
multi sub foo(Odd $x) { true }

Consider 10+(foo(3+2)): statically well-typed but yields a runtime type error.

How to ensure it for dynamic dispatch?

Formation rule 2: Specialization

A multi-subroutine is specialization sound if whenever it has definitions for input

S and T, and S<:T, then the definition for input S returns a type smaller than

the one returned by the definition for T.

Example:

multi sub foo(S1 $x) returns T1 { ... }
multi sub foo(S2 $x) returns T2 { ... }

Specialization sound: If S1<:S2 then T1<:T2.
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Formation rules for multi-subroutines: Specialization

Once more, a formation rule: concerns language design, not the type system.

The type system is perfectly happy with the type

pS1-->T1q & pS2-->T2q

even if S1<:S2 and T1 and T2 are not related. However consider all the possible

cases of applications of a function of this type:

1 If the argument is in S1 & S2, then the application has type T1 & T2.

2 If the argument is in S1zS2 and case 1 does not apply, then the application

has type T1.

3 If the argument is in S2zS1 and case 1 does not apply, then the application

has type T2.

4 If the argument is in S1 _S2 and no previous case applies, then the

application has type T1 _T2.
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Formation rules for multi-subroutines: Specialization

This case

1 If the argument is in S1 & S2, then the application has type T1 & T2.

may confuse the programmer when S2<:S1, since in this case S2 “ S2 & S1:

When a function of type pS1-->T1q & pS2-->T2q with S2<:S1, is applied to an

argument of type S2, then the application returns results in T1 & T2.

Design choice: to avoid confusion force (wlog) the programmer to specify that

the return type for a S2 input is (some subtype of) T1 & T2.

This can be obtained by accepting only specialization sound definitions and

greatly simplifies the presentation of the type discipline of the language.
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Covariance and contravariance

Homework assignment:

1 Mandatory: Study the covariance and contravariance problem described

in the first 3 sections of the following paper (click on the title).

G. Castagna. Covariance and Contravariance: a fresh look at an old

issue. Draft manuscript, 2014.

2 Optional: if you want to know what is under the hood, you can read

Section 4 of the same paper, which describes a state-of-the-art

implementation of a type system with set-theoretic types.
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Outline
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CDuce is built on types

The main motivation for studying set-theoretic types is to define strongly typed

programming languages for XML.

CDuce is a programming language for XML whose design is completely based

on set-theoretic types.

In CDuce set-theoretic types are pervasive:

1 XML types are encoded in set-theoretic types

2 Patterns are types with capture variables

3 Set-theoretic types are used for informative error messages

4 Types are used for efficient JIT compilation
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XML syntax

type Bib = <bib>[Book Book]
<book year="1997">

<title>[’Object-Oriented Programming’]</title>
<author>

<last>[’Castagna’]</last>
<first>[’Giuseppe’]</first>

</author>]
<price>[’56’]</price>
’Bikhäuser’

</book>]
<book year="2000">

<title>[’Regexp Types for XML’]</title>
<editor>

<last>[’Hosoya’]</last>
<first>[’Haruo’]</first>

</editor>]
’UoT’

</book>]
</bib>]
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XML syntax

type Bib = <bib>[Book Book]
<book year="1997">[

<title>[’Object-Oriented Programming’]
<author>[

<last>[’Castagna’]
<first>[’Giuseppe’]

]
<price>[’56’]
’Bikhäuser’

]
<book year="2000">[

<title>[’Regexp Types for XML’]
<editor>

<last>[’Hosoya’]
<first>[’Haruo’]

]
’UoT’

]
]
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XML syntax

type Bib = <bib>[Book Book]
<book year="1997">[

<title>[’Object-Oriented Programming’]
<author>[

<last>[’Castagna’]
<first>[’Giuseppe’]

]
<price>[’56’]
’Bikhäuser’

]
<book year="2000">[

<title>[’Regexp Types for XML’]
<editor>

<last>[’Hosoya’]
<first>[’Haruo’]

]
’UoT’

]
]
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XML syntax

type Bib = <bib>[Book Book] String = [PCDATA] = [Char*]
<book year=String>[

<title>
<author>[

<last>[PCDATA]
<first>[PCDATA]

]
<price>[PCDATA]
PCDATA

]
<book year=String>[

<title>[PCDATA]
<editor>

<last>[PCDATA]
<first>[PCDATA]

]
PCDATA

]
]
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XML syntax

type Bib = <bib>[Book Book]
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price?
PCDATA]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.
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XML syntax

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price?
PCDATA]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.
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XML syntax

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price?
PCDATA]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.
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XML syntax

type Bib = <bib>[Book*] Kleene star
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price?
PCDATA]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.
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XML syntax

type Bib = <bib>[Book*]
type Book = <book year=String>[ attribute types

Title
(Author+ | Editor+)
Price?
PCDATA]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.
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XML syntax

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title nested elements
(Author+ | Editor+)
Price?
PCDATA]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.
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XML syntax

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title
(Author+ | Editor+) unions
Price?
PCDATA]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.
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XML syntax

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price? optional elems
PCDATA]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.
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XML syntax

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price?
PCDATA] mixed content

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.
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XML syntax

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price?
PCDATA]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.
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XML syntax

type Bib = <bib>[Book*]
type Book = <book year=String>[

Title
(Author+ | Editor+)
Price?
PCDATA]

type Author = <author>[Last First]
type Editor = <editor>[Last First]
type Title = <title>[PCDATA]
type Last = <last>[PCDATA]
type First = <first>[PCDATA]
type Price = <price>[PCDATA]

This and: singletons, intersections, differences, Empty, and Any.

We saw that all this can be encoded with recursive and set-theoretic types
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Types & patterns: the functional languages perspective

Types are sets of values

Values are decomposed by patterns

Patterns are roughly values with capture variables
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Types & patterns: the functional languages perspective

Types are sets of values

Values are decomposed by patterns

Patterns are roughly values with capture variables

Instead of

let x = fst(e) in
let y = snd(e) in (y,x)

with patterns one can write

let (x,y) = e in (y,x)

which is syntactic sugar for

match e with (x,y) -> (y,x)

“match” is more interesting than “let”, since it can test

several “|||”-separated patterns.
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Example: tail-recursive version of length for lists:

type List = (Any,List) | ‘nil
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Patterns in CDuce

Patterns = Types + Capture variables

type Bib = <bib>[Book*]

type Book = <book year=String>[Title Author+ Publisher]

type Publisher = String
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type Bib = <bib>[Book*]

type Book = <book year=String>[Title Author+ Publisher]

type Publisher = StringT
Y

P
E

S

match bibs with

<bib>[x::Book*] -> x

The pattern binds x to the sequence of all books in the bibliographyP
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type Book = <book year=String>[Title Author+ Publisher]

type Publisher = StringT
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match bibs with
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Y

P
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match bibs with

<bib>[( x::<book year="2005">__ | y::__ )*] -> x@y
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Patterns in CDuce

Patterns = Types + Capture variables

type Bib = <bib>[Book*]

type Book = <book year=String>[Title Author+ Publisher]

type Publisher = StringT
Y

P
E

S

match bibs with

<bib>[( x::<book year="2005">__ | y::__ )*] -> x@y

Returns the concatenation (i.e., “@”) of the two captured sequencesP
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type Bib = <bib>[Book*]

type Book = <book year=String>[Title Author+ Publisher]

type Publisher = StringT
Y

P
E

S

match bibs with

<bib>[(x::<book year="1990">[ __* Publisherz"ACM"] | ______)*] -> x

Binds x to the sequence of books published in 1990 from publishers others than
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type Publisher = StringT
Y
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match bibs with

<bib>[(x::<book year="1990">[ __* Publisherz"ACM"] | ______)*] -> x

Returns all the captured books

Exact type inference:

E.g.: if we match the pattern [(x::Int|_)*] against an expression of type

[Int* String Int] the type deduced for x is [Int+]
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match bibs with

<bib>[(x::<book year="1990">[ __* Publisherz"ACM"] | ______)*] -> x

Returns all the captured books

Exact type inference:

E.g.: if we match the pattern [(x::Int|_)***] against an expression of type

[Int* String Int] the type deduced for x is [Int+++]
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Functions in CDuce

G. Castagna (CNRS) Cours de Programmation Avancée 486 / 593



487/593

Functions: basic usage

type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]

G. Castagna (CNRS) Cours de Programmation Avancée 487 / 593



487/593

Functions: basic usage

type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]

Extract subsequences (union polymorphism)

fun (Invited|Talk -> [Author+])
<_>[ Title x::Author* ] -> x

G. Castagna (CNRS) Cours de Programmation Avancée 487 / 593



487/593

Functions: basic usage

type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]

Extract subsequences (union polymorphism)

fun (Invited|Talk -> [Author+])
<_>[ Title x::Author* ] -> x

Extract subsequences of non-consecutive elements:

fun ([(Invited|Talk|Event)*] -> ([Invited*], [Talk*]))
[ (i::Invited | t::Talk | _)* ] -> (i,t)

G. Castagna (CNRS) Cours de Programmation Avancée 487 / 593



487/593

Functions: basic usage
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type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]

Extract subsequences (union polymorphism)

fun (Invited|Talk -> [Author+])
<_>[ Title x::Author* ] -> x

Extract subsequences of non-consecutive elements:

fun ([(Invited|Talk|Event)*] -> ([Invited*], [Talk*]))
[ (i::Invited | t::Talk | _)* ] -> (i,t)

Perl-like string processing (String = [Char*])

fun parse_email (String -> (String,String))
| [ local::_* ’@’ domain::_* ] -> (local,domain)
| _ -> raise "Invalid email address"
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Functions: advanced usage

type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]

G. Castagna (CNRS) Cours de Programmation Avancée 488 / 593



488/593

Functions: advanced usage

type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]

Functions can be higher-order and overloaded

let patch_program
(p :[Program], f :(Invited -> Invited) &&& (Talk -> Talk)):[Program]

= xtransform p with (Invited | Talk) & x -> [ (f x) ]
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<(k)>[ t a _* ] -> <(k)>[ t a ]
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| <talk>[ t a _* ] -> <talk>[ t a ]

Even more compact: replace the last two branches with:

<(k)>[ t a _* ] -> <(k)>[ t a ]
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Red-black trees in CDuce

type RBtree = Btree | Rtree;;
type Btree = <black elem=Int>[ RBtree RBtree ] | [] ;;
type Rtree = <red elem=Int>[ Btree Btree ];;

type Wrongtree = Wrongleft | Wrongright;;
type Wrongleft = <red elem=Int>[ Rtree Btree ];;
type Wrongright = <red elem=Int>[ Btree Rtree ];;
type Unbalanced = <black elem=Int>([Wrongtree RBtree] | [RBtree Wrongtree])

let balance ( Unbalanced -> Rtree ; Rtree -> Rtree ; Btreez[] -> Btreez[] ;
[] -> [] ; Wrongleft -> Wrongleft ; Wrongright -> Wrongright)

| <black (z)>[ <red (y)>[ <red (x)>[ a b ] c ] d ]
| <black (z)>[ <red (x)>[ a <red (y)>[ b c ] ] d ]
| <black (x)>[ a <red (z)>[ <red (y)>[ b c ] d ] ]
| <black (x)>[ a <red (y)>[ b <red (z)>[ c d ] ] ] ->

<red (y)>[ <black (x)>[ a b ] <black (z)>[ c d ] ]
| x -> x

let insert (x : Int) (t : Btree) : Btree =
let ins_aux ( [] -> Rtree ; Btreez[] -> RBtreez[]; Rtree -> Rtree|Wrongtree)

| [] -> <red elem=x>[ [] [] ]
| (<(color) elem=y>[ a b ]) & z ->

if x << y then balance <(color) elem=y>[ (ins_aux a) b ]
else if x >> y then balance <(color) elem=y>[ a (ins_aux b) ]
else z

in match ins_aux t with
| <_ (y)>[ a b ] -> <black (y)>[ a b ]
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let ins_aux ( [] -> Rtree ; Btreez[] -> RBtreez[]; Rtree -> Rtree|Wrongtree)

| [] -> <red elem=x>[ [] [] ]
| (<(color) elem=y>[ a b ]) & z ->

if x << y then balance <(color) elem=y>[ (ins_aux a) b ]
else if x >> y then balance <(color) elem=y>[ a (ins_aux b) ]
else z
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Red-black trees in Polymorphic CDuce

type RBtree = Btree | Rtree;;
type Btree = <black elem=Int>[ RBtree RBtree ] | [] ;;
type Rtree = <red elem=Int>[ Btree Btree ];;

type Wrongtree = <red elem=Int>[ Rtree Btree ]
| <red elem=Int>[ Btree Rtree ];;

type Unbalanced = <black elem=Int>([Wrongtree RBtree] | [RBtree Wrongtree])

let balance ( Unbalanced -> Rtree ; αααzUnbalanced -> αααzUnbalanced )
| <black (z)>[ <red (y)>[ <red (x)>[ a b ] c ] d ]
| <black (z)>[ <red (x)>[ a <red (y)>[ b c ] ] d ]
| <black (x)>[ a <red (z)>[ <red (y)>[ b c ] d ] ]
| <black (x)>[ a <red (y)>[ b <red (z)>[ c d ] ] ] ->

<red (y)>[ <black (x)>[ a b ] <black (z)>[ c d ] ]
| x -> x

let insert (x : Int) (t : Btree) : Btree =
let ins_aux ( [] -> Rtree ; Btreez[] -> RBtreez[]; Rtree -> Rtree|Wrongtree)

| [] -> <red elem=x>[ [] [] ]
| (<(color) elem=y>[ a b ]) & z ->

if x << y then balance <(color) elem=y>[ (ins_aux a) b ]
else if x >> y then balance <(color) elem=y>[ a (ins_aux b) ]
else z

in match ins_aux t with
| <_ (y)>[ a b ] -> <black (y)>[ a b ]
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Outline

38 XML basics

39 Set-theoretic types

40 Examples in Perl 6
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42 XML Programming in CDuce

43 Functions in CDuce

44 Other benefits of types
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List of books of a given year, stripped of the Editors and Price

fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
<book year=y>[(t::Title | a::Author | __)+] in books

where int_of(y) = year
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Returns the following error message:
Error at chars 81-83:

select <book year=y>(t@a) from
This expression should have type:
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Informative error messages

List of books of a given year, stripped of the Editors and Price

fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
<book year=y>[ t::Title a::Author+++ __* ] in books

where int_of(y) = year

Returns the following error message:
Error at chars 81-83:

select <book year=y>(t@a) from
This expression should have type:
[ Title (Editor+|Author+) Price? ]
but its inferred type is:
[ Title Author+ | Title ]
which is not a subtype, as shown by the sample:

[ <title>[ ] ]
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type A = <a>[A*]
type B = <b>[B*]

fun check(x : A|B) = match x with A -> 1 | B -> 0

fun check(x : A|B) = match x with <a>__ -> 1 | __ -> 0
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Idea: if types tell you that something cannot happen, don’t test it.

type A = <a>[A*]
type B = <b>[B*]

fun check(x : A|B) = match x with A -> 1 | B -> 0

fun check(x : A|B) = match x with <a>__ -> 1 | __ -> 0

No backtracking.

Whole parts of the matched data are not checked

Computing the optimal solution requires to fully exploit intersections and

differences of types
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Efficient execution

Idea: if types tell you that something cannot happen, don’t test it.

type A = <a>[A*]
type B = <b>[B*]

fun check(x : A|B) = match x with A -> 1 | B -> 0

fun check(x : A|B) = match x with <a>__ -> 1 | __ -> 0

No backtracking.

Whole parts of the matched data are not checked

Specific kind of push-down tree automata
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Outline
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41 Covariance and contravariance

42 XML Programming in CDuce

43 Functions in CDuce
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Toolkit

Every programming language needs tools / libraries / DLS extensions.

Available for CDuce:

OCaml full integration

Web-services API

Navigational patterns (à la XPath) [experimental]
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CDuceØOCaml Integration

A CDuce application that requires OCaml code

Reuse existing librairies

Abstract data structures : hash tables, sets, ...

Numerical computations, system calls

Bindings to C libraries : databases, networks, ...

Implement complex algorithms

An OCaml application that requires CDuce code

CDuce used as an XML input/output/transformation layer

Configuration files

XML serialization of datas

XHTML code production

Need to seamlessly call OCaml code in CDuce and viceversa
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Main Challenges

1 Seamless integration:

No explicit conversion function in programs:

the compiler performs the conversions

2 Type safety:

No explicit type cast in programs:

the standard type-checkers ensure type safety

What we need:

A mapping between OCaml and CDuce types and values
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How to integrate the two type systems?

The translation can go just one way: OCaml Ñ CDuce

‘‘‘ CDuce uses (semantic) subtyping; OCaml does not

If we translate CDuce types into OCaml ones :

- soundness requires the translation to be monotone;

- no subtyping in Ocaml implies a constant translation;

ñ CDuce typing would be lost.

‘‘‘ CDuce has unions, intersections, differences, heterogeneous lists;

OCaml does not

ñ OCaml types are not enough to translate CDuce types.

aaa OCaml supports type polymorphism; CDuce does not yet (it does in

the development version).

ñ Polymorphic OCaml libraries/functions must be first instantied to be used in

CDuce
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1 Define a mapping T from OCaml types to CDuce types.

t pOCamlq Tptq pCDuceq
int min_int- -max_int

string Latin1

t1 ˚ t2 pTpt1q,Tpt2qq
t1 Ñ t2 Tpt1q Ñ Tpt2q
t list rTptq˚s
t array rTptq˚s
t option rTptq?s
t ref ref Tptq
A1 of t1 | . . . | An of tn p‘A1,Tpt1qq | . . . | p‘An,Tptnqq
tl1 “ t1; . . . ; ln “ tnu tl1 “ Tpt1q; . . . ; ln “ Tptnqu

G. Castagna (CNRS) Cours de Programmation Avancée 499 / 593



499/593

In practice

1 Define a mapping T from OCaml types to CDuce types.

t pOCamlq Tptq pCDuceq
int min_int- -max_int

string Latin1

t1 ˚ t2 pTpt1q,Tpt2qq
t1 Ñ t2 Tpt1q Ñ Tpt2q
t list rTptq˚s
t array rTptq˚s
t option rTptq?s
t ref ref Tptq
A1 of t1 | . . . | An of tn p‘A1,Tpt1qq | . . . | p‘An,Tptnqq
tl1 “ t1; . . . ; ln “ tnu tl1 “ Tpt1q; . . . ; ln “ Tptnqu

2 Define a retraction pair between OCaml and CDuce values.

G. Castagna (CNRS) Cours de Programmation Avancée 499 / 593



499/593

In practice

1 Define a mapping T from OCaml types to CDuce types.

t pOCamlq Tptq pCDuceq
int min_int- -max_int

string Latin1

t1 ˚ t2 pTpt1q,Tpt2qq
t1 Ñ t2 Tpt1q Ñ Tpt2q
t list rTptq˚s
t array rTptq˚s
t option rTptq?s
t ref ref Tptq
A1 of t1 | . . . | An of tn p‘A1,Tpt1qq | . . . | p‘An,Tptnqq
tl1 “ t1; . . . ; ln “ tnu tl1 “ Tpt1q; . . . ; ln “ Tptnqu

2 Define a retraction pair between OCaml and CDuce values.

ocaml2cduce: t Ñ Tptq
cduce2ocaml: Tptq Ñ t
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Calling OCaml from CDuce
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Use M.f to call the function f exported by the OCaml module M

The CDuce compiler checks type soundness and then

- applies cduce2ocaml to the arguments of the call

- calls the OCaml function

- applies ocaml2cduce to the result of the call

Example: use ocaml-mysql library in CDuce

let db = Mysql.connect Mysql.defaults;;

match Mysql.list_dbs db ‘None [] with

| (‘Some,l) -> print [ ’Databases: ’ !(string_of l) ’z n’ ]

| ‘None -> [];;
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Calling CDuce from OCaml

Needs little work

Compile a CDuce module as an OCaml binary module by providing a OCaml

(.mli) interface. Use it as a standard Ocaml module.
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Calling CDuce from OCaml

Needs little work

Compile a CDuce module as an OCaml binary module by providing a OCaml

(.mli) interface. Use it as a standard Ocaml module.

The CDuce compiler:
1 Checks that if val f :t in the .mli file, then the CDuce type of f is a

subtype of Tptq
2 Produces the OCaml glue code to export CDuce values as OCaml ones

and bind OCaml values in the CDuce module.

Example: use CDuce to compute a factorial:

(* File cdnum.mli: *)
val fact: Big_int.big_int -> Big_int.big_int

(* File cdnum.cd: *)
let aux ((Int,Int) -> Int)
| (x, 0 | 1) -> x
| (x, n) -> aux (x * n, n - 1)

let fact (x : Int) : Int = aux(1,x)
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