XML Programming

Outline

(38) XML basics
(3) Set-theoretic types
(40) Examples in Perl 6
(41) Covariance and contravariance
(42) XML Programming in CDuce
(43) Functions in CDuce
(44) Other benefits of types
(45) Toolkit

Outline

(38) XML basics

(39) Set-theoretic types
(40) Examples in Perl 6
(4) Covariance and contravariance

42 XML Programming in CDuce
(3) Functions in CDuce
(44) Other benefits of types
(4) Toolkit

XML is just tree-structured data:

```
<biblio>
    <book status="available">
            <title>Object-Oriented Programming</title>
            <author>Giuseppe Castagna</author>
    </book>
    <book>
            <title>A Theory of Objects</title>
            <author>Martín Abadi</author>
            <author>Luca Cardelli</author>
    </book>
<biblio>
```


XML is just tree-structured data:

```
<biblio>
    <book status="available">
            <title>Object-Oriented Programming</title>
            <author>Giuseppe Castagna</author>
    </book>
    <book>
            <title>A Theory of Objects</title>
            <author>Martín Abadi</author>
            <author>Luca Cardelli</author>
    </book>
<biblio>
```

Types describe the set of valid documents

```
<?xml version="1.0"?>
    <!DOCTYPE biblio [
    <!ELEMENT biblio (book*)>
    <!ELEMENT book (title, (author|editor)+, price?)>
    <!ATTLIST book status (available|borrowed) #IMPLIED>
    <!ELEMENT title (#PCDATA)>
    <!ELEMENT author (#PCDATA)>
    <!ELEMENT editor (#PCDATA)>
    <!ELEMENT price (#PCDATA)>
]>
```


Programming with XML

How to manipulate data that is in XML format in a programming language?

Programming with XML

How to manipulate data that is in XML format in a programming language?

- Level 0: textual representation of XML documents
- AWK, sed, Perl regexp

Programming with XML

How to manipulate data that is in XML format in a programming language?

- Level 0: textual representation of XML documents
- AWK, sed, Perl regexp
- Level 1: abstract view provided by a parser
- SAX, DOM, ...

Programming with XML

How to manipulate data that is in XML format in a programming language?

- Level 0: textual representation of XML documents
- AWK, sed, Perl regexp
- Level 1: abstract view provided by a parser
- SAX, DOM, ...
- Level 2: untyped XML-specific languages
- XSLT, XPath

Programming with XML

How to manipulate data that is in XML format in a programming language?

- Level 0: textual representation of XML documents
- AWK, sed, Perl regexp
- Level 1: abstract view provided by a parser
- SAX, DOM, ...
- Level 2: untyped XML-specific languages
- XSLT, XPath
- Level 3: XML types taken seriously
- XDuce, Xtatic
- XQuery
- CDuce
- C_{ω} (Microsoft)
- ...

Programming with XML

How to manipulate data that is in XML format in a programming language?

- Level 0: textual representation of XML documents
- AWK, sed, Perl regexp
- Level 1: abstract view provided by a parser
- SAX, DOM, ...
- Level 2: untyped XML-specific languages
- XSLT, XPath
- Level 3: XML types taken seriously
- XDuce, Xtatic
- XQuery
- CDuce
- C_{ω} (Microsoft)
- ...

Programming with XML

How to manipulate data that is in XML format in a programming language?

- Level 0: textual representation of XML documents
- AWK, sed, Perl regexp
- Level 1: abstract view provided by a parser
- SAX, DOM, ...
- Level 2: untyped XML-specific languages
- XSLT, XPath
- Level 3: XML types taken seriously
- XDuce, Xtatic
- XQuery
- CDuce
- C_{ω} (Microsoft)
- ...

Examples

Level 1: DOM in Javascript

Print the titles of the book in the bibliography

```
<script>
    xmlDoc=loadXMLDoc("biblio.xml");
    x=xmlDoc.getElementsByTagName("book");
    for (i=0;i<x.length;i++){
        document.write(x[i].childNodes[0].nodeValue);
        document.write("<br>");
    }
</script>
```


Examples

Level 1: DOM in Javascript

Print the titles of the book in the bibliography

```
<script>
    xmlDoc=loadXMLDoc("biblio.xml");
    x=xmlDoc.getElementsByTagName("book");
    for (i=0;i<x.length;i++){
        document.write(x[i].childNodes[0].nodeValue);
        document.write("<br>");
    }
</script>
```


Level 2: XPath

```
The same in XPath:
```

/biblio/book/title

Select all titles of books whose price > 35
/biblio/book[price>35]/title

Level 2: XSLT
XSLT uses XPath to extract information (as a pattern in pattern matching)

```
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
    xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
        <html>
        <body>
        <h2>Books Price List</h2>
        <table border="1">
            <tr bgcolor="#9acd32">
                <th>Title</th>
                <th>Price</th>
            </tr>
            <xsl:for-each select="biblio/book">
            <tr>
                <td><xsl:value-of select="title"/></td>
                <td><xsl:value-of select="price"/></td>
            </tr>
            </xsl:for-each>
        </table>
        </body>
        </html>
</xsl:template>
</xsl:stylesheet>
```


Types are ignored

- In DOM nothing ensures that the read of a next node suceeds
- In XPath /biblio/title/book return an empty set of nodes rather than a type error
- Likewise the use of wrong XPath expressions in XSLT is unnoticed and yields empty XML documents as result (in the previous example the fact that price is optional is not handled).

Types are ignored

- In DOM nothing ensures that the read of a next node suceeds
- In XPath /biblio/title/book return an empty set of nodes rather than a type error
- Likewise the use of wrong XPath expressions in XSLT is unnoticed and yields empty XML documents as result (in the previous example the fact that price is optional is not handled).

Level 3: Recent languages take types seriously

- XDuce, Xtatic
- XQuery
- CDuce
- C_{ω}
- ...

How to add XML types in programming languages?

Types are ignored

- In DOM nothing ensures that the read of a next node suceeds
- In XPath /biblio/title/book return an empty set of nodes rather than a type error
- Likewise the use of wrong XPath expressions in XSLT is unnoticed and yields empty XML documents as result (in the previous example the fact that price is optional is not handled).

Level 3: Recent languages take types seriously

- XDuce, Xtatic
- XQuery
- CDuce
- C_{ω}
- ...

How to add XML types in programming languages?

We need set-theoretic type connectives

Outline

(38) XML basics
(39) Set-theoretic types
(40) Examples in Perl 6
(41) Covariance and contravariance

42 XML Programming in CDuce
(43) Functions in CDuce
(44) Other benefits of types
(45) Toolkit

Set-theoretic types

We consider the following possibly recursive types:

$$
\mathrm{T}::=\text { Bool } \mid \text { Int } \mid \text { Any }|(\mathrm{T}, \mathrm{~T})| \mathrm{T} \vee \mathrm{~T}|\mathrm{~T} \& \mathrm{~T}| \operatorname{not}(\mathrm{T}) \mid \mathrm{T}-->\mathrm{T}
$$

Useful for:
(1) XML types
(2) Precise typing of pattern matching
(3) Overloaded functions
(4) Mixins
(6) General programming paradigms

Let us see each point more in detail

Note: henceforward I will sometimes use $T_{1} \mid T_{2}$ to denote $T_{1} \vee T_{2}$

1. XML types

```
<?xml version="1.0"?>
    <!DOCTYPE biblio
    <!ELEMENT biblio (book*)>
    <!ELEMENT book (title, (author|editor)+, price?)>
    <!ELEMENT title (#PCDATA)>
    <!ELEMENT author (#PCDATA)>
    <!ELEMENT editor (#PCDATA)>
    <!ELEMENT price (#PCDATA)>
]>
```

Can be encoded with union and recursive types
type Biblio = ('biblio,X)
type $\quad X=(B o o k, X) \vee$ 'nil
type Book = (‘book, (Title, Y $\vee Z$))
type $\quad Y=(A u t h o r, Y \vee($ Price, 'nil) \vee 'nil)
type $\quad Z=(E d i t o r, Z \vee($ Price, 'nil) \vee 'nil)
type Title = ('title,String)
type Author = ('author,String)
type Editor = ('editor,String)
type Price = ('price,String)

2. Precise typing of pattern matching (I)

Consider the following pattern matching expression

```
match e with p p -> e e | p p -> e}\mp@subsup{e}{2}{
```

where patterns are defined as follows:

$$
p::=x|(p, p)| p|p| p \& p
$$

2. Precise typing of pattern matching (I)

Consider the following pattern matching expression

$$
\text { match } e \text { with } p_{1}->e_{1} \mid p_{2}->e_{2}
$$

where patterns are defined as follows:

$$
p::=x|(p, p)| p|p| p \& p
$$

If we interpret types as set of values

$$
t=\{v \mid v \text { is a value of type } t\}
$$

then the set of all values that match a pattern is a type

$$
\begin{aligned}
& 2 p \int=\{v \mid v \text { is a value that matches } p\} \\
& 2 x S=\text { Any } \\
&\left\{\left(p_{1}, p_{2}\right) \int\right.=\left(\eta p_{1} \int, 2 p_{2} \int\right) \\
& 2 p_{1} \mid p_{2} \int=\left\{p _ { 1 } \int \vee \left\{p_{2} \int\right.\right. \\
& 2 p_{1} \& p_{2} \int=\left\{p _ { 1 } \int \& \left\{p_{2} \int\right.\right.
\end{aligned}
$$

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
Suppose that $e: T$ and let us write $T_{1} \backslash T_{2}$ for $T_{1} \& \operatorname{not}\left(T_{2}\right)$

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
Suppose that $e: T$ and let us write $\mathrm{T}_{1} \backslash \mathrm{~T}_{2}$ for $\mathrm{T}_{1} \& \operatorname{not}\left(\mathrm{~T}_{2}\right)$

- To infer the type T_{1} of e_{1} we need $\mathrm{T} \&\left\{p_{1} \int\right.$;

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
Suppose that $e: T$ and let us write $T_{1} \backslash T_{2}$ for $T_{1} \& \operatorname{not}\left(T_{2}\right)$

- To infer the type T_{1} of e_{1} we need $\mathrm{T} \&\left\{p_{1} \int\right.$;
- To infer the type T_{2} of e_{2} we need $\left(T \backslash\left\lceil p_{1} \int\right) \&\left\{p_{2} \int\right.\right.$;

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
Suppose that $e: T$ and let us write $T_{1} \backslash T_{2}$ for $T_{1} \& \operatorname{not}\left(T_{2}\right)$

- To infer the type T_{1} of e_{1} we need $T \&\left\{p_{1} \int\right.$;
- To infer the type T_{2} of e_{2} we need $\left(T \backslash\left\lceil p_{1} \int\right) \&\left\{p_{2} \int\right.\right.$;
- The type of the match expression is $\mathrm{T}_{1} \vee T_{2}$.

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
Suppose that $e: T$ and let us write $T_{1} \backslash T_{2}$ for $T_{1} \& \operatorname{not}\left(T_{2}\right)$

- To infer the type T_{1} of e_{1} we need $\mathrm{T} \&\left\{p_{1} \int\right.$;
- To infer the type T_{2} of e_{2} we need $\left(T \backslash\left\lceil p_{1} \int\right) \&\left\{p_{2} \int\right.\right.$;
- The type of the match expression is $\mathrm{T}_{1} \vee T_{2}$.
- Pattern matching is exhaustive if $T \leqslant l p_{1} \int \vee\left\{p_{2}\right\}$;

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
Suppose that $e: T$ and let us write $T_{1} \backslash T_{2}$ for $T_{1} \& \operatorname{not}\left(T_{2}\right)$

- To infer the type T_{1} of e_{1} we need $T \&\left\{p_{1} \int\right.$;
- To infer the type T_{2} of e_{2} we need $\left(\mathrm{T} \backslash\left\lceil p_{1} \int\right) \&\left\{p_{2} \int\right.\right.$;
- The type of the match expression is $\mathrm{T}_{1} \vee T_{2}$.
- Pattern matching is exhaustive if $T \leqslant l p_{1} \int \vee\left\{p_{2}\right\}$;

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
Suppose that $e: T$ and let us write $\mathrm{T}_{1} \backslash \mathrm{~T}_{2}$ for $\mathrm{T}_{1} \& \operatorname{not}\left(\mathrm{~T}_{2}\right)$

- To infer the type T_{1} of e_{1} we need T \& $\left\{p_{1} \int\right.$;
- To infer the type T_{2} of e_{2} we need $\left(\mathrm{T} \backslash\left\lceil p_{1} \int\right) \&\left\{p_{2} \int\right.\right.$;
- The type of the match expression is $\mathrm{T}_{1} \vee T_{2}$.
- Pattern matching is exhaustive if $T \leqslant l p_{1} \int \vee\left\{p_{2}\right\}$;

Formally:

[MATCH]
$\frac{\Gamma \vdash e: T \quad \Gamma, \mathrm{~T} \& 2 p_{1} \int / p_{1} \vdash e_{1}: \mathrm{T}_{1} \quad \Gamma, \mathrm{~T} \backslash\left\{p_{1} \int / p_{2} \vdash e_{2}: \mathrm{T}_{2}\right.}{\Gamma \vdash \text { match } e \text { with } p_{1}->e_{1} \mid}\left(\mathrm{p} \leqslant 2 p_{1}->e_{2}: \mathrm{T}_{1} \vee \mathrm{~T}_{2} \quad\left\{p_{2}\right\}\right.$
where T / p is the type environment for the capture variables in p when the pattern is matched against values in T .
(e.g., ((Int, Int) $\vee($ Bool , Char) $) /(x, y)$ is
x : Int \vee Bool, $y:$ Int \vee Char)

3. Overloaded functions

Intersection types are useful to type overloaded functions (in the Go language):

```
package main
import "fmt"
func Opposite (x interface{}) interface{} {
    var res interface{}
    switch value := x.(type) {
        case bool:
                res = (!value) // x has type bool
            case int:
                res = (-value) // x has type int
    }
    return res
}
```

func main() \{ fmt.Println(Opposite(3) , Opposite(true)) \}

In Go Opposite has type Any-->Any (every value has type interface\{\}). Better type with intersections Opposite: (Int-->Int) \& (Bool-->Bool)

3. Overloaded functions

Intersection types are useful to type overloaded functions (in the Go language):

```
package main
import "fmt"
func Opposite (x interface{}) interface{} {
    var res interface{}
    switch value := x.(type) {
        case bool:
        res = (!value) // x has type bool
        case int:
        res = (-value) // x has type int
    }
    return res
}
```

func main() \{ fmt. Println(Opposite(3) , Opposite(true)) \}
In Go Opposite has type Any-->Any (every value has type interface\{\}).
Better type with intersections Opposite: (Int-->Int) \& (Bool-->Bool)

Intersections can also to give a more refined description of standard functions:
func Successor (x int) \{ return(x+1) \}
which could be typed as Successor: (Odd-->Even) \& (Even-->0dd)

$2+3$. Precise typing of OCaml

Exercise:

(1) What is the type returned by

$$
\begin{aligned}
& \text { let foo = function } \\
& \text { | ('A,'B) -> true } \\
& \text { | ('B, 'A) -> false }
\end{aligned}
$$

and what is the problem ?
(2) Which type could we give if we had full-fledged union types?
(3) Give an intersection type that refines the previous type

$2+3$. Precise typing of OCaml

Exercise:

(1) What is the type returned by

$$
\begin{aligned}
& \text { let foo = function } \\
& \text { | ('A,'B) -> true } \\
& \text { | ('B,'A) -> false }
\end{aligned}
$$

and what is the problem ?
$\left[<{ }^{6} \mathrm{~A} \mid{ }^{6} \mathrm{~B}\right] *\left[<{ }^{6} \mathrm{~A} \mid{ }^{\prime} \mathrm{B}\right]->$ bool thus foo('A, 'A) fails
(2) Which type could we give if we had full-fledged union types?
(3) Give an intersection type that refines the previous type

$2+3$. Precise typing of OCaml

Exercise:

(1) What is the type returned by

$$
\begin{aligned}
& \text { let foo = function } \\
& \text { | ('A,'B) -> true } \\
& \text { | ('B,'A) -> false }
\end{aligned}
$$

and what is the problem ?
$\left[<{ }^{6} \mathrm{~A} \mid{ }^{6} \mathrm{~B}\right] *\left[<{ }^{6} \mathrm{~A} \mid{ }^{\prime} \mathrm{B}\right]->$ bool thus foo('A, 'A) fails
(2) Which type could we give if we had full-fledged union types?

$$
\left({ }^{6} \mathrm{~A} *{ }^{6} \mathrm{~B}\right) \mid\left({ }^{\prime} \mathrm{B} *{ }^{6} \mathrm{~A}\right) \quad->\text { bool }
$$

(3) Give an intersection type that refines the previous type

$2+3$. Precise typing of OCaml

Exercise:

(1) What is the type returned by

$$
\begin{aligned}
& \text { let foo = function } \\
& \text { | ('A,'B) -> true } \\
& \text { | ('B,'A) -> false }
\end{aligned}
$$

and what is the problem ?

$$
[<\text { 'A | 'B] * [< 'A | 'B] -> bool thus foo('A, 'A) fails }
$$

(2) Which type could we give if we had full-fledged union types?

$$
(‘ A * \text { ' } B \text {)| ('B * 'A) -> bool }
$$

(3) Give an intersection type that refines the previous type

$$
((‘ A * \text { ' }) \text {) }->\text { true }) \&((\text { ' } B * \text { 'A) }->\text { false })
$$

4. Typing of Mixins

Intersection types are used in Microsoft's Typescript to type mixins.

```
function extend<T, U>(first: T, second: U): T & U {
    /* <T> exp is a type cast (equivalent: exp as T) */
    let result = <T & U>{};
    for (let id in first) {
                            (<any>result)[id] = (<any>first)[id]; }
    for (let id in second) { if (!result.hasOwnProperty(id)) {
    (<any>result)[id] = (<any>second)[id]; } }
    return result;
}
class Person {
    constructor(public name: string) { }
}
interface Loggable {
    log(): void;
}
class ConsoleLogger implements Loggable {
    log() { ... }
}
var jim = extend(new Person("Jim"), new ConsoleLogger());
var n = jim.name;
jim.log();
```


5. General programming paradigms

Consider red-black trees. Recall that they must satisfy 4 invariants.
(1) the root of the tree is black
(2) the leaves of the tree are black
(3) no red node has a red child
(4) every path from root to a leaf contains the same number of black nodes

5. General programming paradigms

Consider red-black trees. Recall that they must satisfy 4 invariants.
(1) the root of the tree is black
(2) the leaves of the tree are black
(3) no red node has a red child
(9) every path from root to a leaf contains the same number of black nodes

The key of Okasaki's insertion is the function balance which transforms an unbalanced tree, into a valid red-black tree (as long as a, b, c, and d are valid):

5. General programming paradigms

Consider red-black trees. Recall that they must satisfy 4 invariants.
(1) the root of the tree is black
(2) the leaves of the tree are black
(3) no red node has a red child
(9) every path from root to a leaf contains the same number of black nodes

The key of Okasaki's insertion is the function balance which transforms an unbalanced tree, into a valid red-black tree (as long as a, b, c, and d are valid):

In ML we need GADTs to enforce the invariants.

```
type \alphaRBtree =
    | Leaf
    Red( }\alpha,\mathrm{ , RBtree , RBtree)
    Blk( \alpha , RBtree , RBtree)
let balance =
function
    | Blk( z , Red( x, a, Red(y,b,c) ) , d )
        Blk( z , Red( y, Red(x,a,b), c ) , d)
        Blk( x , a , Red( z, Red(y,b,c), d ) )
        Blk( x , a , Red( y, b, Red(z,c,d) ) )
            -> Red ( y, Blk(x,a,b), Blk(z,c,d) )
        | x -> x
let insert =
function ( x , t ) ->
    let ins =
        function
            | Leaf -> Red(x,Leaf,Leaf)
                c(y,a,b) as z ->
                        if x < y then balance c( y, (ins a), b ) else
            if x > y then balance c( y, a, (ins b) ) else z
    in let _(y,a,b) = ins t in Blk(y,a,b)
```

```
type RBtree = Btree | Rtree
type Rtree = Red(\alpha, Btree , Btree )
type Btree = Blk(\alpha, RBtree, RBtree) | Leaf
type Wrong = Red( \alpha, (Rtree,RBtree)|(RBtree,Rtree) )
type Unbal = Blk( }\alpha\mathrm{ , (Wrong,RBtree)|(RBtree,Wrong) )
let balance: (Unbal }->\mathrm{ Rtree) & (( }\beta\backslash\mathrm{ Unbal) }->(\beta\backslash\mathrm{ Unbal) ) =
function
Blk( z , Red( y, Red(x,a,b), c ) , d )
| x -> x
let insert: ( }\alpha,\mathrm{ Btree) }->\mathrm{ Btree =
function
    let ins: (Leaf }->\mathrm{ Rtree) & (Btree }->\mathrm{ RBtree\Leaf) & (Rtree }->\mathrm{ Rtree|Wrong) =
    function
            | Leaf -> Red(x,Leaf,Leaf)
            c(y,a,b) as z ->
            if x<y then balance c(y, (ins a), b) else 
    in let _(y,a,b) = ins t in Blk(y,a,b)
```


Cutting edge research

Type checking the previous definitions is not so difficult. The hard part is to type partial applications:

$$
\begin{aligned}
\text { map } & :(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
\text { balance }: & (\text { Unbal } \rightarrow \text { Rtree }) \&((\beta \backslash \text { Unbal }) \rightarrow(\beta \backslash \text { Unbal })) \\
\text { map balance } & :([\text { Unbal }] \rightarrow[\text { Rtree }]) \\
\& & ([\alpha \backslash \text { Unbal }] \rightarrow[\alpha \backslash \text { Unbal }]) \\
\& & ([\alpha \mid \text { Unbal }] \rightarrow[(\alpha \backslash \text { Unbal }) \mid \text { Rtree }])
\end{aligned}
$$

Fortunately, programmers (and you) are spared from these gory details.

New languages use union and intersections

Facebook's Flow:

```
// @flow
function toStringPrimitives(val: number | boolean | string) {
    return String(val);
}
```

type One = \{ foo: number \};
type Two = \{ bar: boolean \};
type Both = One \& Two;
var value: Both = \{
foo: 1,
bar: true
\};

New languages use union and intersections

Typed-Racket
(let ([a-number 37])
(if (even? a-number)
'yes
'no))

- : Symbol [more precisely: (U 'no 'yes)]
'no
(: f : (case-> (-> True Integer Integer) (-> False Boolean Boolean)))
(define (f condition x)
(if condition
(add1 x)
(not x)))

How to understand/explain set-theoretic type connectives?

- The type connectives union, intersection, and negation are completely defined by the subtyping relation:
- $T_{1} \vee T_{2}$ is the least upper bound of T_{1} and T_{2}
- $T_{1} \& T_{2}$ is the greatest lower bound of T_{1} and T_{2}
- not (T) is the only type whose union and intersection with T yield the Any and Empty types, respectively.
- Defining (and deciding) subtyping for type connectives (i.e., $\vee, \&, \operatorname{not}())$ is far more difficult than for type constructors (i.e., -->, $\times,\{\ldots\}, \ldots$).
- Understanding connectives in terms of subtyping is out of reach of simple programmers

How to understand/explain set-theoretic type connectives?

- The type connectives union, intersection, and negation are completely defined by the subtyping relation:
- $T_{1} \vee T_{2}$ is the least upper bound of T_{1} and T_{2}
- $T_{1} \& T_{2}$ is the greatest lower bound of T_{1} and T_{2}
- not (T) is the only type whose union and intersection with T yield the Any and Empty types, respectively.
- Defining (and deciding) subtyping for type connectives (i.e., $\vee, \&, \operatorname{not}())$ is far more difficult than for type constructors (i.e., -->, $\times,\{\ldots\}, \ldots$).
- Understanding connectives in terms of subtyping is out of reach of simple programmers

Give a set-theoretic semantics to types

Types as sets of values and semantic subtyping

$$
\mathrm{T}::=\text { Bool } \mid \text { Int } \mid \text { Any }|(\mathrm{T}, \mathrm{~T})| \mathrm{T} \vee \mathrm{~T}|\mathrm{~T} \& \mathrm{~T}| \operatorname{not}(\mathrm{T}) \mid \mathrm{T}-->\mathrm{T}
$$

Each type denotes a set of values:
Bool is the set that contains just two values \{true, false\}
Int is the set of all the numeric constants: $\{0,-1,1,-2,2,-3, \ldots\}$.
Any is the set of all values.
($\left.\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ is the set of all the pairs $\left(v_{1}, v_{2}\right)$ where v_{1} is a value in T_{1} and $v_{2} \mathrm{a}$ value in T_{2}, that is $\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \in \mathrm{~T}_{1}, v_{2} \in \mathrm{~T}_{2}\right\}$.
$\mathrm{T}_{1} \vee \mathrm{~T}_{2}$ is the union of the sets T_{1} and T_{2}, that is $\left\{v \mid v \in \mathrm{~T}_{1}\right.$ or $\left.v \in \mathrm{~T}_{2}\right\}$
$\mathrm{T}_{1} \& \mathrm{~T}_{2}$ is the intersection of the sets T_{1} and T_{2}, i.e. $\left\{v \mid v \in \mathrm{~T}_{1}\right.$ and $\left.v \in \mathrm{~T}_{2}\right\}$. $\underline{\operatorname{not}(\mathrm{T})}$ is the set of all the values not in T , that is $\{v \mid v \notin \mathrm{~T}\}$.

In particular not (Any) is the empty set (written Empty).
$\mathrm{T}_{1}-->\mathrm{T}_{2}$ is the set of all function values that when applied to a value in T_{1}, if they return a value, then this value is in T_{2}.

Types as sets of values and semantic subtyping

$$
\mathrm{T}::=\text { Bool } \mid \text { Int } \mid \text { Any }|(\mathrm{T}, \mathrm{~T})| \mathrm{T} \vee \mathrm{~T}|\mathrm{~T} \& \mathrm{~T}| \operatorname{not}(\mathrm{T}) \mid \mathrm{T}-->\mathrm{T}
$$

Each type denotes a set of values:
Bool is the set that contains just two values \{true, false\}
Int is the set of all the numeric constants: $\{0,-1,1,-2,2,-3, \ldots\}$.
Any is the set of all values.
($\left.\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ is the set of all the pairs $\left(v_{1}, v_{2}\right)$ where v_{1} is a value in T_{1} and v_{2} a value in T_{2}, that is $\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \in \mathrm{~T}_{1}, v_{2} \in \mathrm{~T}_{2}\right\}$.
$\mathrm{T}_{1} \vee \mathrm{~T}_{2}$ is the union of the sets T_{1} and T_{2}, that is $\left\{v \mid v \in \mathrm{~T}_{1}\right.$ or $\left.v \in \mathrm{~T}_{2}\right\}$
$\mathrm{T}_{1} \& \mathrm{~T}_{2}$ is the intersection of the sets T_{1} and T_{2}, i.e. $\left\{v \mid v \in \mathrm{~T}_{1}\right.$ and $\left.v \in \mathrm{~T}_{2}\right\}$.
$\underline{\operatorname{not}(\mathrm{T})}$ is the set of all the values not in T , that is $\{v \mid v \notin \mathrm{~T}\}$.
In particular not (Any) is the empty set (written Empty).
$\mathrm{T}_{1}-->\mathrm{T}_{2}$ is the set of all function values that when applied to a value in T_{1}, if they return a value, then this value is in T_{2}.

Semantic subtyping

Subtyping is set-containment

Outline

(38) XML basics
(59) Set-theoretic types
(40) Examples in Perl 6
(41) Covariance and contravariance

42 XML Programming in CDuce
(43) Functions in CDuce
(44) Other benefits of types
(45) Toolkit

Set-theoretic types in Perl 6

A function value is a λ-abstraction. In Perl6 it is any expression of the form:

$$
\text { sub (parameters) }\{\text { body }\}
$$

For instance (functions can be named):

$$
\text { sub } \operatorname{succ}(\text { Int } \$ \mathrm{x})\{\$ \mathrm{x}+1\}
$$

the succ function is a value in/of type Int-->Int.

Set-theoretic types in Perl 6

A function value is a λ-abstraction. In Perl6 it is any expression of the form:

$$
\text { sub (parameters) }\{\text { body }\}
$$

For instance (functions can be named):

$$
\text { sub } \operatorname{succ}(\text { Int } \$ x)\{\$ x+1\}
$$

the succ function is a value in/of type Int-->Int.
Subtypes can be defined intensionally:

```
subset Even of Int where { $_ % 2 == 0 }
subset Odd of Int where { $_ % 2 == 1 }
```

Clearly:
both succ:Even-->Odd and succ:Odd-->Even
therefore:
succ : (Even-->Odd) \& (Odd-->Even)

Subtyping

Notice that every function value in (Even-->Odd) \& (Odd-->Even) is also in Int-->Int. Thus:
(Even-->Odd) \& (Odd-->Even) <: Int-->Int

The converse does not hold: identity sub (Int \$x) \{ \$x \} is a counterexample.

Subtyping

Notice that every function value in (Even-->Odd) \& (Odd-->Even) is also in Int-->Int. Thus:
(Even-->Odd) \& (Odd-->Even) <: Int-->Int

The converse does not hold: identity sub (Int \$x) \{ \$x \} is a counterexample.

The above is just an instance of the following relation

$$
\begin{equation*}
\left(\mathrm{S}_{1}-->\mathrm{T}_{1}\right) \&\left(\mathrm{~S}_{2}-->\mathrm{T}_{2}\right)<:\left(\mathrm{S}_{1} \vee \mathrm{~S}_{2}\right)-->\left(\mathrm{T}_{1} \vee \mathrm{~T}_{2}\right) \tag{4}
\end{equation*}
$$

that holds for all types, $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~T}_{1}$, and T_{2},

Subtyping

Notice that every function value in (Even-->Odd) \& (Odd-->Even) is also in Int-->Int. Thus:
(Even-->Odd) \& (Odd-->Even) <: Int-->Int

The converse does not hold: identity sub (Int \$x) \{ \$x \} is a counterexample.

The above is just an instance of the following relation

$$
\begin{equation*}
\left(\mathrm{S}_{1}-->\mathrm{T}_{1}\right) \&\left(\mathrm{~S}_{2}-->\mathrm{T}_{2}\right)<:\left(\mathrm{S}_{1} \vee \mathrm{~S}_{2}\right)-->\left(\mathrm{T}_{1} \vee \mathrm{~T}_{2}\right) \tag{4}
\end{equation*}
$$

that holds for all types, $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~T}_{1}$, and T_{2},
The relation (4) shows why defining subtyping for type connectives is far more difficult than just with constructors: connectives mix types of different forms.

Overloaded functions

Overloaded functions are defined by giving multiple definitions of the same function prefixed by the multi modifier:

$$
\begin{align*}
& \text { multi sub sum(Int } \$ \mathrm{x} \text {, Int \$y) \{ \$x + \$y \} } \\
& \text { multi sub sum(Bool \$x, Bool \$y) \{ \$x \&\& \$y \} } \\
& \text { sum: ((Int, Int)-->Int) \& ((Bool, Bool)-->Bool), } \tag{5}
\end{align*}
$$

Overloaded functions

Overloaded functions are defined by giving multiple definitions of the same function prefixed by the multi modifier:

```
multi sub sum(Int $x, Int $y) { $x + $y }
multi sub sum(Bool $x, Bool $y) { $x && $y }
sum : ((Int, Int)-->Int) \& ((Bool, Bool)-->Bool),
```

Just one parameter is enough for selection. The curried form is equivalent.

```
multi sub sumC(Int $x){ sub (Int $y){$x + $y } }
multi sub sumC(Bool $x){ sub (Bool $y){$x && $y} }
```


Overloaded functions

Overloaded functions are defined by giving multiple definitions of the same function prefixed by the multi modifier:

$$
\begin{align*}
& \text { multi sub sum(Int \$x, Int \$y) }\{\$ \mathrm{x}+\text { \$y }\} \\
& \text { multi sub sum(Bool \$x, Bool \$y) }\{\$ \mathrm{x} \& \& \$ \mathrm{y}\} \\
& \tag{5}\\
& \text { sum: }(\text { (Int }, \text { Int)-->Int) \& }(\text { (Bool, Bool)-->Bool), }
\end{align*}
$$

Just one parameter is enough for selection. The curried form is equivalent. multi sub sumC(Int $\$ \mathrm{x})\{$ sub (Int $\$ \mathrm{y})\{\$ \mathrm{x}+\$ \mathrm{y}\}\}$ multi sub sumC(Bool \$x) \{ sub (Bool \$y) \{\$x \&\& \$y\} \}
In Perl we can use "; ;" to separate parameters used for code selection from those passed to the selected code:

$$
\begin{aligned}
& \text { multi sub sumC(Int \$x ; ; Int \$y) \{ \$x + \$y \}} \\
& \text { multi sub sumC(Bool \$x ; Bool \$y) \{ \$x \&\& \$y }\}
\end{aligned}
$$

Both definitions of sumC have type

$$
\begin{equation*}
(\text { Int-->(Int-->Int)) \& (Bool-->(Bool-->Bool)). } \tag{6}
\end{equation*}
$$

though partial application is possible only with the first definition of sumC

Dynamic dispatch

Dynamic dispatch

The code to execute for a multisubroutine is chosen at run-time according to the type of the argument.
The multi-subroutine with the best approximating input type is executed

Dynamic dispatch

Dynamic dispatch

The code to execute for a multisubroutine is chosen at run-time according to the type of the argument.
The multi-subroutine with the best approximating input type is executed

- All examples given so far can be resolved at static time
- Dynamic dispatch is sensible only when types change during computation.

Dynamic dispatch

Dynamic dispatch

The code to execute for a multisubroutine is chosen at run-time according to the type of the argument.
The multi-subroutine with the best approximating input type is executed

- All examples given so far can be resolved at static time
- Dynamic dispatch is sensible only when types change during computation.

In a statically-typed language with subtyping, the type of an expression may decrease during the computation.

Dynamic dispatch

Dynamic dispatch

The code to execute for a multisubroutine is chosen at run-time according to the type of the argument.
The multi-subroutine with the best approximating input type is executed

- All examples given so far can be resolved at static time
- Dynamic dispatch is sensible only when types change during computation.

In a statically-typed language with subtyping, the type of an expression may decrease during the computation.

Example:
(sub (Int \$x) \{ \$x \% 4 \}) (3+2)
Int at compile time; Even after the reduction.

Dynamic dispatch

Example

```
multi sub mod2sum(Even $x , Odd $y) { 1 }
multi sub mod2sum(Odd $x , Even $y) { 1 }
multi sub mod2sum(Int $x , Int $y) { 0 }
```


Dynamic dispatch

Example

$$
\begin{aligned}
& \text { multi sub mod2sum(Even } \$ \mathrm{x}, \text { Odd } \$ \mathrm{y})\{1\} \\
& \text { multi sub mod2sum(Odd } \$ \mathrm{x} \text {, Even } \$ \mathrm{y})\{1\} \\
& \text { multi sub mod2sum(Int } \$ \mathrm{x} \text {, Int } \$ \mathrm{y})\{0\}
\end{aligned}
$$

Its type (with singleton types: v is the type that contains just value v)

$$
\begin{aligned}
& ((\text { Even }, \text { Odd })-->1) \\
\& & ((\text { Odd }, \text { Even })-->1) \\
\& & ((\text { Int }, \text { Int })-->0 \vee 1)
\end{aligned}
$$

Exercise

Find a more precise type and justify how the type checker can deduce it.

Formation rules for multi-subroutines: Ambigous Selection

Alternative definition for mod2sum:

$$
\begin{aligned}
& \text { multi sub mod2sum(Even } \$ \mathrm{x}, \text { Int } \$ \mathrm{y})\{\$ \mathrm{y} \% 2\} \\
& \text { multi sub mod2sum(Int } \$ \mathrm{x}, \text { Odd } \$ \mathrm{y})\{(\$ \mathrm{x}+1) \% 2\}
\end{aligned}
$$

Mathematically correct but selection is ambigous: the computation is stuck on arguments of type (Even, Odd).

Formation rules for multi-subroutines: Ambigous Selection

Alternative definition for mod2sum:

$$
\begin{aligned}
& \text { multi sub mod2sum(Even } \$ \mathrm{x}, \text { Int } \$ \mathrm{y})\{\$ \mathrm{y} \% 2\} \\
& \text { multi sub mod2sum(Int } \$ \mathrm{x}, \mathrm{Odd} \$ \mathrm{y})\{(\$ \mathrm{x}+1) \% 2\}
\end{aligned}
$$

Mathematically correct but selection is ambigous: the computation is stuck on arguments of type (Even, Odd).

Formation rule 1: Ambiguity

A multi-subroutine is free from ambiguity if whenever it has definitions for input S and T, and $S \& T$ is not empty, then it has a definition for input $S \& T$.

Formation rules for multi-subroutines: Ambigous Selection

Alternative definition for mod2sum:

$$
\begin{aligned}
& \text { multi sub mod2sum(Even } \$ \mathrm{x}, \text { Int } \$ \mathrm{y})\{\$ \mathrm{y} \% 2\} \\
& \text { multi sub mod2sum(Int } \$ \mathrm{x}, \text { Odd } \$ \mathrm{y})\{(\$ \mathrm{x}+1) \% 2\}
\end{aligned}
$$

Mathematically correct but selection is ambigous: the computation is stuck on arguments of type (Even, Odd).

Formation rule 1: Ambiguity

A multi-subroutine is free from ambiguity if whenever it has definitions for input S and T, and S \& T is not empty, then it has a definition for input $S \& T$.

It is a formation rule. It belongs to language design not to the type system:

$$
((\text { Even, Int })-->0 \vee 1) \&((\text { Int }, 0 d d)-->0 \vee 1)
$$

the type above is perfectly ok (and a correct type for mod2sum).

Formation rules for multi-subroutines: Specialization

Because of dynamic dispatch during the execution:

- the type of the argument changes,

Formation rules for multi-subroutines: Specialization

Because of dynamic dispatch during the execution:

- the type of the argument changes, \Rightarrow
- the code selected for a multi-subroutine changes,

Formation rules for multi-subroutines: Specialization

Because of dynamic dispatch during the execution:

- the type of the argument changes, \Rightarrow
- the code selected for a multi-subroutine changes, \Rightarrow
- the type of application changes

Types may only decrease along the computation

Formation rules for multi-subroutines: Specialization

Because of dynamic dispatch during the execution:

- the type of the argument changes, \Rightarrow
- the code selected for a multi-subroutine changes, \Rightarrow
- the type of application changes

Types may only decrease along the computation

Consider again:

$$
\begin{aligned}
& \text { multi sub mod2sum(Even \$x , Odd \$y) }\{1\} \\
& \text { multi sub mod2sum(Odd } \$ \mathrm{x} \text {, Even } \$ \mathrm{y})\{1\} \\
& \text { multi sub mod2sum(Int } \$ \mathrm{x} \text {, Int } \$ \mathrm{y} \text {) }\{0\}\}
\end{aligned}
$$

which has type

$$
((\text { Even }, 0 d d)-->1) \&((\text { Odd }, \text { Even })-->1) \&((\text { Int }, \text { Int })-->0 \vee 1)
$$

Formation rules for multi-subroutines: Specialization

Because of dynamic dispatch during the execution:

- the type of the argument changes, \Rightarrow
- the code selected for a multi-subroutine changes, \Rightarrow
- the type of application changes

Types may only decrease along the computation

Consider again:

$$
\begin{aligned}
& \text { multi sub mod2sum(Even \$x , Odd \$y) }\{1\} \\
& \text { multi sub mod2sum(Odd } \$ \mathrm{x}, \text { Even } \$ \mathrm{y})\{1 \text { \{ } 1\} \\
& \text { multi sub mod2sum(Int } \$ \mathrm{x} \text {, Int } \$ \mathrm{y})\left\{\begin{array}{c}
0
\end{array}\right\}
\end{aligned}
$$

which has type

$$
((\text { Even }, \text { Odd })-->1) \&((\text { Odd }, \text { Even })-->1) \&((\text { Int }, \text { Int })-->0 \vee 1)
$$

For the application mod2sum $(3+3,3+2)$:

- static time: third code selected; static type is $0 \vee 1$
- run time: first code selected; dynamic type is 1

Formation rules for multi-subroutines: Specialization

"Types may only decrease along the computation"

Formation rules for multi-subroutines: Specialization

"Types may only decrease along the computation"
Why does it matter?

$$
\begin{aligned}
& \text { multi sub foo(Int \$x) } \left.\left\{\begin{array}{l}
\$ x+42 \\
\text { multi sub foo(0dd } \$ \mathrm{x})
\end{array}\right\} \text { true }\right\}
\end{aligned}
$$

Consider $10+(f \circ o(3+2))$: statically well-typed but yields a runtime type error.

Formation rules for multi-subroutines: Specialization

"Types may only decrease along the computation"

Why does it matter?

$$
\begin{aligned}
& \text { multi sub foo(Int \$x) }\left\{\begin{array}{l}
\$ x+42 \\
\text { multi sub foo(0dd } \$ \mathrm{x})
\end{array} \mathrm{tr}_{\text {true }}\right\}
\end{aligned}
$$

Consider $10+(\mathrm{foo}(3+2))$: statically well-typed but yields a runtime type error.
How to ensure it for dynamic dispatch?

Formation rule 2: Specialization

A multi-subroutine is specialization sound if whenever it has definitions for input S and T , and $\mathrm{S}<: \mathrm{T}$, then the definition for input S returns a type smaller than the one returned by the definition for T .

Example:

$$
\begin{aligned}
& \text { multi sub foo }\left(\mathrm{S}_{1} \$ \mathrm{x}\right) \text { returns } \mathrm{T}_{1}\{\ldots\} \\
& \text { multi sub foo }\left(\mathrm{S}_{2} \$ \mathrm{x}\right) \text { returns } \mathrm{T}_{2}\{\ldots
\end{aligned}
$$

Specialization sound: If $\mathrm{S}_{1}<: \mathrm{S}_{2}$ then $\mathrm{T}_{1}<: \mathrm{T}_{2}$.

Formation rules for multi-subroutines: Specialization

Once more, a formation rule: concerns language design, not the type system. The type system is perfectly happy with the type

$$
\left(\mathrm{S}_{1}-->\mathrm{T}_{1}\right) \&\left(\mathrm{~S}_{2}-->\mathrm{T}_{2}\right)
$$

even if $\mathrm{S}_{1}<: \mathrm{S}_{2}$ and T_{1} and T_{2} are not related. However consider all the possible cases of applications of a function of this type:
(1) If the argument is in $S_{1} \& S_{2}$, then the application has type $T_{1} \& T_{2}$.
(2) If the argument is in $\mathrm{S}_{1} \backslash \mathrm{~S}_{2}$ and case 1 does not apply, then the application has type T_{1}.
(3) If the argument is in $\mathrm{S}_{2} \backslash \mathrm{~S}_{1}$ and case 1 does not apply, then the application has type T_{2}.
(4) If the argument is in $S_{1} \vee S_{2}$ and no previous case applies, then the application has type $T_{1} \vee T_{2}$.

Formation rules for multi-subroutines: Specialization

This case

(1) If the argument is in $S_{1} \& S_{2}$, then the application has type $T_{1} \& T_{2}$. may confuse the programmer when $\mathrm{S}_{2}<: \mathrm{S}_{1}$, since in this case $\mathrm{S}_{2}=\mathrm{S}_{2} \& \mathrm{~S}_{1}$:

When a function of type $\left(S_{1}-->T_{1}\right) \&\left(S_{2}-->T_{2}\right)$ with $S_{2}<: S_{1}$, is applied to an argument of type S_{2}, then the application returns results in $T_{1} \& T_{2}$.

Design choice: to avoid confusion force (wlog) the programmer to specify that the return type for a S_{2} input is (some subtype of) $\mathrm{T}_{1} \& \mathrm{~T}_{2}$.

This can be obtained by accepting only specialization sound definitions and greatly simplifies the presentation of the type discipline of the language.

Outline

(38) XML basics
(69) Set-theoretic types
(40) Examples in Perl 6
41) Covariance and contravariance
(42) XML Programming in CDuce
(43) Functions in CDuce
(44) Other benefits of types
(45) Toolkit

Covariance and contravariance

Homework assignment:

(1) Mandatory: Study the covariance and contravariance problem described in the first 3 sections of the following paper (click on the title).
G. Castagna. Covariance and Contravariance: a fresh look at an old issue. Draft manuscript, 2014.
(2) Optional: if you want to know what is under the hood, you can read Section 4 of the same paper, which describes a state-of-the-art implementation of a type system with set-theoretic types.

Outline

(38) XML basics
(69) Set-theoretic types
(40) Examples in Perl 6
(41) Covariance and contravariance

42 XML Programming in CDuce
(43) Functions in CDuce
(44) Other benefits of types
(45) Toolkit

CDuce is built on types

The main motivation for studying set-theoretic types is to define strongly typed programming languages for XML.

CDuce is a programming language for XML whose design is completely based on set-theoretic types.

In CDuce set-theoretic types are pervasive:

(1) XML types are encoded in set-theoretic types
(2) Patterns are types with capture variables
(3) Set-theoretic types are used for informative error messages
(9) Types are used for efficient JIT compilation

XML syntax

```
<bib>
    <book year="1997">
            <title> Object-Oriented Programming </title>
            <author>
            <last> Castagna </last>
            <first> Giuseppe </first>
            </author>
            <price> 56 </price>
            Bikhäuser
    </book>
    <book year="2000">
            <title> Regexp Types for XML </title>
            <editor>
            <last> Hosoya </last>
            <first> Haruo </first>
            </editor>
            UoT
    </book>
</bib>
```


XML syntax

```
<bib> [
    <book year="1997"> [
            <title>['Object-Oriented Programming']
            <author> [
                <last>['Castagna']
                <first>['Giuseppe']
            ]
            <price>['56']
            'Bikhäuser'
    ]
    <book year="2000"> [
            <title>['Regexp Types for XML']
            <editor>
            <last>['Hosoya']
            <first>['Haruo']
        ]
        'UoT'
    ]
]
```


XML syntax

```
type Bib = <bib>[
    <book year="1997">[
            <title>['Object-Oriented Programming']
            <author>[
                <last> ['Castagna']
                <first>['Giuseppe']
            ]
            <price>['56']
            'Bikhäuser'
    ]
    <book year="2000"> [
            <title>['Regexp Types for XML']
            <editor>
            <last>['Hosoya']
            <first>['Haruo']
        ]
        'UoT'
    ]
]
```


XML syntax

```
type Bib = <bib> [
    <book year=String>[
        <title>
        <author>[
                <last>[PCDATA]
                <first>[PCDATA]
            ]
            <price>[PCDATA]
        PCDATA
    ]
    <book year=String>[
            <title>[PCDATA]
            <editor>
                <last>[PCDATA]
                <first>[PCDATA]
            ]
        PCDATA
    ]
    ]
```

 String \(=[\) PCDATA \(]=[\) Char \(*]\)

XML syntax

```
type Bib = <bib> [Book Book]
type Book = <book year=String>[
                Title
                (Author | Editor )
                Price?
                PCDATA]
type Author = <author>[Last First]
type Editor = <editor> [Last First]
type Title = <title>[PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib>[Book*]
type Book = <book year=String>[
                                    Title
                                    (Author+ | Editor+)
                                    Price?
                                    PCDATA]
type Author = <author> [Last First]
type Editor = <editor>[Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib>[Book*]
type Book = <book year=String>[
                                    Title
                                    (Author+ | Editor+)
                                    Price?
                                    PCDATA]
type Author = <author> [Last First]
type Editor = <editor>[Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib>[Book*] Kleene star
type Book = <book year=String> [
                        Title
                            (Author+ | Editor+)
                                    Price?
                                    PCDATA]
type Author = <author> [Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib>[Book*]
type Book = <book year=String>[
                                    Title
                                    (Author+ | Editor+)
                                    Price?
                                    PCDATA]
type Author = <author> [Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first>[PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib>[Book*]
type Book = <book year=String>[
    Title
    nested elements
    (Author+ | Editor+)
    Price?
    PCDATA]
type Author = <author> [Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib>[Book*]
type Book = <book year=String>[
    Title
    (Author+ | Editor+) unions
    Price?
    PCDATA]
type Author = <author> [Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib>[Book*]
type Book = <book year=String> [
        Title
        (Author+ | Editor+)
        Price?
        PCDATA]
type Author = <author> [Last First]
type Editor = <editor> [Last First]
type Title = <title>[PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib>[Book*]
type Book = <book year=String>[
                                    Title
                                    (Author+ | Editor+)
                                    Price?
                                    PCDATA]
type Author = <author> [Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```


XML syntax

```
type Bib = <bib>[Book*]
type Book = <book year=String>[
        Title
        (Author+ | Editor+)
        Price?
        PCDATA]
type Author = <author> [Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```

This and: singletons, intersections, differences, Empty, and Any.

XML syntax

```
type Bib = <bib>[Book*]
type Book = <book year=String>[
        Title
        (Author+ | Editor+)
        Price?
        PCDATA]
type Author = <author> [Last First]
type Editor = <editor> [Last First]
type Title = <title> [PCDATA]
type Last = <last> [PCDATA]
type First = <first> [PCDATA]
type Price = <price> [PCDATA]
```

This and: singletons, intersections, differences, Empty, and Any.

We saw that all this can be encoded with recursive and set-theoretic types

Types \& patterns: the functional languages perspective

- Types are sets of values
- Values are decomposed by patterns
- Patterns are roughly values with capture variables

Types \& patterns: the functional languages perspective

- Types are sets of values
- Values are decomposed by patterns
- Patterns are roughly values with capture variables

Instead of

```
let x = fst(e) in
let y = snd(e) in (y,x)
```


Types \& patterns: the functional languages perspective

- Types are sets of values
- Values are decomposed by patterns
- Patterns are roughly values with capture variables

Instead of
let $\mathrm{x}=\mathrm{fst}(\mathrm{e})$ in
let $y=\operatorname{snd}(e)$ in ($y, x)$
with patterns one can write

$$
\text { let }(x, y)=e \operatorname{in}(y, x)
$$

Types \& patterns: the functional languages perspective

- Types are sets of values
- Values are decomposed by patterns
- Patterns are roughly values with capture variables

Instead of

$$
\begin{aligned}
& \text { let } x=\text { fst }(e) \text { in } \\
& \text { let } y=\operatorname{snd}(e) \text { in }(y, x)
\end{aligned}
$$

with patterns one can write

$$
\text { let }(x, y)=e \operatorname{in}(y, x)
$$

which is syntactic sugar for
match e with (x,y) -> (y,x)

Types \& patterns: the functional languages perspective

- Types are sets of values
- Values are decomposed by patterns
- Patterns are roughly values with capture variables

Instead of

$$
\begin{aligned}
& \text { let } x=\text { fst }(e) \text { in } \\
& \text { let } y=\operatorname{snd}(e) \text { in }(y, x)
\end{aligned}
$$

with patterns one can write

$$
\text { let }(x, y)=e \operatorname{in}(y, x)
$$

which is syntactic sugar for
match e with (x,y) -> (y,x)
"match" is more interesting than "let", since it can test several " l"-separated patterns.

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
```

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)): Int =
    match x with
    | ('nil , n) -> n
    ((_,t), n) -> length(t,n+1)
```

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)): Int =
    match x with
    | ('nil , n) -> n
    ((_,t), n) -> length(t,n+1)
```

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n
        ((_,t), n) -> length(t,n+1)
```

So patterns are values with

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n
        ((_, t), n) -> length(t,n+1)
```

So patterns are values with capture variables,

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n
        ((-,t), n) -> length(t,n+1)
```

So patterns are values with capture variables, wildcards,

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n
        | ((_,t), n) -> length(t,n+1)
```

So patterns are values with capture variables, wildcards, constants.

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n
        | ((_,t), n) -> length(t,n+1)
```

So patterns are values with capture variables, wildcards, constants.

But if we:

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n
        | ((_, t), n) -> length(t,n+1)
```

So patterns are values with capture variables, wildcards, constants.

But if we:

(1) use for types the same constructors as for values
(e.g. (s, t) instead of $s \times t$)

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n
        | ((_, t), n) -> length(t,n+1)
```

So patterns are values with capture variables, wildcards, constants.

But if we:

(1) use for types the same constructors as for values (e.g. (s, t) instead of $s \times t$)

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n
        | ((_, t), n) -> length(t,n+1)
```

So patterns are values with capture variables, wildcards, constants.

But if we:

(1) use for types the same constructors as for values (e.g. (s, t) instead of $s \times t$)
(2) use values to denote singleton types
(e.g. 'nil in the list type);

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n
        | ((_, t), n) -> length(t,n+1)
```

So patterns are values with capture variables, wildcards, constants.

But if we:

(1) use for types the same constructors as for values (e.g. (s, t) instead of $s \times t$)
(2) use values to denote singleton types (e.g. 'nil in the list type);

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n
        | ((_, t), n) -> length(t,n+1)
```

So patterns are values with capture variables, wildcards, constants.

But if we:

(1) use for types the same constructors as for values
(e.g. (s, t) instead of $s \times t$)
(2) use values to denote singleton types (e.g. 'nil in the list type);
(3) consider the wildcard "_" as synonym of Any

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n
        ((_,t), n) -> length(t,n+1)
```

So patterns are values with capture variables, wildcards, constants.

But if we:

(1) use for types the same constructors as for values
(e.g. (s, t) instead of $s \times t$)
(2) use values to denote singleton types (e.g. 'nil in the list type);
(3) consider the wildcard "_" as synonym of Any

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n
        ((_,t), n) -> length(t,n+1)
```

So patterns are values with capture variables, wildeards, constants.

Key idea behind regular patterns

Patterns are types with capture variables

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
        | ('nil , n) -> n
        ((_,t), n) -> length(t,n+1)
```

So patterns are values with eapture variables, wildeards, constants.

Key idea behind regular patterns

Patterns are types with capture variables

Example: tail-recursive version of length for lists:

```
type List = (Any,List) | 'nil
fun length (x:(List,Int)) : Int =
    match x with
    | ('nil , n) -> n
    | ((_, t), n) -> length(t,n+1)
```

So patterns are values with capture variables, wildeards, constants.

Key idea behind regular patterns

Patterns are types with capture variables

Define types: patterns come for free.

Patterns in CDuce

Patterns = Types + Capture variables

Patterns in CDuce

Patterns = Types + Capture variables

```
type Bib = <bib>[Book*]
```


Patterns in CDuce

Patterns = Types + Capture variables

```
\mathscr{W}type Bib = <bib> [Book*]
```

<bib> [x::Book*]

Patterns in CDuce

Patterns = Types + Capture variables

©type Bib = <bib> [Book*]
<bib>[x::Book*]

The pattern binds x to the sequence of all books in the bibliography

Patterns in CDuce

Patterns = Types + Capture variables

```
@type Bib = <bib> [Book*]
```


Patterns in CDuce

Patterns = Types + Capture variables

```
@type Bib = <bib> [Book*]
```

\mathcal{Z}
match bibs with
$\underset{\amalg}{\boldsymbol{\amalg}} \quad<\mathrm{bib}>[\mathrm{x}:$:Book*] $\quad \rightarrow \mathrm{x}$
${ }^{\mathbb{Z}}$ Returns the content of bibs.

Patterns in CDuce

Patterns = Types + Capture variables

```
\mathscr{W}type Bib = <bib> [Book*]
```

<bib>[(x::<book year="2005">_ | y::_)*]

Patterns in CDuce

Patterns = Types + Capture variables

©type Bib = <bib>[Book*]
<bib>[(x::<book year="2005">_ | y::_)*]
© Binds x to the sequence of all this year's books, and y to all the other books.

Patterns in CDuce

Patterns = Types + Capture variables

```
@type Bib = <bib> [Book*]
```


Patterns in CDuce

Patterns = Types + Capture variables

@type Bib = <bib>[Book*]

r

<bib>[(x::<book year="2005">_ | y::_)*] -> x@y
${ }^{\text {a }}$ Returns the concatenation (i.e., "©") of the two captured sequences

Patterns in CDuce

Patterns = Types + Capture variables

$\boldsymbol{\sim}$ type Bib = <bib> [Book*]
Qtype Book = <book year=String>[Title Author+ Publisher]
Łtype Publisher = String

$$
\text { <bib> [(x::<book year="1990">[_* Publisher } \backslash \text { "ACM"] | _ }) *]
$$

Patterns in CDuce

Patterns = Types + Capture variables

©type Bib = <bib> [Book*]
Ш.type Book = <book year=String>[Title Author+ Publisher]
$\gtrless_{\text {type }}$ Publisher $=$ String
<bib>[(x::<book year="1990">[_* Publisher\"ACM"] | _)*]
® $_{\text {Binds }} x$ to the sequence of books published in 1990 from publishers others than "ACM" and discards all the others.

Patterns in CDuce

Patterns = Types + Capture variables

$\boldsymbol{\sim}$ type Bib = <bib> [Book*]
مtype Book = <book year=String>[Title Author+ Publisher]
Łtype Publisher = String
match bibs with
<bib>[(x::<book year="1990">[_- Publisher\"ACM"] | _)*] -> x

Patterns in CDuce

Patterns = Types + Capture variables

円type Bib = <bib> [Book*]
Ш.type Book = <book year=String>[Title Author+ Publisher]
$\gtrless_{\text {type }}$ Publisher $=$ String
\mathcal{O}
match bibs with
<bib>[(x::<book year="1990">[__ Publisher\"ACM"] | _)*] -> x
Returns all the captured books

Patterns in CDuce

Patterns = Types + Capture variables

©type Bib = <bib> [Book*]
Ш.type Book = <book year=String>[Title Author+ Publisher]
$\gtrless_{\text {type }}$ Publisher $=$ String
match bibs with
$\underset{\square}{\boldsymbol{\Perp}}$ <bib>[(x::<book year="1990">[_* Publisher\"ACM"] | _)*] -> x
$\underset{\sim}{\mathbb{Z}}$ Returns all the captured books

Exact type inference:

E.g.: if we match the pattern $\left[\left(x::\left.\operatorname{Int}\right|_{-}\right) *\right]$ against an expression of type [Int* String Int] the type deduced for x is [Int+]

Patterns in CDuce

Patterns = Types + Capture variables

©type Bib = <bib> [Book*]
Qtype Book = <book year=String>[Title Author+ Publisher]
$\gtrless_{\text {type }}$ Publisher $=$ String
match bibs with
$\underset{\square}{\boldsymbol{\square}}$ <bib>[(x::<book year="1990">[_* Publisher\"ACM"] | _)*] -> x
$\mathbb{〔}$ Returns all the captured books

Exact type inference:

E.g.: if we match the pattern [(x::Int|_)*] against an expression of type [Int* String Int] the type deduced for x is [Int+]

Outline

(38) XML basics
(69) Set-theoretic types
(40) Examples in Perl 6
(41) Covariance and contravariance
(42) XML Programming in CDuce
(43) Functions in CDuce
(44) Other benefits of types
(45) Toolkit

Functions in CDuce

Functions: basic usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```


Functions: basic usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Extract subsequences (union polymorphism)

```
fun (Invited|Talk -> [Author+])
```

 <_>[Title x::Author*] -> x

Functions: basic usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Extract subsequences (union polymorphism)

```
fun (Invited|Talk -> [Author+])
    <_>[ Title x::Author* ] -> x
```

Extract subsequences of non-consecutive elements:

```
fun ([(Invited|Talk|Event)*] -> ([Invited*], [Talk*]))
    [ (i::Invited | t::Talk | _)* ] -> (i,t)
```


Functions: basic usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Extract subsequences (union polymorphism)

```
fun (Invited|Talk -> [Author+])
    <_>[ Title x::Author* ] -> x
```

Extract subsequences of non-consecutive elements:

```
fun ([(Invited|Talk|Event)*] -> ([Invited*], [Talk*]))
    [ (i::Invited | t::Talk | _)* ] -> (i,t)
```

Perl-like string processing (String = [Char*])

```
fun parse_email (String -> (String,String))
    | [ local::_* '@' domain::_* ] -> (local,domain)
    _ -> raise "Invalid email address"
```


Functions: advanced usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```


Functions: advanced usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Functions can be higher-order and overloaded

```
let patch_program
(p :[Program], f :(Invited -> Invited) & (Talk -> Talk)): [Program]
    = xtransform p with (Invited | Talk) & x -> [ (f x) ]
```


Functions: advanced usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Functions can be higher-order and overloaded

```
let patch_program
(p :[Program], f :(Invited -> Invited) & (Talk -> Talk)):[Program]
    = xtransform p with (Invited | Talk) & x -> [ (f x) ]
```


Functions: advanced usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Functions can be higher-order and overloaded

```
let patch_program
(p :[Program], f :(Invited -> Invited) & (Talk -> Talk)):[Program]
    = xtransform p with (Invited | Talk) & x -> [ (f x) ]
```


Functions: advanced usage

```
type Program = <program> [ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Functions can be higher-order and overloaded

```
let patch_program
(p :[Program], f :(Invited -> Invited) & (Talk -> Talk)): [Program]
    = xtransform p with (Invited | Talk) & x -> [ (f x) ]
```

Higher-order, overloading, subtyping provide name/code sharing...

Functions: advanced usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Functions can be higher-order and overloaded

```
let patch_program
(p :[Program], f :(Invited -> Invited) & (Talk -> Talk)): [Program]
    = xtransform p with (Invited | Talk) & x -> [ (f x) ]
```

Higher-order, overloading, subtyping provide name/code sharing...

```
let first_author ([Program] -> [Program];
    Invited -> Invited;
    Talk -> Talk)
    [ Program ] & p -> patch_program (p,first_author)
    <invited>[ t a _* ] -> <invited>[ t a ]
    <talk>[ t a _* ] -> <talk>[ t a ]
```


Functions: advanced usage

```
type Program = <program>[ Day* ]
type Day = <day date=String>[ Invited? Talk+ ]
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Functions can be higher-order and overloaded

```
let patch_program
(p :[Program], f :(Invited -> Invited) & (Talk -> Talk)): [Program]
    = xtransform p with (Invited | Talk) & x -> [ (f x) ]
```

Higher-order, overloading, subtyping provide name/code sharing...

```
let first_author ([Program] -> [Program];
    Invited -> Invited;
    Talk -> Talk)
    [ Program ] & p -> patch_program (p,first_author)
    <invited>[ t a _* ] -> <invited>[ t a ]
    <talk>[ t a _* ] -> <talk>[ t a ]
```


Functions: advanced usage

```
type Program = <program> [ Day* ] 
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Functions can be higher-order and overloaded

```
let patch_program
(p :[Program], f :(Invited -> Invited) & (Talk -> Talk)):[Program]
    = xtransform p with (Invited | Talk) & x -> [ (f x) ]
```

Higher-order, overloading, subtyping provide name/code sharing...

```
let first_author ([Program] -> [Program];
    Invited -> Invited;
    Talk -> Talk)
| [ Program ] & p -> patch_program (p,first_author)
    <invited>[ t a _* ] -> <invited>[ t a ]
    <talk>[ t a _* ] -> <talk>[ t a ]
```

Even more compact: replace the last two branches with:
$<(k)>[\mathrm{t}$ a _*] -> < (k) $>$ [t a]

Functions: advanced usage

```
type Program = <program> [ Day* ] 
type Invited = <invited>[ Title Author+ ]
type Talk = <talk>[ Title Author+ ]
```

Functions can be higher-order and overloaded

```
let patch_program
(p :[Program], f :(Invited -> Invited) & (Talk -> Talk)): [Program]
    = xtransform p with (Invited | Talk) & x -> [ (f x) ]
```

Higher-order, overloading, subtyping provide name/code sharing...

```
let first_author ([Program] -> [Program];
        Invited -> Invited;
        Talk -> Talk)
| [ Program ] & p -> patch_program (p,first_author)
    <invited>[ t a _* ] -> <invited>[ t a .
```

Even more compact: replace the last two branches with:
$<(\mathrm{k})>[\mathrm{t}$ a _*] -> < (k) $>$ [t a]

Red-black trees in CDuce

```
type RBtree = Btree | Rtree;;
type Btree = <black elem=Int>[ RBtree RBtree ] | [] ;;
type Rtree = <red elem=Int>[ Btree Btree ];;
type Wrongtree = Wrongleft | Wrongright;;
type Wrongleft = <red elem=Int>[ Rtree Btree ];;
type Wrongright = <red elem=Int>[ Btree Rtree ];;
type Unbalanced = <black elem=Int>([Wrongtree RBtree] | [RBtree Wrongtree])
let balance ( Unbalanced -> Rtree ; Rtree -> Rtree ; Btree\[] -> Btree\[] ;
[] -> [] ; Wrongleft -> Wrongleft ; Wrongright -> Wrongright)
<black (z)>[ <red (y)>[ <red (x)>[ a b ] c ] d ]
<black (z)>[ <red (x)>[ a <red (y)>[ b c ] ] d ]
<black (x)>[ a <red (z)>[ <red (y)>[ b c ] d ] ]
<black (x)>[ a <red (y)>[ b <red (z)>[ c d ] ] ] ->
    <red (y)>[ <black (x)>[ a b ] <black (z)>[ c d ] ]
| x -> x
let insert (x : Int) (t : Btree) : Btree =
let ins_aux ( [] -> Rtree ; Btree\[] -> RBtree\[] ; Rtree -> Rtree|Wrongtree)
    | [] -> <red elem=x>[ [] [] ] 
                                    if x << y then balance <(color) elem=y>[ (ins_aux a) b ]
                                    else if x >> y then balance <(color) elem=y>[ a (ins_aux b) ]
                                    else z
    in match ins_aux t with
    | <_ (y)>[ a b ] -> <black (y)>[ a b ]
```


Red-black trees in CDuce

```
type RBtree = Btree | Rtree;;
type Btree = <black elem=Int>[ RBtree RBtree ] | [] ;;
type Rtree = <red elem=Int>[ Btree Btree ];;
type Wrongtree = Wrongleft | Wrongright;;
type Wrongleft = <red elem=Int>[ Rtree Btree ];;
type Wrongright = <red elem=Int>[ Btree Rtree ];;
type Unbalanced = <black elem=Int>([Wrongtree RBtree] | [RBtree Wrongtree])
let balance ( Unbalanced -> Rtree ; Rtree -> Rtree ; Btree\[] -> Btree\[] ;
[] -> [] ; Wrongleft -> Wrongleft ; Wrongright -> Wrongright)
| <black (z)>[ <red (y)>[ <red (x)>[ a b ] c ] d ]
<black (z)>[ <red (x)>[ a <red (y)>[ b c ] ] d ]
<black (x)>[ a <red (z)>[ <red (y)>[ b c ] d ] ]
<black (x)>[ a <red (y)>[ b <red (z)>[ c d ] ] ] ->
    <red (y)>[ <black (x)>[ a b ] <black (z)>[ c d ] ]
| x -> x
let insert (x : Int) (t : Btree) : Btree =
let ins_aux ( [] -> Rtree ; Btree\[] -> RBtree\[] ; Rtree -> Rtree|Wrongtree)
    | [] -> <red elem=x>[ [] [] ] 䏝 (<(color) elem=y>[ a b ]) & z ->
    if x << y then balance <(color) elem=y>[ (ins_aux a) b ]
    else if x >> y then balance <(color) elem=y>[ a (ins_aux b) ]
    else z
    in match ins_aux t with
    | <_ (y)>[ a b ] -> <black (y)>[ a b ]
```


Red-black trees in Polymorphic CDuce

```
type RBtree = Btree | Rtree;;
type Btree = <black elem=Int> [ RBtree RBtree ] | [] ;;
type Rtree = <red elem=Int>[ Btree Btree ];;
type Wrongtree = <red elem=Int>[ Rtree Btree ]
| <red elem=Int>[ Btree Rtree ];;
type Unbalanced = <black elem=Int>([Wrongtree RBtree] | [RBtree Wrongtree])
let balance ( Unbalanced -> Rtree ; 人\Unbalanced -> \alpha\Unbalanced )
    <black (z)>[ <red (y)>[ <red (x)>[[a b b c c ] d ]
    <black (x)>[ a <red (z)>[ <red (y)>[ b c ] d ] ]
    <black (x)>[ a <red (y)>[ b <red (z)>[ c d ] ] ] ->
    <red (y)>[ <black (x)>[ a b ] <black (z)>[ c d ] ]
    | x -> x
```

let insert (x : Int) (t : Btree) : Btree =
let ins_aux ([] -> Rtree ; Btree $\backslash[]$-> RBtree $\backslash[]$; Rtree -> RtreelWrongtree)
| [] -> <red elem=x>[[] []]
(<(color) elem=y>[a b]) \& z ->
if x << y then balance < (color) elem=y>[(ins_aux a) b]
else if x >> y then balance <(color) elem=y>[a (ins_aux b)]
else z
in match ins_aux t with
| <_ (y) > [a b] -> <black (y) >[a b]

Outline

(38) XML basics
(69) Set-theoretic types
(40) Examples in Perl 6
(41) Covariance and contravariance

42 XML Programming in CDuce
(43) Functions in CDuce

44 Other benefits of types
(45) Toolkit

Informative error messages

Informative error messages

List of books of a given year, stripped of the Editors and Price

Informative error messages

List of books of a given year, stripped of the Editors and Price fun onlyAuthors (year:Int,books:[Book*]): [Book*] =

Informative error messages

List of books of a given year, stripped of the Editors and Price

```
fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
    <book year=y>[(t::Title | a::Author | _)+] in books
where int_of(y) = year
```


Informative error messages

List of books of a given year, stripped of the Editors and Price

```
fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
    <book year=y>[(t::Title | a::Author | _)+] in books
where int_of(y) = year
```


Informative error messages

List of books of a given year, stripped of the Editors and Price

```
fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
    <book year=y>[(t::Title | a::Author | _)+] in books
where int_of(y) = year
```

Returns the following error message:
Error at chars 81-83:
select <book year=y>(t@a) from
This expression should have type:
[Title (Editor+|Author+) Price?]
but its inferred type is:
[Title Author+ | Title] which is not a subtype, as shown by the sample:
[<title>[]]

Informative error messages

List of books of a given year, stripped of the Editors and Price

```
fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
    <book year=y>[(t::Title | a::Author | _)+] in books
    where int_of(y) = year
```

Returns the following error message:

```
Error at chars 81-83:
        select <book year=y>(t@a) from
This expression should have type:
    [ Title (Editor+|Author+) Price? ]
but its inferred type is:
[ Title Author+ | Title ]
which is not a subtype, as shown by the sample:
[ <title>[ ] ]
```


Informative error messages

List of books of a given year, stripped of the Editors and Price

```
fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
    <book year=y>[(t::Title | a::Author | _)+] in books
    where int_of(y) = year
```

Returns the following error message:

```
Error at chars 81-83:
        select <book year=y>(t@a) from
This expression should have type:
    [ Title (Editor+|Author+) Price? ]
but its inferred type is:
[ Title Author+ | Title ]
which is not a subtype, as shown by the sample:
[ <title>[ ] ]
```


Informative error messages

List of books of a given year, stripped of the Editors and Price

```
fun onlyAuthors (year:Int,books:[Book*]):[Book*] =
select <book year=y>(t@a) from
    <book year=y>[ t::Title a::Author+ _* ] in books
    where int_of(y) = year
```

Returns the following error message:

```
Error at chars 81-83:
        select <book year=y>(t@a) from
This expression should have type:
    [ Title (Editor+|Author+) Price? ]
but its inferred type is:
[ Title Author+ | Title ]
which is not a subtype, as shown by the sample:
[ <title>[ ] ]
```


Efficient execution

Efficient execution

Idea: if types tell you that something cannot happen, don't test it.

Efficient execution

Idea: if types tell you that something cannot happen, don't test it.

$$
\begin{aligned}
& \text { type } A=\langle a\rangle[A *] \\
& \text { type } B=\langle b\rangle[B *]
\end{aligned}
$$

Efficient execution

Idea: if types tell you that something cannot happen, don't test it.

```
type \(A=\langle a\rangle[A *]\)
type \(B=\langle b\rangle[B *]\)
fun check \((x: A \mid B)=\operatorname{match} x\) with \(A \quad->1 \mid B->0\)
```


Efficient execution

Idea: if types tell you that something cannot happen, don't test it.

```
type \(A=\langle a\rangle[A *]\)
type \(B=\langle b\rangle[B *]\)
fun check(x:A|B) \(=\) match \(x\) with \(A \quad->1 \mid B->0\)
```


Efficient execution

Idea: if types tell you that something cannot happen, don't test it.

```
type \(A=\langle a\rangle[A *]\)
type \(B=\langle b\rangle[B *]\)
fun check (x:A|B) = match \(x\) with \(A \quad->1 \mid B->0\)
fun check \((x: A \mid B)=\) match \(x\) with \(\langle a\rangle\) _ \(\boldsymbol{x}^{1} \mid \ldots->0\)
```


Efficient execution

Idea: if types tell you that something cannot happen, don't test it.

$$
\begin{aligned}
& \text { type } A=\langle a\rangle[A *] \\
& \text { type } B=\langle b\rangle[B *] \\
& \text { fun check }(x: A \mid B)=\operatorname{match} x \text { with } A \quad->1 \mid B->0 \\
& \text { fun check }(x: A \mid B)=\operatorname{match} x \text { with }\langle a\rangle \quad->1 \mid-->0
\end{aligned}
$$

- No backtracking.

Efficient execution

Idea: if types tell you that something cannot happen, don't test it.

$$
\begin{aligned}
& \text { type } A=\langle a\rangle[A *] \\
& \text { type } B=\langle b\rangle[B *] \\
& \text { fun check }(x: A \mid B)=\operatorname{match} x \text { with } A \quad->1 \mid B->0 \\
& \text { fun check }(x: A \mid B)=\operatorname{match} x \text { with }\langle a\rangle \quad->1 \mid \ldots->0
\end{aligned}
$$

- No backtracking.
- Whole parts of the matched data are not checked

Efficient execution

Idea: if types tell you that something cannot happen, don't test it.

$$
\begin{aligned}
& \text { type } A=\langle a\rangle[A *] \\
& \text { type } B=\langle b\rangle[B *] \\
& \text { fun check }(x: A \mid B)=\operatorname{match} x \text { with } A \quad->1 \mid B->0 \\
& \text { fun check }(x: A \mid B)=\operatorname{match} x \text { with }\langle a\rangle \quad->1 \mid \ldots->0
\end{aligned}
$$

- No backtracking.
- Whole parts of the matched data are not checked

Computing the optimal solution requires to fully exploit intersections and differences of types

Efficient execution

Idea: if types tell you that something cannot happen, don't test it.

$$
\begin{aligned}
& \text { type } A=\langle a\rangle[A *] \\
& \text { type } B=\langle b\rangle[B *] \\
& \text { fun check }(x: A \mid B)=\operatorname{match} x \text { with } A \quad->1 \mid B->0 \\
& \text { fun check }(x: A \mid B)=\operatorname{match} x \text { with }\langle a\rangle \quad->1 \mid \ldots->0
\end{aligned}
$$

- No backtracking.
- Whole parts of the matched data are not checked

Specific kind of push-down tree automata

Outline

(38) XML basics
(69) Set-theoretic types
(40) Examples in Perl 6
(41) Covariance and contravariance

42 XML Programming in CDuce
(43) Functions in CDuce
(44) Other benefits of types
(45) Toolkit

Toolkit

Every programming language needs tools / libraries / DLS extensions.
Available for CDuce:

- OCaml full integration
- Web-services API
- Navigational patterns (à la XPath) [experimental]

CDuce \leftrightarrow OCaml Integration

A CDuce application that requires OCaml code

CDuce \leftrightarrow OCaml Integration

A CDuce application that requires OCaml code

- Reuse existing librairies
- Abstract data structures: hash tables, sets, ...
- Numerical computations, system calls
- Bindings to C libraries : databases, networks, ...

CDuce \leftrightarrow OCaml Integration

A CDuce application that requires OCaml code

- Reuse existing librairies
- Abstract data structures : hash tables, sets, ...
- Numerical computations, system calls
- Bindings to C libraries : databases, networks, ...
- Implement complex algorithms

CDuce \leftrightarrow OCaml Integration

A CDuce application that requires OCaml code

- Reuse existing librairies
- Abstract data structures : hash tables, sets, ...
- Numerical computations, system calls
- Bindings to C libraries : databases, networks, ...
- Implement complex algorithms

An OCaml application that requires CDuce code

CDuce \leftrightarrow OCaml Integration

A CDuce application that requires OCaml code

- Reuse existing librairies
- Abstract data structures : hash tables, sets, ...
- Numerical computations, system calls
- Bindings to C libraries : databases, networks, ...
- Implement complex algorithms

An OCaml application that requires CDuce code

- CDuce used as an XML input/output/transformation layer

CDuce \leftrightarrow OCaml Integration

A CDuce application that requires OCaml code

- Reuse existing librairies
- Abstract data structures : hash tables, sets, ...
- Numerical computations, system calls
- Bindings to C libraries : databases, networks, ...
- Implement complex algorithms

An OCaml application that requires CDuce code

- CDuce used as an XML input/output/transformation layer
- Configuration files
- XML serialization of datas
- XHTML code production

CDuce \leftrightarrow OCaml Integration

A CDuce application that requires OCaml code

- Reuse existing librairies
- Abstract data structures : hash tables, sets, ...
- Numerical computations, system calls
- Bindings to C libraries : databases, networks, ...
- Implement complex algorithms

An OCaml application that requires CDuce code

- CDuce used as an XML input/output/transformation layer
- Configuration files
- XML serialization of datas
- XHTML code production

Need to seamlessly call OCaml code in CDuce and viceversa

Main Challenges

Main Challenges

(1) Seamless integration:

Main Challenges

(1) Seamless integration:

No explicit conversion function in programs:

Main Challenges

(1) Seamless integration:

No explicit conversion function in programs: the compiler performs the conversions

Main Challenges

(1) Seamless integration:

No explicit conversion function in programs: the compiler performs the conversions
(2) Type safety:

Main Challenges

(1) Seamless integration:

No explicit conversion function in programs: the compiler performs the conversions
(2) Type safety:

No explicit type cast in programs:

Main Challenges

(1) Seamless integration:

No explicit conversion function in programs: the compiler performs the conversions
(2) Type safety:

No explicit type cast in programs: the standard type-checkers ensure type safety

Main Challenges

(1) Seamless integration:

No explicit conversion function in programs: the compiler performs the conversions
(2) Type safety:

No explicit type cast in programs: the standard type-checkers ensure type safety

What we need:

A mapping between OCaml and CDuce types and values

How to integrate the two type systems?

The translation can go just one way: OCaml \rightarrow CDuce

How to integrate the two type systems?

The translation can go just one way: OCaml \rightarrow CDuce
\oplus CDuce uses (semantic) subtyping; OCaml does not

How to integrate the two type systems?

The translation can go just one way: OCaml \rightarrow CDuce

\oplus CDuce uses (semantic) subtyping; OCaml does not If we translate CDuce types into OCaml ones :

- soundness requires the translation to be monotone;
- no subtyping in Ocaml implies a constant translation;

How to integrate the two type systems?

The translation can go just one way: OCaml \rightarrow CDuce

\oplus CDuce uses (semantic) subtyping; OCaml does not If we translate CDuce types into OCaml ones :

- soundness requires the translation to be monotone;
- no subtyping in Ocaml implies a constant translation;
\Rightarrow CDuce typing would be lost.

How to integrate the two type systems?

The translation can go just one way: OCaml \rightarrow CDuce

\oplus CDuce uses (semantic) subtyping; OCaml does not If we translate CDuce types into OCaml ones :

- soundness requires the translation to be monotone;
- no subtyping in Ocaml implies a constant translation;
\Rightarrow CDuce typing would be lost.
\oplus CDuce has unions, intersections, differences, heterogeneous lists; OCaml does not

How to integrate the two type systems?

The translation can go just one way: OCaml \rightarrow CDuce

\oplus CDuce uses (semantic) subtyping; OCaml does not If we translate CDuce types into OCaml ones :

- soundness requires the translation to be monotone;
- no subtyping in Ocaml implies a constant translation;
\Rightarrow CDuce typing would be lost.
\oplus CDuce has unions, intersections, differences, heterogeneous lists; OCaml does not
\Rightarrow OCaml types are not enough to translate CDuce types.

How to integrate the two type systems?

The translation can go just one way: OCaml \rightarrow CDuce

\oplus CDuce uses (semantic) subtyping; OCaml does not If we translate CDuce types into OCaml ones :

- soundness requires the translation to be monotone;
- no subtyping in Ocaml implies a constant translation;
\Rightarrow CDuce typing would be lost.
\oplus CDuce has unions, intersections, differences, heterogeneous lists; OCaml does not
\Rightarrow OCaml types are not enough to translate CDuce types.
\ominus OCaml supports type polymorphism; CDuce does not yet (it does in the development version).

How to integrate the two type systems?

The translation can go just one way: OCaml \rightarrow CDuce

\oplus CDuce uses (semantic) subtyping; OCaml does not If we translate CDuce types into OCaml ones :

- soundness requires the translation to be monotone;
- no subtyping in Ocaml implies a constant translation;
\Rightarrow CDuce typing would be lost.
\oplus CDuce has unions, intersections, differences, heterogeneous lists; OCaml does not
\Rightarrow OCaml types are not enough to translate CDuce types.
\ominus OCaml supports type polymorphism; CDuce does not yet (it does in the development version).
\Rightarrow Polymorphic OCaml libraries/functions must be first instantied to be used in CDuce

In practice

(1) Define a mapping \mathbb{T} from OCaml types to CDuce types.

In practice

- Define a mapping \mathbb{T} from OCaml types to CDuce types.

$t \quad($ OCam $)$	$\mathbb{T}(t) \quad($ CDuce $)$
int	min_int--max_int
string	Latin1
$t_{1} * t_{2}$	$\left(\mathbb{T}\left(t_{1}\right), \mathbb{T}\left(t_{2}\right)\right)$
$t_{1} \rightarrow t_{2}$	$\mathbb{T}\left(t_{1}\right) \rightarrow \mathbb{T}\left(t_{2}\right)$
t list	$[\mathbb{T}(t) *]$
t array	$[\mathbb{T}(t) *]$
t option	$[\mathbb{T}(t) ?]$
t ref	ref $\mathbb{T}(t)$
A_{1} of $t_{1}\|\ldots\| A_{n}$ of t_{n}	$\left({ }^{\text {}} A_{1}, \mathbb{T}\left(t_{1}\right)\right)\|\ldots\|\left({ }^{\prime} A_{n}, \mathbb{T}\left(t_{n}\right)\right)$
$\left\{I_{1}=t_{1} ; \ldots ; I_{n}=t_{n}\right\}$	$\left\{\Lambda_{1}=\mathbb{T}\left(t_{1}\right) ; \ldots ; I_{n}=\mathbb{T}\left(t_{n}\right)\right\}$

In practice

(1) Define a mapping \mathbb{T} from OCaml types to CDuce types.

$t \quad($ OCaml $)$	$\mathbb{T}(t) \quad($ CDuce $)$
int	min_int--max_int
string	Latin1
$t_{1} * t_{2}$	$\left(\mathbb{T}\left(t_{1}\right), \mathbb{T}\left(t_{2}\right)\right)$
$t_{1} \rightarrow t_{2}$	$\mathbb{T}\left(t_{1}\right) \rightarrow \mathbb{T}\left(t_{2}\right)$
t list	$[\mathbb{T}(t) *]$
t array	$[\mathbb{T}(t) *]$
t option	$[\mathbb{T}(t) ?]$
t ref	ref $\mathbb{T}(t)$
A_{1} of $t_{1}\|\ldots\| A_{n}$ of t_{n}	$\left({ }^{\prime} A_{1}, \mathbb{T}\left(t_{1}\right)\right)\|\ldots\|\left({ }^{\prime} A_{n}, \mathbb{T}\left(t_{n}\right)\right)$
$\left\{l_{1}=t_{1} ; \ldots ; I_{n}=t_{n}\right\}$	$\left\{h_{1}=\mathbb{T}\left(t_{1}\right) ; \ldots ; I_{n}=\mathbb{T}\left(t_{n}\right)\right\}$

(2) Define a retraction pair between OCaml and CDuce values.

In practice

(1) Define a mapping \mathbb{T} from OCaml types to CDuce types.

$t \quad($ OCaml $)$	$\mathbb{T}(t) \quad($ CDuce $)$
int	min_int--max_int
string	Latin1
$t_{1} * t_{2}$	$\left(\mathbb{T}\left(t_{1}\right), \mathbb{T}\left(t_{2}\right)\right)$
$t_{1} \rightarrow t_{2}$	$\mathbb{T}\left(t_{1}\right) \rightarrow \mathbb{T}\left(t_{2}\right)$
t list	$[\mathbb{T}(t) *]$
t array	$[\mathbb{T}(t) *]$
t option	$[\mathbb{T}(t) ?]$
t ref	ref $\mathbb{T}(t)$
A_{1} of $t_{1}\|\ldots\| A_{n}$ of t_{n}	$\left({ }^{\prime} A_{1}, \mathbb{T}\left(t_{1}\right)\right)\|\ldots\|\left({ }^{\prime} A_{n}, \mathbb{T}\left(t_{n}\right)\right)$
$\left\{l_{1}=t_{1} ; \ldots ; I_{n}=t_{n}\right\}$	$\left\{h_{1}=\mathbb{T}\left(t_{1}\right) ; \ldots ; I_{n}=\mathbb{T}\left(t_{n}\right)\right\}$

(2) Define a retraction pair between OCaml and CDuce values.

$$
\begin{aligned}
& \text { ocaml2cduce: } t \rightarrow \mathbb{T}(t) \\
& \text { cduce2ocaml: } \mathbb{T}(t) \rightarrow t
\end{aligned}
$$

Calling OCaml from CDuce

Use M.f to call the function f exported by the OCaml module M

Calling OCaml from CDuce

Use M.f to call the function f exported by the OCaml module M
The CDuce compiler checks type soundness and then

Calling OCaml from CDuce

Use M.f to call the function f exported by the OCaml module M
The CDuce compiler checks type soundness and then

- applies cduce2ocaml to the arguments of the call

Calling OCaml from CDuce

Use M.f to call the function f exported by the OCaml module M
The CDuce compiler checks type soundness and then

- applies cduce2ocaml to the arguments of the call
- calls the OCaml function

Calling OCaml from CDuce

Use M.f to call the function f exported by the OCaml module M
The CDuce compiler checks type soundness and then

- applies cduce2ocaml to the arguments of the call
- calls the OCaml function
- applies ocaml2cduce to the result of the call

Calling OCaml from CDuce

Use M.f to call the function f exported by the OCaml module M
The CDuce compiler checks type soundness and then

- applies cduce2ocaml to the arguments of the call
- calls the OCaml function
- applies ocaml2cduce to the result of the call

Example: use ocaml-mysql library in CDuce
let $\mathrm{db}=$ Mysql.connect Mysql.defaults; ;
match Mysql.list_dbs db 'None [] with
| ('Some,l) -> print ['Databases: ' !(string_of l) '\ n']
| 'None -> []; ;

Calling CDuce from OCaml

Compile a CDuce module as an OCaml binary module by providing a OCaml (.mli) interface. Use it as a standard Ocaml module.

Calling CDuce from OCaml

Compile a CDuce module as an OCaml binary module by providing a OCaml (.mli) interface. Use it as a standard Ocaml module.

The CDuce compiler:

Calling CDuce from OCaml

Compile a CDuce module as an OCaml binary module by providing a OCaml (.mli) interface. Use it as a standard Ocaml module.

The CDuce compiler:
(1) Checks that if val $f: t$ in the .mli file, then the CDuce type of f is a subtype of $\mathbb{T}(t)$

Calling CDuce from OCaml

Compile a CDuce module as an OCaml binary module by providing a OCaml (.mli) interface. Use it as a standard Ocaml module.

The CDuce compiler:
(1) Checks that if val $f: t$ in the .mli file, then the CDuce type of f is a subtype of $\mathbb{T}(t)$
(2) Produces the OCaml glue code to export CDuce values as OCaml ones and bind OCaml values in the CDuce module.

Calling CDuce from OCaml

Compile a CDuce module as an OCaml binary module by providing a OCaml (.mli) interface. Use it as a standard Ocaml module.

The CDuce compiler:
(1) Checks that if val $f: t$ in the .mli file, then the CDuce type of f is a subtype of $\mathbb{T}(t)$
(2) Produces the OCaml glue code to export CDuce values as OCaml ones and bind OCaml values in the CDuce module.
Example: use CDuce to compute a factorial:

```
(* File cdnum.mli: *)
val fact: Big_int.big_int -> Big_int.big_int
(* File cdnum.cd: *)
let aux ((Int,Int) -> Int)
    (x, 0 | 1) -> x
    (x, n) -> aux (x * n, n - 1)
let fact (x : Int) : Int = aux(1,x)
```

