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Monads
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Monads

Exception-returning style, state-passing style, and continuation-passing style of

the previous part are all special cases of monads

Monads are thus a technical device that factor out commonalities between

many program transformations ...
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Monads

Exception-returning style, state-passing style, and continuation-passing style of

the previous part are all special cases of monads

Monads are thus a technical device that factor out commonalities between

many program transformations ...

... but this is just one possible viewpoint. Besides that, they can be used

To structure denotational semantics and make them easy to extend with

new language features. (E. Moggi, 1989.)

As a powerful programming techniques in pure functional languages,

primary in Haskell. (P. Wadler, 1992).
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Invent your first monad

Probably the best way to understand monads is to define one. Or better, arrive

to a point where you realize that you need one (even if you do not know that it

is a monad).

Many of the problems that monads try to solve are related to the issue of side

effects. So we’ll start with them.
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Side Effects: Debugging Pure Functions

Input: We have functions f and g that both map floats to floats.

f,g : float -> float

Goal: Modify these functions to output their calls for debugging purposes
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Side Effects: Debugging Pure Functions

Input: We have functions f and g that both map floats to floats.

f,g : float -> float

Goal: Modify these functions to output their calls for debugging purposes

If we do not admit side effects, then the modified version f’ and g’ must return

the output

f’,g’ : float -> float * string

"f was called; "
f’x

f(x)

"g was called; "
g’x

g(x)

We can think of these as ’debuggable’ functions.
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Binding

Problem: How to debug the composition of two ’debuggable’ functions?

Intuition: We want the composition to have type float -> float * string

but types no longer work!

Solution: Use concatenation for the debug messages and add some plumbing

let (y,s) = g’ x in

let (z,t) = f’ y in (z,s^t) (where ^ denotes string concatenation)
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Binding

Problem: How to debug the composition of two ’debuggable’ functions?

Intuition: We want the composition to have type float -> float * string

but types no longer work!

Solution: Use concatenation for the debug messages and add some plumbing

let (y,s) = g’ x in

let (z,t) = f’ y in (z,s^t) (where ^ denotes string concatenation)

Diagrammatically:

"g was called; f was called; "

g’x
f’ f(g(x))

ˆ
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The bind function

Plumbing is ok ... once. To do it uniformly we need a higher-order function

doing the plumbing for us. We need a function bind that upgrades f’ so that it

can be plugged in the output of g’. That is, we would like:

bind f’ : (float*string) -> (float*string)

which implies that

bind : (float -> (float*string)) -> ( (float*string) -> (float*string))

bind must

1 apply f’ to the correct part of g’ x and

2 concatenate the string returned by g’ with the string returned by f’.
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The bind function

Plumbing is ok ... once. To do it uniformly we need a higher-order function

doing the plumbing for us. We need a function bind that upgrades f’ so that it

can be plugged in the output of g’. That is, we would like:

bind f’ : (float*string) -> (float*string)

which implies that

bind : (float -> (float*string)) -> ( (float*string) -> (float*string))

bind must

1 apply f’ to the correct part of g’ x and

2 concatenate the string returned by g’ with the string returned by f’.

Exercise

Write the function bind.
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The bind function

Plumbing is ok ... once. To do it uniformly we need a higher-order function

doing the plumbing for us. We need a function bind that upgrades f’ so that it

can be plugged in the output of g’. That is, we would like:

bind f’ : (float*string) -> (float*string)

which implies that

bind : (float -> (float*string)) -> ( (float*string) -> (float*string))

bind must

1 apply f’ to the correct part of g’ x and

2 concatenate the string returned by g’ with the string returned by f’.

Exercise

Write the function bind.

# let bind f’ (gx,gs) = let (fx,fs) = f’ gx in (fx,gs^fs)
val bind : (’a -> ’b * string) -> ’a * string -> ’b * string = <fun>
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The return function

Given two debuggable functions, f’ and g’, now they can be composed by

bind

(bind f’) . g’ (where “.” is Haskell’s infix composition).

Write this composition as f’˝ g’.

We look for a “debuggable” identity function return such that for every

debuggable function f one has return ˝ f = f ˝ return = f.
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The return function

Given two debuggable functions, f’ and g’, now they can be composed by

bind

(bind f’) . g’ (where “.” is Haskell’s infix composition).

Write this composition as f’˝ g’.

We look for a “debuggable” identity function return such that for every

debuggable function f one has return ˝ f = f ˝ return = f.

Exercise

Define return.

# let return x = (x,"");;
val return : ’a -> ’a * string = <fun>
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The return function

Given two debuggable functions, f’ and g’, now they can be composed by

bind

(bind f’) . g’ (where “.” is Haskell’s infix composition).

Write this composition as f’˝ g’.

We look for a “debuggable” identity function return such that for every

debuggable function f one has return ˝ f = f ˝ return = f.

Exercise

Define return.

# let return x = (x,"");;
val return : ’a -> ’a * string = <fun>

In Haskell (from now on we switch to this language):

Prelude> let return x = (x,"")
Prelude> :type:type:type return
return :: t -> (t, [Char]) --t is a schema variable, String = Char list
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The return function

Given two debuggable functions, f’ and g’, now they can be composed by

bind

(bind f’) . g’ (where “.” is Haskell’s infix composition).

Write this composition as f’˝ g’.

We look for a “debuggable” identity function return such that for every

debuggable function f one has return ˝ f = f ˝ return = f.

Exercise

Define return.

# let return x = (x,"");;
val return : ’a -> ’a * string = <fun>

In Haskell (from now on we switch to this language):

Prelude> let return x = (x,"")
Prelude> :type:type:type return
return :: t -> (t, [Char]) --t is a schema variable, String = Char list

In summary, the function return lifts the result of a function into the result of a

“debuggable” function.
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The lift function

The return allows us to “lift” any function into a debuggable one:

let lift f = return . f (of type (a -> b) -> a -> (b, [Char]))

that is (in Ocaml) let lift f x = (f x,"")

The lifted version does much the same as the original function and, quite

reasonably, it produces the empty string as a side effect.
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The lift function

The return allows us to “lift” any function into a debuggable one:

let lift f = return . f (of type (a -> b) -> a -> (b, [Char]))

that is (in Ocaml) let lift f x = (f x,"")

The lifted version does much the same as the original function and, quite

reasonably, it produces the empty string as a side effect.

Exercise

Show that lift f ˝ lift g = lift (f.g)
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The lift function

The return allows us to “lift” any function into a debuggable one:

let lift f = return . f (of type (a -> b) -> a -> (b, [Char]))

that is (in Ocaml) let lift f x = (f x,"")

The lifted version does much the same as the original function and, quite

reasonably, it produces the empty string as a side effect.

Exercise

Show that lift f ˝ lift g = lift (f.g)

Summary

The functions, bind and return, allow us to compose debuggable functions in

a straightforward way, and compose ordinary functions with debuggable

functions in a natural way.
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The lift function

The return allows us to “lift” any function into a debuggable one:

let lift f = return . f (of type (a -> b) -> a -> (b, [Char]))

that is (in Ocaml) let lift f x = (f x,"")

The lifted version does much the same as the original function and, quite

reasonably, it produces the empty string as a side effect.

Exercise

Show that lift f ˝ lift g = lift (f.g)

Summary

The functions, bind and return, allow us to compose debuggable functions in

a straightforward way, and compose ordinary functions with debuggable

functions in a natural way.

We just defined our first monad
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The lift function

The return allows us to “lift” any function into a debuggable one:

let lift f = return . f (of type (a -> b) -> a -> (b, [Char]))

that is (in Ocaml) let lift f x = (f x,"")

The lifted version does much the same as the original function and, quite

reasonably, it produces the empty string as a side effect.

Exercise

Show that lift f ˝ lift g = lift (f.g)

Summary

The functions, bind and return, allow us to compose debuggable functions in

a straightforward way, and compose ordinary functions with debuggable

functions in a natural way.

We just defined our first monad

Let us see more examples
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Outline

29 Invent your first monad

30 More examples of monads

31 Monads and their laws

32 Program transformations and monads

33 Monads as a general programming technique

34 Monads and ML Functors
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A Container: Multivalued Functions

Consider sqrt and cbrt that compute the square root and cube root of a real

number:

sqrt,cbrt :: Float -> Float

Consider the complex version for these functions. They must return lists of

results (two square roots and three cube roots)1

sqrt’,cbrt’ :: Complex -> [Complex]

since they are multi-valued functions.

1Complex should be instead written Complex Float, since it is a Haskell module
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Consider sqrt and cbrt that compute the square root and cube root of a real

number:

sqrt,cbrt :: Float -> Float

Consider the complex version for these functions. They must return lists of

results (two square roots and three cube roots)1

sqrt’,cbrt’ :: Complex -> [Complex]

since they are multi-valued functions.

We can compose sqrt and cbrt to obtain the sixth root function

sixthrt x = sqrt (cbrt x)

Problem How to compose sqrt’ and cbrt’?

1Complex should be instead written Complex Float, since it is a Haskell module
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A Container: Multivalued Functions

Consider sqrt and cbrt that compute the square root and cube root of a real

number:

sqrt,cbrt :: Float -> Float

Consider the complex version for these functions. They must return lists of

results (two square roots and three cube roots)1

sqrt’,cbrt’ :: Complex -> [Complex]

since they are multi-valued functions.

We can compose sqrt and cbrt to obtain the sixth root function

sixthrt x = sqrt (cbrt x)

Problem How to compose sqrt’ and cbrt’?

Bind

We need a bind function that lifts cbrt’ so that it can be applied to all the

results of sqrt’

1Complex should be instead written Complex Float, since it is a Haskell module
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bind for multivalued functions

Goal:

bind :: (Complex -> [Complex]) -> ([Complex] -> [Complex])
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bind for multivalued functions

Goal:

bind :: (Complex -> [Complex]) -> ([Complex] -> [Complex])

Diagrammatically:

sqrt’

cbrt’

cbrt’

8

64

-8

2
´1 ` i

?
3

´1 ´ i
?

3

-2
...
...
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bind for multivalued functions

Goal:

bind :: (Complex -> [Complex]) -> ([Complex] -> [Complex])

Diagrammatically:

sqrt’

cbrt’

cbrt’

8

64

-8

2
´1 ` i

?
3

´1 ´ i
?

3

-2
...
...

Exercise

Write an implementation of bind
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bind for multivalued functions

Goal:

bind :: (Complex -> [Complex]) -> ([Complex] -> [Complex])

Diagrammatically:

sqrt’

cbrt’

cbrt’

8

64

-8

2
´1 ` i

?
3

´1 ´ i
?

3

-2
...
...

Exercise

Write an implementation of bind

Solution:

bind f x = concat (map f x)
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return for multivalued functions

Again we look for an identity function for multivalued functions: it takes a result

of a normal function and transforms it into a result of multi-valued functions:

return :: a -> [a]
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return for multivalued functions

Again we look for an identity function for multivalued functions: it takes a result

of a normal function and transforms it into a result of multi-valued functions:

return :: a -> [a]

Exercise

Define return
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return for multivalued functions

Again we look for an identity function for multivalued functions: it takes a result

of a normal function and transforms it into a result of multi-valued functions:

return :: a -> [a]

Exercise

Define return

Solution:

return x = [x]

Again

f˝return “ return˝f “ f

while lift f = return . f transforms an ordinary function into a

multivalued one: lift :: (a -> b) -> a -> [b]
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return for multivalued functions

Again we look for an identity function for multivalued functions: it takes a result

of a normal function and transforms it into a result of multi-valued functions:

return :: a -> [a]

Exercise

Define return

Solution:

return x = [x]

Again

f˝return “ return˝f “ f

while lift f = return . f transforms an ordinary function into a

multivalued one: lift :: (a -> b) -> a -> [b]

We just defined our second monad
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return for multivalued functions

Again we look for an identity function for multivalued functions: it takes a result

of a normal function and transforms it into a result of multi-valued functions:

return :: a -> [a]

Exercise

Define return

Solution:

return x = [x]

Again

f˝return “ return˝f “ f

while lift f = return . f transforms an ordinary function into a

multivalued one: lift :: (a -> b) -> a -> [b]

We just defined our second monad

Let us see a last one and then recap
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A more complex side effect: Random Numbers

The Haskell random function looks like this

random :: StdGen Ñ (a,StdGen)

To generate a random number you need a seed (of type StdGen)

After you’ve generated the number you update the seed to a new value

In a non-pure language the seed can be a global reference. In Haskell the

new seed needs to be passed in and out explicitly.
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A more complex side effect: Random Numbers

The Haskell random function looks like this

random :: StdGen Ñ (a,StdGen)

To generate a random number you need a seed (of type StdGen)

After you’ve generated the number you update the seed to a new value

In a non-pure language the seed can be a global reference. In Haskell the

new seed needs to be passed in and out explicitly.

So a function of type a -> b that needs random numbers must be lifted to a

“randomized” function of type a -> StdGen -> (b,StdGen)

Exercise

1 Write the type of the bind function to compose two “randomized”

functions.

2 Write an implementation of bind
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A more complex side effect: Random Numbers

Solution:
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A more complex side effect: Random Numbers

Solution:
1 bind :: (aÑStdGenÑ(b,StdGen))

Ñ(StdGenÑ(a,StdGen))Ñ(StdGen Ñ (b,StdGen))
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A more complex side effect: Random Numbers

Solution:
1 bind :: (aÑStdGenÑ(b,StdGen))

Ñ(StdGenÑ(a,StdGen))Ñ(StdGen Ñ (b,StdGen))

2 bind f x seed =
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A more complex side effect: Random Numbers

Solution:
1 bind :: (aÑStdGenÑ(b,StdGen))

Ñ(StdGenÑ(a,StdGen))Ñ(StdGen Ñ (b,StdGen))

2 bind f x seed = let (x’,seed’) = x seed in f x’ seed’
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A more complex side effect: Random Numbers

Solution:
1 bind :: (aÑStdGenÑ(b,StdGen))

Ñ(StdGenÑ(a,StdGen))Ñ(StdGen Ñ (b,StdGen))

2 bind f x seed = let (x’,seed’) = x seed in f x’ seed’

Exercise

Define the ’identity’ randomized function. This needs to be of type

return :: a Ñ (StdGen Ñ (a,StdGen))

and should leave the seed unmodified.
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A more complex side effect: Random Numbers

Solution:
1 bind :: (aÑStdGenÑ(b,StdGen))

Ñ(StdGenÑ(a,StdGen))Ñ(StdGen Ñ (b,StdGen))

2 bind f x seed = let (x’,seed’) = x seed in f x’ seed’

Exercise

Define the ’identity’ randomized function. This needs to be of type

return :: a Ñ (StdGen Ñ (a,StdGen))

and should leave the seed unmodified.

Solution

return x g = (x,g)

Again, lift f = return . f turns an ordinary function into a randomized

one that leaves the seed unchanged.

While f˝return “ return˝f “ f and liftf˝liftg “ liftpf.gq where

f˝g “ pbindfq.g
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Outline

29 Invent your first monad

30 More examples of monads

31 Monads and their laws

32 Program transformations and monads

33 Monads as a general programming technique
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Monads

Step 1: Transform a type a into the type of particular computations on a.

-- The debuggable computations on a
type Debuggable a = (a,String)
-- The multivalued computation on a
type Multivalued a = [a]
-- The randomized computations on a
type Randomized a = StdGen -> (a,StdGen)
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Monads

Step 1: Transform a type a into the type of particular computations on a.

-- The debuggable computations on a
type Debuggable a = (a,String)
-- The multivalued computation on a
type Multivalued a = [a]
-- The randomized computations on a
type Randomized a = StdGen -> (a,StdGen)

Step 2: Define the “plumbing” to lift functions on given types into functions on

the “m computations” on these types where “m” is either Debuggable, or

Multivalued, or Randomized.
bind :: (a -> m b) -> (m a -> m b)
return :: a -> m a

with f˝return “ return˝f “ f and lift f˝lift g “ lift pf.gq,

where ’˝’ and lift are defined in terms of return and bind.
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Monads

Step 1: Transform a type a into the type of particular computations on a.

-- The debuggable computations on a
type Debuggable a = (a,String)
-- The multivalued computation on a
type Multivalued a = [a]
-- The randomized computations on a
type Randomized a = StdGen -> (a,StdGen)

Step 2: Define the “plumbing” to lift functions on given types into functions on

the “m computations” on these types where “m” is either Debuggable, or

Multivalued, or Randomized.
bind :: (a -> m b) -> (m a -> m b)
return :: a -> m a

with f˝return “ return˝f “ f and lift f˝lift g “ lift pf.gq,

where ’˝’ and lift are defined in terms of return and bind.

Monad

A monad is a triple formed by a type constructor m and two functions bind and

return whose type and behavior is as described above.
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Monads in Haskell

In Haskell, the bind function:

it is written >>=

it is infix

its type is m a -> (a -> m b) -> m b (arguments are swapped)

G. Castagna (CNRS) Cours de Programmation Avancée 343 / 599



343/599

Monads in Haskell

In Haskell, the bind function:

it is written >>=

it is infix

its type is m a -> (a -> m b) -> m b (arguments are swapped)

This can be expressed by typeclasses:

class Monad m where
-- chain computations

(>>=) :: m a -> ( a -> m b) -> m b
-- inject

return :: a -> m a
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Monads in Haskell

In Haskell, the bind function:

it is written >>=

it is infix

its type is m a -> (a -> m b) -> m b (arguments are swapped)

This can be expressed by typeclasses:

class Monad m where
-- chain computations

(>>=) :: m a -> ( a -> m b) -> m b
-- inject

return :: a -> m a

The properties of bind and return cannot be enforced, but monadic

computation demands that the following equations hold

return x >>= f ” f x

m >>= return ” m

m >>= pλx .pf x >>= gqq ” pm >>= f q >>= g
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Monad laws

We already saw some of these properties:

return x >>= f ” f x (1)

m >>= return ” m (2)

m >>= pλx .f x >>= gq ” pm >>= f q >>= g (3)
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Monad laws

We already saw some of these properties:

return x >>= f ” f x (1)

m >>= return ” m (2)

m >>= pλx .f x >>= gq ” pm >>= f q >>= g (3)

Let us rewrite them in terms of our old bind function (with the different

argument order we used before)

1 In (1) abstract the x then you have the left identity:

pbind f q.return “ f ˝return “ f
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Monad laws

We already saw some of these properties:

return x >>= f ” f x (1)

m >>= return ” m (2)

m >>= pλx .f x >>= gq ” pm >>= f q >>= g (3)

Let us rewrite them in terms of our old bind function (with the different

argument order we used before)

1 In (1) abstract the x then you have the left identity:

pbind f q.return “ f ˝return “ f

2 In (2) consider m “ gx and abstract the x then you have the right identity

pbind returnq.g “ return˝ g “ g
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Monad laws

We already saw some of these properties:

return x >>= f ” f x (1)

m >>= return ” m (2)

m >>= pλx .f x >>= gq ” pm >>= f q >>= g (3)

Let us rewrite them in terms of our old bind function (with the different

argument order we used before)

1 In (1) abstract the x then you have the left identity:

pbind f q.return “ f ˝return “ f

2 In (2) consider m “ gx and abstract the x then you have the right identity

pbind returnq.g “ return˝ g “ g

3 Law (3) express associativity (exercise: prove it)

h ˝ pf ˝ gq “ ph ˝ f q ˝ g
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Writer, List and State Monads

The monads we showed are special cases of Writer, List, and State monads.

Let us see their (simplified) versions

-- The Writer Monad
data Writer a = Writer (a, [Char])

instance Monad Writer where
return x = Writer (x,[])
Writer (x,l) >>= f = let Writer (x’,l’) = f x in Writer (x’, l++l’)

-- The List monad ([] data type is predefined)
instance Monad [] where

return x = [x]
m >>= f = concat (map f m)

-- The State Monad
data State s a = State (s -> (a,s))

instance Monad (State s) where
return a = State (λs -> (a,s)) -- zs -> (a,s)
(State g) >>= f = State (λs -> let (v,s’) = g s in

let State h = f v in h s’)
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Back to program transformations

QUESTION

Haven’t you already seen the state monad?
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Back to program transformations

QUESTION

Haven’t you already seen the state monad?

Let us strip out the type constructor part:

return a = λs -> (a,s)
a >>= f = λs -> let (v,s’) = a s in (f v) s’
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Back to program transformations

QUESTION

Haven’t you already seen the state monad?

Let us strip out the type constructor part:

return a = λs -> (a,s)
a >>= f = λs -> let (v,s’) = a s in (f v) s’

It recalls somehow the transformation for the state passing style:

JNK “ λs.pN,sq
JxK “ λs.px ,sq

Jλx .aK “ λs.pλx .JaK,sq
Jlet x “ a in bK “ λs.match JaKs with px ,s1q Ñ JbKs1

JabK “ λs.match JaKs with pxa,s
1q Ñ

match JbKs1 with pxb,s
2q Ñ xa xb s2
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Back to program transformations

QUESTION

Haven’t you already seen the state monad?

Let us strip out the type constructor part:

return a = λs -> (a,s)
a >>= f = λs -> let (v,s’) = a s in (f v) s’

It recalls somehow the transformation for the state passing style:

JNK “ λs.pN,sq
JxK “ λs.px ,sq

Jλx .aK “ λs.pλx .JaK,sq
Jlet x “ a in bK “ λs.match JaKs with px ,s1q Ñ JbKs1

JabK “ λs.match JaKs with pxa,s
1q Ñ

match JbKs1 with pxb,s
2q Ñ xa xb s2

Exactly the same transformation but with different constructions
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Outline

29 Invent your first monad

30 More examples of monads

31 Monads and their laws

32 Program transformations and monads

33 Monads as a general programming technique

34 Monads and ML Functors
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Commonalities of program transformations

Let us temporary abandon Haskell and return to pseudo-OCaml syntax

Consider the conversions to exception-returning style, state-passing style, and

continuation-passing style. For constants, variables and λ-abstractions (ie.,

values), we have:

Pure Exceptions State Continuations

JNK “ ValpNq “ λs.pN,sq “ λk .kN

JxK “ Valpxq “ λs.px ,sq “ λk .kx

Jλx .aK “ Valpλx .JaKq “ λs.pλx .JaK,sq “ λk .kpλx .JaKq
In all three cases we returnreturnreturn the values N, x , or λx .JaK wrapped in some

appropriate context.
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Commonalities of program transformations

For let bindings we have

Jlet x “ a in bK “ match JaK with Exnpzq Ñ Exnpzq | Valpxq Ñ JbK

Jlet x “ a in bK “ λs.match JaKs with px ,s1q Ñ JbKs1

Jlet x “ a in bK “ λk .JaKpλx .JbKkq

In all three cases we extract the value resulting from the computation JaK, we

bindbindbind it to the variable x and proceed with the computation JbK.
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Commonalities of program transformations

For applications we have

JabK “ match JaK with

| Exnpxaq Ñ Exnpxaq
| Valpxaq Ñ match JbK with

| Exnpybq Ñ Exnpybq
| Valpybq Ñ xa yb

JabK “ λs.match JaKs with pxa,s
1q Ñ

match JbKs1 with pyb,s
2q Ñ xa yb s2

Ja bK “ λk .JaKpλxa.JbKpλyb.xa yb kqq

We bindbindbind the value of JaK to the variable xa, then bindbindbind the value of JbK to the

variable yb, then perform the application xayb, and rewrap the result as needed.
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Commonalities of program transformations

For types notice that if a : τ then JaK : JτK mon

where

- Jτ1 Ñ τ2K “ τ1 Ñ Jτ2K mon

- JBK “ B for bases types B.

For exceptions:
type α mon = Val of α | Exn of exn

For states:
type α mon = state Ñ α ˆ state

For continuations:
type α mon = (α Ñ answer) Ñ answer
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Monadic translation

The previous three translations are instances of the following translation

JNK “ return N

JxK “ return x

Jλx .aK “ return pλx .JaKq
Jlet x “ a in bK “ JaK >>= pλx .JbKq

JabK “ JaK >>= pλxa.JbK >>= pλyb.xaybqq

just the monad changes, that is, the definitions of bind and return).
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Exception monad

So the previous translation coincides with our exception returning

transformation for the following definitions of bind and return:

type α monmonmon = Val of α | Exn of exn

returnreturnreturn a = Val(a)

m >>=>>=>>= f = match m with Exn(x) -> Exn(x) | Val(x) -> f x
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Exception monad

So the previous translation coincides with our exception returning

transformation for the following definitions of bind and return:

type α monmonmon = Val of α | Exn of exn

returnreturnreturn a = Val(a)

m >>=>>=>>= f = match m with Exn(x) -> Exn(x) | Val(x) -> f x

bind encapsulates the propagation of exceptions in compound expressions

such as the application ab or let bindings. As usual we have:

return : α Ñ α mon

(>>=) : α mon Ñ (α Ñ β mon) Ñ β mon
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Exception monad

So the previous translation coincides with our exception returning

transformation for the following definitions of bind and return:

type α monmonmon = Val of α | Exn of exn

returnreturnreturn a = Val(a)

m >>=>>=>>= f = match m with Exn(x) -> Exn(x) | Val(x) -> f x

bind encapsulates the propagation of exceptions in compound expressions

such as the application ab or let bindings. As usual we have:

return : α Ñ α mon

(>>=) : α mon Ñ (α Ñ β mon) Ñ β mon

Additional operations in this monad:

raise x = Exn(x)

trywith m f = match m with Exn(x) -> f x | Val(x) -> Val(x)
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The State monad

To have the state-passing transformation we use instead the following

definitions for return and bind:

type α mon = state Ñ α ˆ state

return a = λs. (a, s)

m >>= f = λs. match m s with (x, s’) -> f x s’

bind encapsulates the threading of the state in compound expressions.
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The State monad

To have the state-passing transformation we use instead the following

definitions for return and bind:

type α mon = state Ñ α ˆ state

return a = λs. (a, s)

m >>= f = λs. match m s with (x, s’) -> f x s’

bind encapsulates the threading of the state in compound expressions.

Additional operations in this monad:
ref x = λs. store_alloc x s

deref r = λs. (store_read r s, s)

assign r x = λs. store_write r x s
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The Continuation monad

Finally the following monad instance yields the continuation-passing

transformation:

type α mon = (α Ñ answer) Ñ answer

return a = λk. k a

m >>= f = λk. m (λv. f v k)

Additional operations in this monad:

callcc f = λk. f k k

throw x y = λk. x y
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More on monadic translation

We can extend the monadic translation to more constructions of the language.

Jµf .λx .aK “ returnpµf .λx .JaKq

Ja op bK “ Ja K >>= pλxa.JbK >>= pλyb.returnpxa op ybqqq

JCpa1, ...,anqK “ Ja1K >>= pλx1. . . .JanK >>= pλxn.returnpCpx1, . . . ,xnqqqq

Jmatch a with ..p..K “ Ja K >>= pλxa.match xa with ..JpK...q
where JCpx1, ...,xnq Ñ aK “ Cpx1, ...,xnq Ñ Ja K

All these are parametric in the definition of bind and return.
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Correctness of the monadic translation

The fundamental property of the monadic translation is that it does not alter the

semantics of the computation it encodes. It just adds to the computation some

effects.

Theorem

If a ñ v , then JaK ” return v 1

where v 1 “
"

N if v “ N

λx .JaK if v “ λx .a
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Examples of monadic translation

J 1 + f x K =
(return 1) >>= (λx_1.
((return f) >>= (λx_2.

(return x) >>= (λx_3. x_2 x_3))) >>=( λx_4.
return (x_1 + x_4)))

After administrative reductions using the first monadic law:

(return x >>= f is equivalent to f x)

J 1 + f x K =
(f x) >>= (λx_4. return (1 + x_4))
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Examples of monadic translation

J 1 + f x K =
(return 1) >>= (λx_1.
((return f) >>= (λx_2.

(return x) >>= (λx_3. x_2 x_3))) >>=( λx_4.
return (x_1 + x_4)))

After administrative reductions using the first monadic law:

(return x >>= f is equivalent to f x)

J 1 + f x K =
(f x) >>= (λx_4. return (1 + x_4))

A second example

J µfact. λn. if n = 0 then 1 else n * fact(n-1) K =
return (µfact. λn.

if n = 0
then return 1
else (fact(n-1)) >>= (λv. return (n * v))

)
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Summary

What we have done:

1 Take a program that performs some computation

2 Apply the monadic transformation to it. This yields a new program that

uses return and >>= in it.

3 Choose a monad (that is, choose a definition for return and >>= ) and

the new programs embeds the computation in the corresponding monad

(side-effects, exceptions, etc.)

4 You can now add in the program the operations specific to the chosen

monad: although it includes effects the program is still pure.
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Outline

29 Invent your first monad

30 More examples of monads

31 Monads and their laws

32 Program transformations and monads

33 Monads as a general programming technique

34 Monads and ML Functors
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Monads as a general programming technique

Monads provide a systematic way to structure programs into two

well-separated parts:

the proper algorithms, and

the “plumbing” needed by computation of these algorithms to produce

effects (state passing, exception handling, non-deterministic choice, etc).
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Monads as a general programming technique

Monads provide a systematic way to structure programs into two

well-separated parts:

the proper algorithms, and

the “plumbing” needed by computation of these algorithms to produce

effects (state passing, exception handling, non-deterministic choice, etc).

In addition, monads can also be used to modularize code and offer new

possibilities for reuse:

Code in monadic form can be parametrized over a monad and reused with

several monads.

Monads themselves can be built in an incremental manner.
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Monads as a general programming technique

Monads provide a systematic way to structure programs into two

well-separated parts:

the proper algorithms, and

the “plumbing” needed by computation of these algorithms to produce

effects (state passing, exception handling, non-deterministic choice, etc).

In addition, monads can also be used to modularize code and offer new

possibilities for reuse:

Code in monadic form can be parametrized over a monad and reused with

several monads.

Monads themselves can be built in an incremental manner.

Back to Haskell

Let us put all this at work by writing in Haskell the canonical, efficient

interpreter that ended our refresher course on operational semantics.
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The canonical, efficient interpreter in OCaml (reminder)

# type term = Const of int | Var of int | Abs of term
| App of term * term | Plus of term * term

and value = Vint of int | Vclos of term * environment
and environment = value list (* use Vec instead *)

# exception Error

# let rec eval e a = (* : environment -> term -> value *)
match a with
| Const n -> Vint n
| Var n -> List.nth e n
| Abs a -> Vclos(Abs a, e)
| App(a, b) -> ( match eval e a with

| Vclos(Abs c, e’) ->
let v = eval e b in
eval (v :: e’) c

| _ -> raise Error)
| Plus(a,b) -> match (eval e a, eval e b) with

| (Vint n, Vint m) -> Vint (n+m)
| _ -> raise Error

# eval [] (Plus(Const(5),(App(Abs(Var 0),Const(2)))));;(* 5+((λx.x)2)Ñ7 *)
- : value = Vint 7

Note:a Plus operator added and used Abs instead of Lam
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The canonical, efficient interpreter in Haskell

data Exp = Const Integer -- expressions
| Var Integer
| Plus Exp Exp
| Abs Exp
| App Exp Exp

data Value = Vint Integer -- values
| Vclos Env Exp

type Env = [Value] -- list of values

eval0 :: Env -> Exp -> Value
eval0 env (Const i ) = Vint i
eval0 env (Var n) = env !! n -- n-th element
eval0 env (Plus e1 e2 ) = let Vint i1 = eval0 env e1

Vint i2 = eval0 env e2 -- let syntax
in Vint (i1 + i2 )

eval0 env (Abs e) = Vclos env e
eval0 env (App e1 e2 ) = let Vclos env0 body = eval0 env e1

val = eval0 env e2
in eval0 (val : env0) body
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The canonical, efficient interpreter in Haskell

data Exp = Const Integer -- expressions
| Var Integer
| Plus Exp Exp
| Abs Exp
| App Exp Exp

data Value = Vint Integer -- values
| Vclos Env Exp

type Env = [Value] -- list of values

eval0 :: Env -> Exp -> Value
eval0 env (Const i ) = Vint i
eval0 env (Var n) = env !! n -- n-th element
eval0 env (Plus e1 e2 ) = let Vint i1 = eval0 env e1

Vint i2 = eval0 env e2 -- let syntax
in Vint (i1 + i2 )

eval0 env (Abs e) = Vclos env e
eval0 env (App e1 e2 ) = let Vclos env0 body = eval0 env e1

val = eval0 env e2
in eval0 (val : env0) body

No exceptions: pattern matching may fail.

*Main> eval0 [] (App (Const 3) (Const 4))
*** Irrefutable pattern failed for pattern Main.Vclos env body
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Haskell “do” Notation

Haskell has a very handy notation for monads

In a do block you can macro expand every intermediate line of the form

pattern <- expression into expression >>= \ pattern ->

and every intermediate line of the form

expression into expression >>= \ _ ->
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Haskell “do” Notation

Haskell has a very handy notation for monads

In a do block you can macro expand every intermediate line of the form

pattern <- expression into expression >>= \ pattern ->

and every intermediate line of the form

expression into expression >>= \ _ ->

This allows us to simplify the monadic translation for expressions which in

Haskell syntax is defined as

JNK “ return N

JxK “ return x

Jλx .aK “ return p\x->JaKq
Jlet x “ a in bK “ JaK >>= p\x->JbKq

JabK “ JaK >>= p\xa->JbK >>= p\yb->xaybqq

By using the do notation the last two cases become far simpler to understand
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Monadic transformation in Haskell

JNK “ return N

JxK “ return x

Jλx .aK “ return p\x->JaKq
Jlet x “ a in bK “ do x <- JaK

JbK

JabK “ do xa <- JaK
yb <- JbK
xa yb

The translation shows that do is the monadic version of let.
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Monadic transformation in Haskell

JNK “ return N

JxK “ return x

Jλx .aK “ return p\x->JaKq
Jlet x “ a in bK “ do x <- JaK

JbK

JabK “ do xa <- JaK
yb <- JbK
xa yb

The translation shows that do is the monadic version of let.

Monad at work

Let us apply the transformation to our canonical efficient interpreter
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The canonical, efficient interpreter in monadic form

newtype Identity a = MkId a

instance Monad Identity where
return a = MkId a -- i.e. return = id
(MkId x) >>= f = f x -- i.e. x >>= f = f x

eval1 :: Env -> Exp -> Identity Value
eval1 env (Const i ) = return (Vint i)
eval1 env (Var n) = return (env !! n)
eval1 env (Plus e1 e2 ) = do Vint i1 <- eval1 env e1

Vint i2 <- eval1 env e2
return (Vint (i1 + i2 ))

eval1 env (Abs e) = return (Vclos env e)
eval1 env (App e1 e2 ) = do Vclos env0 body <- eval1 env e1

val <- eval1 env e2
eval1 (val : env0 ) body
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The canonical, efficient interpreter in monadic form

newtype Identity a = MkId a

instance Monad Identity where
return a = MkId a -- i.e. return = id
(MkId x) >>= f = f x -- i.e. x >>= f = f x

eval1 :: Env -> Exp -> Identity Value
eval1 env (Const i ) = return (Vint i)
eval1 env (Var n) = return (env !! n)
eval1 env (Plus e1 e2 ) = do Vint i1 <- eval1 env e1

Vint i2 <- eval1 env e2
return (Vint (i1 + i2 ))

eval1 env (Abs e) = return (Vclos env e)
eval1 env (App e1 e2 ) = do Vclos env0 body <- eval1 env e1

val <- eval1 env e2
eval1 (val : env0 ) body

We just replaced “do” for “let”, replaced “<-” for “=”, and put “return” in front

of every value returned.
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The canonical, efficient interpreter in monadic form

newtype Identity a = MkId a

instance Monad Identity where
return a = MkId a -- i.e. return = id
(MkId x) >>= f = f x -- i.e. x >>= f = f x

eval1 :: Env -> Exp -> Identity Value
eval1 env (Const i ) = return (Vint i)
eval1 env (Var n) = return (env !! n)
eval1 env (Plus e1 e2 ) = do Vint i1 <- eval1 env e1

Vint i2 <- eval1 env e2
return (Vint (i1 + i2 ))

eval1 env (Abs e) = return (Vclos env e)
eval1 env (App e1 e2 ) = do Vclos env0 body <- eval1 env e1

val <- eval1 env e2
eval1 (val : env0 ) body

We just replaced “do” for “let”, replaced “<-” for “=”, and put “return” in front

of every value returned. Let us try to execute pλx .px ` 1qq4

*Main> let MkId x = (eval1 [] (App(Abs(Plus(Var 0)(Const 1)))(Const 4)))
in x

Vint 5
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Although we wrote eval1 for the Identity monad, the type of eval1 could be

generalized to

eval1 :: Monad m => Env -> Exp -> m Value,

because we do not use any monadic operations other than return and >>=

(hidden in the do notation): no raise, assign, trywith, ... .

Recall that the type
Monad m => Env -> Exp -> m Value,

reads “for every type (constructor) m that is an instance of the type class

Monad, the function has type Env -> Exp -> m Value”.
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Although we wrote eval1 for the Identity monad, the type of eval1 could be

generalized to

eval1 :: Monad m => Env -> Exp -> m Value,

because we do not use any monadic operations other than return and >>=

(hidden in the do notation): no raise, assign, trywith, ... .

Recall that the type
Monad m => Env -> Exp -> m Value,

reads “for every type (constructor) m that is an instance of the type class

Monad, the function has type Env -> Exp -> m Value”.

In our first definition of eval1 we explicitly instantiated m into the Identity

monad, but we can let the system instantiate it. For instance, if we give eval

the generalized type above, then we do not need to extract the value

encapsulated in the effect:

*Main> (eval1 [] (App(Abs(Plus(Var 0)(Const 1)))(Const 4)))
Vint 5

The ghci prompt has run the expression in (ie, instantiated m by) the IO

monad, because internally the interpreter uses the print function, which lives in

just this monad.
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Instantiating eval with the Exception monad

We decide to instantiate m in eval with the following monad:

data Exception e a = Val a | Exn e

instance Monad (Exception e) where
return x = Val x
m >>= f = case m of

Exn x -> Exn x
Val x -> f x

raise :: e -> Exception e a
raise x = Exn x

trywith :: Exception e a -> (e -> Exception e a) -> Exception e a
trywith m f = case m of

Exn x -> f x
Val x -> Val x

Note: Haskell provides an Error monad for exceptions. Not dealt with here.
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Instantiating eval with the Exception monad

We can do dull instantiation:

eval1 :: Env -> Exp -> Exception e Value
eval1 env (Const i ) = return (Vint i)
eval1 env (Var n) = return (env !! n)
eval1 env (Plus e1 e2 ) = do Vint i1 <- eval1 env e1

Vint i2 <- eval1 env e2
return (Vint (i1 + i2))

eval1 env (Abs e) = return (Vclos env e)
eval1 env (App e1 e2 ) = do Vclos env0 body <- eval1 env e1

val <- eval1 env e2
eval1 (val : env0) body
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Instantiating eval with the Exception monad

We can do dull instantiation:

eval1 :: Env -> Exp -> Exception e Value
eval1 env (Const i ) = return (Vint i)
eval1 env (Var n) = return (env !! n)
eval1 env (Plus e1 e2 ) = do Vint i1 <- eval1 env e1

Vint i2 <- eval1 env e2
return (Vint (i1 + i2))

eval1 env (Abs e) = return (Vclos env e)
eval1 env (App e1 e2 ) = do Vclos env0 body <- eval1 env e1

val <- eval1 env e2
eval1 (val : env0) body

Not interesting since all we obtained is to encapsulate the result into a Val

constructor.
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Instantiating eval with the Exception monad

We can do dull instantiation:

eval1 :: Env -> Exp -> Exception e Value
eval1 env (Const i ) = return (Vint i)
eval1 env (Var n) = return (env !! n)
eval1 env (Plus e1 e2 ) = do Vint i1 <- eval1 env e1

Vint i2 <- eval1 env e2
return (Vint (i1 + i2))

eval1 env (Abs e) = return (Vclos env e)
eval1 env (App e1 e2 ) = do Vclos env0 body <- eval1 env e1

val <- eval1 env e2
eval1 (val : env0) body

Not interesting since all we obtained is to encapsulate the result into a Val

constructor.

The smart way

Use the exception monad to do as the OCaml implementation and raise an

error when the applications are not well-typed
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Instantiating eval with the Exception monad

New interpreter with exceptions:

eval2 :: Env -> Exp -> Exception String Value -- exceptions as strings
eval2 env (Const i ) = return (Vint i)
eval2 env (Var n) = return (env !! n)
eval2 env (Plus e1 e2 ) = do x1 <- eval2 env e1

x2 <- eval2 env e2
case (x1 , x2) of

(Vint i1, Vint i2)
-> return (Vint (i1 + i2))

_ -> raise "type error in addition"
eval2 env (Abs e) = return (Vclos env e)
eval2 env (App e1 e2 ) = do fun <- eval2 env e1

val <- eval2 env e2
case fun of

Vclos env0 body
-> eval2 (val : env0) body

_ -> raise "type error in application"
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Instantiating eval with the Exception monad

New interpreter with exceptions:

eval2 :: Env -> Exp -> Exception String Value -- exceptions as strings
eval2 env (Const i ) = return (Vint i)
eval2 env (Var n) = return (env !! n)
eval2 env (Plus e1 e2 ) = do x1 <- eval2 env e1

x2 <- eval2 env e2
case (x1 , x2) of

(Vint i1, Vint i2)
-> return (Vint (i1 + i2))

_ -> raise "type error in addition"
eval2 env (Abs e) = return (Vclos env e)
eval2 env (App e1 e2 ) = do fun <- eval2 env e1

val <- eval2 env e2
case fun of

Vclos env0 body
-> eval2 (val : env0) body

_ -> raise "type error in application"

And we see that the exception is correctly raised

*Main> let Val x = ( eval2 [] (App (Abs (Var 0)) (Const 3)) ) in x
Vint 3
*Main> let Exn x = ( eval2 [] (App (Const 2) (Const 3)) ) in x
"type error in application"
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Instantiating eval with the Exception monad

Advantages:

The function eval2 is pure!

Module few syntactic differences the code is really the same as code that

would be written in an impure language (cf. the corresponding OCaml

code)

All “plumbing” necessary to preserve purity is defined separately (eg, in

the Exception monad and its extra functions)

In most cases the programmer does not even need to define “plumbing”

since monads provided by standard Haskell libraries are largely sufficient.
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Instantiating eval with the Exception monad

Advantages:

The function eval2 is pure!

Module few syntactic differences the code is really the same as code that

would be written in an impure language (cf. the corresponding OCaml

code)

All “plumbing” necessary to preserve purity is defined separately (eg, in

the Exception monad and its extra functions)

In most cases the programmer does not even need to define “plumbing”

since monads provided by standard Haskell libraries are largely sufficient.

A second try

Let us instantiate the type Monad m => Env -> Exp -> m Value with a

different monad m. For our next example we choose the State monad.
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Instantiating eval with the State monad

Goal: Add profiling capabilities by recording the number of evaluation steps.

-- The State Monad
data State s a = MkSt (s -> (a,s))

instance Monad (State s) where
return a = MkSt (\s -> (a,s))
(MkSt g) >>= f = MkSt (\s -> let (v,s’) = g s

MkSt h = f v
in h s’)

get :: State s s
get = MkSt (\s -> (s,s))

put :: s -> State s ()
put s = MkSt (\_ -> ((),s))

To count evaluation steps we use an Integer number as state (ie, we use the

State Integer monad). The operation tick, retrieves the hidden state from

the computation, increases it and stores it back

tick :: State Integer ()
tick = do st <- get

put (st + 1)
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Instantiating eval with the State monad

eval3 :: Env -> Exp -> State Integer Value
eval3 env (Const i ) = do tick

return (Vint i)
eval3 env (Var n) = do tick

return (env !! n)
eval3 env (Plus e1 e2 ) = do tick

x1 <- eval3 env e1
x2 <- eval3 env e2
case (x1 , x2) of

(Vint i1, Vint i2)
-> return (Vint (i1 + i2 ))

eval3 env (Abs e) = do tick
return (Vclos env e)

eval3 env (App e1 e2 ) = do tick
fun <- eval3 env e1
val <- eval3 env e2
case fun of

Vclos env0 body
-> eval3 (val : env0 ) body

The evaluation of pλx .xq3 takes 4 steps of reduction. This is shown by giving 0

as initial value of the state:
*Main> let MkSt s = eval3 [] (App (Abs (Var 0)) (Const 3)) in s 0
(Vint 3,4)
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Combining monads the hard way

What if we want both exceptions and state in our interpreter?

Merging the code of eval2 and eval3 is straightforward: just add the

code of eval2 that raises the type-error exceptions at the end of the Plus

and App cases in the definition of eval3.

The problem is how to define the monad that supports both effects.
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Combining monads the hard way

What if we want both exceptions and state in our interpreter?

Merging the code of eval2 and eval3 is straightforward: just add the

code of eval2 that raises the type-error exceptions at the end of the Plus

and App cases in the definition of eval3.

The problem is how to define the monad that supports both effects.

We can write from scratch the monad m that supports both effects.
eval4 :: Monad m => Env -> Exp -> m Value

Where the monad m above is one of the following two cases:

1 Use StateOfException s e for m: (with s=Integer and e=[Char])

data StateOfException s e a = State (s -> Exception e (s,a))

the computation can either return a new pair state, value or generate an

error (ie, when an exception is raised the state is discarded)
2 Use ExceptionOfState s e for m: (with s=Integer and e=[Char])

data ExceptionOfState s e a = State (s -> ((Exception e a), s ))

the computation always returns a pair value and new state, and the value

in this pair can be either an error or a normal value.
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Combining monads the hard way

Notice that for the case State (s -> ((Exception e a), s )) there are

two further possibilities, according to the state we return when an exception is

caught. Each possibility corresponds to a different definition of trywith
1 backtrack the modifications made by the computation m that raised the

exception:
trywith m f = \s -> case m sss of

(Val x , s’) -> (Val x , s’)
(Exn x , s’s’s’) -> f x sss

2 keep the modifications made by the computation m that raised the

exception:
trywith m f = \s -> case m sss of

(Val x , s’) -> (Val x , s’)
(Exn x , s’s’s’) -> f x s’s’s’
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Combining monads the hard way

Notice that for the case State (s -> ((Exception e a), s )) there are

two further possibilities, according to the state we return when an exception is

caught. Each possibility corresponds to a different definition of trywith
1 backtrack the modifications made by the computation m that raised the

exception:
trywith m f = \s -> case m sss of

(Val x , s’) -> (Val x , s’)
(Exn x , s’s’s’) -> f x sss

2 keep the modifications made by the computation m that raised the

exception:
trywith m f = \s -> case m sss of

(Val x , s’) -> (Val x , s’)
(Exn x , s’s’s’) -> f x s’s’s’

Avoid the boilerplate

Each of the standard monads is specialised to do exactly one thing. In real

code, we often need several effects at once. Composing monads by hand or

rewriting them from scratch soon reaches its limits
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Combining monads by compositionality

By applying the monadic transformation to eval we passed from a function of

type

Env -> Exp -> Value,

to a function of type

Monad m => Env -> Exp -> m Value,

In this way we made the code for eval parametric in the monad m.

Later we chose to instantiate m to some particular monad in order to use the

specific characteristicts

IDEA: transform the code of an instance definition of the monad class so that

this definition becomes parametric in some other monad m.
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Combining monads by compositionality

By applying the monadic transformation to eval we passed from a function of

type

Env -> Exp -> Value,

to a function of type

Monad m => Env -> Exp -> m Value,

In this way we made the code for eval parametric in the monad m.

Later we chose to instantiate m to some particular monad in order to use the

specific characteristicts

IDEA: transform the code of an instance definition of the monad class so that

this definition becomes parametric in some other monad m.

Monad transformer

A monad instance that is parametric in another monad is a monad transformer.

To work on the monad parameter, apply the monadic transformation to the

definitions of instances
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Monad Transformers

Monad Transformers can help:

A monad transformer transforms a monad by adding support for an

additional effect.

A library of monad transformers can be developed, each adding a specific

effect (state, error, . . . ), allowing the programmer to mix and match.

A form of aspect-oriented programming.
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Monad Transformers

Monad Transformation in Haskell

A monad transformer maps monads to monads. Represented by a type

constructor T of the following kind:

T :: (* -> *) -> (* -> *)

Additionally, a monad transformer adds computational effects. A mapping

lift from computations in the underlying monad to computations in the

transformed monad is needed:

lift :: M a -> (((T M))) a

Little reminder
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Monad Transformation in Haskell

A monad transformer maps monads to monads. Represented by a type

constructor T of the following kind:

T :: (* -> *) -> (* -> *)

Additionally, a monad transformer adds computational effects. A mapping

lift from computations in the underlying monad to computations in the

transformed monad is needed:

lift :: M a -> (((T M))) a

Little reminder
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Are you lost? ... Let us recap

Goal: write the following code where all the plumbing to handle effects is

hidden in the definition of m
eval :: (Monad m) => Env -> Exp -> m Value

eval env (Const i ) = do tick
return (Vint i)

eval env (Var n) = do tick
return (env !! n)

eval env (Plus e1 e2) = do tick
x1 <- eval env e1
x2 <- eval env e2
case (x1 , x2) of

(Vint i1, Vint i2)
-> return (Vint (i1 + i2 ))

_ -> raise "type error in addition"
eval env (Abs e) = do tick

return (Vclos env e)
eval env (App e1 e2) = do tick

fun <- eval env e1
val <- eval env e2
case fun of

Vclos env0 body
-> eval (val : env0 ) body

_ -> raise "type error in application"
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Are you lost? ... Let us recap

The dirty work is in the definition of the monad m that will be used. Two ways

are possible:

1 Define m from scratch: Define a new monad m so as it combines the

effects of the Exception and of the State monads for which raise and

tick are defined.

Advantages: a fine control on the definition

Drawbacks: no code reuse, hard to mantain and modify
2 Define m by composition: Define m by composing more elementary

blocks that provide functionalities of states and exceptions respectively.

Advantages: modular development; in many case it is possible to reuse

components from the shelves.

Drawbacks: Some trade-off since the building blocks may not provide

exactly the sought combination of functionalities.
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Are you lost? ... Let us recap

The dirty work is in the definition of the monad m that will be used. Two ways

are possible:

1 Define m from scratch: Define a new monad m so as it combines the

effects of the Exception and of the State monads for which raise and

tick are defined.

Advantages: a fine control on the definition

Drawbacks: no code reuse, hard to mantain and modify
2 Define m by composition: Define m by composing more elementary

blocks that provide functionalities of states and exceptions respectively.

Advantages: modular development; in many case it is possible to reuse

components from the shelves.

Drawbacks: Some trade-off since the building blocks may not provide

exactly the sought combination of functionalities.

Monad transformers

We show the second technique by building the sought m from two monad

transformers for exceptions and states respectively.
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Step 1: defining the functionalities

We define two subclasses of the Monad class

EXCEPTION MONAD

An Exception Monad is a monad with an operation raise that takes a

string and yields a monadic computation

class Monad m => ExMonad m where
raise :: String -> m a

STATE MONAD

A State Monad is a monad with an operation tick that yields a

computation on values of the unit type.

class Monad m => StMonad m where
tick :: m ()
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Step 1: defining the functionalities

We define two subclasses of the Monad class

EXCEPTION MONAD

An Exception Monad is a monad with an operation raise that takes a

string and yields a monadic computation

class Monad m => ExMonad m where
raise :: String -> m a

STATE MONAD

A State Monad is a monad with an operation tick that yields a

computation on values of the unit type.

class Monad m => StMonad m where
tick :: m ()

It is now possible to specify a type for eval so that its definition type-checks

eval :: (ExMonad m, StMonad m) => Env -> Exp -> m Value

eval env (Const i) = do tick
:

_ -> raise "type error in addition"
:
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Step 2: defining the building blocks

We now need to define a monad m that is an instance of both StMonad and

ExMonad.

We do it by composing two monad transformers

Definition (Monad transformer)

A monad transformer is a higher-order operator t that maps each monad m to a

monad (t m), equipped with an operation lift that promotes a computation

x :: m a from the original monad m that is fed to t, to a computation

(lift x) :: (t m) a

on the monad (t m).

Definition of the class of monad transformers

class MonadTrans t where
lift :: Monad m => m a -> (t m) a
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Example

If we want to apply to the monad Exception String a transformer T that

provides some operation xyz, then we need to lift raise from Exception

String to T(Exception String).

Without the lifting the only operation defined for T(Exception String) would

be xyz. With lift since

raise :: String -> Exception String,

then:

lift.raise :: String -> T(Exception String)
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Example

If we want to apply to the monad Exception String a transformer T that

provides some operation xyz, then we need to lift raise from Exception

String to T(Exception String).

Without the lifting the only operation defined for T(Exception String) would

be xyz. With lift since

raise :: String -> Exception String,

then:

lift.raise :: String -> T(Exception String)

Nota bene

There is no magic formula to produce the transformer versions of a given

monad
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Step 2a: A monad transformer for exceptions

Consider again our first monad Exception e:

data Exception e a = Val a | Exn e

instance Monad (Exception e) where
return x = Val x
m >>= f = case m of Exn x -> Exn x ; Val x -> f x

raise :: e -> Exception e a
raise x = Exn x
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Step 2a: A monad transformer for exceptions

Consider again our first monad Exception e:

data Exception e a = Val a | Exn e

instance Monad (Exception e) where
return x = Val x
m >>= f = case m of Exn x -> Exn x ; Val x -> f x

raise :: e -> Exception e a
raise x = Exn x

We now want to modify the code above in order to obtain a transformer

ExceptionT in which the computations are themselves on monads, that is:

data ExceptionT m a = MkExc (m (Exception String a))

The (binary) type constructor ExceptionT “puts exceptions inside” another

monad m (convention: a monad transformers is usually named as the

corresponding monad with a ’T’ at the end.)

For the sake of simplicity we consider that exceptions are of type String and not the

more general transformer (ExceptionT e):

data ExceptionT e m a = MkExc (m (Exception e a))
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Step 2a: A monad transformer for exceptions

Consider again our first monad Exception e:

data Exception e a = Val a | Exn e

instance Monad (Exception e) where
return x = Val x
m >>= f = case m of Exn x -> Exn x ; Val x -> f x

raise :: e -> Exception e a
raise x = Exn x

We now want to modify the code above in order to obtain a transformer

ExceptionT in which the computations are themselves on monads, that is:

data ExceptionT m a = MkExc (m (Exception String a))

The (binary) type constructor ExceptionT “puts exceptions inside” another

monad m (convention: a monad transformers is usually named as the

corresponding monad with a ’T’ at the end.)

We want ExceptionT to be a monad transformer, ie. (ExceptionT m) to be a

monad: we must define bind and return for the monad (ExceptionT m):
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data ExceptionT m a = MkExc (m (Exception String a))

-- The ’recover’ function just strips off the outer MkExc constructor,
-- for convenience
recover :: ExceptionT m a -> m (Exception String a)
recover (MkExc x) = x

-- return is easy. It just wraps the value first in the monad m
-- by return (of the underlying monad) and then in MkExc
returnET :: (Monad m) => a -> ExceptionT m a
returnET x = MkExc (return (Val x))

-- A first version for bind uses do and return to work on the
-- underlying monad m ... whatever it is.
bindET :: (Monad m) => (ExceptionT m a) -> ( a -> ExceptionT m b)

-> ExceptionT m b
bindET (MkExc x) f = -- x of type m (Exception String a)

MkExc ( -- we wrap the result in MkExc
do y <- x -- y is of type Exception String a

case y of
Val z -> recover (f z)
Exn z -> return (Exn z) )

Notice the use of the monadic syntax (do, return,. . . ) to work on the monad

parameter m.
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Step 2a: A monad transformer for exceptions

More compactly:

instance Monad m => Monad (ExceptionT m) where
return x = MkExc (return (Val x))
x >>= f = MkExc (recover x >>= r)

where r (Exn y) = return (Exn y)
r (Val y) = recover (f y)
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Step 2a: A monad transformer for exceptions

More compactly:

instance Monad m => Monad (ExceptionT m) where
return x = MkExc (return (Val x))
x >>= f = MkExc (recover x >>= r)

where r (Exn y) = return (Exn y)
r (Val y) = recover (f y)

Moreover, (ExceptionT m) is an exception monad, not just a plain one...

instance Monad m => ExMonad (ExceptionT m) where
raise e = MkExc (return (Exn e))
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Step 2a: A monad transformer for exceptions

More compactly:

instance Monad m => Monad (ExceptionT m) where
return x = MkExc (return (Val x))
x >>= f = MkExc (recover x >>= r)

where r (Exn y) = return (Exn y)
r (Val y) = recover (f y)

Moreover, (ExceptionT m) is an exception monad, not just a plain one...

instance Monad m => ExMonad (ExceptionT m) where
raise e = MkExc (return (Exn e))

ExceptionT is a monad tranformer because we can lift any action in m to an

action in (ExceptionT m) by wrapping its result in a ’ Val’ constructor...

1 instance MonadTrans ExceptionT where
2 lift g = MkExc $ do { x <- g; return (Val x) }
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Step 2a: A monad transformer for exceptions

More compactly:

instance Monad m => Monad (ExceptionT m) where
return x = MkExc (return (Val x))
x >>= f = MkExc (recover x >>= r)

where r (Exn y) = return (Exn y)
r (Val y) = recover (f y)

Moreover, (ExceptionT m) is an exception monad, not just a plain one...

instance Monad m => ExMonad (ExceptionT m) where
raise e = MkExc (return (Exn e))

ExceptionT is a monad tranformer because we can lift any action in m to an

action in (ExceptionT m) by wrapping its result in a ’ Val’ constructor...

1 instance MonadTrans ExceptionT where
2 lift g = MkExc $ do { x <- g; return (Val x) }

We can now use the lift operation to make (ExceptionT m) into a state

monad whenever m is one, by lifting m’s tick operation to (ExceptionT m).

instance StMonad m => StMonad (ExceptionT m) where
tick = lift tick
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Step 2b: A monad transformer for states

newtype StateT m a = MkStt ( Int -> m (a,Int))

-- strip off the MkStt constructor
apply :: StateT m a -> Int -> m (a, Int)
apply (MkStt f) = f

-- if m is a monad, then StateT m is a monad
instance Monad m => Monad (StateT m) where

return x = MkStt $ \s -> return (x,s)
p >>= q = MkStt $ \s -> do (x,s’) <- apply p s

apply (q x) s’

-- StateT is a monad transformer
instance MonadTrans StateT where

lift g = MkStt $ \s -> do x <- g; return (x,s)

-- if m is a monad, then StateT m is not only a monad
-- but also a STATE MONAD
instance (Monad m) => StMonad (StateT m) where

tick = MkStt $ \s -> return ((), s+1)

-- use lift to promote StateT m to an exception monad
instance ExMonad m => ExMonad (StateT m) where

raise e = lift (raise e)
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Lost again? Let us recap this Step 2

In Step 2 we defined some monad trasformers of the form XyzT.

1 To be a “transformer” XyzT must map monads into monads. So if m is a

monad (ie., it provides bind and return), then so must (XyzT m) be.

So we define bind and return for (XyzT m) and use monadic notation

to work on the generic m.

2 But (XyzT m) must not only provide bind and return, but also some

operations typical of some class Xyz, subclass of the Monad class.

So we define also these operations by declaring that (XyzT m) is an

instance of Xyz.

3 This is not enough for XyzT to be a transformer. It must also provide a

lift operation. By defining it we declare that XyzT is an instance of the

class MonadTrans

4 Finally we can use the lift function to make (XyzT m) “inherit” the

characteristics of m: so if m is an instance of some monadic subclass Abc,

then we can make also (XyzT m) be a Abc monad simply by lifting (by

composition with lift) all the operations specific of Abc.
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Step 3: Putting it all together...

Just a matter of assembling the pieces.

Interestingly, though, there are TWO ways to combine our transformers to build

a monad with exceptions and state:

1 evalStEx :: Env -> Exp -> StateT (ExceptionT Identity) Value
evalStEx = eval

2 evalExSt :: Env -> Exp -> ExceptionT (StateT Identity) Value
evalExSt = eval

Note that ExceptionT Identity and StateT Identity are respectively the

Exception and State monads defined before, modulo two modifications:

1 Values are further wrapped in an inner MkId constructor

2 To enhance readibility I used distinct names for the types and their

constructors, for instance:
newtype StateT m a = MkStt (Int -> m (a,Int))

rather then
newtype StateT m a = StateT (Int -> m (a,Int))

as it is customary in the Haskell library
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Order matters

At first glance, it appears that evalExSt and evalStEx do the same thing...

five = (App(Abs(Plus(Var 0)(Const 1)))(Const 4)) --(λx.(x+1))4
wrong = (App(Abs(Plus(Var 0)(Const 1)))(Abs(Var 0))) --(λx.(x+1))(λy.y)

*Main> evalStEx [] five
Vint 5, count: 6

*Main> evalExSt [] five
Vint 5, count: 6
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Order matters

At first glance, it appears that evalExSt and evalStEx do the same thing...

five = (App(Abs(Plus(Var 0)(Const 1)))(Const 4)) --(λx.(x+1))4
wrong = (App(Abs(Plus(Var 0)(Const 1)))(Abs(Var 0))) --(λx.(x+1))(λy.y)

*Main> evalStEx [] five
Vint 5, count: 6

*Main> evalExSt [] five
Vint 5, count: 6

BUT ...

*Main> evalStEx [] wrong
exception: type error in addition

*Main> evalExSt [] wrong
exception: type error in addition, count: 6

- StateT (ExceptionT Identity) either returns a state or an exception

- ExceptionT (StateT Identity) always returns a state

I omitted the code to print the results of monadic computations. It can be found in the accompagnying code:

http://www.irif.fr/~gc/slides/evaluator.hs
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The Continuation monad

Computation type: Computations which can be interrupted and resumed.

Binding strategy: Binding a function to a monadic value creates a new

continuation which uses the function as the continuation of the monadic

computation.

Useful for: Complex control structures, error handling and creating co-routines.
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The Continuation monad

Computation type: Computations which can be interrupted and resumed.

Binding strategy: Binding a function to a monadic value creates a new

continuation which uses the function as the continuation of the monadic

computation.

Useful for: Complex control structures, error handling and creating co-routines.

From haskell.org:

Abuse of the Continuation monad can

produce code that is impossible to

understand and maintain.

Many algorithms which require continuations in other languages do not require

them in Haskell, due to Haskell’s lazy semantics.
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The Continuation monad

newtype Cont r a = Cont ((a -> r) -> r)

app :: Cont r a -> ((a -> r) -> r) -- remove the wrapping Cont
app (Cont f) = f

instance Monad (Cont r) where
return a = Cont $ \k -> k a -- = λk.k a
(Cont c) >>= f = Cont $ \k -> c (\a -> app (f a) k) -- = λk.c(λa.f a k)

Cont r a is a CPS computation that produces an intermediate result of type a

within a CPS computation whose final result type is r.

The return function simply creates a continuation which passes the value on.

The >>= operator adds the bound function into the continuation chain.

class (Monad m) => MonadCont m where
callCC :: ((a -> m b) -> m a) -> m a

instance MonadCont (Cont r) where
callCC f = Cont (\k -> app (f (\a -> Cont (\_ -> k a))) k)

Essentially (i.e., without constructors) the definition above states:
callCC f = λk.fkk

ie., f is like a value but with an extra parameter k bound to its current continuation
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No need to define throw since we can directly use the continuation by applying

it to a value, as shown in the next example

bar :: Char -> String -> Cont r String
bar c s = do

msg <- callCC $ \k -> do
let s’ = c : s
if (s’ == "hello") then k "They say hello." else return ()
let s’’ = show s’
return ("They appear to be saying " ++ s’’)

return msg

When you call k with a value, the entire callCC call returns that value. In other

words, k is a ’goto’ statement: k in our example pops the execution out to

where you first called callCC, the msg <- callCC $ ... line: no more of

the argument to callCC (the inner do-block) is executed.
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it to a value, as shown in the next example

bar :: Char -> String -> Cont r String
bar c s = do

msg <- callCC $ \k -> do
let s’ = c : s
if (s’ == "hello") then k "They say hello." else return ()
let s’’ = show s’
return ("They appear to be saying " ++ s’’)

return msg

When you call k with a value, the entire callCC call returns that value. In other

words, k is a ’goto’ statement: k in our example pops the execution out to

where you first called callCC, the msg <- callCC $ ... line: no more of

the argument to callCC (the inner do-block) is executed. This is shown by two

different executions, to which we pass the function print as continuation:

main = do
app (bar ’h’ "ello") print
app (bar ’h’ "llo.") print

Which once compiled and executed produces the following output

"They say hello."
"They appear to be saying \"hllo.\""
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A simpler example is the following one which contains a useless line:

bar :: Cont r Int
bar = callCC $ \k -> do

let n = 5
k n
return 25

bar will always return 5, and never 25, because we pop out of bar before

getting to the return 25 line.
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Summary

Purity has advantages but effects are unavoidable.

To have them both, effects must be explicitly programmed.

In order to separate the definition of the algorithm from the definition of the

plumbing that manages the effects it is possible to use a monad. The

monad centralizes all the programming that concerns effects.

Several effects may be necessary in the same program. One can define

the corresponding monad by composing monad transformers. These are

functions from monads to monads, each handling a specific effect.
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Several effects may be necessary in the same program. One can define

the corresponding monad by composing monad transformers. These are

functions from monads to monads, each handling a specific effect.

However

Putting code in monadic form is easy and can be done automatically, but

there is no magic formula to define monads or even derive from given

monads the corresponding trasformers

Understanding monadic code is relatively straightforward but writing and

debugging monads or monads transformers from scracth may be dreadful.
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Summary

Purity has advantages but effects are unavoidable.

To have them both, effects must be explicitly programmed.

In order to separate the definition of the algorithm from the definition of the

plumbing that manages the effects it is possible to use a monad. The

monad centralizes all the programming that concerns effects.

Several effects may be necessary in the same program. One can define

the corresponding monad by composing monad transformers. These are

functions from monads to monads, each handling a specific effect.

However

Putting code in monadic form is easy and can be done automatically, but

there is no magic formula to define monads or even derive from given

monads the corresponding trasformers

Understanding monadic code is relatively straightforward but writing and

debugging monads or monads transformers from scracth may be dreadful.

Suggestion

Use existing monads and monads trasformers as much as possible.
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31 Monads and their laws

32 Program transformations and monads
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Monads and ML Functors

Monads define the bind and return functions that are the core of the

plumbing of effects

Specific operations for effects such as raise and tick are provided by

subclasses of Monads (eg, StMonad, ExMonad).

Modular development is obtained by monad transformers which are

functions from monads to (subclasses of) monads.

We can reproduce monads by modules and transformers by functors.
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Signature for monads

The Caml module signature for a monad is:
module type MONAD = sig

type α mon
val return: α -> α mon
val bind: α mon -> (α -> β mon) -> β mon

end
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The Identity monad

The Identity monad is a trivial instance of this signature:
module Identity = struct

type α mon = α
let return x = x
let bind m f = f m

end
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Monad Transformers

Monad transformer for exceptions
module ExceptionT(M: MONAD) = struct

type α outcome = Val of α | Exn of exn
type α mon = (α outcome) M.mon
let return x = M.return (Val x)
let bind m f =

M.bind m (function Exn e -> M.return (Exn e) | Val v -> f v)
let lift x = M.bind x (fun v -> M.return (Val v))
let raise e = M.return (Exn e)
let trywith m f =

M.bind m (function Exn e -> f e | Val v -> M.return (Val v))
end
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Monad Transformers

Monad transformer for exceptions
module ExceptionT(M: MONAD) = struct

type α outcome = Val of α | Exn of exn
type α mon = (α outcome) M.mon
let return x = M.return (Val x)
let bind m f =

M.bind m (function Exn e -> M.return (Exn e) | Val v -> f v)
let lift x = M.bind x (fun v -> M.return (Val v))
let raise e = M.return (Exn e)
let trywith m f =

M.bind m (function Exn e -> f e | Val v -> M.return (Val v))
end

Notice the lesser flexibility due to the lack of the (static) overloading (provided

by Haskell’s type-classes) which obliges us to specify whose bind and return

we use.
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type α mon = (α outcome) M.mon
let return x = M.return (Val x)
let bind m f =

M.bind m (function Exn e -> M.return (Exn e) | Val v -> f v)
let lift x = M.bind x (fun v -> M.return (Val v))
let raise e = M.return (Exn e)
let trywith m f =

M.bind m (function Exn e -> f e | Val v -> M.return (Val v))
end

Notice the lesser flexibility due to the lack of the (static) overloading (provided

by Haskell’s type-classes) which obliges us to specify whose bind and return

we use.

Also the fact that the ExceptionT functor returns a module that is (1) a monad

(2) an instance of the exception monad, and (3) a transformer, is lost in the

definition of the functions exported by the module [(1) holds because of bind

and return, (2) because of raise and trywith, and (3) because of lift]
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Monad Transformers

Monad transformer for state
module StateT(M: MONAD) = struct

type α mon = state -> (α * state) M.mon
let return x = fun s -> M.return (x, s)
let bind m f =

fun s -> M.bind (m s) (fun (x, s’) -> f x s’)
let lift m = fun s -> M.bind m (fun x -> M.return (x, s))
let ref x = fun s -> M.return (store_alloc x s)
let deref r = fun s -> M.return (store_read r s, s)
let assign r x = fun s -> M.return (store_write r x s)

end
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Using monad transformers

module State = StateT(Identity)

module StateAndException = struct
include ExceptionT(State)
let ref x = lift (State.ref x)
let deref r = lift (State.deref r)
let assign r x = lift (State.assign r x)

end

This gives a type α mon = state Ñ α outcome ˆ state, i.e. state is preserved

when raising exceptions. The other combination, StateT(ExceptionT(Identity))

gives α mon = state Ñ (α ˆ state) outcome, i.e. state is discarded when an

exception is raised.
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Exercise

Define the functor for continuation monad transformer.

module ContTransf(M: MONAD) = struct
type α mon = (α -> answer M.mon) -> answer M.mon
let return x = fun k -> k x
let bind m f = fun k -> m (fun v -> f v k)
let lift m = fun k -> M.bind m k

let callcc f = fun k -> f k k
let throw c x = fun k -> c x

end
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