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Abstract
Semantic subtyping is an approach to define subtyping relations for type systems featuring union
and intersection type connectives. It has been studied only for strict languages, and it is unsound
for non-strict semantics. In this work, we study how to adapt this approach to non-strict languages:
in particular, we define a type system using semantic subtyping for a functional language with
a call-by-need semantics. We do so by introducing an explicit representation for divergence in
the types, so that the type system distinguishes expressions that are results from those which are
computations that might diverge.

2012 ACM Subject Classification Software and its engineering → Functional languages

Keywords and phrases Semantic subtyping, non-strict semantics, call-by-need, union types, inter-
section types

Digital Object Identifier 10.4230/LIPIcs.TYPES.2018.4

Related Version https://arxiv.org/abs/1810.05555

1 Introduction

Semantic subtyping is a powerful framework which allows language designers to define
subtyping relations for rich languages of types – including union and intersection types – that
can express precise properties of programs. However, it has been developed for languages
with call-by-value semantics and, in its current form, it is unsound for non-strict languages.
We show how to design a type system which keeps the advantages of semantic subtyping
while being sound for non-strict languages (more specifically, for call-by-need semantics).

1.1 Semantic subtyping
Union and intersection types can be used to type several language constructs – from branching
and pattern matching to function overloading – very precisely. However, they make it
challenging to define a subtyping relation that behaves precisely and intuitively.

Semantic subtyping is a technique to do so, studied by Frisch, Castagna, and Benzaken [20]
for types given by:

t ::= b | t→ t | t× t | t ∨ t | t ∧ t | ¬t | 0 | 1 where b ::= Int | Bool | · · ·

Types include constructors – basic types b, arrows, and products – plus union t∨t, intersection
t ∧ t, negation (or complementation) ¬t, and the bottom and top types 0 and 1 (actually,
t1 ∧ t2 and 1 can be defined respectively as ¬(¬t1 ∨ ¬t2) and ¬0). The grammar above
is interpreted coinductively rather than inductively, thus allowing infinite type expressions
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4:2 Semantic subtyping for non-strict languages

that correspond to recursive types. Subtyping is defined by giving an interpretation J · K of
types as sets and defining t1 ≤ t2 as the inclusion of the interpretations, that is, t1 ≤ t2
is defined as Jt1K ⊆ Jt2K. Intuitively, we can see JtK as the set of values that inhabit t
in the language. By interpreting union, intersection, and negation as the corresponding
operations on sets and by giving appropriate interpretations to the other constructors, we
ensure that subtyping will satisfy all commutative and distributive laws we expect: for
example, (t1 × t2) ∨ (t′1 × t′2) ≤ (t1 ∨ t′1)× (t2 ∨ t′2) or (t→ t1) ∧ (t→ t2) ≤ t→ (t1 ∧ t2).

This relation is used in [20] to type a call-by-value language featuring higher-order
functions, data constructors and destructors (pairs), and a typecase construct which models
runtime type dispatch and acts as a form of pattern matching. Functions can be recursive and
are explicitly typed; their type can be an intersection of arrow types, describing overloaded
behaviour. A simple example of an overloaded function is

let f x = if (x is Int) then (x + 1) else not(x)

which tests whether its argument x is of type Int and in this case returns its successor, its
negation otherwise. This function can be given the type (Int→ Int) ∧ (Bool→ Bool), which
signifies that it has both type Int→ Int and type Bool→ Bool: the two types define its two
possible behaviours depending on the outcome of the test (and, thus, on the type of the input).
This is done in [20] by explicitly annotating the whole function definition. Using notation for
typecases from [20]: let f : (Int→ Int)∧ (Bool→ Bool) =λx. (x ∈ Int) ? (x+ 1) : (not x). The
type deduced for this function is (Int→ Int) ∧ (Bool→ Bool), but it can also be given the
type (Int ∨ Bool)→ (Int ∨ Bool): the latter type states that the function can be applied to
both integers and booleans and that its result is either an integer or a boolean. This latter
type is less precise than the intersection, since it loses the correlation between the types of
the argument and of the result. Accordingly, the semantic definition of subtyping ensures
(Int→ Int) ∧ (Bool→ Bool) ≤ (Int ∨ Bool)→ (Int ∨ Bool).

The work of [20] has been extended to treat more language features, including parametric
polymorphism [11,12,14], type inference [13], and gradual typing [10] and adapted to SMT
solvers [6]. It has been used to type object-oriented languages [1,16], XML queries [9], NoSQL
languages [5], and scientific languages [27]. It is also at the basis of the definition of CDuce,
an XML-processing functional programming language with union and intersection types [4].
However, only strict evaluation had been considered, until now.

1.2 Semantic subtyping in lazy languages
Our work started as an attempt to design a type system for the Nix Expression Language [17],
an untyped, purely functional, and lazily evaluated language for Unix/Linux package manage-
ment. Since Nix is untyped, some programming idioms it encourages require advanced type
system features to be analyzed properly. Notably, the possibility of writing functions that
use type tests to have an overloaded-like behaviour made intersection types and semantic
subtyping a good fit for the language. However, existing semantic subtyping relations are
unsound for non-strict semantics; this was already observed in [20] and no adaptation has
been proposed later. Here we describe our solution to define a type system based on semantic
subtyping which is sound for a non-strict language. In particular, we consider a call-by-need
variant of the language studied in [20].

Current semantic subtyping systems are unsound for non-strict semantics because of
the way they deal with the bottom type 0, which corresponds to the empty set of values
(J0K = ∅). The intuition is that a reducible expression e can be safely given a type t only
if all results (i.e., values) it can return are of type t. Accordingly, 0 can only be assigned
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to expressions that are statically known to diverge (i.e., that never return a result). For
example, the ML expression let rec f x = f x in f () can be given type 0. Let us use ē to
denote any diverging expression that, like this, can be given type 0. Consider the following
typing derivations, which are valid in current semantic subtyping systems (π2 projects the
second component of a pair).

[']
` (ē, 3) : 0× Int
` (ē, 3) : 0× Bool
` π2 (ē, 3) : Bool

[']
` λx. 3 : 0→ Int
` λx. 3 : 0→ Bool ` ē : 0

` (λx. 3) ē : Bool

Note that both π2 (ē, 3) and (λx. 3) ē diverge in call-by-value semantics (since ē must be
evaluated first), while they both reduce to 3 in call-by-name or call-by-need. The derivations
are therefore sound for call-by-value, while they are clearly unsound with non-strict evaluation.

Why are these derivations valid? The crucial steps are those marked with ['], which
convert between types that have the same interpretation; ' denotes this equivalence relation.
With semantic subtyping, 0× Int ' 0× Bool holds because all types of the form 0× t are
equivalent to 0 itself: none of these types contains any value (indeed, product types are
interpreted as Cartesian products and therefore the product with the empty set is itself
empty). It can appear more surprising that 0→ Int ' 0→ Bool holds. We interpret a type
t1 → t2 as the set of functions which, on arguments of type t1, either diverge or return results
in type t2. Since there is no argument of type 0 (because, in call-by-value, arguments are
always values), all types of the form 0→ t are equivalent (they all contain every well-typed
function).

1.3 Our approach
The intuition behind our solution is that, with non-strict semantics, it is not appropriate to
see a type as the set of the values that have that type. In a call-by-value language, operations
like application or projection occur on values: thus, we can identify two types (and, in some
sense, the expressions they type) if they contain (and their expressions may produce) the
same values. In non-strict languages, though, operations also occur on partially evaluated
results: these, like (ē, 3) in our example, can contain diverging sub-expressions below their
top-level constructor.

As a result, it is unsound, for example, to type (ē, 3) as 0× Int, since we have that 0× Int
and 0× Bool are equivalent. It is also unsound to have subtyping rules for functions which
assume implicitly that every argument will eventually be a value.

One approach to solve this problem would be to change the interpretation of 0 so that it
is non-empty. However, the existence of types with an empty interpretation is important for
the internal machinery of semantic subtyping. Notably, the decision procedure for subtyping
relies on them (checking whether t1 ≤ t2 holds is reduced to checking whether the type
t1 ∧ ¬t2 is empty). Therefore, we keep the interpretation J0K = ∅, but we change the type
system so that this type is never derivable, not even for diverging expressions. We keep it as
a purely “internal” type useful to describe subtyping, but never used to type expressions.

We introduce instead a separate type ⊥ as the type of diverging expressions. This type is
non-empty but disjoint from the types of constants, functions, and pairs: J⊥K is a singleton
whose unique element represents divergence. Introducing the type ⊥ means that we track
termination in types. In particular, we distinguish two classes of types: those that are disjoint
from ⊥ (for example, Int, Int → Bool, or Int × Bool) and those that include ⊥ (since the
interpretation of ⊥ is a singleton, no type can contain a proper subset of it). Intuitively, the
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4:4 Semantic subtyping for non-strict languages

former correspond to computations that are guaranteed to terminate: for example, Int is
the type of terminating expressions producing an integer result. Conversely, the types of
diverging expressions must always contain ⊥ and, as a result, they can always be written in
the form t ∨ ⊥, for some type t. Subtyping verifies t ≤ t ∨ ⊥ for any t: this ensures that a
terminating expression can always be used when a possibly diverging one is expected. This
subdivision of types suggests that ⊥ is used to approximate the set of diverging well-typed
expressions: an expression whose type contains ⊥ is an expression that may diverge. Actually,
the type system we propose performs a rather gross approximation. We derive “terminating
types” (i.e., subtypes of ¬⊥) only for expressions that are already results and cannot be
reduced: constants, functions, or pairs. Applications and projections, instead, are always
typed by assuming that they might diverge. The typing rules are written to handle and
propagate the ⊥ type. For example, we type applications using the following rule.

Γ ` e1 : (t′ → t) ∨ ⊥ Γ ` e2 : t′

Γ ` e1 e2 : t ∨ ⊥

This rule allows the expression e1 to be possibly diverging: we require it to have the type
(t′ → t)∨⊥ instead of the usual t′ → t (but an expression with the latter type can always be
subsumed to have the former type). We type the whole application as t∨⊥ to signify that it
can diverge even if the codomain t does not include ⊥, since e1 can diverge.

This system avoids the problems we have seen with semantic subtyping: no expression
can be assigned the empty type, which was the type on which subtyping had incorrect
behaviour. The new type ⊥ does not cause the same problems because J⊥K is non-empty.
For example, the type of expressions like (ē, 3) – where ē is diverging – is now ⊥× Int. This
type is not equivalent to ⊥× Bool: indeed, the two interpretations are different because the
interpretation of types includes an element (J⊥K) to represent divergence.

Typing all applications as possibly diverging – even very simple ones like (λx. 3) e – is a
very coarse approximation which can seem unsatisfactory. We could try to amend the rule
to say that if e1 has type t′ → t, then e1 e2 has type t instead of t ∨ ⊥. However, we prefer
to keep the simpler rules since they achieve our goal of giving a sound type system that still
enjoys most benefits of semantic subtyping.

An advantage of the simpler system is that it allows us to treat ⊥ as an internal type
that does not need to be written explicitly by programmers. Since the language is explicitly
typed, if ⊥ were to be treated more precisely, programmers would presumably need to
include it or exclude it explicitly from function signatures. This would make the type system
significantly different from conventional ones where divergence is not explicitly expressed
in the types. In the present system, instead, we can assume that programmers annotate
programs using standard set-theoretic types and ⊥ is introduced only behind the scenes and,
thus, is transparent to programmers.

We define this type system for a call-by-need variant of the language studied in [20], and
we prove its soundness in terms of progress and subject reduction.

The choice of call-by-need rather than call-by-name stems from the behaviour of semantic
subtyping on intersections of arrow types. Our type system would actually be unsound for call-
by-name if the language were extended with constructs that can reduce non-deterministically
to different answers. For example, the expression rnd(t) of [20] that returns a random value
of type t could not be added while keeping soundness. This is because in call-by-name,
if such an expression is duplicated, each occurrence could reduce differently; in call-by-
need, instead, its evaluation would be shared. Intersection and union types make the type
system precise enough to expose this difference. In the absence of such non-deterministic
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constructs, call-by-name and call-by-need can be shown to be observationally equivalent, so
that soundness should hold for both; however, call-by-need also simplifies the technical work
to prove soundness.

We show an example of this, though we will return on this point later. Consider the
following derivation, where ē is an expression of type Int ∨ Bool.

[≤]

x : Int ` (x, x) : Int× Int x : Bool ` (x, x) : Bool× Bool
` λx. (x, x) : (Int→ Int× Int) ∧ (Bool→ Bool× Bool)
` λx. (x, x) : Int ∨ Bool→ (Int× Int) ∨ (Bool× Bool) ` ē : Int ∨ Bool

` (λx. (x, x)) ē : (Int× Int) ∨ (Bool× Bool)

In a system with intersection types, the function λx. (x, x) can be given the type (Int →
Int× Int) ∧ (Bool→ Bool× Bool) because it has both arrow types (in practice, the function
will have to be annotated with the intersection). Then, the step marked with [≤] is allowed
because, in semantic subtyping, (Int → Int × Int) ∧ (Bool → Bool × Bool) is a subtype of
(Int∨Bool)→ ((Int× Int)∨(Bool×Bool)) (in general, (t1 → t′1)∧(t2 → t′2) ≤ t1∨t2 → t′1∨t′2).
Therefore, the application (λx. (x, x)) ē is well-typed with type (Int× Int) ∨ (Bool× Bool).
In call-by-name, it reduces to (ē, ē): therefore, for the system to satisfy subject reduction,
we must be able to type (ē, ē) with the type (Int× Int) ∨ (Bool× Bool) too. But this type
is intuitively unsound for (ē, ē) if each occurrence of ē could reduce independently and
non-deterministically either to an integer or to a boolean. Using a typecase we can actually
exhibit a term that breaks subject reduction.

There are several ways to approach this problem. We could change the type system or
the subtyping relation so that λx. (x, x) cannot be given the type (Int ∨ Bool) → ((Int ×
Int) ∨ (Bool× Bool)). However, this would curtail the expressive power of intersection types
as used in the semantic subtyping approach. We could instead assume explicitly that the
semantics is deterministic. In this case, the typing would not be unsound intuitively, but a
proof of subject reduction would be difficult: we should give a complex union disjunction
rule to type (ē, ē). We choose instead to consider a call-by-need semantics because it solves
both problems. With call-by-need, non-determinism poses no difficulty because of sharing.
We still need a union disjunction rule, but it is simpler to state since we only need it to type
the let bindings which represent shared computations.

1.4 Contributions

The main contribution of this work is the development of a type system for non-strict
languages based on semantic subtyping; to our knowledge, this had not been studied before.

Although the idea of our solution is simple – to track divergence – its technical development
is far from trivial. Our work highlights how a type system featuring union and intersection
types is sensitive to the difference between strict and non-strict semantics and also, in the
presence of non-determinism, to that between call-by-name and call-by-need. This shows
once more how union and intersection types can express very fine properties of programs.
Our main technical contribution is the description of sound typing for let bindings – a
construct peculiar to most of the formalizations of call-by-need semantics – in the presence
of union types. Finally, our work shows how to integrate the ⊥ type, which is an explicit
representation for divergence, in a semantic subtyping system. It can thus also be seen as a
first step towards the definition of a type system based on semantic subtyping that performs
a non-trivial form of termination analysis.
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4:6 Semantic subtyping for non-strict languages

1.5 Related work
Previous work on semantic subtyping does not discuss non-strict semantics. Castagna and
Frisch [8] describe how to add a type constructor lazy(t) to semantic subtyping systems, but
this is meant just to have lazily constructed expressions within a call-by-value language.

Many type systems for functional languages – like the simply-typed λ-calculus or Hindley-
Milner typing – are sound for both strict and non-strict semantics. However, difficulties
similar to ours are found in work on refinement types. Vazou et al. [23] study how to adapt
refinement types for Haskell. Their types contain logical predicates as refinements: e.g., the
type of positive integers is { v : Int | v > 0 }. They observe that the standard approach to
typechecking in these systems – checking implication between predicates with an SMT solver
– is unsound for non-strict semantics. In their system, a type like { v : Int | false } is analogous
to 0 in our system insofar as it is not inhabited by any value. These types can be given to
diverging expressions, and their introduction into the environment causes unsoundness. To
avoid this problem, they stratify types, with types divided in diverging and non-diverging
ones. This corresponds in a way to our use of a type ⊥ in types of possibly diverging
expressions. As for ours, their type system can track termination to a certain extent. Partial
correctness properties can be verified even without precise termination analysis. However,
with their kind of analysis (which goes beyond what is expressible with set-theoretic types)
there is a significant practical benefit to tracking termination more precisely. Hence, they
also study how to check termination of recursive functions.

The notion of a stratification of types to keep track of divergence can also be found in
work of a more theoretical strain. For instance, in [15] it is used to model partial functions in
constructive type theory. This stratification can be understood as a monad for partiality, as
it is treated in [7]. Our type system can also be seen, intuitively, as following this monadic
structure. Notably, the rule for applications in a sense lifts the usual rule for application in
this partiality monad. Injection in this monad is performed implicitly by subtyping via the
judgment t ≤ t ∨ ⊥. However, we have not developed this intuition formally.

The fact that a type system with union and intersection types can require changes to
account for non-strict semantics is also remarked in work on refinement types. Dunfield
and Pfenning [19, p. 8, footnote 3] notice how a union elimination rule cannot be used to
eliminate unions in function arguments if arguments are passed by name: this is analogous
to the aforementioned difficulties which led to our choice of call-by-need (their system uses a
dedicated typing rule for what our system handles by subtyping). Dunfield [18, Section 8.1.5]
proposes as future work to adapt a subset of the type system he considers (of refinement
types for a call-by-value effectful language) to call-by-name. He notes some of the difficulties
and advocates studying call-by-need as a possible way to face them. In our work we show,
indeed, that a call-by-need semantics can be used to have the type system handle union and
intersection types expressively without requiring complex rules.

Finally, Vouillon [24] – drawing on earlier work with Melliès [25] on interpreting types as
sets of terms – studies the subtyping relation induced by such an interpretation for systems
with union types. Many concerns raised in his work parallel ours. He remarks that some
subtyping rules are only sound for specific calculi (e.g., only for call-by-value or only for
deterministic semantics), while others are sound for large classes of calculi. He defines
subtyping avoiding the rules of the first kind to have a relation which is more robust to
language extensions or modifications than semantic subtyping as we use it (though, in doing
so, he does not capture fully the set-theoretic intuition for strict languages). He also remarks
how union elimination is problematic for non-deterministic call-by-name semantics. His
interpretation of types as sets of terms is more adapted to describing non-strict semantics than
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the semantic-subtyping approach of interpreting types as sets of values. However, his system
does not account for negation types, that we include and interpret as set complementation:
this would probably be challenging to integrate into his theory.

1.6 Outline
Our presentation proceeds as follows. In Section 2, we define the types and the subtyping
relation which we use in our type system. In Section 3, we define the language we study, its
syntax, and its operational semantics. In Section 4, we present the type system; we state the
result of soundness for it and outline the main lemmas required to prove it; we also complete
the discussion about why we chose a call-by-need semantics. In Section 5, we study the
relation between the interpretation of types used to define subtyping and the expressions
that are definable in the language; we show how we can look for a more precise interpretation.
In Section 6 we conclude and point out more directions for future work.

For space reasons, some auxiliary definitions and results, as well as the proofs of the results
we state, are omitted and can all be found in the extended version available online [22].

2 Types and subtyping

We begin by describing in more detail the types and the subtyping relation of our system.
In order to define types, we first fix two countable sets: a set C of language constants

(ranged over by c) and a set B of basic types (ranged over by b). For example, we can take
constants to be booleans and integers: C = {true, false, 0, 1, -1, . . .}. B might then contain
Bool and Int; however, we also assume that, for every constant c, there is a “singleton” basic
type which corresponds to that constant alone (for example, a type for true, which will be a
subtype of Bool). We assume that a function B : B → P(C) assigns to each basic type the
set of constants of that type and that a function b(·) : C → B assigns to each constant c a
basic type bc such that B(bc) = {c}.

B Definition 2.1 (Types). The set T of types is the set of terms t coinductively produced by
the following grammar

t ::= ⊥ | b | t× t | t→ t | t ∨ t | ¬t | 0

and which satisfy two additional constraints: (1) regularity: the term must have a finite
number of different sub-terms; (2) contractivity: every infinite branch must contain an infinite
number of occurrences of the product or arrow type constructors.

We introduce the abbreviations t1 ∧ t2
def= ¬(¬t1 ∨ ¬t2), t1 \ t2

def= t1 ∧ (¬t2), and 1
def= ¬0.

We refer to b, ×, and → as type constructors, and to ∨, ¬, ∧, and \ as type connectives.
The regularity condition is necessary only to ensure the decidability of the subtyping

relation. Contractivity, instead, is crucial because it excludes terms which do not have a
meaningful interpretation as types or sets of values: for instance, the trees satisfying the
equations t = t ∨ t (which gives no information on which values are in it) or t = ¬t (which
cannot represent any set of values). Contractivity also ensures that the binary relation . ⊆ T 2

defined by t1 ∨ t2 . ti and ¬t . t is Noetherian (that is, strongly normalizing). This gives an
induction principle on T that we will use without further reference to the relation (e.g., in
Definition 2.3). This induction principle allows us to apply the induction hypothesis below
type connectives (union and negation), but not below type constructors (product and arrow).
As a consequence of contractivity, types cannot contain infinite unions or intersections.
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4:8 Semantic subtyping for non-strict languages

In the semantic subtyping approach we give an interpretation of types as sets; this
interpretation is used to define the subtyping relation in terms of set containment. We want
to see a type as the set of the values of the language that have that type. However, this
set of values cannot be used directly to define the interpretation, because of a problem of
circularity. Indeed, in a higher-order language, values include well-typed λ-abstractions;
hence to know which values inhabit a type we need to have already defined the type system
(to type λ-abstractions), which depends on the subtyping relation, which in turn depends on
the interpretation of types. To break this circularity, types are actually interpreted as subsets
of a set D, an interpretation domain, which is not the set of values, though it corresponds to
it intuitively (in [20], a correspondence is also shown formally: we return to this in Section 5).
We use the following domain which includes an explicit representation for divergence.

B Definition 2.2 (Interpretation domain). The interpretation domain D is the set of finite
terms d produced inductively by the following grammar

d ::= ⊥ | c | (d, d) | {(d, dΩ), . . . , (d, dΩ)} dΩ ::= d | Ω

where c ranges over the set C of constants and where Ω is such that Ω /∈ D.

The elements of D correspond, intuitively, to the results of the evaluation of expressions.
The element ⊥ stands for divergence. Expressions can produce as results constants or pairs
of results, so we include both in D. For example, a result can be a pair of a terminating
computation returning true and a diverging computation: we represent this by (true,⊥).
Finally, in a higher-order language, the result of a computation can be a function. Functions
are represented in this model by finite relations of the form {(d1, d1

Ω), . . . , (dn, dn
Ω)}, where

Ω (which is not in D) can appear in second components to signify that the function fails
(i.e., evaluation is stuck) on the corresponding input. This constant Ω is used to ensure
that 1→ 1 is not a supertype of all function types: if we used d instead of dΩ, then every
well-typed function could be subsumed to 1→ 1 and, therefore, every application could be
given the type 1, indenpendently from the type of its argument (see Section 4.2 of [20] for
details). The restriction to finite relations is standard in semantic subtyping [20]; we say
more about it in Section 5.

We define the interpretation JtK of a type t so that it satisfies the following equalities,
where DΩ = D ∪ {Ω} and where Pfin denotes the restriction of the powerset to finite subsets:

J⊥K = {⊥} JbK = B(b) Jt1 × t2K = Jt1K× Jt2K

Jt1 → t2K =
{
R ∈ Pfin(D ×DΩ)

∣∣∣ ∀(d, d′) ∈ R. d ∈ Jt1K =⇒ d′ ∈ Jt2K
}

Jt1 ∨ t2K = Jt1K ∪ Jt2K J¬tK = D \ JtK J0K = ∅

We cannot take the equations above directly as an inductive definition of J · K because
types are not defined inductively but coinductively. Therefore we give the following definition,
which validates these equalities and which uses the aforementioned induction principle on
types and structural induction on D.

B Definition 2.3 (Set-theoretic interpretation of types). We define a binary predicate (dΩ : t)
(“the element dΩ belongs to the type t”), where dΩ ∈ D ∪ {Ω} and t ∈ T , by induction on
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the pair (dΩ, t) ordered lexicographically. The predicate is defined as follows:

(⊥ : ⊥) = true
(c : b) = c ∈ B(b)

((d1, d2) : t1 × t2) = (d1 : t1) and (d2 : t2)
({(d1, d1

Ω), . . . , (dn, dn
Ω)} : t1 → t2) = ∀i ∈ {1, . . . , n}. if (di : t1) then (di

Ω : t2)
(d : t1 ∨ t2) = (d : t1) or (d : t2)

(d : ¬t) = not (d : t)
(dΩ : t) = false otherwise

We define the set-theoretic interpretation J · K : T → P(D) as JtK = { d ∈ D | (d : t) }.
Finally, we define the subtyping preorder and its associated equivalence relation as follows.

B Definition 2.4 (Subtyping relation). We define the subtyping relation ≤ and the subtyping
equivalence relation ' as t1 ≤ t2

def⇐⇒ Jt1K ⊆ Jt2K and t1 ' t2
def⇐⇒ (t1 ≤ t2) and (t2 ≤ t1) .

3 Language syntax and semantics

We consider a language based on that studied in [20]: a λ-calculus with recursive explicitly
annotated functions, pair constructors and destructors, and a typecase construct. This is the
source language in which programs are written. We define the semantics on a slightly different
internal language and show how to compile source programs to this internal language. The
main reason for introducing the internal language is that, to describe call-by-need semantics
in a small-step operational style, we need to add to the source language a let construct, a
form of explicit substitution which models sharing of computations (following a standard
approach [2,3,21]). The internal language is not an extension of the source language, however,
because we also restrict the allowed syntax of typecases to simplify the semantics.

First, we give some auxiliary definitions on types. We introduce the abbreviations:
〈t〉 def= t ∨ ⊥; t1 _ t2

def= 〈t1〉 → 〈t2〉; and t1 ⊗ t2
def= 〈t1〉 × 〈t2〉 . These are compact notations

for types including ⊥. The first, 〈t〉, is an abbreviated way to write the type of possibly
diverging expressions whose result has type t. The latter two are used in type annotations.
The intent is that programmers never write ⊥ explicitly. Rather, they use the _ and ⊗
constructors instead of→ and × so that ⊥ is introduced implicitly. The→ and × constructors
are never written directly in program. We define the following restricted grammars of types

T ::= b | T ⊗ T | T _ T | T ∨ T | ¬T | 0 τ ::= b | τ ⊗ τ | 0→ 1 | τ ∨ τ | ¬τ | 0

both of which are interpreted coinductively, with the same restrictions of regularity and
contractivity as in the definition of types. The types defined by these grammars are the only
ones which appear in programs: neither includes ⊥ explicitly.

In particular, functions are annotated with T types, where the ⊗ and _ forms are used
to ensure that every type below a constructor is of the form t ∨ ⊥.

Typecases, instead, check τ types. The only arrow type that can appear in them is 0→ 1,
which is the top type of functions (every well-typed function has this type). This restriction
means that typecases will not be able to test the types of functions, but only, at most,
whether a value is a function or not. This restriction is not imposed in [20], and actually it
could be lifted here without difficulty. We include it because the purpose of typecases in our
language is, to some extent, the modelling of pattern matching, which cannot test the type
of functions. Restricting typecases on arrow types also facilitates the extension of the system
with polymorphism and type inference.

TYPES 2018



4:10 Semantic subtyping for non-strict languages

3.1 Source language

The source language expressions are the terms e produced inductively by the grammar

e ::= x | c | µf : I. λx. e | e e | (e, e) | πi e | (x = e) ∈ τ ? e : e
I ::=

∧
i∈I T

′
i _ Ti |I| > 0

where f and x range over a set X of expression variables, c over the set C of constants, i in
πi e over {1, 2}, and where τ in (x = e) ∈ τ ? e : e is such that τ 6' 0 and τ 6' 1.

Source language expressions include variables, constants, λ-abstractions, applications,
pairs constructors (e, e) and destructors π1 e and π2 e, plus the typecase (x = e) ∈ τ ? e : e.

A λ-abstraction µf : I. λx. e is a possibly recursive function, with recursion parameter f
and argument x, both of which are bound in the body; the function is explicitly annotated
with its type I, which is a finite intersection of types of the form T ′ _ T .

A typecase expression (x = e0) ∈ τ ? e1 : e2 has the following intended semantics: e0 is
evaluated until it can be determined whether it has type τ or not, then the selected branch
(e1 if the result of e0 has type τ , e2 if it has type ¬τ : one of the two cases always occurs) is
evaluated in an environment where x is bound to the result of e0. Actually, to simplify the
presentation, we will give a non-deterministic semantics in which we allow to evaluate e0
more than what is needed to ascertain whether it has type τ .

In the syntax definition above we have restricted the types τ in typecases asking both
τ 6' 1 and τ 6' 0. A typecase checking the type 1 is useless: since all expressions have type 1,
it immediately reduces to its first branch. Likewise, a typecase checking the type 0 reduces
directly to the second branch. Therefore, the two cases are uninteresting to consider. We
forbid them because this allows us to give a simpler typing rule for typecases. Allowing them
is just a matter of adding two (trivial) typing rules specific to these cases, as we show later.

As customary, we consider expressions up to renaming of bound variables. In µf : I. λx. e,
f and x are bound in e. In (x = e0) ∈ τ ? e1 : e2, x is bound in e1 and e2.

We do not provide mechanisms to define cyclic data structures. For example, we do not
have a direct syntactic construct to define the infinitely nested pair (1, (1, . . . )). We can
define it by writing a fixpoint operator (which can be typed in our system since types can
be recursive) or by defining and applying a recursive function which constructs the pair.
A general letrec construct as in [2] might be useful in practice (for efficiency or to provide
greater sharing) but we omit it here since we are only concerned with typing.

3.2 Internal language

The internal language expressions are the terms e produced inductively by the grammar

e ::= x | c | µf : I. λx. e | e e | (e, e) | πi e | (x = ε) ∈ τ ? e : e | let x = e in e
ε ::= x | c | µf : I. λx. e | (ε, ε)

where metavariables and conventions are as in the source language. There are two differences
with respect to the source language. One is the introduction of the construct let x = e1 in e2,
which is a binder used to model sharing of computations in call-by-need semantics (in
let x = e1 in e2, x is bound in e2). The other difference is that typecases cannot check
arbitrary expressions, but only expressions of the restricted form given by ε. This restriction
simplifies the semantics of typecases.
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A source language expression e can be compiled to an internal language expression dee
as follows. Compilation is straightforward for all expressions apart from typecases:

dxe = x dce = c dµf : I. λx. ee = µf : I. λx. dee
de1 e2e = de1e de2e d(e1, e2)e = (de1e, de2e) dπi ee = πi dee

and for typecases it introduces a let binder to ensure that the checked expression is a variable:

d(x = e0) ∈ τ ? e1 : e2e = let y = de0e in (x = y) ∈ τ ? de1e : de2e

where y is chosen not free in e1 and e2. (The other forms for ε appear during reduction.)

3.3 Semantics
We define the operational semantics of the internal language as a small-step reduction relation
using call-by-need. The semantics of the source language is then given indirectly through the
translation. The choice of call-by-need rather than call-by-name was briefly motivated in the
Introduction and will be discussed more extensively in Section 4.

We first define the sets of answers (ranged over by a) and of values (ranged over by v) as
the subsets of expressions produced by the following grammars:

a ::= c | µf : I. λx. e | (e, e) | let x = e in a v ::= c | µf : I. λx. e

Answers are the results of evaluation. They correspond to expressions which are fully
evaluated up to their top-level constructor (constant, function, or pair) but which may
include arbitrary expressions below that constructor (so we have (e, e) rather than (a, a)).
Since they also include let bindings, they represent closures in which variables can be bound
to arbitrary expressions. Values are a subset of answers treated specially in a reduction rule.

The semantics uses evaluation contexts to direct the order of evaluation. A context C is
an expression with a hole (written [ ]) in it. We write C[e] for the expression obtained by
replacing the hole in C with e. We write Cpxeqy for C[e] when the free variables of e are not
bound by C: for example, let x = e1 in x is of the form C[x] – with C ≡ (let x = e1 in [ ]) –
but not of the form Cpxxqy; conversely, let x = e1 in y is both of the form C[y] and Cpxyqy.

Evaluation contexts E are the subset of contexts generated by the following grammar:

E ::= [ ] | E e | πi E | (x = F ) ∈ τ ? e : e | let x = e in E | let x = E in Epxxqy
F ::= [ ] | (F, ε) | (ε, F )

Evaluation contexts allow reduction to occur on the left of applications and below projections,
but not on the right of applications and below pairs. For typecases alone, the contexts allow
reduction also below pairs, since this reduction might be necessary to be able to determine
whether the expression has type τ or not. This is analogous to the behaviour of pattern
matching in lazy languages, which can force evaluation below constructors. The contexts for
let are from standard presentations of call-by-need [2, 21]. They allow reduction of the body
of the let, while they only allow reductions of the bound expression when it is required to
continue evaluating the body: this is enforced by requiring the body to have the form Epxxqy.

Figure 1 presents the reduction rules. They rely on the typeof function, which assigns
types to expressions of the form ε. It is defined as follows:

typeof(x) = 1 typeof(µf : I. λx. e) = 0→ 1

typeof(c) = bc typeof((ε1, ε2)) = typeof(ε1)× typeof(ε2)
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[Appl] (µf : I. λx. e) e′  let f = (µf : I. λx. e) in let x = e′ in e
[ApplL] (let x = e in a) e′  let x = e in a e′

[Proj] πi (e1, e2)  ei

[ProjL] πi (let x = e in a)  let x = e in πi a

[LetV] let x = v in Epxxqy  (Epxxqy)[v/x]
[LetP] let x = (e1, e2) in Epxxqy  let x1 = e1 in let x2 = e2 in (Epxxqy)[(x1,x2)/x]
[LetL] let x = (let y = e in a) in Epxxqy  let y = e in let x = a in Epxxqy

[Case1] (x = ε) ∈ τ ? e1 : e2  let x = ε in e1 if typeof(ε) ≤ τ
[Case2] (x = ε) ∈ τ ? e1 : e2  let x = ε in e2 if typeof(ε) ≤ ¬τ

[Ctx] E[e]  E[e′] if e  e′

Figure 1 Operational semantics.

[Appl] is the standard application rule for call-by-need: the application (µf : I. λx. e) e′
reduces to e prefixed by two let bindings that bind the recursion variable f to the function
itself and the parameter x to the argument e′. [ApplL] instead deals with applications with
a let expression in function position: it moves the application below the let. The rule is
necessary to prevent loss of sharing: substituting the binding of x to e in a would duplicate
e. Symmetrically, there are two rules for pair projections, [Proj] and [ProjL].

There are three rules for let expressions. They rewrite expressions of the form let x =
a in Epxxqy: that is, let bindings where the bound expression is an answer and the body is an
expression whose evaluation requires the evaluation of x. If a is a value v, [LetV] applies
and the expression is reduced by just replacing v for x in the body. If a is a pair, [LetP]
applies: the occurrences of x in the body are replaced with a pair of variables (x1, x2) and
each xi is bound to ei by new let bindings (replacing x directly by (e1, e2) would duplicate
expressions). Finally, the [LetL] rule just moves a let binding out of another.

There are two rules for typecases, by which a typecase construct (x = ε) ∈ τ ? e1 : e2 can
be reduced to either branch, introducing a new binding of x to ε. The rules apply only if
either of typeof(ε) ≤ τ or typeof(ε) ≤ ¬τ holds. If neither holds, then the two rules do not
apply, but the [Ctx] rule can be used to continue the evaluation of ε.

Comparison to other presentations of call-by-need. These reduction rules mirror those
from standard presentations of call-by-need [2, 3, 21]. A difference is that, in [LetV] or
[LetP], we replace all occurrences of x in Epxxqy at once, whereas in the cited presentations
only the occurrence in the hole is replaced: for example, in [LetV] they reduce to Epxvqy
instead of (Epxxqy)[v/x]. Our [LetV] rule is mentioned as a variant in [21, p. 38]. We use it
because it simplifies the proof of subject reduction while maintaining an equivalent semantics.

Non-determinism in the rules. The semantics is not deterministic. There are two sources
of non-determinism, both related to typecases. One is that the contexts F include both (F, ε)
and (ε, F ) and thereby impose no constraint on the order with which pairs are examined.

The second source of non-determinism is that the contexts for typecases allow us to
reduce the bindings of variables in the checked expression even when we can already apply
[Case1] or [Case2]. For example, take let x = e in (y = (3, x)) ∈ (Int ⊗ 1) ? e1 : e2.
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[S-Subsum]
Γ ` e : t′

Γ ` e : t
t′ ≤ t [S-Var]

Γ ` x : t
Γ(x) = t [S-Const]

Γ ` c : bc

[S-Abstr]
∀i ∈ I. Γ, f : I, x : 〈T ′i 〉 ` e : 〈Ti〉

Γ ` (µf : I. λx. e) : I
I =

∧
i∈I

T ′
i _ Ti

[S-Appl]
Γ ` e1 : 〈t′ → t〉 Γ ` e2 : t′

Γ ` e1 e2 : 〈t〉

[S-Pair]
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1, e2) : t1 × t2
[S-Proj]

Γ ` e : 〈t1 × t2〉
Γ ` πi e : 〈ti〉

[S-Case]
Γ ` e0 : 〈t′〉

(
either t′ ≤ ¬τ or Γ, x : (t′ ∧ τ) ` e1 : t

) (
either t′ ≤ τ or Γ, x : (t′ \ τ) ` e2 : t

)
Γ `

(
(x = e0) ∈ τ ? e1 : e2

)
: 〈t〉

Figure 2 Typing rules for the source language.

It can be immediately reduced to let x = e in let y = (3, x) in e1 by applying [Ctx] and
[Case1], because typeof((3, x)) = b3× 1 ≤ Int⊗ 1. However, we can also use [Ctx] to reduce
e, if it is reducible: we do so by writing the expression as let x = e in Epxxqy, where E is
(y = (3, [ ])) ∈ (Int⊗ 1) ? e1 : e2. To model a lazy implementation more faithfully, we should
forbid this reduction and state that (x = F ) ∈ τ ? e : e is a context only if it cannot be
reduced by [Case1] or [Case2].

In both cases, we have chosen a non-deterministic semantics because it is less restrictive:
as a consequence, the soundness result will also hold for semantics which fix an order.

4 Type system

We define two typing relations for the source language and the internal language.
A type environment Γ is a finite mapping of type variables to types. We write ∅ for the

empty environment. We say that a type environment Γ is well-formed if, for all (x : t) ∈ Γ,
we have t 6' 0. Since we want to ensure that the empty type is never derivable, we will only
consider well-formed type environments in the soundness proof.

4.1 Type system for the source language
Figure 2 presents the typing rules for the source language. The subsumption rule [S-Subsum]
is used to apply subtyping. Notably, it allows expressions with surely converging types (like
a pair with type Int × Bool) to be used where diverging types are expected: t ≤ 〈t〉 holds
for every t (since JtK ⊆ JtK ∪ {⊥} = Jt ∨ ⊥K = J〈t〉K). The rules [S-Var] and [S-Const] for
variables and constants are standard. The [S-Abstr] rule for functions is also straightforward.
Function interfaces have the form

∧
i∈I T

′
i _ Ti, that is,

∧
i∈I〈T ′i 〉 → 〈Ti〉 (expanding the

definition of _). To type a function µf : I. λx. e, we check that it has all the arrow types in
I. Namely, for every arrow T ′i _ Ti (i.e., 〈T ′i 〉 → 〈Ti〉), we assume that x has type 〈T ′i 〉 and
that the recursion variable f has type I, and we check that the body has type 〈Ti〉.

The [S-Appl] rule is the first one that deals with ⊥ in a non-trivial way. In call-by-value
semantic subtyping systems, to type an application e1 e2 with a type t, the standard modus
ponens rule (e.g., the one from the simply-typed λ-calculus) is used: e1 must have type t′ → t
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and e2 must have type t′. Here, instead, we allow the function to have the type 〈t′ → t〉 (i.e.,
(t′ → t) ∨ ⊥) to make application possible also when e1 might diverge. We use 〈t〉 as the
type of the whole application, signifying that it might diverge. As anticipated, we do not
try to predict whether applications will converge. The rule [S-Pair] for pairs is standard;
[S-Proj] handles ⊥ as in applications.

[S-Case] is the most complex rule, but it corresponds closely to that of [20]. Strictly
speaking it is not a single inference rule, but a shorthand way of writing four distinct rules
with partially different premises and side conditions, here abbreviated in the form “either . . .
or . . . ”. To type (x = e0) ∈ τ ? e1 : e2 we first type e0 with some type 〈t′〉. Then, we type
the two branches e1 and e2. We do not always have to type both (because of the “either
. . . or . . . ” conditions) but for now assume that we do. While typing either branch, we
extend the environment with a binding for x. For the first branch, the type for x is t′ ∧ τ , a
subtype of 〈t′〉: this type is sound because the first branch is only evaluated if e0 evaluates
to an answer (meaning we can remove the union with ⊥ in 〈t′〉) and if this answer has type
τ . Conversely, for the second branch, x is given type t′ \ τ , that is, t′ ∧ ¬τ . Finally, if the
branches have type t, the whole typecase is given type 〈t〉 since its evaluation may diverge in
case e0 diverges.

Now let us consider the conditions “either . . . or . . . ”. We need to type the first branch only
when t′ 6≤ ¬τ ; if, conversely, t′ ≤ ¬τ , then we know that the first branch can never be selected
(an expression of type ¬τ cannot reduce to a result of type τ) and thus we do not need to type
it. The reasoning for the second branch is analogous. The two conditions are pivotal to type
overloaded functions defined by typecases. For example, a negation function implemented as
µf : I. λx. (y = x) ∈ btrue ? false : true, with I = (btrue → bfalse) ∧ (bfalse → btrue), could not be
typed without these conditions.

In the syntax we have restricted the type τ in typecases requiring τ 6' 1 and τ 6' 0.
Typecases where these conditions do not hold are uninteresting, since they do not actually
check anything. The rule [S-Case] would be unsound for them because these typecases can
reduce to one branch even if e0 is a diverging expression that does not evaluate to an answer.
For instance, if ē has type ⊥ (that is, 〈0〉), then (x = ē) ∈ Int ? 1 : 2 could be given any
type, including unsound ones like 〈Bool〉. To allow these typecases, we could add the side
condition “τ 6' 1 and τ 6' 0” to [S-Case] and give two specialized rules as follows:

Γ ` e0 : t′ Γ, x : t′ ` e1 : t
Γ `

(
(x = e0) ∈ τ ? e1 : e2

)
: 〈t〉

τ ' 1
Γ ` e0 : t′ Γ, x : t′ ` e2 : t

Γ `
(
(x = e0) ∈ τ ? e1 : e2

)
: 〈t〉

τ ' 0

4.2 Type system for the internal language
Figure 3 presents the typing rules for the internal language. These include a new rule for let
expressions and a modified rule for λ-abstractions; the other rules are the same as those for
the source language (except for the different syntax of typecases).

The [S-Abstr] rule for the source language derived the type I for µf : I. λx. e. The
rule for the internal language, instead, allows us to derive a subtype of I of the form I ∧ t,
where t is an intersection of negations of arrow types. The arrows in t can be chosen
freely providing that the intersection I ∧ t remains non-empty. This rule (directly taken
from [20]) can look surprising. For example, it allows us to type µf : (Int _ Int). λx. x as
(Int _ Int) ∧ ¬(Bool→ Bool) even though, disregarding the interface, the function does map
booleans to booleans. But the language is explicitly typed, and thus we can’t ignore interfaces
(indeed, the function does not have type Bool→ Bool). The purpose of the rule is to ensure
that, given any function and any type t, either the function has type t or it has type ¬t.
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[Subsum]
Γ ` e : t′

Γ ` e : t
t′ ≤ t [Var]

Γ ` x : t
Γ(x) = t [Const]

Γ ` c : bc

[Abstr]
∀i ∈ I. Γ, f : I, x : 〈T ′i 〉 ` e : 〈Ti〉

Γ ` (µf : I. λx. e) : I ∧ t

I =
∧

i∈I
T ′

i _ Ti

t =
∧

j∈J
¬(t′j → tj)

I ∧ t 6' 0

[Appl]
Γ ` e1 : 〈t′ → t〉 Γ ` e2 : t′

Γ ` e1 e2 : 〈t〉

[Pair]
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1, e2) : t1 × t2
[Proj]

Γ ` e : 〈t1 × t2〉
Γ ` πi e : 〈ti〉

[Case]
Γ ` ε : 〈t′〉

(
either t′ ≤ ¬τ or Γ, x : (t′ ∧ τ) ` e1 : t

) (
either t′ ≤ τ or Γ, x : (t′ \ τ) ` e2 : t

)
Γ `

(
(x = ε) ∈ τ ? e1 : e2

)
: 〈t〉

[Let]
Γ ` e1 :

∨
i∈I ti ∀i ∈ I. Γ, x : ti ` e2 : t
Γ ` let x = e1 in e2 : t

Figure 3 Typing rules for the internal language.

This property matches the intuitive view of types as sets of values that underpins semantic
subtyping. While in our system we do not really interpret types as sets of values (since ⊥
is non-empty and yet uninhabited by values), the property is still needed to prove subject
reduction. A consequence of this property is that a value (i.e., a constant or a λ-abstraction)
of type t1 ∨ t2 has always either type t1 or type t2. (In the case of constants, this is obtained
directly by reasoning on subtyping, so we don’t need a rule to assign negation types to them.)

The [Let] rule combines a standard rule for (monomorphic) binders with a union
disjunction rule: it lets us decompose the type of e1 as a union and type the body of the
let once for each summand in the union. The purpose of this rule was hinted at in the
Introduction and will be discussed again in Section 4.3, where we show that this rule –
combined with the property on union types above – is central to this work: it is the key
technical feature that ensures the soundness of the system (see in particular Lemma 4.9 later
on). For the time being, just note that the type of e1 can be decomposed in arbitrarily complex
ways by applying subsumption. For example, if e1 is a pair of type (Int∨Bool)× (Int∨Bool),
by applying [Subsum] we can type it as (Int× Int)∨ (Int×Bool)∨ (Bool× Int)∨ (Bool×Bool)
and then type e2 once for each of the four summands.

The [Abstr] and [Let] rules introduce non-determinism in the choice of the negations to
introduce and of how to decompose types as unions. This would not complicate a practical
implementation, since a typechecker would only need to check the source language.

4.3 Properties of the type system
Full results about the type system, including proofs, are available in the extended version [22].
Here we report the main results and describe the technical difficulties we met to obtain them.

First, we can easily show by induction that compilation from the source language to the
internal language preserves typing.

B Proposition 4.1. If Γ ` e : t, then Γ ` dee : t.
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We show the soundness property for our type system (“well-typed programs do not go
wrong”), following the well-known syntactic approach of Wright and Felleisen [26], by proving
the two properties of progress and subject reduction for the internal language.

B Theorem 4.2 (Progress). Let Γ be a well-formed type environment. Let e be an expression
that is well-typed in Γ (that is, Γ ` e : t holds for some t). Then e is an answer, or e is of the
form Epxxqy, or ∃e′. e  e′.

B Theorem 4.3 (Subject reduction). Let Γ be a well-formed type environment. If Γ ` e : t
and e  e′, then Γ ` e′ : t.

The statement of progress is adapted to call-by-need: it applies also to expressions that
are typed in a non-empty Γ and it allows a well-typed expression to have the form Epxxqy.

As a corollary of these results, we obtain the following statement for soundness.

B Corollary 4.4 (Type soundness). Let e be a well-typed, closed expression (that is, ∅ ` e : t
holds for some t). If e ∗ e′ and e′ cannot reduce, then e′ is an answer and ∅ ` e′ : t.

The soundness result for the internal language implies soundness for the source language.

B Corollary 4.5 (Type soundness for the source language). Let e be a well-typed, closed source
language expression (that is, ∅ ` e : t holds for some t). If dee ∗ e′ and e′ cannot reduce,
then e′ is an answer and ∅ ` e′ : t.

We summarize here some of the crucial properties required to derive the results above.
We also resume the discussion of the motivations behind our choice of call-by-need.

We introduced the ⊥ type for diverging expressions because assigning the type 0 to any
expression causes unsoundness. We must hence ensure that no expression can be assigned
the type 0. In well-formed type environments, we can prove this easily by induction.

B Lemma 4.6. Let Γ be a well-formed type environment. If Γ ` e : t, then t 6' 0.

Call-by-name and call-by-need. In the Introduction, we have given two reasons for our
choice of call-by-need rather than call-by-name. One is that the system is only sound for
call-by-name if we make assumptions on the semantics that might not hold in an extended
language: for example, introducing an expression that can reduce non-deterministically
either to an integer or to a boolean would break soundness. The other reason is that, even
when these assumptions hold (and when presumably call-by-name and call-by-need are
observationally equivalent), call-by-need is better suited to the soundness proof.

Let us review the example from the Introduction. Consider the function µf : I. λx. (x, x)
in the source language, where I = (Int _ Int⊗ Int) ∧ (Bool _ Bool⊗ Bool). It is well-typed
with type I. By subsumption, it also has the type (Int ∨ Bool) _ (Int⊗ Int) ∨ (Bool⊗ Bool),
which is a supertype of I: in general we have (t′1 → t1) ∧ (t′2 → t2) ≤ (t′1 ∨ t′2) → (t1 ∨ t2)
and therefore (t′1 _ t1) ∧ (t′2 _ t2) ≤ (t′1 ∨ t′2) _ (t1 ∨ t2).

Therefore, if ē has type Int ∨ Bool ∨ ⊥, the application (µf : I. λx. (x, x)) ē is well-typed
with type (Int⊗ Int) ∨ (Bool⊗ Bool) ∨ ⊥. Assume that ē can reduce either to an integer or
to a boolean: for instance, assume that both ē 3 and ē true can occur.

With call-by-name, (µf : I. λx. (x, x)) ē reduces to (ē, ē); then, the two occurrences of ē
reduce independently. It is intuitively unsound to type it as (Int⊗ Int) ∨ (Bool⊗ Bool) ∨ ⊥:
there is no guarantee that the two components of the pair will be of the same type once they
are reduced. We can find terms that break subject reduction. Assume for example that there
exists a boolean “and” operation; then this typecase is well-typed (as 〈Bool〉) but unsafe:

(y = (µf : I. λx. (x, x)) ē) ∈ (Int⊗ Int) ? true : (π1 y and π2 y) .
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Since the application has type 〈(Int⊗ Int) ∨ (Bool⊗ Bool)〉, to type the second branch of the
typecase we can assume that y has the type ((Int⊗ Int) ∨ (Bool⊗ Bool)) \ (Int⊗ Int), which
is a subtype of Bool⊗ Bool (it is actually equivalent to (Bool⊗ Bool) \ (⊥×⊥)). Therefore,
both π1 y and π2 y have type 〈Bool〉. We deduce then that (π1 y and π2 y) has type 〈Bool〉
as well (we assume that “and” is defined so as to handle arguments of type ⊥ correctly).

A possible reduction in a call-by-name semantics would be the following:

(y = (µf : I. λx. (x, x)) ē) ∈ (Int⊗ Int) ? true : (π1 y and π2 y)
 (y = (ē, ē)) ∈ (Int⊗ Int) ? true : (π1 y and π2 y)

(the typecase must force the evaluation of (ē, ē) to know which branch should be selected)

 ∗ (y = (true, ē)) ∈ (Int⊗ Int) ? true : (π1 y and π2 y)

(now we know that the first branch is impossible, so the second is chosen)

 π1 (true, ē) and π2 (true, ē)  true and ē  ē  3

The integer 3 is not a Bool: this disproves subject reduction for call-by-name if the language
contains expressions like ē. No such expressions exist in our current language, but they could
be introduced if we extended it with non-deterministic constructs like rnd(t) from [20].

Since we use a call-by-need semantics, instead, expressions such as ē do not pose problems
for soundness. With call-by-need, (µf : I. λx. (x, x)) ē reduces to let f = µf : I. λx. (x, x) in
let x = ē in (x, x). The occurrences of x in the pair are only substituted when ē has been
reduced to an answer, so they cannot reduce independently.

To ensure subject reduction, we allow the rule for let bindings to split unions in the type
of the bound term. This means that the following derivation is allowed.

Γ ` ē : Int ∨ Bool Γ, x : Int ` (x, x) : Int⊗ Int Γ, x : Bool ` (x, x) : Bool⊗ Bool
Γ ` let x = ē in (x, x) : (Int⊗ Int) ∨ (Bool⊗ Bool)

Proving subject reduction: main lemmas. While the typing rule for let bindings is simple
to describe, proving subject reduction for the reduction rules [LetV] and [LetP] (those
that actually perform substitutions) is challenging. For the reduction let x = v in Epxxqy  
(Epxxqy)[v/x], we show the following results.

B Lemma 4.7. Let v be a value that is well-typed in Γ (i.e., Γ ` v : t′ holds for some t′).
Then, for every type t, we have either Γ ` v : t or Γ ` v : ¬t.

B Corollary 4.8. If Γ ` v :
∨

i∈I ti, then there exists an i0 ∈ I such that Γ ` v : ti0 .

Consider for example the reduction let x = v in (x, x)  (v, v). If v has type Int ∨ Bool,
then letx = v in (x, x) has type (Int⊗ Int)∨ (Bool⊗Bool) as in the derivation above. Without
this corollary, for (v, v) we could only derive the type (Int∨Bool)× (Int∨Bool), which is not
a subtype of the type deduced for the redex. Applying the corollary, we deduce that v has
either type Int or Bool; in both cases (v, v) can be given the type (Int⊗ Int) ∨ (Bool⊗ Bool).

These results are also needed in semantic subtyping for strict languages to prove subject
reduction for applications. To ensure them, following [20], we have added in the type system
for the internal language the possibility of typing functions with negations of arrow types.

The reduction let x = (e1, e2) in Epxxqy  let x1 = e1 in let x2 = e2 in (Epxxqy)[(x1,x2)/x],
instead, is dealt with by the following lemma.
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B Lemma 4.9. If Γ ` (e1, e2) :
∨

i∈I ti, then there exist two types
∨

j∈J tj and
∨

k∈K tk such
that Γ ` e1 :

∨
j∈J tj , Γ ` e2 :

∨
k∈K tk, and ∀j ∈ J. ∀k ∈ K. ∃i ∈ I. tj × tk ≤ ti.

This is the result we need for the proof: let x = (e1, e2) in Epxxqy is typed by assigning a
union type to (e1, e2) and then typing Epxxqy once for every ti in the union, while the reduct
letx1 = e1 in letx2 = e2 in (Epxxqy)[(x1,x2)/x] must be typed by typing e1 and e2 with two union
types and then typing the substituted expression with every product tj × tk. Showing that
each tj × tk is a subtype of a ti ensures that the substituted expression is well-typed. The
proof consists in recognizing that the union

∨
i∈I ti must be a decomposition into a union of

some type t1× t2 and that therefore t1 and t2 can be decomposed separately into two unions.
These results rely on the distinction between types that contain ⊥ and those that do

not: they would not hold if we assumed that every type implicitly contained ⊥. For
instance, adding ⊥ implicitly to any type would essentially mean interpreting products as
Jt1 × t2K = (Jt1K ∪ {⊥})× (Jt2K ∪ {⊥}) instead of Jt1 × t2K = Jt1K× Jt2K. This would make
Lemma 4.9 fail. Its proof relies on being able to find, given any type t such that t ≤ 1× 1
(that is, a type whose set-theoretic interpretation consists entirely of pairs), a union type∨

i∈I t
1
i × t2i such that t '

∨
i∈I t

1
i × t2i (Lemma A.10 in the extended version [22]). This

would not hold with the modified interpretation: for example, the type (Int× Bool) \ (0× 0)
is a subtype of 1× 1 but cannot be expressed as a union of product types.

Despite some technical difficulties, call-by-need seems quite suited to the soundness proof.
Hence, it would probably be best to use it for the proof even if we assumed explicitly that
the language does not include problematic expressions like rnd(t). Soundness would then
also hold for a call-by-name semantics that it is observationally equivalent to call-by-need.

5 A discussion on the interpretation of types

We have shown in the previous sections that a set-theoretic interpretation of types, adapted
to take into account divergence (Definition 2.3), can be the basis for designing a sound type
system for languages with lazy evaluation. In this section, we analyze the relation between
such an interpretation and the expressions that are actually definable in the language.

Let us first recap some notions from [20]. The initial intuition which guides semantic
subtyping is to see a type as the set of values of that type in the language we consider: for
example, to see Int → Bool as the set of λ-abstractions of type Int → Bool. However, we
cannot directly define the interpretation of a type t as the set { v |∅ ` v : t }, because the
typing relation ∅ ` v : t depends on the definition of subtyping, which depends in turn on
the interpretation of types. Frisch, Castagna and Benzaken [20] avoid this circularity by
giving an interpretation J · K of types as subsets of an interpretation domain where finite
relations replace λ-abstractions.

This interpretation (like ours except that there is no ⊥) is used to define subtyping and
the typing relation. Then, the following result is shown:

∀t1, t2. Jt1K ⊆ Jt2K ⇐⇒ Jt1KV ⊆ Jt2KV where JtKV
def= { v |∅ ` v : t }

This result states that a type t1 is a subtype of a type t2 (t1 ≤ t2, which is defined as
Jt1K ⊆ Jt2K) if and only if every value v that can be assigned the type t1 can also be assigned
the type t2. Showing the result above implies that, once the type system is defined, we can
indeed reason on subtyping by reasoning on inclusion between sets of values.1

1 The circularity is avoided since the typing relation in { v |∅ ` v : t } is defined using J · K and not J · KV .
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This result is useful in practice, since, when typechecking fails because a subtyping
judgment t1 ≤ t2 does not hold, we know that there exists a value v such that ∅ ` v : t1
holds while ∅ ` v : t2 does not. This value v can be shown as a witness to the unsoundness
of the program while reporting the error.2 Moreover, at a more foundational level, the result
nicely formalizes the intuition that types statically approximate computations, in the sense
that a type t corresponds to the set of all possible values of expressions of type t.

In the following we discuss how an analogous result could hold with a non-strict semantics.
First of all, clearly the correspondence cannot be between interpretations of types and sets
of values as in [20], since then we would identify ⊥ with 0. Hence we should consider, rather
than values, sets of “results” of some kind, including (a representation of) divergence.

However, whichever notion of result we consider, it is hard to define an interpretation
domain of types such that the desired correspondence holds, that is, such that a type t
corresponds to the set of all possible results of expressions of type t. As the reader can expect,
the key challenge is to provide an interpretation where an arrow type t1 → t2 corresponds, as
it seems sensible, to the set of λ-abstractions { (µf : I. λx. e) |∅ ` (µf : I. λx. e) : t1 → t2 }.
For instance, our proposed definition of J · K is sound with respect to this correspondence, but
not complete, that is, not precise enough. We devote the rest of this section to explain why
and to discuss the possibility of obtaining a complete definition. Consider the type Int→ 0.
By Definition 2.3, we have

JInt→ 0K = {R ∈ Pfin(D ×DΩ) | ∀(d, d′) ∈ R. d ∈ JIntK =⇒ d′ ∈ J0K }
= {R ∈ Pfin(D ×DΩ) | ∀(d, d′) ∈ R. d /∈ JIntK }

(since J0K = ∅, the implication can only be satisfied if d /∈ JIntK). This type is not empty,
therefore, if a result similar to that of [20] held, we would expect to be able to find a function
µf : I. λx. e such that ∅ ` (µf : I. λx. e) : Int→ 0. Alas, no such function can be defined in
our language. This is easy to check: interfaces must include ⊥ in the codomain of every
arrow (since they use the _ form), so no interface can be a subtype of Int→ 0. Lifting this
syntactic restriction to allow any arrow type in interfaces would not solve the problem: for a
function to have type Int→ 0, its body must have type 0, which is impossible, and indeed
must be impossible for the system to be sound. It is therefore to be expected that Int→ 0
is uninhabited in the language. This means that our current definition of JInt → 0K as a
non-empty type is imprecise.

Changing J · K to make the types of the form t→ 0 empty is easy, but it does not solve
the problem in general. Using intersection types we can build more challenging examples: for
instance, consider the type (Int∨Bool→ Int) ∧ (Int∨String→ Bool). While neither codomain
is empty, and neither arrow should be empty, the whole intersection should: no function,
when given an Int as argument, can return a result which is both an Int and a Bool.

In the call-by-value case, it makes sense to have Int→ 0 and the intersection type above
be non-empty, because they are inhabited by functions that diverge on integers. This is
because divergence is not represented in the types (or, to put it differently, because it is
represented by the type 0). A type like t1 → t2 is interpreted as a specification of partial
correctness: a function of this type, when given an argument in t1, either diverges or returns
a result in t2. In our system, we have introduced a separate non-empty type for divergence.
Hence, we should see a type as specifying total correctness, where divergence is allowed only
for functions whose codomain includes ⊥.

2 In case of a type error, the CDuce compiler shows to the programmer a default value for the type t1 \ t2.
Some heuristics are used to build a value in which only the part relevant to the error is detailed.
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Let us look again at the current interpretation of arrow types.

Jt1 → t2K = {R ∈ Pfin(D ×DΩ) | ∀(d, d′) ∈ R. d ∈ Jt1K =⇒ d′ ∈ Jt2K }

An arrow type is seen as a set of finite relations: we represent functions extensionally and
approximate them with all their finite subsets. We use relations instead of functions to
account for non-determinism. Within a relation, a pair (d, d′) means that the function returns
the output d′ on the input d; a pair (d,Ω) that the function crashes on d; divergence is
represented simply by the absence of a pair. In this way, as said above, a function diverging
on some element of Jt1K could erroneously belong to the set even if Jt2K does not contain ⊥.

To formalize the requirement of totality on the domain, we could modify the definition in
this way:

Jt1 → t2K = {R ∈ Pfin(D×DΩ) | dom(R) ⊇ Jt1K and ∀(d, d′) ∈ R. d ∈ Jt1K =⇒ d′ ∈ Jt2K }

(where dom(R) = { d | ∃d′∈D. (d, d′) ∈ R }).
However, if we consider only finite relations as above, the definition makes no sense,

since Jt1K ⊆ dom(R) can hold only when Jt1K is finite, whereas types can have infinite
interpretations. On the contrary, if we allowed relations to be infinite, then the set D would
have to satisfy the equality D = C ] (D ×D) ] P(D ×DΩ) (where ] denotes disjoint union),
but no such set exists: the cardinality of P(D×DΩ) is always strictly greater than that of D.

Frisch, Castagna and Benzaken [20] point out this problem and use finite relations in
the domain to avoid it. They motivate this choice with the observation that, while finite
relations are not really appropriate to describe functions in a language (since these might
have an infinite domain), they are suitable to describe types as far as subtyping is concerned.
Indeed, we do not really care what the elements in the interpretation of a type are, but only
how they are related to those in the interpretations of other types. It can be shown that

∀t1, t′1, t2, t′2. Jt′1 → t1K ⊆ Jt′2 → t2K ⇐⇒ (Jt′1K ⇀ Jt1K) ⊆ (Jt′2K ⇀ Jt2K)

where X ⇀ Y
def= {R ∈ P(D × DΩ) | ∀(d, d′) ∈ R. d ∈ X =⇒ d′ ∈ Y } builds the set of

possibly infinite relations. This can be generalized to more complex types:
q∧

i∈P t
′
i → ti

y
⊆

q∨
i∈N t′i → ti

y
⇐⇒

⋂
i∈P

(
Jt′iK ⇀ JtiK

)
⊆
⋃

i∈N

(
Jt′iK ⇀ JtiK

)
.

In [20], the authors argue that the restriction to finite relations does not compromise the
precision of subtyping. For reasons of space we do not elaborate further on this, and we
direct the interested reader to their work and the notions of extensional interpretation and
of model therein.

Let us try to proceed analogously in our case: that is, find a new interpretation of types
that matches the behaviour of possibly infinite relations that are total on their domain, while
introducing an approximation to ensure that the domain is definable. The latter point means,
notably, that functions must be represented as finite objects. The following definition of a
model specifies the properties that such an interpretation should satisfy.

B Definition 5.1 (Model). A function L · M : T → P(D) is a model if the following hold:
the set D satisfies D = {⊥} ] C ] (D ×D) ] Dfun for some set Dfun;
for all b, t, t1, and t2,

L⊥M = {⊥} LbM = B(b) Lt1 × t2M = Lt1M× Lt2M Lt1 → t2M ⊆ L0→ 1M = Dfun

Lt1 ∨ t2M = Lt1M ∪ Lt2M L¬tM = D \ LtM L0M = ∅
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for every finite, non-empty intersection
∧

i∈P t
′
i → ti and every finite union

∨
i∈N t′i → ti,

L
∧

i∈P t
′
i → tiM ⊆ L

∨
i∈N t′i → tiM ⇐⇒

⋂
i∈P

(
Lt′iM Þ LtiM

)
⊆
⋃

i∈N

(
Lt′iM Þ LtiM

)
where X ÞY

def= {R ∈ P(D ×D) | dom(R) ⊇ X and ∀(d, d′) ∈ R. d ∈ X =⇒ d′ ∈ Y }.

We set three conditions for an interpretation of types L · M : T → P(D) to be a model.
The first constrains D to have the same structure as D, except that we do not fix the subset
Dfun in which arrow types are interpreted. The second condition fixes the definition of L · M
completely except for arrow types. The third condition ensures that subtyping on arrow
types behaves as set containment between the sets of relations that are total on the domains
of the arrow types.3

An interesting result is that, even though we do not know whether an interpretation of
types which is a model can actually be found, we can compare a hypothetical model with the
interpretation J · K defined in Section 2. Indeed J · K turns out to be a sound approximation of
every model; that is, the subtyping relation ≤ defined in Definition 2.4 from J · K is contained
in every subtyping relation ≤L M defined from some model L · M. We have proven that this
holds for non-recursive types:

B Proposition 5.2. Let L · M : T → P(D) be a model. Let t1 and t2 be two finite (i.e.,
non-recursive) types. If Jt1K ⊆ Jt2K, then Lt1M ⊆ Lt2M.

We conjecture that the result holds for recursive types too, but this proof is left for future
work.

Showing that L · M exists would be important to understand the connection between our
types and the semantics. To use L · M to define subtyping for the use of a typechecker, though,
we would also need to show that the resulting definition is decidable. Otherwise, J · K would
remain the definition used in a practical implementation since it is sound and decidable,
though less precise.

6 Conclusion

We have shown how to adapt the framework of semantic subtyping [20] to languages with
non-strict semantics. Our type system uses the subtyping relation from [20] unchanged
(except for the addition of ⊥), while the typing rules are reworked to avoid the pathological
behaviour of semantic subtyping on empty types. Notably, typing rules for constructs like
application and projection must handle ⊥ explicitly. This ensures soundness for call-by-need.

This approach ensures that the subtyping relation still behaves set-theoretically: we can
still see union, intersection, and negation in types as the corresponding operations on sets.
We can still use intersection types to express overloading.

The type ⊥ we introduce has no analogue in well-known type systems like the simply
typed λ-calculus or Hindley-Milner typing. However, ⊥ never appears explicitly in programs
(it does not appear in types of the forms T and τ given at the beginning of Section 3). Hence,
programmers do not need to use it and to consider the difference between terminating and
non-terminating types while writing function interfaces or typecases. Still, sub-expressions
of a program can have types with explicit ⊥ (e.g., the type Int ∨ ⊥). Such types are not
expressible in the grammar of types visible to the programmer. Accordingly, error reporting

3 We do not use the error element Ω in the definition of X ÞY , because the totality requirement makes
it unnecessary: errors on a given input can be represented in a relation by the absence of a pair.
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is required to be more elaborated, to avoid mentioning internal types that are unknown to
the programmer.

A different approach to use semantic subtyping with non-strict languages would be to
change the interpretation of types (and, as a result, the definition of subtyping) to avoid the
pathological behaviour on 0, and then to use standard typing rules.

We have explored this alternative approach, but we have not found it promising. A modi-
fied subtyping relation loses important properties – especially results on the decomposition
of product types – that we need to prove soundness via subject reduction. The approach
we have adopted here is more suited to this technical work. However, a modified subtyping
relation could yield an alternative type system for the source language, provided that we can
relate it to the current system for the internal language.

We also plan to study more expressive typing rules that can track termination with
some precision. For example, we could change the application rule so that it does not
always introduce ⊥. In function interfaces, some arrows could include ⊥ and some could
not: then, overloaded function types would express that a function behaves differently on
terminating or diverging arguments. For example, the function λx. x+ 1 could have type
(Int→ Int) ∧ (⊥ → ⊥), while λx. 3 could have type 1→ Int: the first diverges on diverging
arguments, the other always terminates. It would be interesting for future work to explore
forms of termination analysis to obtain greater precision. The difficulty is to ensure that the
type 0 remains uninhabited and that all diverging expressions still have types that include
⊥. This is trivial in the current system, but it is no longer straightforward with more refined
typing rules.

A further direction for future work is to extend the language and the type system we
have considered with more features. Notably, polymorphism, gradual typing, and record
types are needed to be able to type effectively the Nix Expression Language, which was the
starting inspiration for our work.
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