Secure Safe Ambients

Michele Bugliesi

Universita “Ca’ Foscari”, Venice

michele@dsi.unive.it

Abstract. Secure Safe Ambier(SSA) are a typed variant &afe
Ambientg[9], whose type system allows behavioral invariants of
ambients to be expressed and verified. The most significaetas
of the type system is its ability to captupethexplicit andimplicit
process and ambient behavior: process types account nofarnl
immediate behavior, but also for the behavior resultingrfrca-
pabilities a process acquires during its evolution in a igigen-
text. Based on that, the type system provides for statictieteof
security attacks such a@sojan Horsesand other combinations of
malicious agents.

We study the type system of SSA, define algorithms for typelche
ing and type reconstruction, define powerful languagesxXpress-
ing security properties, and study a distributed versio8 ®A and
its type system. For the latter, we show that distributee tyfpeck-
ing ensures security even in ill-typed contexts, and disdwsv it
relates to the security architecture of the Java Virtual Mae.

1. INTRODUCTION

Mobile Ambientg5] are named agents or locations that enclose
collections of running processes, possibly including egstub-
ambients. Safe Ambient$9] are a variant of Mobile Ambients.
The two calculi differ in the underlying notion of interaoti: in
Mobile Ambients, interaction is “one-sided”, in that onetioé two
partners in anoveor openaction simply undergoes the action. In
Safe Ambients, instead, the reduction relation requiré®Rs to
synchronize with corresponding co-actions. To exemptify)sider
the ambients andb described below:

Mobile Ambients a[open b.in ¢] | b[in a.in d].

The brackets. . .] represent ambient boundaries, denotes par-
allel composition, and “.” enforces sequential executi@iven

the above configuration, the ambiéntnay entera, by exercising
the capability in a, and reduce t@[open b.in ¢ | b[in d]]. Then
a may dissolve the boundary provided byy exercisingopen b,

and reduce t@[in ¢ | in d].

Neither of the two reductions is legal in Safe Ambients. Ttagb

Permission to make digital or hard copies of all or part of timaterial is
granted without fee provided that the copies are not madestrilited
for direct commercial advantage, the ACM copyright noticel ghe title
of the publication and its date appear, and notice is give ¢opying
is by permission of the Association for Computing Machineffo copy
otherwise, or to republish requires a fee and/or specifimjzsion

Proc. of the 28th ACM SIGPLAN-SIGACT Symposium on Prirgipfe
Programming Languagdsondon, January 2001

Copyright ACM 2001

Giuseppe Castagna

C.N.R.S, Ecole Normale Supérieure, Paris
Giuseppe.Castagna@ens.fr

the behavior we just described, the two ambiengsdb should be
written as follows:

Safe Ambients a[in a.open b.in ¢] | b[in a.open b.in d].

Now the move ob into a arises as the result of a mutual agreement
between the two partnerdi exercising the capabilitin a, and

a exercising theco-capabilityin a. The resulting configuration,
afopen b.in ¢ | b[open b.in d]], reduces tou[in ¢ | in d], again

as the result of the synchronization betwegen b andopen b.

Secure Safe AmbienfSSA) are a typed variant of Safe Ambients
whose type system is so defined as to allow behavioral invigrizt
ambients to be expressed and verified. The most significaetas
of the type system is its ability to tradmth explicit and implicit
process behavior and ambient mobility: the type assignedpto-
cess accounts not only for the behavior resulting from thpaba-
ities that process possesses in isolation, but also fromapabil-
ities the process may acquire by interacting with the sumding
environment. This degree of accuracy is essential for acsoan
ification of security policies, as implicit (i.e., acquidethobility is
at the core of a number of security attacks sucfirafan Horsesor
other combinations of malicious agents.

ExXAMPLE 1.1. Consider again the two (safe) ambientndb in-

troduced above, now running in parallel with a third ambieias
in the following configuration, wheré and) are arbitrary pro-
cesses:

a[ina.open b.inc] | b[ina.open b.ind]
| c¢[inc.P|d[ind.Q]]

For the purpose of the example, assume dhaintains confidential
data, which should be made available to ambients runwittgn ¢
(which may enter, as signaled by the co-capabilityd), but not
to ambientsenteringc. Given this security policy, the question
is whetherc should leta in without fear thata may access the
confidential data il. If we only look at explicit mobility, that is at
the capabilities available far, then the move of into c seems safe,
asa does not make any direct attempt to move idtdHowever,a
can be used as a Trojan Horse for can letb in, then enter: and,
once inside:, openb to gain access ta. |

ExampPLE 1.2. A different way thatt may attack: is by lettingb
out after having entered The two ambienta andb would then
be written as shown below:

a[ina.incout a] | b[in a.out a.ind]
| c¢[inc.P|d[ind.Q]]

Again, if we only look at the capabilities available fer we are

mislead to let into c. Yet,a could leth in, then enter;, and finally
let b out handing over td the capability to ented. a

1.1 Overview and Main Results

The type system we discuss in this paper provides for stafe-
driven verification of security. It allows the definition oéaurity
policies for ambients, and provides mechanisms for statieation
of any attempt to break those policies. In particular, theetgys-
tem detects security attacks based on implicit (and uretésirma-
licious) acquisition of capabilities by hostile agentstsas those
described in the previous examples. As argued in [9], thegiree
of co-capabilities is essential for an accurate staticadtarization
of processes in the type system: our choice of Safe Ambierttsea
basis for our type system is motivated by the same reasons.

There are three key ingredients to the type system.

Ambient Domains. Ambients are classified bjomains each do-
main has an associateeéhaviorthat ambients in the domain share
and must comply with, andsecurity policythat protects the ambi-
ents in the domain from undesired interactions with theaurding
context.

Type-level capabilities and Process Type&rocess types describe
process behavior using domains as the unit of abstractidme T
term-level capabilities available to processes are attsilaupon
in the type system by resorting to type-level capabilitiBsocess
types are defined in terms of sets of type capabilities: tongkidy,

if a is an ambient of domain, say, andP is a (well-typed) process
exercising the term-level capabilityx a, then the type of traces
this behavior by including the type-level capability A.

To gain accuracy in the description of ambient behavior,tyipe
system traces thaesting levelat which the effect of exercising
a capability may be observed. This is accomplished by inited
ing chemical abstract model, where exercising a capahibtye-
sponds, in the typing rules, to releasing a type-level cidipgtor
molecule Molecules are classified afain, light, andheavy plain
molecules are released at the nesting level of the processigx
ing the corresponding capability, light molecules at uppeel (the
level of the enclosing ambient), while heavy molecules aleased
within ambients. Molecules react with co-molecules (cgpand-
ing to co-capabilities) released at the same nesting I&als, in
the chemical metaphor, type checking corresponds to a cimm
graphic analysis in which each element of different weighprie-
cisely determined.

Security Constraints. Each ambient domain has an associated set

of security constraints that define the security policy foattdo-
main: the constraints establish the access rights for arshaeoss-
ing the boundary of any of the ambients in the domain.

We prove two main results for our type system. The first is ettbj
reduction, the second is a rather strong form of type safetyag
that types provide a safe approximation of behavior: sptdifi,
we show that if a procesB running inside a contex¢” may (after
any number of reduction steps ®f) exercise a capability on some
name, and’ is well-typed, then the corresponding type capability
is traced by the static type &f. As a corollary, we then deduce that
well-typed processes comply with the security policieslelished
by ambients.

We also define a type-checking algorithm that computes mimm
types and, more importantly, an algorithm for type recanston:
we prove both sound and complete. Type reconstruction tscpar
ularly important for our purposes, as it infers the behagbam-
bient domains, thus leaving the programmer with the onli tds
specifying the domains of ambients, and their associatedrisg
policies.

Finally, we study a distributed variant of SSA, where eaclbigmt
carries its own type environment along with it, and typeeattieg is
performed locally by the ambient at any time other ambierass
its own boundaries. The distributed variant of the calcalod its
type system are particularly interesting in perspectinejiéw of a
practical implementation. In a highly distributed systeéms clearly
unrealistic to rely on the assumption that type checking atmess
information on all the components of the system. Accordingl
the distributed version of the calculus, we dispense witihal se-
curity and type soundness, and replace them by local typekiige
and security analysis. A typed version of reduction comgets
these analyses by allowing ambient boundaries to be crasdgd
by ambients satisfying the type and security checks peedrjust
in time, by the ambient whose domain is being crossed.

The study of the distributed version yields, as a byprodadur-
ther interesting result. Looking at the dynamic checks qrentd
upon reduction, one discovers that they correspond to e and
security checks performed by the three components of the- sec
rity architecture of the Java Virtual Machine: toass Loaderthe
Bytecode Verifierand theSecurity Manager

1.2 Related work

Type systems for Mobile Ambients and related calculi havenbe
studied in several papers. The first paper on the subjectCabyel-

li and Gordon [6], where types are introduced to disciplihe t
exchange of values inside ambients. In [3], Cardelli, Glaeid
Gordon extend the type system of [6] to account for ambient mo
bility. The new type system provides for a classification of-a
bients according to simple behavioral invariants: spedlific the
type system identifies ambients that remain immobile, andiam
ents that may not be dissolved by their environment. In [@viL
and Sangiorgi define a suite of type systems for their Safe Am-
bients, which also characterize behavioral propertiesrabiants,
such as immobility andingle-threadednes®ased on these invari-
ants, they prove interesting equivalences for well-typext@sses.

The type system closest to ours is the one presented by Gardel
Ghelli, and Gordon in their recent paper on Ambient Grougs [4
Although their and our motivations are somewhat orthogenal
they refine previous work on static detection of ambient titybi
we give a type-theoretic account of security by defining and e
forcing security policies for ambients— the two solutiosvé sev-
eral similarities. If we disregard the security layer of dype sys-
tem, our notion of ambient domain is essentially the saméaeis t
notion of group. Also, ambient behavior is characterized in both
type systems in terms of sets built around domains (or ebpnitig
groups). In [4] each groufr is associated with sets that identify
which groups ambients of grou may potentially cross or open.
In our type system, we directly associate ambient domairls wi
type-level capabilities with similar information contertiowever,
our type system is superior in precision, as our type-cdipabets
are constructed in ways that allow implicit and hidden migpto

be statically detected. That is not always the case in thegyptem

of [4]: only the first of the two attacks we discussed in thenepkes

above are detected by the type system of [4]. A further difiee
is the presence in [4] of a novel (and quite interesting) tos
for dynamic group creation, a primitive that is not avaiafdr our
version of mobile ambients. While we believe that this carct
could be included in our type system, it would certainly céimp
cate type reconstruction. Besides our specific interestecurity
issues, that are somewhat disregarded in [4], type reaaniin
and the distributed version of the system (neither of whicHis-
cussed in [4]) represent further important differencesvieen the
two papers.

Further related work includes F. and H.R. Nielson’s framewfor
control and data flow analysis for Mobile Ambients [12, 13} i
fact, our type reconstruction algorithm may be seen as ainaaibs
control flow analysis where ambient behavior is abstracpamhun
terms of domain behavior.

Plan of the paper. Section 2 reviews the syntax and reduction
semantics of (Secure) Safe Ambients. Section 3 defines pee ty
system, while Section 4 focuses on type soundness and.s&ésty
tion 5 introduces the algorithmic systems, and proves theumd
and complete. Section 6 shows how to define a security lay&nmon

The reduction relation for SSA derives from the one definad fo
Safe Ambients

(i) Bin a.P| Q]| a[im a.R| S| 0 alR|S|b[P|Q]]
(out) alblouta.P|Q]|outa.R|S]0 b[P|Q]|alR|S]
(open) open a.P |afopen a.Q | R0 P|Q|R
(context) POQ = £[PI0EQ]

(struct)? P =P0Q = POQ

where&’[] denotes an evaluation context defined as follows:
Evaluation Contexts
Sl ==[1 0 (wa:D)&[] O P& 0 &[] P O alé]]]

and= is the standard structural equivalence relation for antbjen
that is the least congruence relation that is a commutativeaid
for 0 and | and closed under the following rules:

P =IP| P

(va:D)0O =0

(va:A)(vb:B)P = (vb:B)(va:A)P fora #0b
(va:D)(P | Q) =P | (va:D)Q fora ¢ fn(P)
(va:D)b[P] = b[(va:D)P] fora #0b

of the type system, and how the type system may be used enforce

and verify security properties. In Section 7 we define a itlisted
version of SSA, and discuss how it relates to the securityitac-
ture of the JVM. A short section concludes the presentatsnofs
of the main results are given in a separate appendix.

2. THE LANGUAGE

The terms of our language are thoseSaffe Ambient&ith the only
difference that the types of (ambient) names gmetectior) Do-
mains These are type-level constants used to identify ambients
that satisfy the same behavioral invariants and share consee
curity policies: instead of associating such invariantd palicies

to each ambient we rather define them for domains, and thempgro
ambients in domains.

Processes
P:=00aP O (wa:D)P OP|P Oa[P] O!'P

Capabilities
a:=1ina Oina Oout a Oout a Jopena opena

Besides being a design choice, the introduction of domainsa-
tivated by technical reasons. An alternative, and moreinétive,
notion of ambient type could be defined by associating each am
bient with the set of term-level capabilities that ambiersynex-
ercise. The resulting type system would certainly providaae
accurate characterization of process and ambient behawibiit
would also incur into a number of technical problems arighogn
the dependency of these types on tétm®n the other hand, our
use of protection domains is well motivated and justified naws
nowadays common practice for languages and systems simgport
code mobility [8].

Reduction

Lone problem with that solution is that types are not preskbsestructural congru-
ence. Forinstance, the telfma: A) (vb: B)a[in b] | b[in b] would not be typeable,
as the typeA should contain all the capabilitiescan exercise: yetl cannot contain
in b, asb is in the scope of a nested binder. If we exchange the posifidhe two
binders, as iNvb:B)(va:A)alinb] | b[in b] the term becomes typeable. The
use of domains resolves the problem: both terms are wedldyphenA and B are
domains (thus type constants rather than sets of term-¢eyglbilities).

3. TYPE SYSTEM

Ambient domains, ranged over by, B, C, and D, provide the
type-level unit of abstraction: in the type system, the affe ex-
ercising a capability is observed on domains rather thanem
We define process types in terms of type-level capabilitefol
lows:

Type Capabilities
M :=in D |in D | out D | out D | open D | open D

Process Types

P:=(L,M,N) (L, M, N ¢ 2*)

Notation. The following conventions are used throughout. We
often writecap D (resp. cap a) to denote an arbitrary type-level
(resp. term-level) capability. IP = (L, M, N), we writeP" for

L, P~ for M, andP* for N, and often abuse this notation using
PT, P= andP* both as projections of the ty, and directly as
sets, as inP : (PT,P=, P%). Also, we use set-theoretic notation
for various operations on process types:Pifand Q are process
typesP C Q denotes component-wise inclusion. Similafly Q
denotes component-wise union. Given algkbf type capabilities
and a process type, we defineP U* M (respectively,P U= M
andP UT M) as the process type resulting from the uniori\df
andP* (respectivelyP= andP™): PU* M £ (PT,P=, P U M),
PUTM £ (PT,P=UM,PY)andPU"M £ (PT UM, P~,P").
Finally, given a type-level capability/, a type-level co-capability
M, and two sets of type capabilitids and M, we write M €
sync(L, M) as a shorthand fa¥/ € L andM € M.

Process types describe the capabilities that processesxamyise,
and trace thenesting levelt which the effect of exercising a ca-
pability may be observed. The three components of procegesty
identify those levelsP' describes the effects that can be observed
at the level of the ambient enclosirfg, P~ describes the capa-
bilities observed at the level dP, and finally, P* represents the
capabilities that are exercisedthin P, wheneverP is an ambient

2\We use this definition of structural reduction instead oftiare standard definition
P'=P0 Q=Q' = P' 0 Q' to ease the proof of type safety (see Section 4).

of the forma[P']. To exemplify, giveru : A:

e ina.P : P = in A € P", since the effect of exercising
in a is observed at the level of the ambient (if any) enclosing
P

e h[ina.P]: P = in A € P7, since now itish[in a.P] that
exercisesn a

e opena.P : P = open A € P™, sinceopen «a is exercised
(and its effect observed) at the level of the processes ingnni
in parallel withopen a.P

e blopen a.P] : P = open A € P, sinceopen a is exercised
within b.

3.1 Environments and Type Rules
We define two classes of environments, nantélye Environments
denoted byF, andDomain Environmentsenoted byT:

Ambient Names— Ambient Domains
Ambient Domains— Process Types

Type Envs E
Type Envs 11

Type environments associate with each ambient name theidéma
belongs to, while domain environments associate with eanfaih
the type that is shared by all its ambients. Thus, while typéren-
ments partition ambients into domains, domain environsieah-
vey information about potential interactions among dorsaand
enforce behavioral invariants for processes enclosed biets in
each domain.

Definition 3.1 (Closure and Boundedness)Let II be a domain
environmentP a process type, ant and H be ambient domains.
We define the following notation:

II F P closed £
open H € sync(P~,II(H)™) = II(H) CP

II+ D boundsP £
PT CII(D)= A P=C

(n)*
(opem D € TI(D)~ = P C TI

A
c (D))
II+ D closed &
in H € sync(II(D)~,1I(H)~) = I + H bounds II(D)
{ out H € sync(TI(D)~,TI(H)*) = (D) CTI(H) O

The closure condition on process types formalizes thetintuthat
processes may exercise all the capabilities of the ambtbeis
may open. The boundednesskby D ensures that the process
type I1(D) provides a sound approximation of the tyPeof any
process enclosed in (ambients of) domdin This is expressed
by the first two inclusions, which reflect the different negtievel

at which one may observe the behavior of ambients and their en
closed processes. The last inclusion handles the case didem

whose ambients may be opened: in that case ambient boundarie

are dissolved, and consequently the behavior of the presass
leashed as a result of the open may be observed at the nestéig |
of the ambients where they were originally enclosed. Findle
closure condition for domains enforces the previous irargs in
the presence of mobility: the behavior of an ambiemf domain
D must account for the behavior of ambients enterings well as
for the behavior of ambients exiting(sincea lets these ambients
out, then it is virtually responsible for their behavior).

Definition 3.2 (Coherence).Let IT be a domain environment. We
define the notatiol - ¢ (readlIl is coheren} as follows:
I+ o 2 fn(II) C Dom(II) A
VD € Dom(II). (IT F D closed A IT + II(D) closed)

where, with an abuse of notation, we Us€ll) to denote the set
{D | cap D € Img(II)}. |

The typing rules are given in Figure 1. They derive judgmaefits
the formIl, E + P:P, where E is a type environment]I is a
domain environment, andng(E) C Dom(II) (that is, theimage
of E is contained in thelomainof IT).

The rules ((EAD), (PAR), (REPL), and (RESTR) are standard. The
typing of prefixes (in the (ATION) rules) is motivated by the ob-
servations we made earlier: the effect of exercising thelsiifies
in a,out a,in a andopen a may be observed at the level of the
enclosing ambient. Duallppen a, andout a may be observed at
the level of the continuation process.

As for (AmB), the rule stipulates that an ambietjtP] has the type
thatII associates with the domain of a, provided thatD bounds
the type of P in TI. The (AvB) rule is technically interesting, as,
unlike its companion rule in previous type systems for Mel¢dnd
Safe) Ambients, it establishes a precise relationship &éetwthe
type of an ambient and the process running inside it. Thia-rel
tionship, which is essential for tracing implicit behaviaan be
expressed in our type system thanks to the three-leveltstauof
our process types.

Theorem 3.3 (Subject Reduction).If II, E + P : Pand PO Q,
thenIl, E + @ : P. O

3.2 Examples

We illustrate the behavior of the typing rules with the twet®ms
of Examples 1.1 and 1.2. Assunie = a:A,b:B, ¢:C,d:D, and
consider the attack

a[in a.open b.in ¢] | b[in a.open b.in d].

Let P, be the type of the process enclosedint is easy to ver-
ify that {open B,in D} C P!. FromII + B bounds Py, one
hasopen B € TI(B)~, and hencein D € TI(B)". Let now
P. be the type of the process enclosedain Sinceopen B €
sync(P., II(B)™), then a consequence of the closurdgfis that
II(B)" C P} C II(A)~ (the last inclusion holds becau$k -
A bounds P,). Hencein D € II(A)~ and the attack is detected.

A similar analysis applies to the attack
a[in a.in c.out a] | b[in a.out a.in d].

Herein D € TI(A)~ results fromout A € sync(T1(B)~, TI(A)*),
which impliesII(B) C II(A) by closure.

4. TYPE SAFETY

The operational significance of the type system is estaddisly
showing that process types provide a safe approximationoagss
behavior. In that direction, we introduce the relatiBn|} «" that
defines the behavior of a proceBsin terms of the capabilitiea
that P may exercise (at nesting lewgle {1, =,]}) while evolving

in a context. Then we connect the type system with this naifon
process behavior by means of a safety result stating thangi
well-typed proces$’ in a well-typed context, for every such that

P |} o, the type capability correspondingdds traced by the type
of P: in other words, no action goes untraced by the type system.

Below, we focus on a simplified case of type safety, one that as
sumes that processes are “normalized” to the fam# D) P where

cap € {in,1in, out,open }

II,EFcapa.P:P

(RESTR)
II,E,a:DFP:P a¢ Dom(E)

(TyPE PROC) (ENV) (NAME)
IMFo fn(P)C Dom(IT) M P closed O+Fo Img(E)C Dom(II) II,EFo a€c Dom(E)
I+-P ILEFo II,EFa: E(a)
(DEAD) (PAR) (REPL)
IEFo ILE-P:P ILEFQ:P IEFP:P
LEFO:(2,2,0) MEFP|Q:P O,EHP:P
(AcTioNT) (ACTIONT)
MFPP ILEtaD capDeP' IEFPP T,EraD capDe€P~

(AmB)
ILEFP:P II,E+a:D IIF DboundsP

cap € {out,open }
II,EFcapa.P: P

I,E+ (va:D)P : P

(SUBSUMPTION)
IEFP:P

IFQ

I, E + a[P] : TI(D)

PCQ

ILEFP:Q

Figure 1: Typing Rules

P contains no restrictiow. This assumption simplifies the state-
ment and the proof of the type safety theorem: in Appendix D we
show how the result can be generalized to arbitrary prosesse

We start by introducing a relation of “immediate exhibitipnoted

P | «": the relation is defined in Figure 2 by induction on the
structure of the proces®. Next we define a tagging mech-
anism for processes, by a technique similar to the one in. [14]
Given a procesd, we consider its syntax tree and tag some of
its nodes with the symbdl. So for example, ifP is the process
Py | [P, | (vb:B)Ps] then, sayP: | fa[P | (vb:B)tPs] denotes
the proces® in which we tagged the ambiemtand the subprocess
P; occurring therein.

Having tagged a particular occurrence Bf we instrument re-
duction so that every process interacting with this oceureegets
tagged: if the tag is initially applied to an ambient, thisheique
allows us to trace the interactions considered in the Chivgall
Security Policy [1]: in particular we can trace all the preses that
“got in touch” with that ambient. Tags are propagated based o
the idea of an ambient as a paint pot: any ambient exiting gethg
ambient is tagged:

fa[blout a.P | Q]| out a.R| S| — #b[P | Q] | fa[R | 5]
and so is every process unleashed by opening a tagged ambient
open a.P | fafopen a.Q |] — P |4(Q|R).

Following the intuition that a process exercises all theatéjiies
of the processes it opens, we also have:

fopen a.P | afopen a.QQ | R] — #(P|Q | R).

Technically, the definition is only slightly more complexirdt, we
need to extend structural congruence to tagged processesn G

our assumption that processes are in “normal” form, strattton-
gruence is extended to tagged processes by simply addirfglthe
lowing additional clausés

0=0 HP[Q)=1P[1Q

Second, we define the reduction rules for all possible casas t
result from whether the processes involved in a reductiep ate
tagged or not. To ease the definition, we indicate With possibly
absent tag, and withy the i-th occurrence of the tag With this
notation, the tagged version of reduction is defined by ttesrin
Figure 3.

1P =14P

Now we can give a precise definition of thesidualsof a process
evolving in a context: intuitively these are all the taggedgesses
that result from tagging the process in question, and redyitiin
the given context. The definition relies on the followinginatof
(restriction-free) context:

a [OP|€]] D[] P Oa%]]] Okl

Definition 4.1 (Residuals).Let (v@:D)P be a process, withP
containing no restrictions.

1. Anoccurrenceof P is a pathA in the syntax tree oP. We
denote withPa the subprocess d? occurring atA, and with
X [] the context obtained fron® by substituting a hole for
the subprocess occurring At HenceP = %X [Pa].

2. Given a tagged proceg3 we denote byP| the process ob-
tained by erasirttall tags occurring inP.

3. Let A be an occurrence of an untagged procBssThe set
of residuals ofA in P is defined as follows:

3In Appendix D the definition is refined to handle restricti@m scope extrusion.
4Technically, tags are annotations on the syntax tree andarpart of the syntax.
Thus the notion of occurrence is preserved by tagging/wag that is, for every
taggedP’ and occurrence\, |[Pa| = |P|a.

a € {ina,out a,in a,opena} a € {open a,out a} Pla P la s
a.Pla' a.P|a~ P |« PP« -
P |capd” Pla' Pla
(va:D)P | cap b" ‘ a[P] | a” [Pl
Figure 2: Exhibiting a capability
(in) §10[#2in a.P | Q][f3a[43in a.R|S] — f3a[HiR|S|Hb[E3P | Q]]
(out) al §7b[f20ut a.P | Q] [f30ut a.R|S] — [P [Q]|ali3R] 5]
(open) fiopen a.P[a[fs0pen a.Q | R] — (P [#HQ|R)
(out tag) fa[f76 f20ut a.P | Q] [f50ut a.R|S] — @[1:P | Q]| fa[f3R|S]
(open tag) fiopen a.P |fa[f50pen a.Q | R] — #iP|4(Q|R)

Figure 3: Tag Propagation via Reduction

(1) Pa is aresidual ofA in P

(2) If €X[1Pa] — Q andQ . is tagged (that isQ 1 =
R for someR), then every residual od\’ in |Q] is also a
residual ofA in P. O

We can finally generalize the notion of capability exhihitto pro-
cess occurrences.

Definition 4.2 (Residual Behavior). Let (ua’:ﬁ)P be a process,
with P containing no restriction, anch be an occurrence aP.
Then,A | «" if and only if there exists a residudt of A in P
such thatk | o". a

Theorem 4.3 (Type Safety).Let (uc‘i:ﬁ)P be a process, wittP
containing no restrictionA be an occurrence of and letE =

', @D for a type environmenE’. Assume thall, E + P : P’
and II, E - Pa : P. If A | (capa)”, thencap E(a) € P". O

To exemplify, consider the ambienfin a.open b]. If taken in iso-
lation, this ambient only exhibits the capabilitiés a andopen b.
If, instead, we take the parallel composition

@)

then the ambieni]. . .] also exhibitsin ¢ as a result of the interac-
tion with the context. In fact, if we start taggimg. . .] in (1) above,
the result of tagged reduction is as follows:

a[in a.open b] | b[in a.open b.in]

fa[in a.open b] | b[in a.open b.in c]
fa[open b | b[open b.in]|
fa[in c]

Now, Theorem 4.3 ensures that if we type the process (1) aitte f
that the residuak[in c] of a exhibitsin c is traced by the type as-
sociated to the domain af In fact, the result is even stronger, as it
ensures that the type system traces the behavior of anygtivat
interacts with the process occurrence of interest. For gkanifwe
take the compositiofia[in a.out b] | b[in a.out a.in c], the re-
sult of tagged reduction ig[] | £b[in ¢], and Theorem 4.3 ensures
that the type of (the domain of) traces the type-level capability
corresponding tan ¢, since it is exhibited by the residué]in c].

5. ALGORITHMIC SYSTEMS

As itis usual in the presence of subsumption, the type sygteem
in Figure 1 is not algorithmic: however, it is easy to state type
rules so that they form a syntax-directed system.

5.1 Typing Algorithm

The algorithmic type system finds the minimal type of a terrdam
a given set of domain assumptioisand type assumptions. The
system results from the type system of Figure 1 by erasing.iee
of subsumption, and replacing the§AioN) and (RR) rules with
the rules in Figure 4: the only subtlety is the side conditiothe
rule (ACTIONS), which defined’ as the minimun®’ that contains
P and is closed ifl (i.e. such thatl + P’ is derivable).

These rules constitute the core of an algorithm that giMenFE,
and P as input, returns the tyde as output.

Theorem 5.1 (Soundness and completenessj. II, E +, P
P, thenTl, E + P : P. Conversely, IfTI, E - P : P, then
II,Etry P:P andP’' CP O

Corollary5 2 (Minimal typing). II,E +y P : min{P | Il E I—
P: P} if this set is non-empty.

The existence of minimum types and of an algorithm computing
them are interesting and useful properties. Yet, leavingbgnam-
mer with the task of providing a domain environmé&has input to
the type checking algorithm is a very strong requirementloBge
we show that this task can be dispensed with, as domain @raviro
ments can be reconstructed automatically. In principleyiping a
coherentI for which the typing algorithm does not fail is straight-
forward. Given a proces®, let 2 be the set of domain names
occurring inP, and letE be a type environment that assigns a do-
main in 2 to every name inP. Now, denote byPs® the process
type whose components contain all the possible type cafedbil
over 7, and letIT®* be thesaturatedtype environment such that
Dom(TT) = 2 andTI*®(D) = P*for all D € Dom(I). Itis
easy to verify that there always exists a process #ysch that
1% - P : P is derivable: to see that, observe tfi&f'(D) pro-
vides a sound approximation the behavior of every ambiem (a

(PAR)
MEry P:P TLEF,Q:Q

(ACTIONY)
MEFyP:P E()=A

MEr, P|Q:PUQ

(ACTIONY)
MEry P:P E(a)=A

I,E+, opena.P: P

Pl

(AcTioNm)
MEry P:P E@)=A

I,E Fy capa.P: PUT {cap A}

I,E b out a.P:PU” {out A}

£ P U= {open A} U {

cap € {in,in,out ,open }

TI(A)
%)

if open A € TI(A)~
otherwise

Figure 4: Algorithmic Typing

process) occurring iP (indeed, I F P : P holds). On the
other hand, it is also clear th&l*® is not very useful as a domain
environment, as it provides the coarsest possible appuetiom of
behavior: this is problematic in view of our prospective asg/pes
to check and enforce security, as the coarser the appraximaita
process’ behavior, the less likely is that process to passehurity
checks imposed by its environment.

5.2 Type Reconstruction

Type reconstruction computes the minimum coherent donmaiia e
ronmentII such that a given term type checks. The ordering over
environments derives by extending the containment relaticen-
vironments, using point-wise ordering as follows: C IT’ if and
only if Dom(II) = Dom(I1') and for allD € Dom(II), II(D) C
II'(D). We use{a | #(a)} as a shorthand fqﬂee{a“@)y €

and similarly for the union. Then we have the following éerf}ml

Definition 5.3 (Closure). Let TI be a domain environment such
thatfn(II) C Dom(II). Then define:

EnvClosure(IT) £ {IT" | ' D I, IT' I- o}
ProcClosure(P, II) £ P U | J{II(A)|open A € sync(P=, II(A)7)}

DomClosure(P, A, 11) £
N{I' [II' D11 ,IT'(A) D (&,PT,PT)UP'}

P ifopen Aell'(4)”

whereP :{ @ otherwise

|

It is easy to see that all these operators are well-definearameb-
tone: furthermore they can be effectively computed by (gter-
minating) algorithms: an example is given in Figure 7.

The system for type reconstruction is defined in Figure 5:(fRe
ACTION) rules are the same as the corresponding algorithma (A
TION) rules, R-REPL) and R-RESTR) are defined as their corre-
sponding rules in Figure 1. In all the rules, the subscfipin-
dicates a finite set of ambient domains: R-DEAD), @4 is the
domain environment defined by (D) = (2,2, @) for every

D € 2. The rules describe an algorithm that, given a process
P and a type environmerf such thatn(P) C Dom(E) returns

a process typ® and a domain environmel. More precisely,
given a proces$ and a type environment, let Z be the set of
ambient domains occurring in the type assumptiongadnd in
the typed restrictions of. Then, there exists one and only one

process typé and environmentl such thafll, E 4 P : P: we
denote this process type and domain environment resplyotiih
Rype(E, P) andZen(E, P).

Theorem 5.4 (Soundness and Completenesd)et P be a process,
and E a type environment such that(fd)) C Dom(E). Then
Fen(E,P),E o P : Rype(E, P). Furthermore, for anyll
andP such thatIl, £ + P : P, one hasZen(E, P) C II and
Rrype(E, P) C P. g

Corollary 5.5 (Minimality). Let P be a process and& a type en-
vironment such that {i?) C Dom(E). Then

(PZerw(E, P), Frype(E,P)) =min{(I[,P) | ILEF P:P} O

Accordingly, in the typed syntax it is enough to specify the d
mains of the ambients occurring iR, and the associated security
constraints: the type checker will then generate the mihtypes
for each domain and faP.

6. SECURITY

Security policies are expressed by means of security cinsr
and new environments help associate security constraittisam-
bient domains:

Security Envs X : Ambient Domains— Security Constraints

A security environment establishes the security strudura given
system of processes and ambients. Given domain and typeenvi
mentslI and E, and a well-typed procesB, we may then verify
that P is secure i by checking thafl satisfies:. The definition

of satisfaction, denotell |= %, requiresDom(X) = Dom(II) and
depends on the structure of the security constraints, wihi¢tirn
depend on the sort of security policy one wishes to express. W
discuss three options below.

Domain Constraintsyield rather coarse security policies whereby
one can identifytrustedand untrusteddomains and, for each do-
main, allow interactions only with trusted domains. Theseusity
constraints may be expressed by tables of the férms (in =

Din, out = Dou). If D is a domain and®(D) = S, thenZ, (re-
spectively,Z..:) is the set of trusted domains whose ambients can
enter (respectively, exit) the ambientsof In this optionIl = X

if and only if, for all D in Dom(II), one has

(¢2) {A|in D € sync(II(A)~,II(D)7)} C ¥(D).in, and

(i) {A | out D € sync(I(A)=, II(D)})} C T(D).out.

(R-DEAD) (R-PAR)

Hl,E l‘g P1 . P1

Hz,E l‘g P2 . P2

ms EnvClosure(TT; U IIy),

P9, Bty 0:(2,0,9) II,Etg P |P>:P

(R-AMB)
MEry P:P E(a)=A

II",E kg a[P] : 11" (A)

* £ N{u” | 11" O I1,11" = EnvClosure(1l'), 11’ = DomClosure(P’, A, 11), P’ = ProcClosure(P, 11")}

P £ ProcClosure((P; U Pa), 11)

Figure 5: Type Reconstruction Algorithm

The security model arising from domain constraints is elato
security policy of the JDK 1.1.x. In JDK 1.0.x all non localfde
initions are considered as insecure. The same applies Jmdér
1.1.x with the difference that a class loaded from the netvean
become trusted if it is digitally signed by a party the uses da-
cided to trust (in our case a domaind,).

Capability Constraints lead to finer protection policies that iden-
tify the type-level capabilities that entering and exitiagnbients

The notion of formula satisfiability is easily extended tecuity
environments, namelll = X if an only if for all D in Dom(II),

II E X(D). Since we work on finite models, satisfiability is
always decidable. Note that the first-order fragment is pawe
enough to encode quantification on actions as well as fosrauleh
ascapD € sync(L,M). Based on that, we can express refined
security properties: for example, the formud®,C : in D €
synch(B=,D7) Ain B € synch(C~™,B7) = in D € C~
allows one to prevent arbitrary nested Trojan Horses (aniemhb

may exercise These constraints may be expressed by tables of the entering a second ambient that enters a third ambient thagrzr

form'S = (in = Pin, out = Pou), Whose entries are process types.
If Disadomain, and(D) = S then:

e Pi, defines the only capabilities that processes entering am-
bients of domainD have permission to exercise: the three
setsP#,, P, andPL specify the capabilities that can be ex-
ercised, respectively, at the level of the entering pracatss
the level of the enclosing ambient, and inside the entering
process. The first specification is useful to prevent inferma
tion leakage, the second to control the local interactidns o
the entering ambient, and the third is useful when opening

&or entering) the entered process.
out 1S the table defining the capabilities that are granted to

processes exiting out of ambients of domdin with the
three entrie®! ., Ps.,, andP!, defined as above.

out? out

In this optionII = X if and only if, for all A, B in Dom(II),
in A € sync(II(B)7,II(A)7) impliesII(B) C X(A).in, and,
out A € sync(I1(B)~,II(A)*) impliesII(B) C ¥ (A).out Capa-
bility constraints are loosely related to tpermission collections
used in the the JDK 1.2 architecture (a.k.a Java 2) to enBece-
rity policies based on access control and stack inspection.

Constraint Formulas. More refined policies can be expressed by
resorting to a fragment of first order logic. The fragmentiieg
below, wherelM ranges over type capabilitieB, over ambient do-
main names (and domain variables), anavert, =, and.

Syntax
¢ = MeD"O-¢ OpA¢p Ve OVD: ¢
Semantics
IE=MeD" & MEeTI(D)"
II =-¢ < IIE ¢doesnothold
H'=¢1A¢2 =3 H|:¢1and1'[|:¢2
OE@Ve: & IE¢iorllE ¢,
MEVD:¢ < Ik ¢{D:= A}forall A € Dom(IT)

5Alternatively, we could define what ambients should not bewad to do, but our
choice complies with well-established security principle].

D), since it requires that all ambients that are granted tilat tio
enter domainD may only be entered by ambients that already have
the right to enteD.

Independently of the structure of constraints, given agse and
atype environmenk for the names occurring free iR, we say that
E and P satisfy a security policy if and only if Zen(E, P) =
Y. As a corollary of Theorem 4.3 we have that.w(E, P) =
¥ implies that no ambient occurring iR can violate the security
policies defined irt.

7. DISTRIBUTED SSA

The type systems presented in the previous sections haaresi
ing properties and significant operational impact. Yetrdtis also

a fundamental weakness to them, in that they rely on the gssum
tion that global information is available on ambient donsaiand
their types: a derivation for a typing judgmefit E - P : P re-
quires that the environmeni$ and E contain assumptions for all
the ambients occurring i, and for all those ambients’ domains.
This is clearly unrealistic for a foundational calculus fade-area
distributed computations and systems.

In this section we address the problem by presenting a loligérd
variant of SSA. In the distributed version, which we call DS
each ambient (i.e. each “location” in the system of proc®ssar-
ries a type and a domain environment. The syntax of DSSA pro-
cesses is defined by the following productions:

Distributed Processes

Pu=0 0P O(va:D)P OP|P Oa[P)y, 0P

wherea, TI, andFE are defined as in the previous sections, aisl
a capability constraint.

To get an intuition of DSSA ambients, it is useful to think ef/d

cl ass files. Class files include applet bytecode together with
type and security information used for bytecode verificatamd
dynamic linking. In particular @| ass file declares the types of
all methods and fields the associated class definegy(pleeasser-
tiong), and the types of all the identifiers the class refersytpd as-

sumption} [10]. When downloading a class file, the verifier checks
(among other properties) that the bytecode satisfies thedgper-
tions under the type assumptions. A DSSA ambiﬁ[ri?]me can

be understood as a class file, whefd’] represents the bytecode,
and the paifll, E corresponds to the type assertions and assump-
tions. Intuitively, for any namé occurring ina[P], the process
typeII(E (b)) may be thought of as a type assertior) #= a or b

is the name of an ambient @, or else as a type assumptiorbif
occurs in a capability oP but P contains no ambient naméd

7.1 Typed Reduction

The type system for DSSA is the same as that defined for SSA.
DSSA ambients are typed, statically, by simply disregaydhmeir
associated environments: the latter are used in the dyniympéc
checks performed upon reduction. The new reduction reldgo
based on structural congruence, which is defined as in $e2tio
with the only exception of the following rule:

(va:D)b[P]yy p ,.p = bl(va:D) P}, 5 a#b
that replaces the corresponding rule for SSA. Typed rednds
then defined by théopen), (struct), and(context) rules of Sec-

tion 2, plus the rules in Figure 6.

The notationII - IT' indicates the environment that results from
appendingll’ to II so that assumptions i’ hide corresponding
assumptions ifil. Hence, in the rules of Figure 6:

, a II'(D) if D € Dom(11")
(L) (D) = { T(D) otherwise

) a E'(a) ifa € Dom(E")
(B-E))(a) = { E(a) otherwisc,)e

The rule(in) extends the corresponding rule for SSA with addi-
tional conditions ensuring that the reduction takes pladg when
the local environments of the two ambients involved in theseno
are mutually compatible and the security constraints fatfil First,
the rule requires the environment @fto be extended by the en-
vironment ofb (in the reductunu carries the environmenritl, £
that extenddT,, E,). Second, the reduction requires the entering
ambientb to (z) be well-typed in the extended environments, and
(i) to satisfy the security constraints @f Finally, the condition

I + E(a) bounds II(E(b)) requires that the entering ambignt
does not modify the external behaviorafa lets new ambients in
only if they comply with its own local behavior disciplirfe.

The rule(out) performs similar type and security checks: note, in
particular, that ifa were well typed then the type check bmould

be unnecessary. Yet, we cannot makeapyiori assumption about

a and its type, and therefore we must check that the exitingemhb
has the type it is supposed to have (otherwise the securégkch
would be of no use).

A closer look at the rul€in) shows an interesting correspondence
between the constraints enforced by the target of the modehen
functions implemented by the three component of the JVMritgcu
system: theClass Loaderthe Bytecode Verifigrand theSecurity
Manager[10].

5In the rules we considered that ambients are indexed by Qap&onstraints. IfS’s
were instead Domain Constraints the security requiremeiit8 (b)) C S,.in and
TI(FE(b)) C S.outin (in) and(out) would change respectively t6(b) € S, .in
andE(b) € S.out. If instead, the constraints were expressed by formulas;ouéd
consider fine-graded security constraints of the f6rm= (in = ¢, out = ¢), and
the security conditions itin) and(out) would change tdI |= S, .inandII |= S.out,
respectively.

I, E=11,-11,, Ey-E, : Local (toa) assumptions on the type
of each name hide remote assumptions for that name. As a
consequence, the entering agérmannot spoof a definition
of the target host. This is the security policy implemented
by the JVM Class Loader, which provides name-space sepa-
ration and prevents type-confusion attacks for spoofing.

b[in a.P | Q]%bb,Eb :TI(E(b)) : The target of the move, ambient
a, checks that the entering agdnhas the type it declares
to have, in casé ¢ Dom(E,), or thata expects it to have,
whenb € Dom(E,). This is the security policy enforced by
the bytecode verifier.

TI(E(b)) C Sq.in: The ambient checks that the entering agent
performs only actions that are explicitly permitted by tlee s
curity constraints defined b§,.in. This is essentially the
security policy enforced by the Security Manager: the dif-
ference is that the Security Manager performs these checks
dynamically (when the agent is already entered and requires
to perform the action), whereas in our system they are per-
formed at load time.

Note that, intuitively, all the above checks are performgd: hthe
ambient whose boundary is crossed. That ambient does rsit tru
foreign code, it just trusts, of course, its own implemeintatof

the type checking algorithm which is used to dynamicallyifyer
foreing code: verification is based on the (type) informatior-
eing code carries along with it, according to the common froo
carrying-code practice [11].

7.2 Type Safety

Most of the properties relating the type system and rednataory
over from SSA to DSSA. However the key property of DSSA,
where the essence of distribution resides, is the follopstrgnger,
version of Theorem 4.3. Again, the theorem is stated forithels
fied case of “normalized” distributed processes, i.e. facpsses
with all restrictions extruded to the outermost scope. Ibased
on the same definitions of residual and exhibition of the joev
section: the additional information attached to ambiesitsirnply
disregarded.

Theorem 7.1 (Local Type Safety).Let (m‘i:ﬁ)P be a DSSA pro-
cess, withP containing no restriction, and\ be an occurrence of
P such thatPa = a[Ql}; . Assumdl, E - Pa : P is derivable.

If Pa | (capb)”, thencap E(b) € P". O

The difference from Theorem 4.3 is that the new statemens doe
not require the contex to be well typed, but just that the ambient
occurrence can be typed under the assumptions it comesAwth.
cordingly, every ambient that type-checks under the envirent it
carries along with it will only exhibit capabilities thateaalready

in its static type, even though the context it interacts vistimot
well-typed.

This is an interesting result for wide-area distributedeyss, where
global typing may not be possible: for example, distinctssgb
tems may have incompatible type assumptions. Even theadtyp
reduction allows secure interactions provided that logpétsafety

"This property does not hold for the non-distributed calsulthe proof fails in the
case for(in) as it is not possible to deduce the well-typing of the ambbent

(in)
(x) provided that, givenll, E = 11,11, E,-E,, one has

(out)

(%)

afout a.P | Q| blout a.R| S , 15, O

Iy, Ey 11, E

b[in a.P | Q]%’Jb,Eb |afina.R|S] . O a[R|S|b[P] Q]ffb’Eb]f{E

ILEF blina.P|Q]: II(E(D)), I(E(D)) C Sa.in and II = E(a) bounds II(E(b))

b[R | STit

provided thatIL, E F b[out a.R|S]: II(E(b)), and TI(E(b)) C S.out

| a[P | QI

Iy, By

Figure 6: New reduction rules for DSSA

exists or can be ensured. Hence, an agent can confidentlg-let a
other ambient in or out even if the former is evolving in a pllys
ill-typed context: as long as typed reduction is respectieel,se-
curity constraints that agent defines are never violatece duml
view holds as well: an agent can confidently enter or exit kot
ambient even if the latter is ill-typed: the reduction setiwnen-
sures that the security constraints defined by the formenever
violated.

8. CONCLUSIONS

We have showed that classical type theoretic techniqueddero
effective tools for characterizing behavioral propertasmobile
agents. We hope to have convinced the reader that captuming i
plicit behavior is essential to ensure secure agent interac to
our knowledge, our type system is the first among type sysfems
Mobile Ambients to have this property. Also, we have showed t
in the design of a distributed implementation for the calsulone
finds back features distinctive of real systems.

There are several directions for future work. A first, ob\s@xten-
sion is to study whether and how our techniques scale to aloalc
with communications. A second interesting subject of stisdye
use of multi-sets (or even traces) in place of sets as basipco
nents of process types: this would allow us to refine the amabf
process behavior and, consequently, to enforce more polssaf
curity policies. Also interesting would be to apply thesehteiques
to the Seal Calculus [15].

A further subject of future research is the study of a notibtsob-
typing” on ambient domains. This would allow us to introduice
the system a notion of security levels and perform statidyara
such as those described in [2].

Acknowledgments

Work partially supported by Franco-Italian Action “Galife1999-
2000. Support was also provided by the Italian MURST Project
9901403824003 “Automatic Program Certification by Abstract In-
terpretation” and by the French CNRS Prograalecommunica-
tions “Collaborative, distributed, and secure programminglfer
ternet”.

9. REFERENCES
[1] D. Brewer and M. Nash. The chinese wall security policy. |
Proc. of IEEE Symposium on Security and Privamges
206-214, 1982.

[2] H. R. N. C. Bodei, P. Degano and F. Nielson. Static analysi
of processes for no read-up and no write-down. In
Porceedins of FoOSSaCS'98999.

[3] L. Cardelli, G. Ghelli, and A. Gordon. Mobility types for
mobile ambients. IfProceedings of ICALP'9Q2.NCS 1644,
pages 230-239. 1999.

[4] L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groups
and mobility types. Irint. Conf. IFIP TCSLNCS 1872,
pages 333-347. 2000.

[5] L. Cardelli and A. Gordon. Mobile ambients. Rroceedings
of POPL'98 ACM Press, 1998.

[6] L. Cardelli and A. Gordon. Types for mobile ambients. In
Proceedings of POPL'9%ages 79-92. ACM Press, 1999.

[7] P. J. Denning. Fault tolerant operating syste&GM
Computing Survey$(4):359-389, Dec. 1976.

[8] L. Gong.Inside Java 2 Platform Securitpddison-Wesley,
1999.

[9] F. Levi and D. Sangiorgi. Controlling interference in
ambients. IPOPL '0Q, pages 352-364. ACM Press, 2000.

[10] T. Lindholm and F. YellinThe Java Virtual Machine
SpecificationJava series. Addison-Wesley, 1997.

[11] G. Necula. Proof carrying code. In A. Press, ediR@PL
'97, 1997.

[12] F. Nielson, H. R. Nielson, R. R. Hansen, and J. G. Jensen.

Validating firewalls in mobile ambients. In

Proc. CONCUR’'99LNCS 1664, pages 463—-477. 1999.

[13] H. R. Nielson and F. Nielson. Shape analysis for mobile

ambients. IPOPL'0Q pages 135-148. ACM Press, 2000.

[14] P. Sewell and J. Vitek. Secure composition of untrusiede:
Wrappers and causality types.18th IEEE Computer
Security Foundations Workshop000.

[15] J. Vitek and G. Castagna. Seal: A framework for secure
mobile computations. Iimternet Programming Languages

LNCS 1686, 1999.

APPENDIX
A. SUBJECT REDUCTION

We first prove a few simple and useful properties for domain en
vironments and process types. In that direction, we extéed t
set-theoretic notation used on processes to domain eméents
as follows. Given two domain environmeriis andII, such that
Dom(II;) = Dom(Il,), we defindI, NII, (respectively]I; UIL,)

to be the domain environment that maps evBrg Dom(11;) into
the process typH, (D) N1II,(D) (respectivelyll, (D) UIl,(D)).

Proposition A.1 (Boundedness and Closedness)etIl andIl’ be
domain environmentd) an ambient domain, an&, P’ two pro-
cess types.

1. If II + D bounds P andII + D bounds P’, thenIl +
D bounds (PUP')

2. If II+ D bounds P andP’ C P, thenIl + D bounds P’.

3. If I + D bounds P and II' + D bounds P, then also
IINII' + D bounds P.

4. If TI - D closed andIl’ - D closed, then alsoll N IT'
D closed.

5. If II - P closed andIl + P’ closed, then alsoll + P U
P’ closed.

Proof. In all cases, the proof is by a direct application of the defi-
nitions. O

Corollary A.2 (Coherence). Let I, TI' be domain environments.
If I+ oandIl’ F o, thenlINIIT' + o. O

Lemma A.3 (Process Types)LetIl be a domain environment, and
P1, P2 be two process types such thiat- P, andII - P,. Then
II+PyUPy

Proof. By Proposition A.1. a

Lemma A.4 (Type Formation). If TI, E + P : P, thenIl F o
andII + P.

Proof. By induction on the derivation dfi, E + P : P. a

Lemma A.5 (Generation).

1. If II,Eta: D, thenD = E(a).

2. If II,E+ P|Q : P, then there exisP,, P, C P such that
OE+P:PyandILEF Q : Po;

3. If TI, E F!P : P, then there exist’ C P such thafll, F +
PP,

4. If II, E + cap a.P : P, then there exist?’ C P such that
ILEF P:P, andIl,E I a : Afor some ambient domain
A. Furthermore, eithe(i) cap € {in,in,out ,open } and
cap A € P'", or (ii) cap € {out , open } andcap A € P'~

5. If I, E + (va:D)P : P, then there exist8’ C P such that
II,E,a:D}+ P: P’

6. Assumell, E + a[P] : P. Thenll, E + a[P]: II(E(a)),
II(E(a)) C P, and there exist®’ such thatll, E + P: P,
andIl + E(a) bounds P'.

Proof. In each case, directly by induction on the derivation of the
judgment in the hypothesis. a

Lemma A.6 (Subject Congruence).

1. fILEFP:PandP =Q,thenll, E+F Q : P.
2. fII,EFP:PandQ = P, thenll, EF Q : P.

Proof. By simultaneous induction on the derivations Bf= Q
andQ = P. O

Theorem A.7 (Subject Reduction).If TI, E - P : Pand PO Q,
thenIl, E - Q : P.

Proof. The proof is by induction on the depth of the derivation of
the reduction, and by a case analysis on the last rule in tineaee
tion.

Case (open):

opena.P; | afopena. P | P3] O Py | Py | Ps
FromIL,E F open a.P: | a[open a.P> | P3] : P, by repeated
applications of Lemma A.5:2, A.5:4, and A.5:6, there exisaan-
bient domainD € Dom(II) with II(D) C P, and process types
P g P, andPQ, P37 Pas with P2, P3 g Pss such that the follow-
ing are all verified:

IEF P : P, (2
II,Etopena.P | Ps: Pas (3)
ILEFP,:P, and ILEF Ps: Py @)
II,Era:D and II+ D bounds Pas (5)

From the first judgment in (4), by Lemma A.5:4, we know that
open D € P;3. From this, and from (5), we know thapen D €
TI(D)~, and henceP»3 C TI(D) again from (5). TherP,3 C P
sincell(D) C P. By subsumption from (2) and the two judgments
in (4), we then deriv@l, E + P, : Pfori = 1,2,3. ThenIl, E +

Py | P, | Ps : P derives by two applications of AR).

Case (in):

afina.Py| Py |blin a.Qi | Q2] O a[Py| P2 | b[Q1 | Q2]
FromH,E = a[in a.P1 ‘ P2] ‘ b[in a.Q1 ‘ QQ] . P, by Lemma
A.4 we know thall I . By repeated applications of Lemma A.5:2,
A.5:4, and A.5:6 there exist ambient domaiAsB € Dom(II),
with II(A),II(B) C P, process type®i, P2, P12 with Py, Py C
P12, andQ1, Qz, Q12 with Q1, Q2 C Q12 such that the following
are all verified:

ILEFina.Q1]Q2: Q2 (1)
H,E"QllQl and H,E"QQZQQ (2)
ILEFbL: B and TI+ B bounds Q12 (3)

II.,Etina.P | Py : P (4)
H,E"Pllpl and H,E"PQZPQ (5)
ILEFa: A and T+ Abounds P2 (6)

From the left judgments of (2) and (6), by Lemma A.5:4, we know
thatin A € Q!,. From this and from (3)in A € II(B)~. From
the left judgment of (5), we also know thad A € PI2. From this
and from (6),in A € II(A)~. Summarizing we havein A €
sync(II(B)~,II(A)™). From this, and fronil F ¢, we know that

I + A bounds IT(B). From this, and from the right judgment of
(6), by Proposition A.1.1, we have

IT + A bounds (II(B) U P12))

From the two judgments in (2), by subsumption (that can béexgbp
by Lemma A.3) and (RR), IT, E + Q1 | Q2 : Qi2. From this, and
(3), by (AmB)

ILEFb[Q1 | Q] : TI(B) ®)

From the two judgments in (5), by subsumption andgR1I, E +
Py | P> : P12. From (8) and the last judgment, by subsumption and
(PAR),

EF P | P | b[Q1]|Qs]:TI(B)UP:» 9)

Now, the type of the reduct derives from (9), (7), and thejledg-
ment of (6) by (AvB) and subsumption.

Case (out):

a[GuE a.Py | P> | blout a.Q1 | Q2110 a[Py | P>] | B[Q1 | Qo]
As in the previous cases, by repeated applications of LemibiaoA
the typing judgment of the redex, there exist process tfpe®.,
P, with P1,P> C P, andQi,Q2, Q12 with Qi,Q2 C Qi
and ambient domainst, B € Dom(II) with II(A) C P and
TI(B) C P,, such that the following are all verified:

ILEF outa.Q:| Q2 : Qi (1)
ILEFQ : Qi and TLEF Q2:Q»)
ILEFbL: B and TI+ B bounds Q12 (3)

ILEFina.Pi| Py | blout a.Q1 | Q2] : Pa 4
H,El_Plipl and H,El‘PgZPg (5)

IM,EFa: A and I+ AboundsP, (6)

From the left judgments of (2) and (6), by Lemma A.5:4, we know
thatout A € Ql,. From this and from (3)put A € TI(B)~.
From the left judgment of (5), we also know thait A € PT,.
From this and from (6)out A € II(A)*.

Thus,out A € sync(II(B)~, II(A)). From this, and fronil - o,

we know thatll(B) C II(A). Itis now easy to check that the
judgmentsIl, E + b[Q1 | Q2] : II(B) andIL, E + [P | P2] :
II(A) are both derivable. The typing judgment for the reductum
derives then by subsumption and an application aR)P

Case (context)Standard, by induction hypothesis.

Case (struct)by Lemma A.6 and the induction hypothesis. O

B. TYPE SAFETY

Lemma B.1. Let €[] be a restriction-free context, an# be a
restriction-free process. Assume tHatE + %[P] : P’ and
I, E + P : P. Consider one step of tagged reduction fretit P]:
F[4P] = %1[{R] — %>[1Q] for some context’[] and %>[].
Thenll, E + |Q] : P.

Proof. We first show that the lemma holds for the preliminary step
of structural rearrangement, i.e. thBt E - |R| : P. Since

% [4P] contains a single tagged occurreneg,[fR] results from
either rearranging only untagged occurrences, or fronraeging

#P. In the first case the claim is trivially true. Then, consitiez
case wheri P matches either side of a conguence rule. SiRce

is restriction-free by hypothesis, we have only four bassesdo
consider, namelyfP = 10, {P = §(P: | P»), for given P, and

P, and finallyfP = §!P;, or P =!{P;. In all cases the claim
follows by Lemma A.6. The first case is vacuous, as there is no
tagged process correspondingftd The second case follows by
the type rule (RR) and the last two cases follow by €&RL). For

the inductive cases, the only subtlety is transitivity, lasinterme-
diate tagged process may contain more than one tagged eccatr
However, since there only one tagd#tP], it is not difficult to see
that ¢1[fR] can always be obtained by a sequence of rearrange-
ments that only use the congruence g, | P>) = P, | §P>
from left to right.

Next, consider one step of tagged-reduction frénjfR]. If tR

is not a sub-occurrence of the redex, then the proof is trivide
same holds if R is a sub-occurrence of the redex but it is not one
of the tagged processes involved in the reduction. If thexeés a
suboccurrence dfR, then the proof follows by subject reduction.
The remaining cases are whgR is one of the processes involved

in the reduction: we work out the interesting cases below,réh
maining cases are similar and simpler.

(opentag) open a.S | fafopen a.Ri | R2] — S |#(R1 | R2),
whereR = a[open a.R: | R2] and@ = Ri1 | Rs.

From the hypothesis, we know thdt £ - a[open a.R: | R2] :
II(E(a)). From Lemma A.5:6, there exis® such thafll, E +
open a.R; | Ry : P' with IT - E(a) bounds P’. By repeated
applications of Lemma A.5 we also have thatE + R: | R :

Q C P'. From this, and frondpen E(a) € II(E(a))~, by closure
it follows thatQ C P’ C II(E(a)) as desired.
(out tag) fla[blout a.R: | R2]| out a.Rs | R4] — #b[R1 | R2] |

fa[Rs | R4]. The proof follows the pattern of the casau) in the
proof of Theorem 3.3.

(|n) b[lna Si | SQ] ‘ ﬁa[lna R ‘ RQ} ﬁa[Rl ‘ R> ‘ b[Sl | SQ”,
whereR = a[in a.R; | Rx] and@ = a[R1 | R» | b[S1 | S2]].
Again, the proof follows the pattern of the case) (of Theorem
3.3. From the hypothesis, we know tH&tE b[in a.S; | S2] :
II(E(b)). Hence alsdl, E F b[S; | S2] : II(E(b)). To conclude,

it is enough to show thafl + FE(a) bounds II(E(b)). But this
follows from the coherence dl, given that
in E(a) € sync(II(E(b))~,II(E(a))7). d

LemmaB.2. fII,E+ P:PandP | (capa)” thencap E(a) €
P

Proof. By a direct inspection of the typing rules. |

The proof of Type Safety is a corollary of the following Lemma

Lemma B.3. Let P be a restriction-free procesg) be an occur-
rence of P and letE a type environment. Assume thatE + P :

P'and II,E + Pa : P are derivable. If A || (cap a)”, then
cap E(a) € P".

Proof. Follows by Lemma B.1 and Lemma B.2. The proof is eased
by the definition of residuals in terms of one-step reduciof
processes that have at most one tag, and that structuraiusmmug
is applied only before (not after) a reduction step. a

Theorem B.4 (Local Type Safety).Let(vd:D)P be a DSSA pro-
cess, withP containing no restriction, and\ be an occurrence of
P of the forma[P’]fIE. Assumdl, E - Pa : P is derivable, and
E() =B.If Al (capb)”,thencap B € P".

Proof. (Sketch The proof is based on the analogue of Lemmas B.2
and B.3 for DSSA processes, and a different version of Lemriia B
that handles the new form of tlfeut) and(in) recutions. The only
critical case is the subcase (@) in which {R (i.e., A) is the en-
tered ambient. For DSSA, this case foIIows by two side coorakt
of the(in) rule: II, E + b[in a.P | Q] : II(E(D)), that en-
sures that the Iocal environment of the’ reductum can typaoitty,
andIl E(a) bounds II(E(b)), that ensures that the behavior of
the entering ambient is already accounted for by the loocatem
ments of the reductum. Then, the result follows from the olzse
tion thatll(E(a)) = . (Eq.(a)).

Note that the theorem is stated for ambient occurrences and n
generic occurrences. Indeed the result does not hold foergen
processes since in DSSA we did not modify ttepen) rule to
check that opened ambients are well-typed. |

C. TYPE RECONSTRUCTION

Proposition C.1. Let IT be a domain environment with(fif) C
Dom(II). ThenEnvClosure(II) is the least coherent domain envi-
ronment containingl.

Proof. To prove the claim it is enough to show thil' | II C
IT" andIT’ I o} is not empty and finite. The proof follows then by
Corollary A.2. That this set is not empty follows by obseryimat
the environmenil**! that results fromi1 by saturatingl1(D) for
everyD € Dom(II) is contained in it. That the set is finite follows
from the fact thaDom(II) is finite. O

Proposition C.2. Let IT a coherent domain andl € Dom(II).
Then for every process tyfe

1. EnvClosure(II) = II.
2. T+ ProcClosure(P, IT) closed.
3. DomClosure(P, A, II) - A bounds P. |

To prove the reconstruction algorithm sound, we need thevihg
lemma on the algorithmic system.

Lemma C.3. Assumdl, E ., P : P, and letll’ be any coherent
domain environment containidg. ThenIl’, E -, P : P* where
P* = ProcClosure(P, IT").

Proof. By induction on the derivation dfi ., P : P. a

Theorem C.4 (Soundness and completenesd)et P be a process,
and F a type environment such that(fd) C Dom(FE). Then
Rew(E,P),E by P . Zype(E, P) (soundness). Furthermore,
foranyIl andP such thatll, E . P : P, one hasZen(E, P) C
IT and Zwpe(E, P) C P (completeness).

Proof. By induction on the structure d?.

P =0.

In this caseZen(E, P) = @9 andZype(E, P) = (0, 2,). By
construction@y + ¢, andimg(E) C Dom(&4). Henced 4, E +-
o by (ENV), andZen(E, P), E b P : Zype(E, P) derives by
(DEAD). Completeness is trivial.

P =capa.P.
LetIl = Zenv(E, P') andP = Rype(E, P'). By induction hy-
pothesis, we havB, E ., P’ : P, and for anyil’ andP’ such that
', E 4 P’ : P, we havell C II' andP C P’. By construction,
there existsAd such thatF(a) = A. There are now three cases,
depending on the structure ofp.
If cap € {in ,in ,out ,open }, by definitionZen(FE, P) = I
andZuype(E, P) = P UT {cap A}. Then the desired judgment de-
rives from (ACTIONT).
If cap = out A, by definitionZen (E, P) = Il andZype(E, P) =
PU™{out A}. Thenthe desired judgment derives fron{AONT).
If cap = open A, by definitionZen (E, P) = I1andZype(E, P) =
P’ as defined by the side-condition dR¢ACTION3). The desired
judgment derives from (&TION3).

In all three cases completeness follows from the inductipn h
pothesis and monotonicity of the union.

P =!P' and P = (va:A)P’. Directly, by induction hypothesis.
P=P | P

LetIl; = r@ern/(E‘, P1), P, = ﬁtype(E, Pl), I, = r@er“/(E‘,F)Q)
andP, = Zype(E, P2). By induction hypothesidl;, E o P :

Pi, andIly, E ko P : Py, Let nowll = Zenv(E,P) £
EnvClosure(TT; U II,). By Proposition C.1]1;,1I, C TII, and
I - o. From the last two judgments, by Lemma C.3

II,Ety P PY with P7 = ProcClosure(Py,II) (7)
II,Ety P : Py with P35 = ProcClosure(P2, IT) (8)

From (7) and (8) above, by AR),II, E o P1 | P> : (PTUP3) It
is now easy to check th&j U P; = ProcClosure((P; U Py),II)
and hence conclude &ype(E, P) = ProcClosure((P1UP2),II).

Completeness follows by induction hypothesis and monotiyni
of EnvClosure andProcClosure operators. Indeed for aril’ and
P’ such thafl’, E +, P | P> : P, by induction hypothesill; C
IT" andIl, C II' hold, which impliesIl; U Il C II'. Further-
more sincell’ is coherent by Proposition C.2(1) we obtdilh =
EnvClosure(IT"). From these last two points and the monotonicity
of EnvClosure we haveZen (E, P) £ EnvClosure(IT; U II) C
EnvClosure(I1") = II'. A similar reasoning yields?ype(E, P) C
P’

P =qa[P']

LetIl = Zen(E,P') andP = Zype(E, P'). By construction
there existsA such thatE(a) = A, and by induction hypothesis
IE +o P': P. Then alsoll + ¢, andIl + P closed. Let
II* be defined as in the side condition & {AMB) and setP* =
ProcClosure(P, I1*). By construction of I* we have:

P* = ProcClosure(P,II") 9)
I1* = DomClosure(P*, A,1II) (10)
II* = EnvClosure(Il") (11)

From (11) and Proposition C.1, we dedudé + <. From this,

(ENV), and (NAME) we obtain:
", Eta:A (12)

By constructionlI C IT1*. Thus by (9), the induction hypothesis,
and Lemma C.3 we deduce

0 ,Ety P:P* (13)
Finally from (10) and Proposition C.2(3) we have
IT" + A bounds P* (14)

The result follows from (12), (13), and (14) by (/). For the
completeness, consider aily andP’ such thafl’', E +, P’ : P’
and redo the proof above usifif andP’ instead ofil andP. The
result follows from the monotonicity dEnvClosure, ProcClosure,
andDomClosure. O

D. GENERALIZED TYPE SAFETY

The generalized version of type safety, for processes iitrarp
form, is subtler and requires more complex definitions. Tiwp
lem is that restrictions may extrude tagged processes argdith
herently change the set of actions exhibited by the latter.

Scope extrusion requires that extruded restrictions lwettéy the
extruded tags. Thus, the general form of tagged processkelsewi
fx P, whereFE is a type environment. Given the extended notion of
tags, we may then define a congruence rule for scope extrusion

fe(va:D)P = (va:D)ig,a.pP (15)

In the following, we omit the type environment in tags unléss
really matters. The tagged-reduction rules and the remguisiiruc-
tural congruence rules are as before, with the only excegtibat
now tags carry type environments with them.

EnvClosure(IT : DomEnv):DomEnv :=

1 2 = Dom(ll);

2 while 2# @ do

2 chooseD in 2; 2 := 2\ {D}

3 for M in II(D)= do

4 m:=T1

5 caseM of

6 out H:

7 if out H € L(H)* then1l(H) := 1I(H) U 1I(D)

8 in H:

9 if in H € II(H)= then

10 begin

11 H(H)= :=I(H)= UII(D)T; I(H)Y = II(H)} UTI(A)=
12 if open H € TI(H)= thenTI(H) := II(H) UTI(D)
13 end

14 open H:

15 if open H € TI(H)= then TI(D) := TI(D) UTI(H)
16 esac

17 if 1 £1'"then2 := 2 U{H}

18 done

19 done

20 return (IT)

Figure 7: A closure algorithm

The definition of#’[] must be extended to include restrictions:
JOP|Z] OF[]|P Oa¥]]] Oa?] O (wa:D)?][]

Given a contex®’[] we denote by« the type environment formed
by all the declarations introduced in the contextdsg that have
the context’s hole in their scope. For brevity we USg to denote
E,p.

“A

We can now state the new definition of setre§iduals which is
modified so that type-environments annotations are traceitgl
the reduction. For this reasons residuals will be taggedqa®ses
rather than processes:

Definition D.1 (Residuals). Let P be a process.

1. Let A be an occurrence of an untagged procBsand E a
type environment. The set éf-residuals ofA in P is defined
as follows:

(1) e Pa is anE-residual ofA in P
(2) f €X[§ePa] — Q andQa: = f#x R for someR, then
every E'-residual of A" in |Q] is also anE-residual ofA in

P.
2. LetA be an occurrence of an untagged procBs3 he set of
residuals ofA is the set ofz-residuals ofA in P. a

We extend the type system with an additional type rule fogeég
processes and define theelation also for tagged processes:

(TYPETAG)

MmE-P:P P |capa”
e — . ¢Dom(E)
ILE-ipP:P figP | cap a”

The way capability exhibition is defined for tagged procegss-

Definition D.2 (Residual Behavior). Let P be a processA and
an occurrence of’. A |} a” ifand only if Q | «", for some
residual@ of A. O

The general version of Theorem 4.3 stated for generic psases
holds for this new definition of.

Theorem D.3 (General Type Safety).Let P be a process and\
be an occurrence af. Assume thatl, E + P : P’ and II, E -
ERF Pa:P.If Al (capa)”,thencap E(a) € P". O

To prove it we should first lift the subject reduction theorém
tagged processes and tagged reduction.

Theorem D.4 (Tagged Subject Reduction)Let P be a tagged pro-
cess. IfII, E- P:PandP — Q, thenll, EF Q : P. O

Then the General Type Safety theorem follows from an an&adgu
Lemma Lemma B.2 on tagged processes, and the followingorersi
of Lemma B.1.

Lemma D.5. Let P be an untagged process andan occurrence
of P. Assume thall, E - P : P andIl, (E - EX) F Pa : P,.
If X [fr, Pa] — %i[fr, P2], for some contex@, thenTl, (E -
E@) '_ ijQPQ . Pl.

Proof. (Sketch) The proof is in two steps. First we prove that the
claim holds for structural congruence, i.e. tha®if [{r, Pa] =

@1 [fpy Ps], thenll, (E - Eyy) & fg,Ps : Pi. This follows by

a case analysis on the possible occurrences;pPa: the proof
makes a crucial use of the assumption tRas untagged and that
thereforefr;, Pa is the only tagged occurrence of the starting pro-
cesses (if we had several tags then the statement would fbt ho
because of the rulgP | 1Q = (P | Q)).

tifies why residuals are now defined as tagged processes and wh Then, we observe all possible one step reductions startorg f

tags have to store environments: if we did not, then by the (16)
a residual could exercise a capability that in the origiraiusrence
would have been blocked by a restriction. Finally, the d&éiniof
| is as before, but now it uses the new definitions of exhibiéind
residual.

€| [4r, Ps] and ending intaé: [fz, P2]. This part of the proof is
very much the same as the corresponding part in the proofrohha
B.1, once we note that ffz, Ps is directly issued froniz,, P», then

