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Abstract. Secure Safe Ambients(SSA) are a typed variant ofSafe
Ambients[9], whose type system allows behavioral invariants of
ambients to be expressed and verified. The most significant aspect
of the type system is its ability to capturebothexplicit and implicit
process and ambient behavior: process types account not only for
immediate behavior, but also for the behavior resulting from ca-
pabilities a process acquires during its evolution in a given con-
text. Based on that, the type system provides for static detection of
security attacks such asTrojan Horsesand other combinations of
malicious agents.
We study the type system of SSA, define algorithms for type check-
ing and type reconstruction, define powerful languages for express-
ing security properties, and study a distributed version ofSSA and
its type system. For the latter, we show that distributed type check-
ing ensures security even in ill-typed contexts, and discuss how it
relates to the security architecture of the Java Virtual Machine.

1. INTRODUCTION
Mobile Ambients[5] are named agents or locations that enclose
collections of running processes, possibly including nested sub-
ambients. Safe Ambients[9] are a variant of Mobile Ambients.
The two calculi differ in the underlying notion of interaction: in
Mobile Ambients, interaction is “one-sided”, in that one ofthe two
partners in amoveor openaction simply undergoes the action. In
Safe Ambients, instead, the reduction relation requires actions to
synchronize with corresponding co-actions. To exemplify,consider
the ambientsa andb described below:

Mobile Ambients a[open b:in c] j b[in a:in d]:
The brackets[: : : ] represent ambient boundaries, “j ” denotes par-
allel composition, and “.” enforces sequential execution.Given
the above configuration, the ambientb may entera, by exercising
thecapabilityin a, and reduce toa[open b:in c j b[in d]]. Thena may dissolve the boundary provided byb by exercisingopen b,
and reduce toa[in c j in d].
Neither of the two reductions is legal in Safe Ambients. To obtain
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the behavior we just described, the two ambientsa andb should be
written as follows:

Safe Ambients a[in a:open b:in c] j b[in a:open b:in d]:
Now the move ofb intoa arises as the result of a mutual agreement
between the two partners:b exercising the capabilityin a, anda exercising theco-capabilityin a. The resulting configuration,a[open b:in c j b[open b:in d]], reduces toa[in c j in d], again
as the result of the synchronization betweenopen b andopen b.
Secure Safe Ambients(SSA) are a typed variant of Safe Ambients
whose type system is so defined as to allow behavioral invariants of
ambients to be expressed and verified. The most significant aspect
of the type system is its ability to traceboth explicit and implicit
process behavior and ambient mobility: the type assigned toa pro-
cess accounts not only for the behavior resulting from the capabil-
ities that process possesses in isolation, but also from thecapabil-
ities the process may acquire by interacting with the surrounding
environment. This degree of accuracy is essential for a sound ver-
ification of security policies, as implicit (i.e., acquired) mobility is
at the core of a number of security attacks such asTrojan Horsesor
other combinations of malicious agents.

EXAMPLE 1.1. Consider again the two (safe) ambientsa andb in-
troduced above, now running in parallel with a third ambientc as
in the following configuration, whereP andQ are arbitrary pro-
cesses:a[in a:open b:in c] j b[in a:open b:in d]j c[ in c:P j d [in d:Q] ]
For the purpose of the example, assume thatd contains confidential
data, which should be made available to ambients runningwithin c
(which may enter, as signaled by the co-capabilityin d), but not
to ambientsenteringc. Given this security policy, the question
is whetherc should leta in without fear thata may access the
confidential data ind. If we only look at explicit mobility, that is at
the capabilities available fora, then the move ofa into c seems safe,
asa does not make any direct attempt to move intod. However,a
can be used as a Trojan Horse forb: a can letb in, then enterc and,
once insidec, openb to gain access tod.

EXAMPLE 1.2. A different way thata may attackc is by lettingb
out after having enteredc. The two ambientsa andb would then
be written as shown below:a[in a:in c:out a] j b[in a:out a:in d]j c[ in c:P j d [in d:Q] ]
Again, if we only look at the capabilities available fora, we are



mislead to leta into c. Yet,a could letb in, then enterc, and finally
let b out handing over tob the capability to enterd.

1.1 Overview and Main Results
The type system we discuss in this paper provides for static,type-
driven verification of security. It allows the definition of security
policies for ambients, and provides mechanisms for static detection
of any attempt to break those policies. In particular, the type sys-
tem detects security attacks based on implicit (and undesired or ma-
licious) acquisition of capabilities by hostile agents such as those
described in the previous examples. As argued in [9], the presence
of co-capabilities is essential for an accurate static characterization
of processes in the type system: our choice of Safe Ambients as the
basis for our type system is motivated by the same reasons.

There are three key ingredients to the type system.

Ambient Domains. Ambients are classified bydomains: each do-
main has an associatedbehaviorthat ambients in the domain share
and must comply with, and asecurity policythat protects the ambi-
ents in the domain from undesired interactions with the surrounding
context.

Type-level capabilities and Process Types.Process types describe
process behavior using domains as the unit of abstraction. The
term-level capabilities available to processes are abstracted upon
in the type system by resorting to type-level capabilities.Process
types are defined in terms of sets of type capabilities: to exemplify,
if a is an ambient of domain, sayA, andP is a (well-typed) process
exercising the term-level capabilityin a, then the type ofP traces
this behavior by including the type-level capabilityin A.

To gain accuracy in the description of ambient behavior, thetype
system traces thenesting levelat which the effect of exercising
a capability may be observed. This is accomplished by introduc-
ing chemical abstract model, where exercising a capabilitycorre-
sponds, in the typing rules, to releasing a type-level capability, or
molecule. Molecules are classified asplain, light, andheavy: plain
molecules are released at the nesting level of the process exercis-
ing the corresponding capability, light molecules at upperlevel (the
level of the enclosing ambient), while heavy molecules are released
within ambients. Molecules react with co-molecules (correspond-
ing to co-capabilities) released at the same nesting level.Thus, in
the chemical metaphor, type checking corresponds to a chromato-
graphic analysis in which each element of different weight is pre-
cisely determined.

Security Constraints. Each ambient domain has an associated set
of security constraints that define the security policy for that do-
main: the constraints establish the access rights for ambients cross-
ing the boundary of any of the ambients in the domain.

We prove two main results for our type system. The first is subject
reduction, the second is a rather strong form of type safety showing
that types provide a safe approximation of behavior: specifically,
we show that if a processP running inside a contextC may (after
any number of reduction steps ofC ) exercise a capability on some
name, andC is well-typed, then the corresponding type capability
is traced by the static type ofP . As a corollary, we then deduce that
well-typed processes comply with the security policies established
by ambients.

We also define a type-checking algorithm that computes minimum
types and, more importantly, an algorithm for type reconstruction:
we prove both sound and complete. Type reconstruction is partic-
ularly important for our purposes, as it infers the behaviorof am-
bient domains, thus leaving the programmer with the only task of
specifying the domains of ambients, and their associated security
policies.

Finally, we study a distributed variant of SSA, where each ambient
carries its own type environment along with it, and type-checking is
performed locally by the ambient at any time other ambients cross
its own boundaries. The distributed variant of the calculusand its
type system are particularly interesting in perspective, in view of a
practical implementation. In a highly distributed system it is clearly
unrealistic to rely on the assumption that type checking mayaccess
information on all the components of the system. Accordingly, in
the distributed version of the calculus, we dispense with global se-
curity and type soundness, and replace them by local type checking
and security analysis. A typed version of reduction complements
these analyses by allowing ambient boundaries to be crossedonly
by ambients satisfying the type and security checks performed,just
in time, by the ambient whose domain is being crossed.

The study of the distributed version yields, as a byproduct,a fur-
ther interesting result. Looking at the dynamic checks performed
upon reduction, one discovers that they correspond to the type and
security checks performed by the three components of the secu-
rity architecture of the Java Virtual Machine: theClass Loader, the
Bytecode Verifier, and theSecurity Manager.

1.2 Related work
Type systems for Mobile Ambients and related calculi have been
studied in several papers. The first paper on the subject is byCardel-
li and Gordon [6], where types are introduced to discipline the
exchange of values inside ambients. In [3], Cardelli, Ghelli and
Gordon extend the type system of [6] to account for ambient mo-
bility. The new type system provides for a classification of am-
bients according to simple behavioral invariants: specifically, the
type system identifies ambients that remain immobile, and ambi-
ents that may not be dissolved by their environment. In [9], Levi
and Sangiorgi define a suite of type systems for their Safe Am-
bients, which also characterize behavioral properties of ambients,
such as immobility andsingle-threadedness: based on these invari-
ants, they prove interesting equivalences for well-typed processes.

The type system closest to ours is the one presented by Cardelli,
Ghelli, and Gordon in their recent paper on Ambient Groups [4].
Although their and our motivations are somewhat orthogonal—
they refine previous work on static detection of ambient mobility,
we give a type-theoretic account of security by defining and en-
forcing security policies for ambients— the two solutions have sev-
eral similarities. If we disregard the security layer of ourtype sys-
tem, our notion of ambient domain is essentially the same as their
notion of group. Also, ambient behavior is characterized in both
type systems in terms of sets built around domains (or equivalently
groups). In [4] each groupG is associated with sets that identify
which groups ambients of groupG may potentially cross or open.
In our type system, we directly associate ambient domains with
type-level capabilities with similar information content. However,
our type system is superior in precision, as our type-capability sets
are constructed in ways that allow implicit and hidden mobility to
be statically detected. That is not always the case in the type system
of [4]: only the first of the two attacks we discussed in the examples



above are detected by the type system of [4]. A further difference
is the presence in [4] of a novel (and quite interesting) construct
for dynamic group creation, a primitive that is not available for our
version of mobile ambients. While we believe that this construct
could be included in our type system, it would certainly compli-
cate type reconstruction. Besides our specific interests insecurity
issues, that are somewhat disregarded in [4], type reconstruction
and the distributed version of the system (neither of which is dis-
cussed in [4]) represent further important differences between the
two papers.

Further related work includes F. and H.R. Nielson’s framework for
control and data flow analysis for Mobile Ambients [12, 13]: in
fact, our type reconstruction algorithm may be seen as an abstract
control flow analysis where ambient behavior is abstracted upon in
terms of domain behavior.

Plan of the paper. Section 2 reviews the syntax and reduction
semantics of (Secure) Safe Ambients. Section 3 defines the type
system, while Section 4 focuses on type soundness and safety. Sec-
tion 5 introduces the algorithmic systems, and proves them sound
and complete. Section 6 shows how to define a security layer ontop
of the type system, and how the type system may be used enforce
and verify security properties. In Section 7 we define a distributed
version of SSA, and discuss how it relates to the security architec-
ture of the JVM. A short section concludes the presentation.Proofs
of the main results are given in a separate appendix.

2. THE LANGUAGE
The terms of our language are those ofSafe Ambientswith the only
difference that the types of (ambient) names are (protection) Do-
mains. These are type-level constants used to identify ambients
that satisfy the same behavioral invariants and share common se-
curity policies: instead of associating such invariants and policies
to each ambient we rather define them for domains, and then group
ambients in domains.

ProcessesP ::= 0  �:P  (�a:D)P  P j P  a[P ]  !P
Capabilities� ::= in a  in a  out a  out a  open a  open a

Besides being a design choice, the introduction of domains is mo-
tivated by technical reasons. An alternative, and more informative,
notion of ambient type could be defined by associating each am-
bient with the set of term-level capabilities that ambient may ex-
ercise. The resulting type system would certainly provide amore
accurate characterization of process and ambient behavior, but it
would also incur into a number of technical problems arisingfrom
the dependency of these types on terms1. On the other hand, our
use of protection domains is well motivated and justified by what is
nowadays common practice for languages and systems supporting
code mobility [8].

Reduction1One problem with that solution is that types are not preserved by structural congru-
ence. For instance, the term(�a:A)(�b:B)a[in b] j b[in b] would not be typeable,
as the typeA should contain all the capabilitiesa can exercise: yetA cannot containin b, asb is in the scope of a nested binder. If we exchange the positionof the two
binders, as in(�b:B)(�a:A)a[in b] j b[in b] the term becomes typeable. The
use of domains resolves the problem: both terms are well-typed whenA andB are
domains (thus type constants rather than sets of term-levelcapabilities).

The reduction relation for SSA derives from the one defined for
Safe Ambients.

(in) b[in a:P j Q] j a[in a:R j S] ➞ a[R j S j b[P j Q]]
(out) a[ b[outa:P j Q] j outa:R j S] ➞ b[P j Q] j a[R j S]
(open) open a:P j a[open a:Q j R] ➞ P j Q j R
(context) P➞Q ) E [P ]➞E [Q]
(struct)2 P 0 � P➞Q ) P 0➞Q

whereE [ ] denotes an evaluation context defined as follows:

Evaluation ContextsE [ ] ::= [ ]  (�a:D)E [ ]  P j E [ ]  E [ ] j P  a[E [ ]]
and� is the standard structural equivalence relation for ambients,
that is the least congruence relation that is a commutative monoid
for 0 and j and closed under the following rules:!P �!P j P(�a:D)0 � 0(�a:A)(�b:B)P � (�b:B)(�a:A)P for a 6= b(�a:D)(P j Q) � P j (�a:D)Q for a 62 fn(P )(�a:D)b[P ] � b[(�a:D)P ] for a 6= b
3. TYPE SYSTEM
Ambient domains, ranged over byA;B;C, andD, provide the
type-level unit of abstraction: in the type system, the effect of ex-
ercising a capability is observed on domains rather than ambients.
We define process types in terms of type-level capabilities as fol-
lows:

Type CapabilitiesM ::= in D j in D j out D j out D j open D j open D
Process TypesP ::= (L;M;N) (L;M;N 2 2M )

Notation. The following conventions are used throughout. We
often writecap D (resp. cap a) to denote an arbitrary type-level
(resp. term-level) capability. IfP = (L;M;N), we writeP" forL, P= for M, andP# for N, and often abuse this notation usingP", P= andP# both as projections of the typeP, and directly as
sets, as inP : (P";P=;P#). Also, we use set-theoretic notation
for various operations on process types: ifP andQ are process
typesP � Q denotes component-wise inclusion. SimilarlyP [ Q
denotes component-wise union. Given a setM of type capabilities
and a process typeP, we defineP [# M (respectively,P [= M
andP [" M) as the process type resulting from the union ofM
andP# (respectively,P= andP"): P [# M , (P";P=;P# [M),P[=M , (P";P= [M;P#) andP["M , (P" [M;P=;P#).
Finally, given a type-level capabilityM , a type-level co-capabilityM , and two sets of type capabilitiesL andM, we writeM 2sync(L;M) as a shorthand forM 2 L andM 2M.

Process types describe the capabilities that processes mayexercise,
and trace thenesting levelat which the effect of exercising a ca-
pability may be observed. The three components of process types
identify those levels:P" describes the effects that can be observed
at the level of the ambient enclosingP , P= describes the capa-
bilities observed at the level ofP , and finally,P# represents the
capabilities that are exercisedwithinP , wheneverP is an ambient2We use this definition of structural reduction instead of themore standard definitionP 0�P ➞ Q�Q0 ) P 0 ➞ Q0 to ease the proof of type safety (see Section 4).



of the forma[P 0]. To exemplify, givena : A:� in a:P : P ) in A 2 P", since the effect of exercisingin a is observed at the level of the ambient (if any) enclosingP� b[in a:P ] : P ) in A 2 P=, since now it isb[in a:P ] that
exercisesin a� open a:P : P ) open A 2 P=, sinceopen a is exercised
(and its effect observed) at the level of the processes running
in parallel withopen a:P� b[open a:P ] : P) openA 2 P#, sinceopen a is exercised
within b.

3.1 Environments and Type Rules
We define two classes of environments, namelyType Environments,
denoted byE, andDomain Environments, denoted by�:

Type Envs E : Ambient Names! Ambient Domains
Type Envs � : Ambient Domains! Process Types

Type environments associate with each ambient name the domain it
belongs to, while domain environments associate with each domain
the type that is shared by all its ambients. Thus, while type environ-
ments partition ambients into domains, domain environments con-
vey information about potential interactions among domains, and
enforce behavioral invariants for processes enclosed in ambients in
each domain.

Definition 3.1 (Closure and Boundedness).Let � be a domain
environment,P a process type, andD andH be ambient domains.
We define the following notation:� ` P closed ,open H 2 sync(P=;�(H)=) ) �(H) � P� ` D bounds P ,P" � �(D)= ^ P= � �(D)# ^(open D 2 �(D)= ) P � �(D))� ` D closed ,� inH 2 sync(�(D)=;�(H)=) ) � ` H bounds �(D)out H 2 sync(�(D)=;�(H)#)) �(D) � �(H)
The closure condition on process types formalizes the intuition that
processes may exercise all the capabilities of the ambientsthey
may open. The boundedness ofP by D ensures that the process
type�(D) provides a sound approximation of the typeP of any
process enclosed in (ambients of) domainD. This is expressed
by the first two inclusions, which reflect the different nesting level
at which one may observe the behavior of ambients and their en-
closed processes. The last inclusion handles the case of domains
whose ambients may be opened: in that case ambient boundaries
are dissolved, and consequently the behavior of the processes un-
leashed as a result of the open may be observed at the nesting level
of the ambients where they were originally enclosed. Finally, the
closure condition for domains enforces the previous invariants in
the presence of mobility: the behavior of an ambienta of domainD must account for the behavior of ambients enteringa, as well as
for the behavior of ambients exitinga (sincea lets these ambients
out, then it is virtually responsible for their behavior).

Definition 3.2 (Coherence).Let � be a domain environment. We
define the notation� ` � (read� is coherent) as follows:� ` � , fn(�) � Dom(�) ^8D 2 Dom(�): (� ` D closed ^ � ` �(D) closed)

where, with an abuse of notation, we usefn(�) to denote the setfD j capD 2 Img(�)g.

The typing rules are given in Figure 1. They derive judgmentsof
the form�; E ` P :P, whereE is a type environment,� is a
domain environment, andImg(E) � Dom(�) (that is, theimage
of E is contained in thedomainof �).

The rules (DEAD), (PAR), (REPL), and (RESTR) are standard. The
typing of prefixes (in the (ACTION) rules) is motivated by the ob-
servations we made earlier: the effect of exercising the capabilitiesin a; out a; in a andopen a may be observed at the level of the
enclosing ambient. Dually,open a, andout a may be observed at
the level of the continuation process.

As for (AMB), the rule stipulates that an ambienta[P ] has the type
that� associates with the domainD of a, provided thatD bounds
the type ofP in �. The (AMB) rule is technically interesting, as,
unlike its companion rule in previous type systems for Mobile (and
Safe) Ambients, it establishes a precise relationship between the
type of an ambient and the process running inside it. This rela-
tionship, which is essential for tracing implicit behavior, can be
expressed in our type system thanks to the three-level structure of
our process types.

Theorem 3.3 (Subject Reduction).If �; E ` P : P andP➞Q,
then�; E ` Q : P.

3.2 Examples
We illustrate the behavior of the typing rules with the two systems
of Examples 1.1 and 1.2. AssumeE � a:A; b:B, c:C; d:D, and
consider the attacka[in a:open b:in c] j b[in a:open b:in d]:
Let Pb be the type of the process enclosed inb: it is easy to ver-
ify that fopen B; in Dg � P"b . From� ` B bounds Pb, one
hasopen B 2 �(B)=, and hencein D 2 �(B)". Let nowPa be the type of the process enclosed ina. Sinceopen B 2sync(Pa;�(B)=), then a consequence of the closure ofPa is that�(B)" � P"a � �(A)= (the last inclusion holds because� `A bounds Pa). Hencein D 2 �(A)= and the attack is detected.

A similar analysis applies to the attacka[in a:in c:out a] j b[in a:out a:in d]:
HereinD 2 �(A)= results fromoutA 2 sync(�(B)=;�(A)#),
which implies�(B) � �(A) by closure.

4. TYPE SAFETY
The operational significance of the type system is established by
showing that process types provide a safe approximation of process
behavior. In that direction, we introduce the relationP + �� that
defines the behavior of a processP in terms of the capabilities�
thatP may exercise (at nesting level� 2 f";=; #g) while evolving
in a context. Then we connect the type system with this notionof
process behavior by means of a safety result stating that, given a
well-typed processP in a well-typed context, for every� such thatP + �� , the type capability corresponding to� is traced by the type
of P : in other words, no action goes untraced by the type system.

Below, we focus on a simplified case of type safety, one that as-
sumes that processes are “normalized” to the form(�~a: ~D)P where



(TYPE PROC)� ` � fn(P) � Dom(�) � ` P closed� ` P (ENV)� ` � Img(E) � Dom(�)�; E ` � (NAME)�; E ` � a 2 Dom(E)�; E ` a : E(a)
(DEAD)�; E ` ��; E ` 0 : (?;?;?) (PAR)�; E ` P : P �; E ` Q : P�; E ` P j Q : P (REPL)�; E ` P : P�; E `!P : P

(ACTION")� ` P :P �; E ` a:D capD 2 P" cap 2 fin; in; out; open g�; E ` cap a:P : P (ACTION=)�; E ` P :P �; E ` a:D capD 2 P= cap 2 fout; open g�; E ` cap a:P : P
(RESTR)�; E; a : D ` P : P a 62 Dom(E)�; E ` (�a:D)P : P (AMB)�; E ` P : P �; E ` a : D � ` D bounds P�; E ` a[P ] : �(D)

(SUBSUMPTION)�; E ` P : P � ` Q P � Q�; E ` P : Q
Figure 1: Typing RulesP contains no restriction�. This assumption simplifies the state-

ment and the proof of the type safety theorem: in Appendix D we
show how the result can be generalized to arbitrary processes.

We start by introducing a relation of “immediate exhibition”, notedP # ��: the relation is defined in Figure 2 by induction on the
structure of the processP . Next we define a tagging mech-
anism for processes, by a technique similar to the one in [14].
Given a processP , we consider its syntax tree and tag some of
its nodes with the symbol]. So for example, ifP is the processP1 j a[P2 j (�b:B)P3] then, say,P1 j ]a[P2 j (�b:B)]P3] denotes
the processP in which we tagged the ambienta and the subprocessP3 occurring therein.

Having tagged a particular occurrence ofP , we instrument re-
duction so that every process interacting with this occurrence gets
tagged: if the tag is initially applied to an ambient, this technique
allows us to trace the interactions considered in the Chinese Wall
Security Policy [1]: in particular we can trace all the processes that
“got in touch” with that ambient. Tags are propagated based on
the idea of an ambient as a paint pot: any ambient exiting a tagged
ambient is tagged:]a[ b[out a:P j Q] j out a:R j S ] � ]b[P j Q] j ]a[R j S]
and so is every process unleashed by opening a tagged ambient:open a:P j ]a[open a:Q j R] � P j ](Q j R):
Following the intuition that a process exercises all the capabilities
of the processes it opens, we also have:]open a:P j a[open a:Q j R] � ](P j Q j R):
Technically, the definition is only slightly more complex. First, we
need to extend structural congruence to tagged processes. Given

our assumption that processes are in “normal” form, structural con-
gruence is extended to tagged processes by simply adding thefol-
lowing additional clauses3:]0 � 0 ](P j Q) � ]P j ]Q ] !P � ! ]P
Second, we define the reduction rules for all possible cases that
result from whether the processes involved in a reduction step are
tagged or not. To ease the definition, we indicate with]� a possibly
absent tag, and with]i the i-th occurrence of the tag]. With this
notation, the tagged version of reduction is defined by the rules in
Figure 3.

Now we can give a precise definition of theresidualsof a process
evolving in a context: intuitively these are all the tagged processes
that result from tagging the process in question, and reducing it in
the given context. The definition relies on the following notion of
(restriction-free) context:C [ ] ::= [ ]  P j C [ ]  C [ ] j P  a[C [ ]]  �:C [ ]
Definition 4.1 (Residuals).Let (�~a: ~D)P be a process, withP
containing no restrictions.

1. An occurrenceof P is a path� in the syntax tree ofP . We
denote withP� the subprocess ofP occurring at�, and withC P� [ ] the context obtained fromP by substituting a hole for
the subprocess occurring at�. HenceP = C P� [P�].

2. Given a tagged processP , we denote byjP j the process ob-
tained by erasing4 all tags occurring inP .

3. Let� be an occurrence of an untagged processP . The set
of residuals of� in P is defined as follows:3In Appendix D the definition is refined to handle restrictionsand scope extrusion.4Technically, tags are annotations on the syntax tree and arenot part of the syntax.

Thus the notion of occurrence is preserved by tagging/untagging, that is, for every
taggedP and occurrence�, jP�j = jP j�.



� 2 fin a; out a; in a; open ag�:P # �" � 2 fopen a; out ag�:P # �= P # ��!P # �� Pi # �� (i = 1; 2)P1 j P2 # ��P # cap b� a 6= b(�a:D)P # cap b� P # �"a[P ] # �= P # �=a[P ] # �#
Figure 2: Exhibiting a capability

(in) ]�1b[ ]�2in a:P j Q] j ]�3a[ ]�4in a:R j S] � ]�3a[ ]�4R j S j ]�1b[]�2P j Q]]
(out) a[ ]�1b[ ]�2out a:P j Q] j ]�3out a:R j S] � ]�1b[ ]�2P j Q] j a[]�3R j S]
(open) ]�1open a:P j a[ ]�2open a:Q j R] � ]�1(P j ]�2Q j R)
(out tag) ]a[ ]�1b[ ]�2out a:P j Q] j ]�3out a:R j S] � ]b[ ]�2P j Q] j ]a[ ]�3R j S]
(open tag) ]�1open a:P j ]a[ ]�2open a:Q j R] � ]�1P j ](Q j R)

Figure 3: Tag Propagation via Reduction

(1) P� is a residual of� in P
(2) If C P� []P�] � Q andQ�0 is tagged (that is,Q�0 =]R for someR), then every residual of�0 in jQj is also a
residual of� in P .

We can finally generalize the notion of capability exhibition to pro-
cess occurrences.

Definition 4.2 (Residual Behavior). Let (�~a: ~D)P be a process,
with P containing no restriction, and� be an occurrence ofP .
Then,� + �� if and only if there exists a residualR of � in P
such thatR # �� .

Theorem 4.3 (Type Safety).Let (�~a: ~D)P be a process, withP
containing no restriction,� be an occurrence ofP and letE =E0;~a: ~D for a type environmentE0. Assume that�; E ` P : P0
and �; E ` P� : P. If � + (cap a)�, thencap E(a) 2 P�.

To exemplify, consider the ambienta[in a:open b]. If taken in iso-
lation, this ambient only exhibits the capabilitiesin a andopen b.
If, instead, we take the parallel compositiona[in a:open b] j b[in a:open b:in c] (1)

then the ambienta[: : : ] also exhibitsin c as a result of the interac-
tion with the context. In fact, if we start tagginga[: : : ] in (1) above,
the result of tagged reduction is as follows:]a[in a:open b] j b[in a:open b:in c]� ]a[open b j b[open b:in c]]� ]a[in c]
Now, Theorem 4.3 ensures that if we type the process (1), the fact
that the residuala[in c] of a exhibitsin c is traced by the type as-
sociated to the domain ofa. In fact, the result is even stronger, as it
ensures that the type system traces the behavior of any process that
interacts with the process occurrence of interest. For example, if we
take the composition]a[in a:out b] j b[in a:out a:in c], the re-
sult of tagged reduction is]a[ ] j ]b[in c], and Theorem 4.3 ensures
that the type of (the domain of)a traces the type-level capability
corresponding toin c, since it is exhibited by the residualb[in c].

5. ALGORITHMIC SYSTEMS
As it is usual in the presence of subsumption, the type systemgiven
in Figure 1 is not algorithmic: however, it is easy to state the type
rules so that they form a syntax-directed system.

5.1 Typing Algorithm
The algorithmic type system finds the minimal type of a term under
a given set of domain assumptions� and type assumptionsE. The
system results from the type system of Figure 1 by erasing therule
of subsumption, and replacing the (ACTION) and (PAR) rules with
the rules in Figure 4: the only subtlety is the side conditionto the
rule (ACTION=2 ), which definesP0 as the minimumP0 that containsP and is closed in� (i.e. such that� ` P0 is derivable).

These rules constitute the core of an algorithm that given�; E,
andP as input, returns the typeP as output.

Theorem 5.1 (Soundness and completeness).If �; E `A P :P, then�; E ` P : P. Conversely, If �; E ` P : P, then�; E `A P : P0 andP0 � P
Corollary 5.2 (Minimal typing). �; E `A P : minfP j �; E `P : Pg if this set is non-empty.

The existence of minimum types and of an algorithm computing
them are interesting and useful properties. Yet, leaving a program-
mer with the task of providing a domain environment� as input to
the type checking algorithm is a very strong requirement. Below,
we show that this task can be dispensed with, as domain environ-
ments can be reconstructed automatically. In principle, providing a
coherent� for which the typing algorithm does not fail is straight-
forward. Given a processP , let D be the set of domain names
occurring inP , and letE be a type environment that assigns a do-
main inD to every name inP . Now, denote byPsat the process
type whose components contain all the possible type capabilities
overD , and let�sat be thesaturatedtype environment such thatDom(�) = D and�sat(D) = Psat for all D 2 Dom(�). It is
easy to verify that there always exists a process typeP such that�sat ` P : P is derivable: to see that, observe that�sat(D) pro-
vides a sound approximation the behavior of every ambient (and



(PAR)�; E `A P : P �; E `A Q : Q�; E `A P j Q : P [Q (ACTION=1 )�; E `A P : P E(a) = A�; E `A out a:P : P [= fout Ag
(ACTION=2 )�; E `A P : P E(a) = A P0 , P [= fopen Ag [ � �(A) if open A 2 �(A)=? otherwise�; E `A open a:P : P0
(ACTION")�; E `A P : P E(a) = A cap 2 fin ; in ; out ; open g�; E `A cap a:P : P [" fcap Ag

Figure 4: Algorithmic Typing

process) occurring inP (indeed,�sat ` P : Psat holds). On the
other hand, it is also clear that�sat is not very useful as a domain
environment, as it provides the coarsest possible approximation of
behavior: this is problematic in view of our prospective useof types
to check and enforce security, as the coarser the approximation of a
process’ behavior, the less likely is that process to pass the security
checks imposed by its environment.

5.2 Type Reconstruction
Type reconstruction computes the minimum coherent domain envi-
ronment� such that a given term type checks. The ordering over
environments derives by extending the containment relation to en-
vironments, using point-wise ordering as follows:� � �0 if and
only if Dom(�) = Dom(�0) and for allD 2 Dom(�);�(D) ��0(D). We use

Tfa j P(a)g as a shorthand for
Te2fajP(a)g e,

and similarly for the union. Then we have the following definition.

Definition 5.3 (Closure). Let � be a domain environment such
that fn(�) � Dom(�). Then define:EnvClosure(�) , Tf�0 j �0 � � ; �0 ` �gProcClosure(P;�) , P [Sf�(A)jopenA2 sync(P=;�(A)=)gDomClosure(P; A;�) ,Tf�0 j �0 � � ;�0(A) � (?;P";P=) [ P0g

whereP0 = � P if open A 2 �0(A)=? otherwise

It is easy to see that all these operators are well-defined andmono-
tone: furthermore they can be effectively computed by (always ter-
minating) algorithms: an example is given in Figure 7.

The system for type reconstruction is defined in Figure 5: the(R-
ACTION) rules are the same as the corresponding algorithmic (AC-
TION) rules, (R-REPL) and (R-RESTR) are defined as their corre-
sponding rules in Figure 1. In all the rules, the subscriptD in-
dicates a finite set of ambient domains: in (R-DEAD), ?D is the
domain environment defined by?D(D) = (?;?;?) for everyD 2 D . The rules describe an algorithm that, given a processP and a type environmentE such thatfn(P ) � Dom(E) returns
a process typeP and a domain environment�. More precisely,
given a processP and a type environmentE, let D be the set of
ambient domains occurring in the type assumptions ofE and in
the typed restrictions ofP . Then, there exists one and only one

process typeP and environment� such that�; E `D P : P: we
denote this process type and domain environment respectively withRtype(E;P ) andRenv(E;P ).
Theorem 5.4 (Soundness and Completeness).LetP be a process,
and E a type environment such that fn(P ) � Dom(E). ThenRenv(E;P ); E `A P : Rtype(E;P ). Furthermore, for any�
andP such that�; E `A P : P, one hasRenv(E;P ) � � andRtype(E;P ) � P.

Corollary 5.5 (Minimality). LetP be a process andE a type en-
vironment such that fn(P ) � Dom(E). Then(Renv(E;P );Rtype(E;P )) = minf(�;P) j �; E ` P : Pg
Accordingly, in the typed syntax it is enough to specify the do-
mains of the ambients occurring inP , and the associated security
constraints: the type checker will then generate the minimal types
for each domain and forP .

6. SECURITY
Security policies are expressed by means of security constraints,
and new environments help associate security constraints with am-
bient domains:

Security Envs � : Ambient Domains! Security Constraints

A security environment establishes the security structurefor a given
system of processes and ambients. Given domain and type environ-
ments� andE, and a well-typed processP , we may then verify
thatP is secure in� by checking that� satisfies�. The definition
of satisfaction, denoted� j= �, requiresDom(�) = Dom(�) and
depends on the structure of the security constraints, whichin turn
depend on the sort of security policy one wishes to express. We
discuss three options below.

Domain Constraintsyield rather coarse security policies whereby
one can identifytrustedanduntrusteddomains and, for each do-
main, allow interactions only with trusted domains. These security
constraints may be expressed by tables of the formS = hin =Din; out = Douti. If D is a domain and�(D) = S, thenDin (re-
spectively,Dout) is the set of trusted domains whose ambients can
enter (respectively, exit) the ambients ofD. In this option� j= �
if and only if, for allD in Dom(�), one has(i) fA j in D 2 sync(�(A)=;�(D)=)g � �(D):in, and(ii) fA j out D 2 sync(�(A)=;�(D)#)g � �(D):out:



(R-DEAD)?D ; E `D 0 : (?;?;?) (R-PAR)�1; E `D P1 : P1 �2; E `D P2 : P2 � , EnvClosure(�1 [�2);P , ProcClosure((P1 [ P2);�)�; E `D P1 j P2 : P
(R-AMB)�; E `D P : P E(a) = A �? , Tf�00 j �00 � �;�00=EnvClosure(�0); �0=DomClosure(P0; A;�);P0=ProcClosure(P;�00)g�?; E `D a[P ] : �?(A)

Figure 5: Type Reconstruction Algorithm

The security model arising from domain constraints is related to
security policy of the JDK 1.1.x. In JDK 1.0.x all non local def-
initions are considered as insecure. The same applies underJDK
1.1.x with the difference that a class loaded from the network can
become trusted if it is digitally signed by a party the user has de-
cided to trust (in our case a domain inDin).

Capability Constraints lead to finer protection policies that iden-
tify the type-level capabilities that entering and exitingambients
may exercise5. These constraints may be expressed by tables of the
form S = hin = Pin; out = Pouti, whose entries are process types.
If D is a domain, and�(D) = S then:� Pin defines the only capabilities that processes entering am-

bients of domainD have permission to exercise: the three
setsP#in, P=in , andP"in specify the capabilities that can be ex-
ercised, respectively, at the level of the entering process, at
the level of the enclosing ambient, and inside the entering
process. The first specification is useful to prevent informa-
tion leakage, the second to control the local interactions of
the entering ambient, and the third is useful when opening
(or entering) the entered process.� Pout is the table defining the capabilities that are granted to
processes exiting out of ambients of domainD, with the
three entriesP"out, P=out, andP#out defined as above.

In this option� j= � if and only if, for all A, B in Dom(�),in A 2 sync(�(B)=;�(A)=) implies�(B) � �(A):in, and,out A 2 sync(�(B)=;�(A)#) implies�(B) � �(A):out Capa-
bility constraints are loosely related to thepermission collections
used in the the JDK 1.2 architecture (a.k.a Java 2) to enforcesecu-
rity policies based on access control and stack inspection.

Constraint Formulas. More refined policies can be expressed by
resorting to a fragment of first order logic. The fragment is given
below, whereM ranges over type capabilities,D over ambient do-
main names (and domain variables), and� over", =, and#.

Syntax� ::= M 2 D�  :�  � ^ �  � _ �  8D : �
Semantics� j= M 2 D� , M 2 �(D)�� j= :� , � j= � does not hold� j= �1 ^ �2 , � j= �1 and� j= �2� j= �1 _ �2 , � j= �1 or� j= �2� j= 8D : � , � j= �fD := Ag for all A 2 Dom(�)5Alternatively, we could define what ambients should not be allowed to do, but our

choice complies with well-established security principles [7].

The notion of formula satisfiability is easily extended to security
environments, namely� j= � if an only if for all D in Dom(�),� j= �(D). Since we work on finite models, satisfiability is
always decidable. Note that the first-order fragment is powerful
enough to encode quantification on actions as well as formulas such
ascapD 2 sync(L;M). Based on that, we can express refined
security properties: for example, the formula8B;C : in D 2synch(B=; D=) ^ in B 2 synch(C=; B=) ) in D 2 C=
allows one to prevent arbitrary nested Trojan Horses (an ambient
entering a second ambient that enters a third ambient that can enterD), since it requires that all ambients that are granted the right to
enter domainD may only be entered by ambients that already have
the right to enterD.

Independently of the structure of constraints, given a processP and
a type environmentE for the names occurring free inP , we say thatE andP satisfy a security policy� if and only ifRenv(E;P ) j=�. As a corollary of Theorem 4.3 we have thatRenv(E;P ) j=� implies that no ambient occurring inP can violate the security
policies defined in�.

7. DISTRIBUTED SSA
The type systems presented in the previous sections have interest-
ing properties and significant operational impact. Yet, there is also
a fundamental weakness to them, in that they rely on the assump-
tion that global information is available on ambient domains, and
their types: a derivation for a typing judgment�; E ` P : P re-
quires that the environments� andE contain assumptions for all
the ambients occurring inP , and for all those ambients’ domains.
This is clearly unrealistic for a foundational calculus forwide-area
distributed computations and systems.

In this section we address the problem by presenting a distributed
variant of SSA. In the distributed version, which we call DSSA,
each ambient (i.e. each “location” in the system of processes) car-
ries a type and a domain environment. The syntax of DSSA pro-
cesses is defined by the following productions:

Distributed ProcessesP ::= 0  �:P  (�a:D)P  P j P  a[P ]S�;E  !P
where�; �, andE are defined as in the previous sections, andS is
a capability constraint.

To get an intuition of DSSA ambients, it is useful to think of Java
class files. Class files include applet bytecode together with
type and security information used for bytecode verification and
dynamic linking. In particular aclass file declares the types of
all methods and fields the associated class defines (thetype asser-
tions), and the types of all the identifiers the class refers to (type as-



sumptions) [10]. When downloading a class file, the verifier checks
(among other properties) that the bytecode satisfies the type asser-
tions under the type assumptions. A DSSA ambienta[P ]S�;E can
be understood as a class file, wherea[P ] represents the bytecode,
and the pair�; E corresponds to the type assertions and assump-
tions. Intuitively, for any nameb occurring ina[P ], the process
type�(E(b)) may be thought of as a type assertion, ifb = a or b
is the name of an ambient ofP , or else as a type assumption ifb
occurs in a capability ofP butP contains no ambient namedb.
7.1 Typed Reduction
The type system for DSSA is the same as that defined for SSA.
DSSA ambients are typed, statically, by simply disregarding their
associated environments: the latter are used in the dynamictype-
checks performed upon reduction. The new reduction relation is
based on structural congruence, which is defined as in Section 2
with the only exception of the following rule:(�a:D)b[P ]S�;E;a:D � b[(�a:D)P ]S�;E a 6= b
that replaces the corresponding rule for SSA. Typed reduction is
then defined by the(open), (struct), and (context) rules of Sec-
tion 2, plus the rules in Figure 6.

The notation� � �0 indicates the environment that results from
appending�0 to � so that assumptions in�0 hide corresponding
assumptions in�. Hence, in the rules of Figure 6:(���0)(D) , � �0(D) if D 2 Dom(�0)�(D) otherwise(E�E0)(a) , � E0(a) if a 2 Dom(E0)E(a) otherwise

The rule(in) extends the corresponding rule for SSA with addi-
tional conditions ensuring that the reduction takes place only when
the local environments of the two ambients involved in the move
are mutually compatible and the security constraints fulfilled. First,
the rule requires the environment ofa to be extended by the en-
vironment ofb (in the reductuma carries the environment�; E
that extends�a; Ea). Second, the reduction requires the entering
ambientb to (i) be well-typed in the extended environments, and(ii) to satisfy the security constraints ofa. Finally, the condition� ` E(a) bounds �(E(b)) requires that the entering ambientb
does not modify the external behavior ofa: a lets new ambients in
only if they comply with its own local behavior discipline.6

The rule(out) performs similar type and security checks: note, in
particular, that ifa were well typed then the type check onb would
be unnecessary. Yet, we cannot make anya priori assumption abouta and its type, and therefore we must check that the exiting ambient
has the type it is supposed to have (otherwise the security check
would be of no use).

A closer look at the rule(in) shows an interesting correspondence
between the constraints enforced by the target of the move and the
functions implemented by the three component of the JVM security
system: theClass Loader, theBytecode Verifier, and theSecurity
Manager[10].6 In the rules we considered that ambients are indexed by Capability Constraints. IfS’s
were instead Domain Constraints the security requirements�(E(b)) � Sa:in and�(E(b)) � S:out in (in) and(out) would change respectively toE(b) 2 Sa:in
andE(b) 2 S:out. If instead, the constraints were expressed by formulas, wecould
consider fine-graded security constraints of the formS ::= hin = �; out = �i, and
the security conditions in(in) and(out) would change to� j= Sa:in and� j= S:out,
respectively.

� ; E = �b ��a ; Eb �Ea : Local (to a) assumptions on the type
of each name hide remote assumptions for that name. As a
consequence, the entering agentb cannot spoof a definition
of the target hosta. This is the security policy implemented
by the JVM Class Loader, which provides name-space sepa-
ration and prevents type-confusion attacks for spoofing.b[in a:P j Q]Sb�b;Eb : �(E(b)) : The target of the move, ambienta, checks that the entering agentb has the type it declares
to have, in caseb 62 Dom(Ea), or thata expects it to have,
whenb 2 Dom(Ea). This is the security policy enforced by
the bytecode verifier.�(E(b)) � Sa:in : The ambienta checks that the entering agent
performs only actions that are explicitly permitted by the se-
curity constraints defined bySa:in. This is essentially the
security policy enforced by the Security Manager: the dif-
ference is that the Security Manager performs these checks
dynamically (when the agent is already entered and requires
to perform the action), whereas in our system they are per-
formed at load time.

Note that, intuitively, all the above checks are performed by a, the
ambient whose boundary is crossed. That ambient does not trust
foreign code, it just trusts, of course, its own implementation of
the type checking algorithm which is used to dynamically verify
foreing code: verification is based on the (type) information for-
eing code carries along with it, according to the common proof-
carrying-code practice [11].

7.2 Type Safety
Most of the properties relating the type system and reduction carry
over from SSA to DSSA. However the key property of DSSA,
where the essence of distribution resides, is the following, stronger,
version of Theorem 4.3. Again, the theorem is stated for the simpli-
fied case of “normalized” distributed processes, i.e. for processes
with all restrictions extruded to the outermost scope. It isbased
on the same definitions of residual and exhibition of the previous
section: the additional information attached to ambients is simply
disregarded.

Theorem 7.1 (Local Type Safety).Let (�~a: ~D)P be a DSSA pro-
cess, withP containing no restriction, and� be an occurrence ofP such thatP� = a[Q]S�;E. Assume�; E ` P� : P is derivable.
If P� + (cap b)�, thencap E(b) 2 P�.

The difference from Theorem 4.3 is that the new statement does
not require the contextP to be well typed, but just that the ambient
occurrence can be typed under the assumptions it comes with.Ac-
cordingly, every ambient that type-checks under the environment it
carries along with it will only exhibit capabilities that are already
in its static type, even though the context it interacts withis not
well-typed7.

This is an interesting result for wide-area distributed systems, where
global typing may not be possible: for example, distinct subsys-
tems may have incompatible type assumptions. Even then, typed
reduction allows secure interactions provided that local type safety7This property does not hold for the non-distributed calculus: the proof fails in the
case for(in) as it is not possible to deduce the well-typing of the ambientb.



(in) b[in a:P j Q]Sb�b;Eb j a[in a:R j S]Sa�a;Ea ➞ a[R j S j b[P j Q]Sb�b;Eb ]Sa�;E (�)(�) provided that, given�; E = �b��a; Eb�Ea; one has�; E ` b[in a:P j Q] : �(E(b)); �(E(b)) � Sa:in and � ` E(a) bounds �(E(b))
(out) a[out a:P j Q j b[out a:R j S]Sb�b;Eb ]S�;E ➞ b[R j S]Sb�b;Eb j a[P j Q]S�;E (��)(��) provided that�; E ` b[out a:R j S] : �(E(b)); and �(E(b)) � S:out

Figure 6: New reduction rules for DSSA

exists or can be ensured. Hence, an agent can confidently let an-
other ambient in or out even if the former is evolving in a possibly
ill-typed context: as long as typed reduction is respected,the se-
curity constraints that agent defines are never violated. The dual
view holds as well: an agent can confidently enter or exit another
ambient even if the latter is ill-typed: the reduction semantics en-
sures that the security constraints defined by the former arenever
violated.

8. CONCLUSIONS
We have showed that classical type theoretic techniques provide
effective tools for characterizing behavioral propertiesof mobile
agents. We hope to have convinced the reader that capturing im-
plicit behavior is essential to ensure secure agent interactions: to
our knowledge, our type system is the first among type systemsfor
Mobile Ambients to have this property. Also, we have showed that
in the design of a distributed implementation for the calculus, one
finds back features distinctive of real systems.

There are several directions for future work. A first, obvious exten-
sion is to study whether and how our techniques scale to a calculus
with communications. A second interesting subject of studyis the
use of multi-sets (or even traces) in place of sets as basic compo-
nents of process types: this would allow us to refine the analysis of
process behavior and, consequently, to enforce more powerful se-
curity policies. Also interesting would be to apply these techniques
to the Seal Calculus [15].

A further subject of future research is the study of a notion of “sub-
typing” on ambient domains. This would allow us to introducein
the system a notion of security levels and perform static analyses
such as those described in [2].
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APPENDIX

A. SUBJECT REDUCTION
We first prove a few simple and useful properties for domain en-
vironments and process types. In that direction, we extend the
set-theoretic notation used on processes to domain environments
as follows. Given two domain environments�2 and�2 such thatDom(�1) = Dom(�2), we define�1\�2 (respectively,�1[�2)
to be the domain environment that maps everyD 2 Dom(�i) into
the process type�1(D)\�2(D) (respectively,�1(D)[�2(D)).



Proposition A.1 (Boundedness and Closedness).Let� and�0 be
domain environments,D an ambient domain, andP, P0 two pro-
cess types.

1. If � ` D bounds P and � ` D bounds P0, then� `D bounds (P [ P0)
2. If � ` D bounds P andP0 � P, then� ` D bounds P0.
3. If � ` D bounds P and �0 ` D bounds P, then also� \ �0 ` D bounds P.
4. If � ` D closed and�0 ` D closed, then also� \ �0 `D closed.
5. If � ` P closed and� ` P0 closed, then also� ` P [P0 closed.

Proof. In all cases, the proof is by a direct application of the defi-
nitions.

Corollary A.2 (Coherence). Let �, �0 be domain environments.
If � ` � and�0 ` �, then� \�0 ` �.

Lemma A.3 (Process Types).Let� be a domain environment, andP1;P2 be two process types such that� ` P1 and� ` P2. Then� ` P1 [ P2
Proof. By Proposition A.1.

Lemma A.4 (Type Formation). If �; E ` P : P, then� ` �
and� ` P.

Proof. By induction on the derivation of�; E ` P : P.

Lemma A.5 (Generation).

1. If �; E ` a : D, thenD = E(a).
2. If �; E ` P j Q : P, then there existP1;P2 � P such that�; E ` P : P1 and�; E ` Q : P2;

3. If �; E `!P : P, then there existsP0 � P such that�; E `P : P0;
4. If �; E ` cap a:P : P, then there existsP0 � P such that�; E ` P : P0, and�; E ` a : A for some ambient domainA. Furthermore, either(i) cap 2 fin ; in ; out ; open g andcap A 2 P0", or (ii) cap 2 fout ; open g andcap A 2 P0=
5. If �; E ` (�a:D)P : P, then there existsP0 � P such that� ; E; a:D ` P : P0
6. Assume�; E ` a[P ] : P. Then�; E ` a[P ] : �(E(a)),�(E(a)) � P, and there existsP0 such that�; E ` P : P0,

and� ` E(a) bounds P0.
Proof. In each case, directly by induction on the derivation of the
judgment in the hypothesis.

Lemma A.6 (Subject Congruence).

1. If �; E ` P : P andP � Q, then�; E ` Q : P.
2. If �; E ` P : P andQ � P , then�; E ` Q : P.

Proof. By simultaneous induction on the derivations ofP � Q
andQ � P .

Theorem A.7 (Subject Reduction).If �; E ` P : P andP➞Q,
then�; E ` Q : P.

Proof. The proof is by induction on the depth of the derivation of
the reduction, and by a case analysis on the last rule in the deriva-
tion.

Case (open):open a:P1 j a[open a:P2 j P3] ➞ P1 j P2 j P3
From �; E ` open a:P1 j a[open a:P2 j P3] : P, by repeated
applications of Lemma A.5:2, A.5:4, and A.5:6, there exist an am-
bient domainD 2 Dom(�) with �(D) � P, and process typesP1 � P, andP2;P3;P23 with P2;P3 � P23 such that the follow-
ing are all verified:�; E ` P1 : P1 (2)�; E ` open a:P2 j P3 : P23 (3)�; E ` P2 : P2 and �; E ` P3 : P3 (4)�; E ` a : D and � ` D bounds P23 (5)

From the first judgment in (4), by Lemma A.5:4, we know thatopen D 2 P"23. From this, and from (5), we know thatopen D 2�(D)=, and henceP23 � �(D) again from (5). ThenP23 � P
since�(D) � P. By subsumption from (2) and the two judgments
in (4), we then derive�; E ` Pi : P for i = 1; 2; 3. Then�; E `P1 j P2 j P3 : P derives by two applications of (PAR).

Case (in):a[in a:P1 j P2] j b[in a:Q1 j Q2] ➞ a[P1 j P2 j b[Q1 j Q2]]
From�; E ` a[in a:P1 j P2] j b[in a:Q1 j Q2] : P, by Lemma
A.4 we know that� ` �. By repeated applications of Lemma A.5:2,
A.5:4, and A.5:6 there exist ambient domainsA;B 2 Dom(�),
with �(A);�(B) � P, process typesP1;P2;P12 with P1;P2 �P12, andQ1;Q2;Q12 with Q1;Q2 � Q12 such that the following
are all verified: �; E ` in a:Q1 j Q2 : Q12 (1)�; E ` Q1 : Q1 and �; E ` Q2 : Q2 (2)�; E ` b : B and � ` B bounds Q12 (3)�; E ` in a:P1 j P2 : P12 (4)�; E ` P1 : P1 and �; E ` P2 : P2 (5)�; E ` a : A and � ` A bounds P12 (6)

From the left judgments of (2) and (6), by Lemma A.5:4, we know
thatin A 2 Q"12. From this and from (3),in A 2 �(B)=. From
the left judgment of (5), we also know thatin A 2 P"12. From this
and from (6),in A 2 �(A)=. Summarizing we have,in A 2sync(�(B)=;�(A)=). From this, and from� ` �, we know that� ` A bounds �(B). From this, and from the right judgment of
(6), by Proposition A.1.1, we have� ` A bounds (�(B) [ P12) (7)

From the two judgments in (2), by subsumption (that can be applied
by Lemma A.3) and (PAR), �; E ` Q1 j Q2 : Q12. From this, and
(3), by (AMB) �; E ` b[Q1 j Q2] : �(B) (8)

From the two judgments in (5), by subsumption and (PAR),�; E `P1 j P2 : P12. From (8) and the last judgment, by subsumption and
(PAR), �; E ` P1 j P1 j b[Q1 j Q2] : �(B) [ P12 (9)

Now, the type of the reduct derives from (9), (7), and the leftjudg-
ment of (6) by (AMB) and subsumption.



Case (out):a[out a:P1 j P2 j b[out a:Q1 j Q2] ]➞ a[P1 j P2] j b[Q1 j Q2]
As in the previous cases, by repeated applications of Lemma A.5 to
the typing judgment of the redex, there exist process typesP1;P2,Pa with P1;P2 � Pa, andQ1;Q2;Q12 with Q1;Q2 � Q12,
and ambient domainsA;B 2 Dom(�) with �(A) � P and�(B) � Pa, such that the following are all verified:�; E ` out a:Q1 j Q2 : Q12 (1)�; E ` Q1 : Q1 and �; E ` Q2 : Q2 (2)�; E ` b : B and � ` B bounds Q12 (3)�; E ` in a:P1 j P2 j b[out a:Q1 j Q2] : Pa (4)�; E ` P1 : P1 and �; E ` P2 : P2 (5)�; E ` a : A and � ` A bounds Pa (6)

From the left judgments of (2) and (6), by Lemma A.5:4, we know
that out A 2 Q"12. From this and from (3),out A 2 �(B)=.
From the left judgment of (5), we also know thatout A 2 P=12.
From this and from (6),out A 2 �(A)#.
Thus,outA 2 sync(�(B)=;�(A)#). From this, and from� ` �,
we know that�(B) � �(A). It is now easy to check that the
judgments�; E ` b[Q1 j Q2] : �(B) and�; E ` a[P1 j P2] :�(A) are both derivable. The typing judgment for the reductum
derives then by subsumption and an application of (PAR).

Case (context):Standard, by induction hypothesis.

Case (struct):by Lemma A.6 and the induction hypothesis.

B. TYPE SAFETY
Lemma B.1. Let C [ ] be a restriction-free context, andP be a
restriction-free process. Assume that�; E ` C [P ] : P0 and�; E ` P : P. Consider one step of tagged reduction fromC []P ]:C []P ] � C1[]R] � C2[]Q] for some contextsC1[ ] and C2[ ].
Then�; E ` jQj : P.

Proof. We first show that the lemma holds for the preliminary step
of structural rearrangement, i.e. that�; E ` jRj : P. SinceC []P ] contains a single tagged occurrence,C1[]R] results from
either rearranging only untagged occurrences, or from rearranging]P . In the first case the claim is trivially true. Then, considerthe
case when]P matches either side of a conguence rule. SinceP
is restriction-free by hypothesis, we have only four base cases to
consider, namely:]P = ]0, ]P = ](P1 j P2), for givenP1 andP2, and finally]P = ]!P1, or ]P =!]P1. In all cases the claim
follows by Lemma A.6. The first case is vacuous, as there is no
tagged process corresponding to]0. The second case follows by
the type rule (PAR) and the last two cases follow by (REPL). For
the inductive cases, the only subtlety is transitivity, as the interme-
diate tagged process may contain more than one tagged occurrence.
However, since there only one tag inC []P ], it is not difficult to see
that C1[]R] can always be obtained by a sequence of rearrange-
ments that only use the congruence law](P1 j P2) � ]P1 j ]P2
from left to right.

Next, consider one step of tagged-reduction fromC1[]R]. If ]R
is not a sub-occurrence of the redex, then the proof is trivial. The
same holds if]R is a sub-occurrence of the redex but it is not one
of the tagged processes involved in the reduction. If the redex is a
suboccurrence of]R, then the proof follows by subject reduction.
The remaining cases are when]R is one of the processes involved

in the reduction: we work out the interesting cases below, the re-
maining cases are similar and simpler.

(open tag) open a:S j ]a[open a:R1 j R2]� S j ](R1 j R2),
whereR = a[open a:R1 j R2] andQ = R1 j R2.

From the hypothesis, we know that�; E ` a[open a:R1 jR2] :�(E(a)). From Lemma A.5:6, there existsP0 such that�; E `open a:R1 j R2 : P0 with � ` E(a) bounds P0. By repeated
applications of Lemma A.5 we also have that�; E ` R1 j R2 :Q � P0. From this, and fromopen E(a) 2 �(E(a))=, by closure
it follows thatQ � P0 � �(E(a)) as desired.

(out tag) ]a[ b[out a:R1 j R2] j out a:R3 j R4]� ]b[R1 j R2] j]a[R3 j R4]. The proof follows the pattern of the case (out) in the
proof of Theorem 3.3.

(in) b[ina:S1 j S2] j ]a[ina:R1 j R2]� ]a[R1 jR2 j b[S1 j S2]],
whereR = a[in a:R1 j R2] andQ = a[R1 j R2 j b[S1 j S2]].

Again, the proof follows the pattern of the case (in) of Theorem
3.3. From the hypothesis, we know that�; E ` b[in a:S1 j S2] :�(E(b)). Hence also�; E ` b[S1 j S2] : �(E(b)). To conclude,
it is enough to show that� ` E(a) bounds �(E(b)). But this
follows from the coherence of�, given thatin E(a) 2 sync(�(E(b))=;�(E(a))=).
Lemma B.2. If �; E ` P : P andP # (capa)� thencapE(a) 2P�.

Proof. By a direct inspection of the typing rules.

The proof of Type Safety is a corollary of the following Lemma.

Lemma B.3. LetP be a restriction-free process,� be an occur-
rence ofP and letE a type environment. Assume that�; E ` P :P0 and �; E ` P� : P are derivable. If � + (cap a)�, thencap E(a) 2 P�.

Proof. Follows by Lemma B.1 and Lemma B.2. The proof is eased
by the definition of residuals in terms of one-step reductions of
processes that have at most one tag, and that structural congruence
is applied only before (not after) a reduction step.

Theorem B.4 (Local Type Safety).Let(�~a: ~D)P be a DSSA pro-
cess, withP containing no restriction, and� be an occurrence ofP of the forma[P 0]S�;E. Assume�; E ` P� : P is derivable, andE(b) = B. If � + (cap b)�, thencap B 2 P�.

Proof. (Sketch) The proof is based on the analogue of Lemmas B.2
and B.3 for DSSA processes, and a different version of Lemma B.1
that handles the new form of the(out) and(in) recutions. The only
critical case is the subcase of(in) in which ]R (i.e.,�) is the en-
tered ambient. For DSSA, this case follows by two side conditions
of the (in) rule: �; E ` b[in a:P j Q]Sb�b;Eb : �(E(b)), that en-
sures that the local environment of the reductum can type itsbody,
and� ` E(a) bounds �(E(b)), that ensures that the behavior of
the entering ambient is already accounted for by the local environ-
ments of the reductum. Then, the result follows from the observa-
tion that�(E(a)) = �a(Ea(a)).

Note that the theorem is stated for ambient occurrences and not
generic occurrences. Indeed the result does not hold for generic
processes since in DSSA we did not modify the(open) rule to
check that opened ambients are well-typed.



C. TYPE RECONSTRUCTION
Proposition C.1. Let � be a domain environment with fn(�) �Dom(�). ThenEnvClosure(�) is the least coherent domain envi-
ronment containing�.

Proof. To prove the claim it is enough to show thatf�0 j � ��0 and�0 ` �g is not empty and finite. The proof follows then by
Corollary A.2. That this set is not empty follows by observing that
the environment�sat that results from� by saturating�(D) for
everyD 2 Dom(�) is contained in it. That the set is finite follows
from the fact thatDom(�) is finite.

Proposition C.2. Let � a coherent domain andA 2 Dom(�).
Then for every process typeP,

1. EnvClosure(�) = �.
2. � ` ProcClosure(P;�) closed.
3. DomClosure(P; A;�) ` A bounds P.

To prove the reconstruction algorithm sound, we need the following
lemma on the algorithmic system.

Lemma C.3. Assume�; E `A P : P, and let�0 be any coherent
domain environment containing�. Then�0; E `A P : P? whereP? = ProcClosure(P;�0).
Proof. By induction on the derivation of� `A P : P.

Theorem C.4 (Soundness and completeness).LetP be a process,
and E a type environment such that fn(P ) � Dom(E). ThenRenv(E;P ); E `A P : Rtype(E;P ) (soundness). Furthermore,
for any� andP such that�; E `A P : P, one hasRenv(E;P ) �� andRtype(E;P ) � P (completeness).

Proof. By induction on the structure ofP .P = 0.
In this caseRenv(E;P ) = ?D andRtype(E;P ) = (?;?;?). By
construction,?D ` �, andImg(E) � Dom(?D). Hence?D ; E `� by (ENV), andRenv(E;P ); E `A P : Rtype(E;P ) derives by
(DEAD). Completeness is trivial.P = cap a:P 0.
Let � = Renv(E;P 0) andP = Rtype(E;P 0). By induction hy-
pothesis, we have�; E `A P 0 : P, and for any�0 andP0 such that�0; E `A P 0 : P0, we have� � �0 andP � P0. By construction,
there existsA such thatE(a) = A. There are now three cases,
depending on the structure ofcap.
If cap 2 fin ; in ; out ; open g, by definitionRenv(E;P ) = �
andRtype(E;P ) = P [" fcap Ag. Then the desired judgment de-
rives from (ACTION").
If cap = outA, by definitionRenv(E;P ) = � andRtype(E;P ) =P[=foutAg. Then the desired judgment derives from (ACTION=1 ).
If cap = openA, by definitionRenv(E;P ) = � andRtype(E;P ) =P0 as defined by the side-condition of (R-ACTION=2 ). The desired
judgment derives from (ACTION=2 ).

In all three cases completeness follows from the induction hy-
pothesis and monotonicity of the union.P =!P 0 and P = (�a:A)P 0. Directly, by induction hypothesis.P = P1 j P2
Let �1 = Renv(E;P1), P1 = Rtype(E;P1), �2 = Renv(E;P2)
andP2 = Rtype(E;P2). By induction hypothesis,�1; E `A P1 :

P1, and�2; E `A P2 : P2. Let now � = Renv(E;P ) ,EnvClosure(�1 [ �2). By Proposition C.1,�1;�2 � �, and� ` �. From the last two judgments, by Lemma C.3�; E `A P1 : P?1 with P?1 = ProcClosure(P1;�) (7)�; E `A P2 : P?2 with P?2 = ProcClosure(P2;�) (8)

From (7) and (8) above, by (PAR),�; E `A P1 j P2 : (P?1 [P?2) It
is now easy to check thatP?1 [ P?2 = ProcClosure((P1 [ P2);�)
and hence conclude asRtype(E;P ) = ProcClosure((P1[P2);�).

Completeness follows by induction hypothesis and monotonicity
of EnvClosure andProcClosure operators. Indeed for any�0 andP0 such that�0; E `A P1 j P2 : P0, by induction hypothesis�1 ��0 and�2 � �0 hold, which implies�1 [ �2 � �0. Further-
more since�0 is coherent by Proposition C.2(1) we obtain�0 =EnvClosure(�0). From these last two points and the monotonicity
of EnvClosure we haveRenv(E;P ) , EnvClosure(�1 [ �2) �EnvClosure(�0) = �0. A similar reasoning yieldsRtype(E;P ) �P0.P = a[P 0]
Let � = Renv(E;P 0) andP = Rtype(E;P 0). By construction
there existsA such thatE(a) = A, and by induction hypothesis�; E `A P 0 : P. Then also� ` �, and� ` P closed. Let�? be defined as in the side condition of (R-AMB) and setP? =ProcClosure(P;�?). By construction of�? we have:P? = ProcClosure(P;�?) (9)�? = DomClosure(P?; A;�) (10)�? = EnvClosure(�?) (11)

From (11) and Proposition C.1, we deduce�? ` �. From this,
(ENV), and (NAME) we obtain:�?; E ` a : A (12)

By construction� � �?. Thus by (9), the induction hypothesis,
and Lemma C.3 we deduce�?; E `A P : P? (13)

Finally from (10) and Proposition C.2(3) we have�? ` A bounds P? (14)

The result follows from (12), (13), and (14) by (AMB). For the
completeness, consider any�0 andP0 such that�0; E `A P 0 : P0
and redo the proof above using�0 andP0 instead of� andP. The
result follows from the monotonicity ofEnvClosure, ProcClosure,
andDomClosure.
D. GENERALIZED TYPE SAFETY
The generalized version of type safety, for processes in arbitrary
form, is subtler and requires more complex definitions. The prob-
lem is that restrictions may extrude tagged processes and thus in-
herently change the set of actions exhibited by the latter.

Scope extrusion requires that extruded restrictions be traced by the
extruded tags. Thus, the general form of tagged processes will be]EP , whereE is a type environment. Given the extended notion of
tags, we may then define a congruence rule for scope extrusion:]E(�a:D)P � (�a:D)]E;a:DP (15)

In the following, we omit the type environment in tags unlessit
really matters. The tagged-reduction rules and the remaining struc-
tural congruence rules are as before, with the only exceptions that
now tags carry type environments with them.



EnvClosure(� : DomEnv):DomEnv :=
1 D := Dom(�);
2 while D 6= ? do
2 chooseD in D ; D := D n fDg
3 for M in �(D)= do
4 �0 := �
5 caseM of
6 outH:
7 if out H 2 �(H)# then�(H) := �(H) [�(D)
8 inH:
9 if inH 2 �(H)= then
10 begin
11 �(H)= := �(H)= [ �(D)"; �(H)# := �(H)# [ �(A)=
12 if openH 2 �(H)= then�(H) := �(H) [ �(D)
13 end
14 open H:
15 if open H 2 �(H)= then �(D) := �(D) [ �(H)
16 esac
17 if � 6= �0 thenD := D [ fHg
18 done
19 done
20 return (�)

Figure 7: A closure algorithm

The definition ofC [ ] must be extended to include restrictions:[ ]  P j C [ ]  C [ ] j P  a[C [ ]]  �:C [ ]  (�a:D)C [ ]
Given a contextC [ ] we denote byEC the type environment formed
by all the declarations introduced in the context by� ’s that have
the context’s hole in their scope. For brevity we useEP� to denoteECP� .

We can now state the new definition of set ofresiduals, which is
modified so that type-environments annotations are traced during
the reduction. For this reasons residuals will be tagged processes
rather than processes:

Definition D.1 (Residuals). LetP be a process.

1. Let� be an occurrence of an untagged processP andE a
type environment. The set ofE-residuals of� in P is defined
as follows:
(1) ]EP� is anE-residual of� in P
(2) If C P� []EP�] � Q andQ�0 = ]E0R for someR, then
everyE0-residual of�0 in jQj is also anE-residual of� inP .

2. Let� be an occurrence of an untagged processP . The set of
residuals of� is the set of?-residuals of� in P .

We extend the type system with an additional type rule for tagged
processes and define the# relation also for tagged processes:

(TYPE TAG)�; E ` P : P�; E ` ]E0P : P P # cap a� a 62 Dom(E)]EP # cap a�
The way capability exhibition is defined for tagged processes jus-
tifies why residuals are now defined as tagged processes and why
tags have to store environments: if we did not, then by the rule (15)
a residual could exercise a capability that in the original occurrence
would have been blocked by a restriction. Finally, the definition of+ is as before, but now it uses the new definitions of exhibitionand
residual.

Definition D.2 (Residual Behavior). Let P be a process,� and
an occurrence ofP . � + �� if and only if Q # �� , for some
residualQ of �.

The general version of Theorem 4.3 stated for generic processes
holds for this new definition of+.

Theorem D.3 (General Type Safety).Let P be a process and�
be an occurrence ofP . Assume that�; E ` P : P0 and �; E �EP� ` P� : P. If � + (cap a)�, thencap E(a) 2 P�.

To prove it we should first lift the subject reduction theoremto
tagged processes and tagged reduction.

Theorem D.4 (Tagged Subject Reduction).LetP be a tagged pro-
cess. If�; E ` P : P andP � Q, then�; E ` Q : P.

Then the General Type Safety theorem follows from an analogue of
Lemma Lemma B.2 on tagged processes, and the following version
of Lemma B.1.

Lemma D.5. LetP be an untagged process and� an occurrence
of P . Assume that�; E ` P : P and�; (E � EP�) ` P� : P1.
If C P� []E1P�] � C1[]E2P2], for some contextD , then�; (E �ED) ` ]E2P2 : P1.

Proof. (Sketch) The proof is in two steps. First we prove that the
claim holds for structural congruence, i.e. that ifC P� []E1P�] �C 01[]E3P3], then�; (E � EC 01 ) ` ]E3P3 : P1. This follows by
a case analysis on the possible occurrences of]E1P�: the proof
makes a crucial use of the assumption thatP is untagged and that
therefore]E1P� is the only tagged occurrence of the starting pro-
cesses (if we had several tags then the statement would not hold
because of the rule]P j ]Q � ](P j Q)).
Then, we observe all possible one step reductions starting fromC 01[�]E3P3] and ending intoC1[]E2P2]. This part of the proof is
very much the same as the corresponding part in the proof of Lemma
B.1, once we note that if]E3P3 is directly issued from]E2P2, thenEC1 = EC 01 .


