Pattern by Example: Type-driven Visual
Programming of XML Queries

Véronigue Benzaken and Giuseppe Castagna and Dario C@arnz6édric Miachon
LUniversité Paris-Sud 11, LRI, Orsay - France d@NRS - PPS, Université Paris 7, Paris - France #olurtanet - Paris - France

Abstract Nowadays there is a clear trend to increasingly use XML to

; ke data available on the Web. Querying data in this format
We present Pattern-by-Example (PBE), a graphical langtizafe ma . o
allows users with little or no knowledge of pattern-matchend poses the same Challenges as for relat|onal_ data and evélflgmp
functional programming to define complex and optimized mgser ~ N€ pt:obledms. The arpnraryhstruqtgral Pers]tm.g of XM'& duqtkl)
on XML documents. We demonstrate the key features of PBE by [f€€-based structure is at the origin of the increased aaaip
commenting an interactive session and then we presentritarse in defining adequate languages and tools to query datab&ses o
tics by formally defining a translation from PBE graphicakges x'\élL documer;ts. W3C E'uts forw:lrd the XQhuery Iangua}getf[n4] but
into CQL ones. The advantages of the approach are twofold. First, e prqpos?s eX('jSth' ere V‘l’? Ocus on t osi ster;rglng e;n
it generates queries that are provably correct with redpeypes: community of typed functional languages, such as XDuce {t2]
the type of the result is displayed to the user and this ciones CDuce [1]. While XQuery relies on XPath to deconstruct XML
a first and immediate visual check of the semantic correstnes [€€S: and on @or operator to iterate over this deconstruction the

; : : ther rely on pattern-matching for deconstructing valued, an
of the resulting query. The second advantage is that a sewant 0
formally—thus, unambiguously—defined is an important adea the case ofCQL (the query language embedded @Duce(2]),

ment over some current approaches in which standard usae an 0" @ select-from-where iterator. While XPath is good for a
learning methods are based on “trial and error” techniques. deconstruction that navigates vertically in the documeig hot

able to perform a fine grained selection on horizontal nadigga

Categories and Subject Descriptors D.1.7 [Programming Tech- that is on sequences of elements. For instance, imagine/éiadve
niqueg: Visual Programming; H.2.3Qatabase Managemeént to select in an XML documertib.xml containing a bibliography
Languages—Query Languages (see Figure 2 for an instance), all the titles of books as asthe
their publication year published by Addison Wesley afted 1L éhat
General Terms Design, Languages, Theory have exactly two authors. In XQuery we cannot directly gddeth

) . i these titles and their corresponding publication year lihave to

Keywords Visual programming, Database Programming Lan- stop at books’ level, and then perfortimee subselectionsne for

guages, Functional Programming, Type Systems. authors, one for titles and one for years as in (iterator keglware
underlined)

1. Introduction <bib> for $b in

One of the reasons, if not the main one, of the success oiaedét document ("bib.xml")/bib/book [count (./author)=2] where
databases is the query language SQL. The key features tliat ma $b/publisher="Addison-Wesley" and $b/Q@year>1991 return
SQL the standard query language for relational databases are its <Pock year="$b/@year">$b/title </book> </bib>

ease of use, its formal foundation and clear semantics, @nd i
high declarativity. This last point is quite important besa both

it makes the writing of SQL queries independent from the as
organization of data and, for the same reason, makes SQiequer
highly optimizable.

As we discuss in the related work section, a further boost to
relational databases was given by the introduction of gcaph
query languages, such &aery-by-ExampléQBE). Despite the
simplicity of SQL and of the relational model these graphigeery
languages allowed more persons to access relational databad
in a more user friendly way. This is done without missing most
of the advantages of the previous approach since the serpanti
these languages is given by a translation into the reldtadgabra
or calculus. <bib>

select <book year=y> t from
<book year=y&(1992--*)>[t::Title Author Author
<publisher>"Addison-Wesley" (_\Author)x]
in load_xml("bib.xml")/Book

It would be better if we could capture in two variables and
one shotexactly the titles of the books that match the required
conditions, that is, that have a specific given form. In fioral
languages the form of a value can be described by patterttsria
then can be used to perform horizontal selection, by magcthiem
against heterogeneous sequences of elements in orderttoecap
only some given subparts. For this reason in a previous wWajrk [
we proposedQL an XML oriented query language that combines
the vertical selection capabilities of XPath-like express with the
horizontal selection capabilities @Duce patterns [1], which are
patterns designed for XML elements. GQL the query above is
written as

Permission to make digital or hard copies of all or part of thiork for personal or

classroom use is granted without fee provided that copesarmade or distributed f :) i
for profit or commercial advantage and that copies bear titiseand the full citation CQL syntax is an enriched form of the SQL's Or(e) in the

on the first page. To copy otherwise, to republish, to posteswess or to redistribute select Paft sz'j can use_fu"y structurec_i expressions 'nSt_ead of
to lists, requires prior specific permission and/or a fee. just relations,(iz) on the right of a «in » in from clauses, sim-
PPDP'08, July 16-18, 2008, Valencia, Spain. ple relations (that is, sets of tuples) are replaced by XHiathex-
Copyright© 2008 ACM 978-1-60558-117-0/08/07. .. $5.00 pressions that allow vertical navigation to select hetenegus se-

guences of elements aiidi) rather than simply captured by vari-
ables (as in SQL) the extracted sequence is navigated heaizo
by patterns that match the sequence elements and capty@tsub
in variables. In the expression above the pattern on theofefie

«in » keyword selects all and only the book elements whose at-

tribute year is in the intervall992, co) and that havexactlytwo
author subelements followed by a publisher element thatagun
the string"Addison-Wesley", this followed by any element (the
wild-card “_") that is not (the difference sigx) an author (thex
denotes a regular expression that indicates that there magio
or more such elements); of the selected book elements therpat
captures the year in the variabjieand the title in the variable.

CQL not only makes it possible to combine vertical and hor-
izontal navigation but provides a very precise type infeeen
and better logical optimizations which make it more effitien
for in main memory execution than major implementations of
XQuery [2]. However, the use of patterns may be difficult to a
basic programmer, especially in advanced (e.g. nestedjeguén
this context a graphical interface to define queries is muohem
necessary than in the SQL case. This is the goal of our wotk tha
mimicking what was done for SQL, will first define a tableaisdg
graphical representation of queries for XML-documents th
give its semantics via a translation iff@QL. The rich structure of
XML makes the task much more challenging than for the retatio
model: we do not work on a set of fixed and flat relations; irtea
the information we extract may have a complex structurerdieo
to generate the table corresponding to some extracted daty s
tem will heavily rely on the type system. For instance in thery

example we gave above, once we have extracted the data os book

the graphical interface will use the type system and thengv€D
to generate a table that contains a column for the year, anfih
the authors, a third for the publisher and a last one for theepr
the users will then have just to fill the cells with the cor@sging
conditions and capture variables to complete the query.

Related work

The use of graphical languages for expressing queries isawotn
the database field. This is mainly due to the requirementribiat
expert users should be able to interact with the databagensys
while not being acquainted with the subtleties of the urnyieg
query language which may be complex to use.

Query-by-Example (QBH)L6] is the first graphical query lan-
guage for relational databases. It has been developed #0théy
Zloof at IBM and gave rise to a wide category of commerciaphra
ical languages such as, for example, Paradox or Microsafess
The central concept of QBE is the notion of tableaux. A tablisa
a graphical interface (a table indeed) allowing the usexpess
some queries simply by defining specific variables in thestabl

In the context of XML, many attempts to define graphical query
languages have been proposed: QSBYE (Querying Semigtedct
data by Example) [11], XQBE [6], Miro-web [5], EQUIX [9],
BBQ [14], Pesto [7], QURSED [15], visXcerpt [3] and Xing [10]
Due to space limitations, we shall give the spirit of these ap
proaches rather than giving an exhaustive state of the aricé]
we choose to present XQBEQuery by Examplas it is the most
complete language. We refer the reader to [13] for a complate
vey.

Unlike QBE, rather than manipulating tableaux, XQBE manip-
ulates XML trees. The purpose was to offer an intuitive ifates
in order to automatically generate XQuery queries. XQBErsff
most of XPath expressive powepermits the definition of nested
queries, to build new elements etc. In order to give the neade
flavor of XQBE let us consider the following query which corre

1 Apart from some functions such as for instape@ition()

sponds to query Qof XML Query Use Casef8]. List all books
published by “Addison-Wesley” since 1991. This is exacthg t
query we presented in the introduction without the conditim

the number of authors. Thus to define it it suffices to remove in
the XQuery expression the predicate on the path. In XQBE auch
query is expressed as shown in Figure 1.

www. bn.com

year

publisher
> 1991

(a) “Addison-Wesley”

Figure 1. XQBE @,

In XQBE, the workspace is divided in two separate zones: the
source space (on the left) and the result space (on the.righch
zone contains labeled graphs which represent fragmentieof t
XML document to be processed. XML elements are represented
by rectangles annotated by their tag, attributes are repted by
black disks together with their names. For instance, onrgiduhe
source zone expresses a query which extracts all books eieme
<book> having an attributgearwhose value is greater than 1991,
and having a childpublisher> with value"Addison-Wesley".

In the corresponding result space, again the result is itbestcby

a tree. For our example, the graph states that the resultovillist

of all the titles of<book> elements which have been selected in the
source space (such a binding is materialized by the arc ctinge
the respective node from source to result space). Theseheil

be encapsulated in a unique fresh elemaritb> (the trapezoidal
shape indicates the fact that the result is considered as new

Most of graphical query languages for XML use graph-based
representations of both documents and queries. Their rmain |
tations are that no semantics is formally assigned to thosehg
hence they do not account for correctness proofs of thelatios
(usually to XQuery) they implement and last, except for [8yt
never exploit the underlying type system in order to yieltirojzed
versions of the resulting queries.

Unlike those, (i) we formally assign a semantics to our graph
ical tableaux-based interface and (ii) formally estabés{partial)
correctness proof of the translation@QL.

We will proceed as follows. First we present in Section 2 the
system by showing and commenting an interactive sessiam wit
our prototype. To that end we also introd{@éL, since its regular
expression types are used as conditions in the graphicaface
whose use will result in the generation oC®L expression. The
formal development follows in Section 3. In particular werf@lly
introduce the notions of tableau and PBE query and define thei
semantics by translating PBE queries ifff@L queries. Since
the translation in far from being trivial we define the tratigin
incrementally, by progressively increasing the complexit the
translated queries. This will allow us to point out the maftalilt
or subtle points of the translation. A partial correctnessuft of
this translation is also given.

Throughout the presentation we use some conventions and syn
tactic sugar ofCDuce/CQL, most of which are quite intuitive and
need no explanation. On the same vein, we just present aivery s
plified version of the language. Space constraints do nowalk to
do a complete treatment, which anyhow would not bring any fur
ther insight. The interested reader can consult the doctatien
available on th€€Duce web siteyww . cduce . org) and try the dis-
tribution of the full featured language available there too

2. A guided tour
In this section we present a guided tour of PBEattern by Ex-

amplg our graphical query language designed to help non-expert

users to write complex queries. PBE u§&3L as a back-end since
it generates and evaluates optimiZéQL queries, but other back-
ends can be considered. Actually, PBE can be used indepiynden

from CQL, since its usage only requires the knowledge of the types

that CQL borrows fromCDuce, types that are very close to other
type systems for XML. However, the presentation of PBE seman
tics is far simpler inCQL, which is the reason why we start this
presentation by an overview GfQL.

2.1 Presentation ofCQL

The goal is not to give a full presentation©@QL (for that see [2])
but rather to present a minimum set of features that are éntmg
present PBE. The most important feature are types. PBE&id

useCDuce’s types, which can be seen as a compact notation for

DTDs (actually, for Relax-NG):

Types T == btype| [t] | <tag{A}>[t] | Any | v
| TIT | T&T | T\T

RegExps ¢t == T | tt | tlt|t? |t | t+ | e

Attributes A == a=TA | ¢

Types are eithetype constructorsthat is: basic types (e.dInt,
Bool, Char,
square brackets and whose content is described by a typkaregu

expressiort); XML elements (that is, tagged sequences whose tag

may contain a possibly empty list of attribute type deciaret
which assign types to attribute names—ranged ovei-by; Any,
the type of all valuesy, the singleton type that contains only the
valuew. Or they aretype combinatorsthat is, union, intersection,
or difference of types. Regular expression types, ranged oy,
are obtained from types and the empty string (denoted)byy
juxtaposition, union, and the constructors for optionanetnts,
possibly empty, and nonempty sequences.

We will use some conventions, in particular the underscote “
to denoteiny, PCDATA to denote the regular expression tyjiar*,
andString to denote the typ€Char*]. We also use identifiers to
denote types (and follow the convention of capitalizingiieas in
the following declarations

Bib = <bib>[Book*]
Book = <book year=String>[Title (Author|Edit)+
Publisher Pricel

type
type

type Author = <author>[Last First]
type Edit = <editor>[Last First]
type Title = <title>[PCDATA]

type First = <first>[PCDATA]

type Last = <last>[PCDATA]

type Publisher = <publisher>[PCDATA]
type Price = <price>[Int]

which defines the types for the bibliography example we vsk u
throughout the paper.

For this paperCQL expressions are variables (ranged over by
x, y, ...), constants (e.gtrue, 1, 2, ... ranged over by), the
select_from_where expression, the constructors for sequences
(ajuxtaposition of blank-separated expressions delaritesquare
brackets), and XML elements (a sequence expressitabeled
by a tag and a possibly empty set of attributes), banged sxpre
sions e (which “opens” the sequence so that, for instance, if
e1,ea, ..., ey are sequences, thdne; les ... 'e,] returns their
concatenation), and operators (esg>, max, if _then_else, ...).
Values, ranged over hy, are closed expressions that do not contain
“select”, operators, or banged sub-expressions.
zlc|le...el|<taga=e...a=e>e | te | op(e,..,e)
select e from pine,...,p in e where e

e u=

...); heterogeneous sequences types (delimited by

The expressionselect e’ from piines,...,pnine, where v
deserves explanation. The expressi6nin thewhere clause must
be of boolean type, while the expressians in the from clauses
must return sequences. Select iterates on these sequesinéEsny
each element oé; against the corresponding pattesn Pattern
variables capture subparts of the matching elements ard thaei-
ables can then be useddh or in the successiverom clauses. The
result of aselect is the sequence of evaluations of the expression
e’ in the environments obtained by iterating on fem clauses.

Patterns are nothing but types with capture variables. \&fendi
guish two kinds of patterns for capture variables: “sim@dables
patterns” that have the form of a variable and can occur wieeig
type can, and “sequence capture patterns” that have thesform
can occur wherever a regular expression type can, and eaiptur
x the sequencef all values matched by the regular expression
So in theCQL query given in the introductiog is a simple cap-
ture variable (the intersection of two patterns succeetisibeach
pattern succeeds, thereforecaptures the value of attribufear
only if this is of type 1992--%), while t captures the sequence
of all titles of the book (in this case just one). Differenflpm
union types, that are symmetric, union patterns implemeirsa
match policy: the right pattern is checked only if the lefedails.
So, for instance when the patteffix: : Author|_)*] is matched
against a sequence it captureszithe sequence of all (values of
type) authors present in it (if an element is of typechor, then it
is captured by, otherwise is discarded by matching it against the
wildcard “_"—i.e. the typeAny).

We apply the convention to use single quotes to delimit ahara
ters and double quotes to delimit strings (which are seqent
characters). For formal and complete definitions of theayrthe
semantics, and the typing 6fQL the reader can refer to [2].

2.2 Atour of PBE

We demonstrate PBE by querying the document in Figure 2 and
assuming that it conforms to tHiéDuce typeBib defined by the
declarations given in the previous section (from which wedtom
Edit in order to limit the size of figures) that we will have entered
in the tab “Data” of our PBE interface, visible in Figures 3-1
Queries are expressed by meanstaffleaux Two different
kinds of tableaux are presenteHilter tableaux and Construct
tableaux The former are used for extracting information (they are
entered in the upper half of the interface), while the lates
used for building the sequence of XML values that constitute
the result of the query (they are entered in the lower halfhef t
interface). PBE tableaux allow for expressing a wide vgrieft
queries. Let us start with a simple query: “return all boakshe
bibliography”. Assume that the document to be queried isesto
in the doc (persistent) variable. The filter tableau offers a list of
persistent XML documents and the user will choose among them
thedoc variable as shown in the left part of Figure 3.
Once the document is selected, PBE displays the filter tablea
associated to the type afoc (i.e., Bib) as shown in Figure 4.
The column marked by # symbol represents the tag which can be
tested and capturédavhile the fact that the content 8fib elements
is a sequence ook elements (recalBib = <bib>[Book*]) is
represented bpookx. In the row, PBE provides fresh variables,
x2 to capture the corresponding components and a default)(type
constraintiny which is always satisfied
The user who wants to capture all the books of the bibliograph
doc in a variablebooks (Figure 5), has just to declare this variable

2Declarations are generated from a DTD by the progéadRcduce.
31n the full version of CQL/CDuce XML tags are full fledged expressions

that can contain namespaces and have arbitrary complex syjoh asype
AorB = <(‘al ‘b)>[Any*].

<bib>
<book year="1995">
<title>TCP/IP Illustrated</title>
<author>
<last>Stevens</last>
<first>W.</first>
</author>
<publisher>Addison-Wesley</publisher>
<price>65</price>
</book>
<book year="1992">
<title>Advanced Programming in Unix</title>
<author>
<last>Stevens</last>
<first>W.</first>
</author>
<publisher>Addison-Wesley</publisher>
<price>65</price>
</book>
<book year="2000">
<title>Data on the Web</title>
<author>
<last>Abiteboul</last>
<first>Serge</first>
</author>
<author>
<last>Buneman</last>
<first>Peter</first>
</author>
<author>
<last>Suciu</last>
<first>Dan</first>
</author>
<publisher>Morgan Kaufmann</publisher>
<price>39</price>
</book>
</bib>

Figure 2. reference XML document

File Edit

Tableaux ‘ Misc 1 Data 1 Querias}

Filter Tableau

doc

bstorel

Figure 3. Filter tableau creation

in the corresponding column (the one labeledbyk*). The right
part of the cell remains unchangekhf), since we do not need to
express further constraints on variableks.

Getting and, presumably, re-structuring the result isqeréd
by means of aonstruct tableauhat is defined in the lower part
of the window as illustrated in Figure 6. Construct tableans
defined by adding new columns and filling the cells by using the
variables introduced in the other tableaux. From the cdritext is
filled in a cell, PBE deduces and inserts the type that labelsor-
responding column. Not only does the construct tableawcétes
how the result is re-structured (here we choose to encapsaila
books in a<result> tag) but it also provides a fresh variakje

O PBE [NEE]
File Edit
Tableaux | Misc I Data l Queries I

Filter Tableau

[Bib ” # ” Book* l

-

Figure 4. Filter tableau fordoc

= e

File Edit

Tableaux | Misc I Data l Queries I

Filter Tableau
[Bib # l[Book* l

n

Figure 5. Adding variablebooks in the filter tableau

S PBE
File Edit

S ENEY

Tableaux |Misc |Data |Quenes |

Filter Tableau
[Bib ” # ” Book* |

doc 2 [Ix1 HAny [bcoks Any
Add Row

Construct Tableau

|> [Book*]

‘ql ” books I[Add Column

WView query

<[result

Figure 6. Construct tableau creation for g1

that denotes the query so that it can be later reused (e defioing
nested queries).
Clicking on the “View query” button right below a construct
tableau, makes PBE compute and display in the “Queries’hab t
correspondind_QL query and its result (Figure 7). PBE also infers
that the type 0§1 is [<result> [Book*]*], an information useful
in caseql was reused in other queries. As with any other variable,
q1l can be reused by selecting it in the pull down menu of Figure 3
to which it is automatically added at the moment of its deifonit

This first example was very simple. We shall now present two
more advanced examples that illustratghow to program nested
queries andiz) what is the use of several rows in a filter tableau.
Imagine that we want to define a query that returns a sequénce o
elements tagged bientry> where each such element corresponds
to a book of our example bibliography and contains its tikberent
as well as the authors’ last name elements encapsulatechirta>

= PR S

File Edit

Tableaux | Misc |Data| Queries |

Queries
Queries:

let g1 = (select <result=>[lbooks]
from
<(x1) ..>[books:{ Book*)] in [doc])
Result:
[<result>[
<hook year="1994">[
<title>[TCP/IP lustrated']
<author>[<last>['Stevens'] <first=>['W.']]
<publisher=['Addisen-wesley']
<price=[65]

<book year="1992"=[
<title=['‘Advanced Programming in the Unix environment']
<author=[<last>['Stevens'] <first=>['W']]
<publisher>['‘Addison-Wesley']
<price=>[65]
1

<book year="2000">[
<title>['Data on the Web']
<author>[<last>['Abiteboul'] <first>['Serge']]
<author>[<last>['Buneman'] <first=['Peter']]
<author>[<last>['Suciu'] <first>['Dan']]
<publisher>['Morgan Kaufmann Publishers']
<price=>[39]
1

1

1

Figure 7. CQL code and result for g1.

tag. While the plain English semantics is a little bit twikt¢he
meaning should be quite clearer by looking at how the query is
expressed in Figure 8.

= e

File Edit

Tableaux ‘ Misc ‘ Data ‘ Queries ‘

‘ Add Row ‘

Filter Tableau
{ Book H # H Title ” Author+ ” Publisher ” Price J

books |3]pa [y Jlitle Jlany fa ffany s Jaw [Jlany |

Add Row

Filter Tableau
{ Author H # ‘I Last ” First I

PR T T T o T

Construct Tableau

<|auth |>| Last |
‘q3 Hlast ”Add Culuan
View query }
Construct Tableau
<lentry 5[mle [<auth @ p=puast]
{qd Ht\t\e ” q3 ” Add Column

View gquery

Figure 8. A nested PBE query

The first filter tableau is defined for th@oks variable that was
introduced (and automatically added in the pull-down memy)
the previous query, and extractstfitle anda the list of titles
(well, just one) and of authors of each book, respectivelyisT
row captures for each book the relationship between itsditld its
authors. In order to extract for each authos inis/her last-name we

use a second filter tableau which captures in the varibide the

corresponding information. To encapsulate eathst>

element

in a tag<auth>, we define the construct tablegs. This tableau is
then reused in the construct tableau of the qugryin which the

title is requested as well as the resulggffor this title.

The definitions of the querieg3 and q4 and their respective
results are shown in Figure 9. When it is executed standajéne

=} PBE
File Edit

Tableaux ‘ Misc ‘ Data | Queries ‘

S EEY

Queries
Queries:

let g3 = (select <auth>[!last]
from
<{x1) ..>[books:{ Book*)]in [doc].
<(x3) ..>[title: Title a::(Author+) x6::Publisher x7::Price] in books,
<(x8) ..>[last::Last x10:First Jin a)
Result:
[<auth=>[<last>['Stevens' 1]
<auth=[<last>['Stevens']]
<auth=[<last>['Abiteboul']]
<auth=>[<last>['Buneman']]
<auth=[<last=>['Suciu']]
1
let g4 = (select <entry=[ltitle !select <auth=[!last]
from
<(x8) ..>[last::Last x10:First Jina)]
from
<(x1) .>[books:l Book*)]in [doc],
=<(x3) . =[title: Title a:(Author+) x8::Publisher x7:Price] in books)
Result:
[<entry=[<title=[TCP/IP llustrated'] <auth>[<last>['Stevens'1]]
<entry=>[
<title=['Advanced Pragramming in the Unix environment']
=<auth=[<last=['Stevens']]
1
<entry=[
=title=['Data on the Web']
=<auth>[<last=['Abitsboul']]
<auth=[<last>=['Buneman']]
<auth>[<last>['Suciu']]

1

Figure 9. CQL code for queries g3 and g4

returns a single list containing all the authors in the

bigptaphy

(since in that case is bound to all authors), as shown in the first
« Result » section of Figure 9. Instead when it used insidethe

queryq3 encapsulates the authors of the book currently selected by

the outer iteration. It is important to notice thgg does

not occur

in the code forg4. As a matter of fact, it would be wrong to do it,
as the code that occurs g at the position 03 is not the code

defined forq3 as a stand-alone query. Indeed when generating the

codeq4 PBE must generate custom code for the calg®f that
takes into account the environment in which the nested qisery
evaluated. The technique we use to keep track of the envanhm

in which nested queries are called and to minimize the number

of possible patterns needed for expressing the query ameaflyr

explained from Section 3.2.3 on.

Our last example illustrates the use of several rows in a filte
tableau. Assume that we want to select the books whose ¢igie®
either by letter " or by letter “D”.These constraints are expressed
in the CQL type algebra respectively a8 T’ _x], [’D’ _x].
Their “or” is obtained by the tableaux in Figure 10, since BEP

multiple rows are interpreted as union patterns. Note

thelh eow

declares the same variables: rows differ only for their t@nsts
(see also Definition 3.2 which enforces this property). Mviath
stressing that by using the knowledge of the DTD and the ctate
constraints of the filter tableau, PBE deduces typé’D’ |°T’)

Charx] for the capture variableext in the construct tableau. The

CQL query generated by the system and its result
Figure 11.

are given on

= PBE [=1l=]=]

File Edit

Tableaux | Misc]EV‘ Queries |

Filter Tableau
I Book H # ” Title ” Author+ ” Publisher H Price J

:“xS ”Any ‘t\tla Any ”xs ”Any |xﬁ Any Hx? HAny

| AddRow |

| books

Filter Tableau
I Title H # “ Char* |

[title :“xB [any [text [rT %]
[addrow [xa Jlany Jtext o

Construct Tableau
<|title |>‘ [(D' |'T) Char*]‘

|es || text

‘IAdd Column

Figure 10. Multiple rows tableau

=] HEEY

File Edit

Tab\eauxl Misc I Data | Queries |

Queries
Queries:

let q5 = (select <title=[ltext]
from

labeledAuthor+ instead of—equivalently—, say, three columns
respectively labeleduthor?, Author, Author*? The reason to
prefer the former to the latter should be pretty clear: wetwan
minimize the number of filter columns in order to use as few-var
ables as possible. In order to formalize the way in which¢hi@ce
is made, we need the definition &#quence maximal product

First notice that every type regular expressias of the form
RiR> ... R, (with n>1) whereR;’s are type regular expressions
different from the juxtaposition. Letus cdl; . .. R,, theexpanded
form of ¢. Notice also that everR; in an expanded form is of the
form tro (whereo is either*, +, 7, or the empty string—in the
latter caselr is either a regular expression union or a type): we
call t r thebaseof R. Finally, we writeT} ~ T> if and only if T}
andT> denote the same type (e.g(AI1B) CI~[(a C)|(B C)1;
see [1] for definition).

DEFINITION 3.1. LetR; ... R,, be a type regular expression in its
expanded form and let us denote the bas&oby tr,. R1 ... Rn

is a sequence maximal produdt [tr,] % [tr,,,] for i
1...(n—1).

For example, ®* B+ C B » is not a maximal product since the
first two elements have the same base. There exists a naive alg
rithm to transform every type regular expression into a mmaxi
product and consisting in merging consecutive expressidtis
the same base (e.g.t« t » becomeg+ and «Bx B+ C B » be-
comes @+ C B »). Therefore, henceforward we consider all type
regular expressions be maximal products. Notice, howehet,
this is just a syntactic property with no semantic implioati It
heavily depends on way the user wrote DTD’s for data: for in-
stance, «(A|B)* (A*C+|BxC+) » is a maximal product although
« (A|B)* C+ » would be a smarter denotation.

i+1

<(x1) ..>[books::(Book*)] in [doc].
(x3) ..>[title:Title x5::(Author+) x&::Publisher x7::P 1in books, - .
D T e T e it) T i) DEFINITION 3.2. LetT be an XML type, éilter tableawassociated
Result: toTis:
itl U Il d | 1 h bt
[<title=['TCP/IP lllustrated'] <title>['Data on the Web']] | T || 7 | a1 | — | an | Rl | - | R, |
Y (‘rO’t(l)) (‘rl’t%) ("Ekvti) (wk+17ti+1) ("Ek+n7ti+n)
Figure 11. Result of the multi-row query : : :
Y (xovtgb) (xlvt’{n) (xkvt?)(xk+1vtzn+1) : (xk+7utzb+n)
3. Formal development
where

In this section we give the the formal definition of PBE by first
precisely defining its syntax and then stating its semantizsa
translation intaCQL.

3.1 PBE syntax

The syntax of PBE is constituted by three distinct kinds bfgaux,

filter tableauxand construct tableauxhat were informally pre-
sented in the previous section, azwhdition tableauxor condition

boxe$. Let us discuss each of them.

3.1.1 Filter tableaux

Filter tableaux are tables in whigfi) rows are labeled by already
defined variablegii) columns are labeled by attribute names, by a
hash sign (exactly one column), and/or by type regular esgines

and (zi7) cells contain fresh variables and regular expression type
constraints. For instance, in the previous section we dgfthe
following tableau

Book # Title Author+ Publisher Price
books (wl ,tl) (:Eg,tz) (:Eg,tg) (:E4,t4) (:E5,t5)

which filters the elements that compose the sequence dehgted
the variablebooks The user defines only the content of the row,
the rest (that is the number of columns and their labels) are a
tomatically deduced from the type of filtered variableoks that

is Book. But how is that PBE decided to insert a single column

1. y is a variable of type[T*] or a persistent root of typ&’,
2. T =<tag {a1=T1 ...ar=Te}>[R1 ... R,],

3. Ry ... R, isamaximal product,

4. z; are fresh variables{=0. ..k + n),

5. t§ are regular expression types £ 1..m, 7 = 0..k + n).

Henceforth we will mainly work on what we call (improperly in
the case of filter tables) rows of a tableau and we use thenfollo
ing compact notation to denote the (set of) row(s) of a fitubteau

FT(yltag|k|(zo, T0)[(z1,71) - - - (Th, 8| (Tt 1, Bt 1) - - - (Thotms L))

wheretagis the tag of the XML type associatedgok the number
of its attributes and eadh represent the vectaef, ..., t"

3.1.2 Construct tableaux

A construct tableaus a single row table that defines the structure
of the result of a query. The user specifies the tag in whichebealt

must be encapsulated and adds as many columns as (subsexjuenc
of) elements in the result. Each element is specified by dillin
the cell in the corresponding column with a variable whogeety
will determine the label of the column. For instance, thestarct
tableau of Figure 10 is:

<title>
g5

[(°D’|°T’) Charx]
text

In general, users can define not only the tag of the resultiboits
attributes, which yields the definition:

DEeFINITION 3.3.If z1, ..., 21+, are variables,as, ..., ay are at-
tribute names and tag is an expression denoting a tag, they th
define the followingonstruct tableau

tag
Y

whereR; is the (regexp) type af,4; (i = 1...n—k) andy a fresh
variable of type[(<tag {a1=t1 ... ar=tx}>[R1 ... Rx]1)*].

Ry
Th+1

Ry
Lh+n

ai
T1

ak
Tk

As we did for filter tableaux we introduce a compact notation t
denote a row of construct tableau, that is

CT (y|taglk|(a1,z1) ... (ak, Tk)|Tht1 - - - Thin),
wherek is the number of attributes.
3.1.3 Condition Box

PBE condition boxes are the same as in QBE, that is, they
are used to specify constraints. In particu-

lar, condition boxes are useful for declar- CONDITION BOX
ing join conditions between two vari- €1

ables. Condition boxes are of the form as

shown on the side, that is they are sing|

column tables whose rows contait@L En

expression of boolean type. Usually these expressionspptea-
tions of operators to variables, such as the equality of tav@bles
x=y (a typical condition used for joins) or to a variable and con-
stants, such ag>5. As we did for filter and construct tableaux we
introduce some special notation to record rows of conditioxes.
For the sake of the presentation we consider just a very apEse

of conditions formed by the application of a binary boolegema-
tor to either variables or values. Then a row of a conditiox dxan-
taining expression; op ez Will be represented &8B(op, e1, €2).

3.1.4 PBE Queries

DEFINITION 3.4. A PBE queryis defined by a non-empty set of
persistent roots, a finite set of filter tableaux, a finite ronpty set
of construct tableaux, and an optional condition box.

In order to be well defined every free variable used in a query
must be either a persistent root or defined elsewhere. Natsme
that in the result of a query (i.e. in a construct tableau) weoit

let the user specify general expressions but just varigfiies a
design choice); therefore we also require that no pergistet
appears free in a construct tableau, since this would beaime s
as specifying a constant. In order to formally state when & PB
query is correctly defined we need to introduce the notiorfseaf
and declared variables of a tableau

DEFINITION 3.5. Let f, ¢, and d denote the following three
generic objects: f FT(y|taglk|(zo, t0)|(z1,11) . . . (zk, 1)
(@41, To1) -+ (Trtn, Ten)), € CT(yltag|k|(ar, z1) ...
(ak,Tk)|Tk+1 ... Then), andd = CB(op,e1,e2). The free and
declared variables of these objects respectively are

() = {y dv(f) = {xo...Tkin}
fV(C) = {:cl - xk+n} dv(c) = {y}
fv(d) = wvar(er)Uvar(ez) dv(d) = o

wherevar denotes the function that returns the free variables of a
CQL expression.

If 0 is a set of objects, then we denote fhy¢’) and dv(&)
the union of the respective sets of free and declared vatabd its
objects.

DEFINITION 3.6. For a given PBE query let us denote B the set
of its persistent roots, hy# the set of all rows of its filter tableaux,

by ¢ the set of all rows of its construct tableaux and@®yhe rows

of a possible condition box. The queryisll definedif and only if
1fv(F)Ufv(E)Ufv(O) Cdv(F)Udv(€)U P
2v@E)NP =2

Note that the freshness conditions in tableaux definitiorsiee
that every variable is declared in one and only one tableautrat
it univocally identifies.

3.2 Semantics

The semantics of PBE is defined via an (effective) trangidftiom
PBE queries (more precisely, from variables denoting PBitigs)

to CQL queries. The translation is defined in form of inference
rules. For the sake of presentation, the translation i®duired
gradually in several steps: first, we define a naive tramsiafor
unnested queries without condition box. Then, we obseethe
definition creates some redundancies and modify the trizosho
avoid them. Next we add nested queries, that is, PBE queitas w
several interrelated construct tableaux and, finally, tediion
box.

3.2.1 Unnested queries without condition

Let 2, #, ¢, and© be defined as in Definition 3.6. We start by
considering the case in which bathandfv(%4") Ndv(%) are empty
(no condition and no nesting).

CT(x|tag|k|(a1,z1) ... (ak, Tk)|Tkt1 - - - Thgn) €C

ykfﬁci—’li i=1...k+n o
§7(g Fs x — select <tag ai=x1 ... ar=Tr> ()
OZkt1 - ' Thin] from li, ... lktn
dfe Fxedv(f) yefv(f)NZ F3)
7 by — pattern(f) in [y]
AfeF, zedv(f) yetv(f) y¢? F\frry—1 -

Ftyx—1 , pattern(f) in y

z & dv(%) x & dv(F)

—_— — (F2
f,(wﬂhm—ﬂl() nyi’—)Q()

Figure 12. Naive translation of unnested queries without condi-
tion.

The inference rules are given in Figure 12. The main judgment
is 7,4 s © — e which translates a variable identifying a
query—that is, a variable declared by a rowdh—into a CQL
querye. This is done in ruldR2which straightforwardly generates
the select clause (just notice that element variables are banged
since they denote sequences) and relies on a new form of praigm
to generate thérom clauses. A judgmen# +; « — [generates
a list! of from clauses of the form g in e», wherep is aCQL
pattern anct is aCQL expression whose form is eith€y] or y.
As we assume that there are no nested queries, then all leariab
free in% must be declared by one (and only one) rowZin(recall
that these variables cannot be persistent roots). Forehason we
just need two rules to generate theom clauses: we use3 when
the free variable of theZ-row at issue is a persistent root (in
which case we can stop the search since the variable is ctatyple
defined); we us&4 when the free variable of th&-row at issue is
a capture variable defined in some other row (in which caseawve h
to find this row and recall the judgmeht: under an environment
% from which this row is removed—to avoid loops—in order to
generate the clauséghat define this variable: these clauses must

precede the definition of the variable, of course). Findiypattern
corresponding to a filter tableau row is generated by thetimmc
pattern() which has the following definition.

DEFINITION 3.7. Let f be a filter tableau row of the form
FT(yltag|k|(zo, t0)|(z1, 11). (@k, 8 [(@h4 1, T 1) (Thopns Togon))s
wherey is of type eitherkso{ai1=s1..ax=sk}>[R1..R,] (i.e.,y
is a persistent root), of<sp{ai1=s1..ax=s}>[R1..R,1*] (i.e.,y
is a capture variable), andh denotes the arity of the various's.
Thenpattern(f) = pi1l ... |pm, where, for j=1..m,p; is defined
as:
<(wo&th&s)) ar=z1&t]&s] ... ap=ry&tl&si>[,
415874 - - mk+n::s{€+n]
tf._Jrk&Ri
] &LR;]
The j-th row of a filter table generates the patterncomposing
a union pattern. In each;, if z; is a variable that captures an
attribute, then the pattern associatedrids ai=xi&tf . Otherwise
we use regular expressions and the pattern;is. : s{M. The

s7,, is different according to the form of the regular expression
type R;. In the caseR; is a type (e.g. the type regular expression
Title), thens] , = t],,&R;, otherwise (e.g. the type regular
expressiorBook*, which is not a typey,, , =t/ &[R;].

Finally, rulesR6andF2 explicitly manage the case of ill-defined
PBE queries by generating an error, denotedby

Let us follow the translation on a PBE quejythat groups the
title and the price of each book ivc under a new tagresult>
and is defined as follows

if R; is atype

where for: = 1..n
s1 = :
itk otherwise

Bib # Bookx*
doc | (wo,.) | (bks)
Book # Title Author+ Publisher Price
bks || (z1,.) | (Us,0) | (z2,2) (3,.) (prc, 2)
<result> Title Price
q tls prc
{FT(dod

Formally ¢ = {CT(g|result|0] |tIs pro}, & =
bib|0|(xo, Any)| |(bKs, Any)), FT(bkgbook|0|(z1, Any)|(tls, Any)
(2, Any)(x3, Any)(prc, Any))}, © = @.

Rule R2is evaluated first since there exists a rowédnwhich
declares the query. Thus we have:

F, € Fs q— select <result> [!tls !prc] from li,lo

select <result> [!tls !prc] from
<(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title x2::Author+
x3::Publisher prc::Price] in bks,
<(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title x2::Author+
x3::Publisher prc::Price] in bks

It is clear that half of the lines in thérom clauses are useless.
This redundancy is due to the fact that the rules computeraleve
times the clauses that define the variattleandprc. To avoid this
duplication we add a new memoization environment that gscor
the set of variables already defined during the deductiorwes
show in the next section.

3.2.2 Redundancy elimination for unnested queries without
condition

The rules in Figure 13 define a modification of the previousgra
lation that eliminates the redundancy we pointed out, bpgigi
the F¢-judgments a new environmeit that stores the variables
occurring in patterns returned Ipattern().

CT(z|tag|k|(a1, z1)...(ak, Tk)|Tkt1.--Tkin) € C
F N bra— (1,5) Yo=0 i=1l.k+n
F,€ Fs v — select <tag a1=x1...ap=T}>
iy . "@ryn] from Ui, ..., lk4n

(R

T EY
F, Xk —(9,%)

(F1)

x¢Y Ife Fxedv(f) yefv(finZ
F, Y Fp o — (pattern(f) in [yl,X Udv(f))
x¢gY Ife F,xedv(f) yev(f)
F\LEUAV() By — (63, E)
F,Xkfx— (I; , pattern(f) in y,X’)

(F3)

yg o

(F4)

x & dv(%)
F.C st —Q

x & X Udv(F)
F, Xk —Q)

Figure 13. Memoization for unnested queries without condition.
The rulesF3 andF4, besides returning the list of clausgshey

Sincetls is based on the variable bks which is not a persistent root, now also return a new environmexntthat that enriches the current

then for the computation dfi corresponding tals we apply rule
F4, which gives:

F Fytls— l3,<(x1)>[tls:Title x2::Author+
x3::Publisher prc::Pricel in bks

To computels we repeat the operation dokswhich being based
on the persistent roatoctriggersF3:

F b bks— <(x0)> [bks::Book*] in [doc]
Thus!; denotes the list:

<(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title x2::Author+ x3::Publisher prc::Price] in
bks

and the same computation gives for

<(x0)>[books::Book*] in [doc],
<(x1)>[tls:Title x2::Author+ x3::Publisher prc::Price] in
bks

In conclusion the rules of Figure 12 translate the PBE qyenjo
the following CQL query:

one with the variables defined in

The overall recording of the defined variables is perfornred i
the ruleR2 by the premises#,%;_1 F; z; — (l;,%;) where
the X;'s are used as accumulators. Each indeed contains all
variables defined in the preceding environments, that iayma;,
such ask < ¢ (whereXy = @). The last environmernit,, will then
contain all the defined variables.

The elimination of redundancy is then crucially performed b
the new ruleF1 which returns an empty set d@from clauses in
the case where the variable to be sought is already defineat—th
is, it belongs taX—: in this case there is no clausé¢o add in the
construction of the query as all definitions are alreadygmesRkule
F2 is straightforwardly modified.

By applying these rules to the example of the previous sectio
we obtain the followingCQL query

select <result> [!tls !prc] from
<(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title x2::Author+
x3::Publisher prc::Price] in bks

which is indeed the one we expected.

3.2.3 Nested queries without condition

We extend the previous translation to account for nestediapje
that is, queries whose construct tableaux declare vagdbde in
other construct tableauxv(¢) N dv(%)#2).

x € dv(F)

F Ctsr—x (RD
CT(z|taglk|(a1, z1)...(ak, Tk)|Tkt1.-Thgn) € C
Tjry ey T} = dV(F) N{x1, ..., Thpn
F,Ctsxi —e 1=1.k+n
?,Eh,l }—f Tj, — (l;L,Eh) h=1.m o=

F,6 ks x — select <tag ai=ej ...ap=ex>
[tex+1...'ek4n] from Ii,...

(R2)
) l'm

z & dv(F)Udv(%)
F.CtsT— Q

(RE)

(F1), (F2), (F3), (F4) asin Fig. 13

Figure 14. Translation rules for nested queries without condition.

Intuitively, when during the translation of a query we meet a
variable, we must check whether this variable is declaredfilter
tableau (it is indv(.#)) or in a construct tableau (it is itv(%)).

In the former case we must proceed as before, that is, insert t
variable as it is in theselect expression and generate theom
clauses that define it. In the latter case, instead of imggttie
variable in theselect expression we have to insert the query
generated by recursively calling the translation.

This is done by modifying theR-rules for -, (the F-rules,
which are for--judgments, do not change) as shown in Figure 14.
In particular this is done in rul®2 which for eachz; (indepen-
dently from whether it is irlv(.%#) or in dv(%)) calls for its trans-
lation (premises?, ¢ s x; — e;). If the variable is declared in
a filter tableau, this results in calling the new r&&which returns
the variable (now considered a’&L expression), otherwise the
rule R2is called on the new variable and the correspondil@-
expression generated. The rule also generatesrdbe clauses for
the variables that are idv(.%#), by the same technique as before.
The ruleR6is modified since variables free in a construct tableau
may now be defined in another construct tableau (this motldita
is not necessary fdf2).

Bib # Bookx*
doc || (zo,_) | (bks.)
Book # Title Author+ | Publisher Price
bks (z1,-) | (s,.) (a,) (z2,_) (z3,_)
Author # Last First

a (za,_) | (In,2) | (fn,0)
<auth> Last First

p In fn
<result> Title | <auth>[Last First]

q tls P

Figure 15. Return titles and authors in a new elemepésult>,
where the taguth replaces the taguthor.

Let us apply the translation to the tableaux of Figure 15 whic
contains nested construct tableaux:
¢ = {CT(q|result|0] [tIs p) CT(p|auth|0] |In fn)}.
To translate the query we applyR2 and in particular evaluate

F,C ks tls — € and.Z7,¢ s p — €”. Sincetls is defined
in Z, thene’ is theCQL variabletls. This, with the call of-; to
generate the definitions fdls yields:

select <result>[!tls !e’’] from
<(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title a::Author+
x2::Publisher x3::Price] in bks

wheree” is the result of the evaluation of the quaryThis being
a variable defined i fires the ruleR2 Since the row defining
only contains variables defined i#, then the translation is as in
the previous section, yielding:

select <result>[
'tls
!select <auth>[!1n !fn]
from <(x0)>[books::Book*] in [doc],
<(x1)>[tls::Title a::Author+
x2::Publisher x3::Price] in bks
<(x4)>[1n::Last fn::First] in a
]
from <(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title a::Author+
x2::Publisher x3::Price] in bks

We notice that a new form of redundancy appears as the clauses
for x0 andx1 are uselessly computed twice. This is due to the fact
that the work done for translating the inner query was alyehhe
when computing the translation of the outer query. The gmiut
is as before, that is, we memoize the variables already méidy
translation, with the difference that the variables to lrest are
now defined ing and the environment that stores them is added to
Fs-judgments.

3.2.4 Redundancy elimination for nested queries without
condition

We need to modify only thdR-rules, whose judgments specify
now a environmen® both as input and as output. These two
3's respectively store and return all the variables defineth&
construct tableau being translated, so that these vasiabéetaken
into account (when generatinfrom clauses) just oncer-rules
instead need no modification, even though these rules (ticpkar
F2) now work on riche®’s that convey more information.

x € dv(F)
Z.€, %z — (3,2)

x & dv(F)Udv(E)
F.C,XFs 1 — Q)

(R1) (R6)

CT(z|taglk|(a1, x1)...(ak, Tk)|Trt1...Thqn) € C
Tjrye oy Tjp = dAV(F) N{x1,.. ., Thgn}
9,2}171 Ff Cth’ — (lh,Eh) h=1...m
f,%,Em Fs xi — (21,62) i=1...k+n

F, €, Y0 Fs x — (Xm, select <tag ai=ei..ap=er>
[tex+1..'ex+n] from l1..lm)

(R2)

(F1), (F2), (F3), (F4) asinFig. 13

Figure 16. Memoization for nested queries without condition.

In particular, R1 and R2 are straightforwardly extended (by
adding the context environment and, ®1, returning it unmodi-
fied).R2first generates all therom clauses needed at the top level,
and then it translates possibly nested queries under th®ament
3 which records all the variable defined in the generation ef th
top-levelfrom clauses. The rules in Figure 16 translate the tableaux
of Figure 15 into the following (expected) query:

select <result>[!tls
!'select <auth>[!1n !fn]
from <(x4)>[1ln::Last fn::First] in a
]
from <(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title a::Author+
x2::Publisher x3::Price] in bks

The rules in Figure 16 are not complete, though. A rule id stil
missing. The problem is that if in rulB2 Xy = X, holds, then
the various sub-calls to tHe-rules would not generate any clause,
thus yielding an emptyfrom part (and a syntax error). This in
particular happens when all clauses needed for the defirofithe
variables free in some construct tableau were already gtterTo
see an instance of the problem, it suffices to replace in Eid&r
the first construct tableau (the one that definesghariable), by
the following one.

<auth> Author+
p a
for which the sole rules of Figure 16 would return

select <result>[!tls
!'select <auth>[!al
from]
from <(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title a::Author+
x2::Publisher x3::Price] in bks

whose syntax is incorrect since the graye@m clause is empty.
To avoid this problem it suffices to add to the rules of Figuée 1
the following ruleR4 that for Xy = 3,, returns[e] instead of
"select e from _ ":

('f Yo = Zm)
CT(z|taglk|(a1,x1)...(ak, Tk)|Tht1- - Thtn) € C

{Zjyy s zjm b =dv(F)N{z1,. .., Trgn}
Q,Eh,ll—f:pjha(lh,Eh) h=1...m
T C,Ym bs v — (Zh,e;) i=1...k+n

R4
F, €, S0 kFs x — (Zm, [<tag ar1=e1 ...ap=€r> (R4

[lept1...Yeptnd 1)
With this new rule the previous example translates to:

select <result>[!tls ![<auth>['al]]
from <(x0)>[bks::Book*] in [doc],
<(x1)>[tls::Title a::Author+
x2::Publisher x3::Price] in bks

3.2.5 Nested queries with condition.

Finally, the most general case, in whi€4 2 needs the new rules
C1-C7of Figure 17. These have as inp#t, ¥ and© and generate
aCQL conditionC that translates the rows that use variablesin
(that is, variables used by the query being translated).ctiput
also includes the ligtof from clauses that were created during the
construction of”. These clauses are created wigenses variables
not already treated (hence, not belonging3ip Of course, we
need to keep track of these variables for subsequent analgsis,
in order to avoid the creation of duplicatedom clauses. This
explains the third output of ., an environmenk’ that collects all
the newly encountered and treated variables.

row and continue with other conditions. Rul& handles the case

of one-variable condition where the variable was alreadgtad.
Rules C5 and C6 are the two-variables counterparts @8 and

C4, respectively (in this sens€l is an optimization ofC3 and
C5). Finally, ruleC7 handles the case of a two-variable condition,
where just one of the two variables has not been treated ifibtis

in X). Since one of the two variables is already defined, we have to
generate thérom clauses that define the other one, which is done
by the last premise in the rule. We omitted the symmetriccase
C3, C4, andC7 in which operands are swapped.

The R-rules are modified as well, in particular by the addition
of © to the inputs and of the calls to. to generate conditions.
When these calls do not generate any condition (re2$4), then
the rules work as before. If instead the calls generate aittond
C, then this is added to the translation. Ri8 addsC' as the
where clause of the generatesklect expression (plus all the
generatedrom clauses). Rul®5handles the special case in which
the various sub-calls generates an empty setrofa clauses (it is
the non-empty condition counterpart of rid) and therefore there
is noselect expression to which stiok' as awhere clause: in this
case anf_then_else CQL operator is used instead.

Bib # Bookx*
doc || (zo,_) | (bks,_)
Book # Title Author+ | Publisher Price
bks [(z1,) | (ts1,) | (=2,.) (z3,.) (za,.)
Entries # Entry*
bstore2 (z5,_) | (reviews_)
Entry # Title Price Review
reviews || (x6,_) | (ts2,_) | (z7,2) | (xs,.)
<result> Title CONDITION BOX
q tlsy tlsy =tlso

Figure 18. Titles that appear both ifloc and inbstore?2.

The PBE query of Figure 18 defines the query QEbIL Query
Use Casef8], which is interesting since it contains a join condition
tls; = tlsz. The generation of the correspondi@@L query, relies
on rule C7, when thefrom clause fortls; occurring® has been
created, butls; has not been defined yet. The result is:

select <result>[!tlsl
from <(x0)>[bks::Book*] in [doc],
<(x1)>[tlsl::Title x2::Author+
x3::Publisher x4::Price] in bks,
<(x5)>[reviews: :Entry*] in [bstore2],
<(x6)>[tls2::Title x7::Price x8::Review] in reviews
where tlsl=tls2

The translation of well-defined PBE queries always ternaisat
and yields well-typedCQL expressions, as stated by the following
theorem

THEOREM3.8.Let Q = (#,%,<,0) be a PBE query. For
everyz € dv(%) there exists a unique such that the judgment
F,¢,2,0 Fs x — e is provable. Furthermore, if) is well

defined, there is a well-typedCQL expression (in particular,

The first two C-rules handle the base cases where there are e # ©) up to exhaustiveness of pattern matcHing.

no conditions to create, either becausds empty and thus the
query being translated does not define any new varia®lg ¢r
because there are no more condition rows to trans@® Rule

4The definition of well-defined query does not ensure thattel tows of a filter
tableau are useful. For instance, every row following a rath all constraints equal

C3 handles the case where the selected condition uses only onelo Any will never be used. This property can be easily checked astoaction time

variablez and this variable is not already defined bymm clause

(i.e.,z ¢ X) . This means that the condition is not relevant for the

query being created, and therefore we may drop this comeltax

but its definition would have required the introduction ofes@l technical definitions
of the CDuce type system. We preferred to keep the definition singgl¢hese errors
are statically detected as soon as the query is generated firezisely, as soon as the
pattern() funcion is called).

c dv(Z rTEX
v EMmT) (RY Z,5F o5y FY
F,€,5,0F & — (3,2) 7, Xkrz— (9,5)
(if S0 #) z € XUdv(F) F2)
CT(x|tag|k|(a1,x1) ... (ak, Tk)|Tht1 - - - Thpn) € C F. Xz —Q
Ljry--- 7‘Tj'm,} = dv(gz) N {1‘1, s ,.’Ek+n}
Q,Eh,l Frxj, —>(lh,2h) t.?z,(g,zm,@ Fs :EZ—>(2;,67,) g Elfeﬁ,xedv(f) yefv(f)ﬂ,@ (F3)
F,Em, 0k (9,9,%,) i=1...k+n h=1...m (R2) F, Yy x— (pattern(f) in [y],X Udv(f))
F,€,%0,0 Fs — (Zm, select <tag ai=ei...ar=ex>
e+t ...Yewtn] from l1,...,0m) ¢ Ife F,xedv(f) yefv(f)
yg & gi\f,ZUdv(f)}—fya(l“E’)
(if o 7) F.Nkrx— (l; attern(f) in y,Y’) (F4)
CT(z|tag|k|(a1,z1) . .. (ak, Tk)|Ths1 - . . Thn) € E s i P Y
le?"'7zjm} :dv(y)m{x17'--7xk+n} (Cl)
F S bypag, — (hSh) F, 6, 5m, 0 bs i — (3, €) F,2,0¢. (2,9,0)
TSmOk (Cle,Y) i=1...k+n h=1...m
7 (R3) (C2)
y,(é% 207@ Fsx — (E ,select <tag ai=ei..arp=ep> g727 Z (®7 2, E)
[lert1..tex+n]l from li..lm,lc where C)
(f Zo = Tun) rg\:Cg(opwJé)'e@ gy
0=2%m F, 8, 0\r . (C,1,%
CT(x|tag|k|(a1,x1) ... (ak, Tk)|Tht1 - - Thtn) € C — \ () ; (C3)
Tjys ey Tj } = dV(F)N{z1, ..., Tpan} 7,8,0 k. (C,1,Y)
f,Eh,l Ff ‘Z'jh — (lh,Eh) 91(5, Em,@ FS XT; — (E;,el)
T, Ym, O e (0,0,5,) i=1...k+n h=1...m s }:Ecgﬁ"”ﬁ’(?fg)“z
< I r c » Yy
F,€,20,0 Fs v — (Zm, [<tag ai=e1 ...ap=er> (R4 - (C4
[lept1...Yextnd 1) F,%,0F. (C and (z opv),l,¥)
(if S0 = D) r=CB(op,x1,72) €0 21 5 22 ¢ X
CT(z|tag|k|(a1, 1) ... (ar, k) |Thi1 - .. Thsn) € C Z,%,0\r k. (C,1,X) (5
Tjryen oy Tjy = AV(F) N{x1, ..., Thyn} F,5,0k, (C,1,%)
9,2}1,1 Ff mjh — (lh,Eh) 91(5, Em,C‘) FS r; — (E;,el)
IQ,Em,G}—C(C,Q,Em) r=CB(op,z1,22) €O x1 €Y 22€X
i=1...ktn h=1...m RS Z,%,0\r k. (C,1,%) (c6)
F,€,%0,0 s & — (B, if C[It:en [<t:zeg a1]=ei elc:;e[fi; FZ,%,0 k. (C and (z1 op 2),1,%)
€41 ... 2 Chin
_ r=CB(op,z1,22) €EO 21 €Y 22¢ X%
z & dv(F) Udv(%) Z,5,0\r k. (C,11,%) Z,% by as— (12,5")
F,€,5,0F :c—>Q(6) 7 Iz (C7)
F,%,2,0 s F,5,0F. (Cand (x10px2) , li,l2, ¥)
Figure 17. Translation rules for nested queries with condition.
3.3 Further design issues Bib # Book*
So far the interpretation of tableaux, although technycdifficult, doc [} (ro.) (?ks’) i i
is rather uncontroversial: the given semantics implemeviiat Book # Title | Author+ | Publisher Price
one intuitively expects from tableaux. There are howeveneso bks | (w1,)| (ts,.) | (22,.) (z3,.) [(z4,50--x))
design choices that are not so obvious and that can be ititgres <result> || Title
to allow more advanced uses of the language. In particiiagld q tls

constraints given in some filter tableau for a variable deffime
a different filter tableau apply locally or globally? Noteattthe

latter choice is the one done by QBE. We discuss more in depth

this option in what follows.

Downward search for filter tableaux

The current translation builds a query starting from thd-var
ables given in a construct tableau, and looking for all théaldes
necessary to this construction in the filter tableaux. Bliofang
what is done in QBE, the user may want to give constraints en th
variables of a filter tableau by using a different filter tahleon the
same variable.

As an example consider the following query

which returns the titles of books whose price is greater thian
equal to50. Users may be tempted to use an alternative way to
define the constraint on the price by introducing a new végipiz

for price and restricting it in a new filter tableau as doneshéter:

Bib # Bookx*

doc || (zo,_) | (bks,_)

Book # Title Author+ Publisher Price
bks || (z1,.) | (s,0) | (z2,.) (z3,_) (pre,)

Price # Int <result> Title
prc (z4,_) | (x5,50--%) q tls

Whether the two PBE queries above should have the same seman-
tics is a design choice. With the current translation therfithbleau

for prc would be useless and the quegyreturn the titles ofall still needed. Some are purely ergonomic, such as the pligsibi
books. However it may be useful that filter tableaux can imftee of defining DTDs by using tableaux, the early detection olese
each other and thus to allow the use of filter tableaux to §peci filter tableaux rows (see Footnote 4), the elimination ofliekp
conditions for portions of XML trees which otherwise wouldtn variables by replacing them by “drag-and-drop” techniq@tbers
be explored to capture the subtrees necessary to build g.dner are enhancement features: foremost we want to allow thetaser

practice, this would correspond to perform a downward $efnc split an automatically generated column into several exjei
filter tableaux that relate variables already defined inrduestiation. ones (for instance, if a user wants to capture exactly thergec
This can obtained by adding and modifying the translatidesrby author of a book, (s)he should be allowed to split fighor+
the “downward” rules given in Figure 19 column of the first filter tableau in Figure 8 into three colenn

one for the first author, another for the second author, arasta |

one for the remaining authors); but we want also devise a way
z¢gX¥ dfe Fxedv(f) yefv(f)nZ to express unions or complex constraints without the négesis
{z1...2n} =dv(f) 3o =3 Udv(f) writing complex type regular expressions in filter tableaws.
ﬂ\f,zi,ll—fdmia(li,&) i=1...n F3
F S, 7= (pattern() in [yl s sy o) O References
[1] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XMé&nrfitly
x¢g¥ IfeF,xedv(f) yefu(f) general purpose language. I@FP 03, 8th ACM Int. Conf. on
{z1... 2} =dv(f) yg 2 Functional Programmingpages 51-63. ACM Press, 2003.
F\f,EUdv(f) Fry — (ly, o) [2] V. Benzaken, G. Castagna, and C. Miachon. A full pattessed
FN\Nf, i kg, e — (1,5:) t=1...n paradigm for XML query processing. PADL 05, 7th Int. Symp. on
Z 5 - I - I] 5 (F4) Practical Aspects of Declarative Languagesimber 3350 in LNCS,
T Bkpx—(ly , pattern(f) in y , by s ln s Bn) pages 235-252. Springer, 2005.
N SURN(TE [3] S. Berger, F. Bry, S. Schaffert, and Ch. Wieser. XcerptasXcerpt:
Te (FD1) zERUN(T) (FD2) From pattern-based to visual querying of XML and semistmext
F Nk — (0,%) F Ny, — (0,5) data. InVLDB, pages 1053-1056, 2003.
o~ [4] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J.i®ob
rg% 3feF,xefv(f) J. Siméon, and M. StefanescXQuery 1.0: An XML Query Language
{z1. . xn} =dv(f) o =X Udv(f) W3C Working Draft,http://www.w3.org/TR/xquery/, May
t92\f, i1 }_fd T; — (lZ,EZ) i=1...n FD4 2003.
F, X5, v — (pattern(f) iny, b1, ..., ln , Xn) () [5] L. Bouganim, T. Chan-Sine-Ying, T-T. Dang-Ngoc, J-L Baux,

G. Gardarin, and F. Sha. Miro web: Integrating multiple datarces

Figure 19. Modified rules for downward search. through semistructured data types. The VLDB Journal pages
750-753, 1999.

The newF-rules call thei-;, judgment on every variable de- [6] D. Braga, A. Campi, and S. Ceri. “XQBE (XQuery By Example)
fined by the rowf being translated (similar modifications must be A visual interface to the standard XML query languagefODS
done forC7 and theR-rules in Figure 17) and this deep search is 30:398-443, 2005.
reiterated by the ruléD4 (there is not &D3 rule since persistent [7]1 M. J. Carey, L. M. Haas, V. Maganty, and J. H. Williams. fees
roots are already completely defined). An integrated query/browser for object databasesVUDB, pages

203-214, 1996.
4. Conclusion and future work [8] D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiand

J. Robie. XML Query Use Cases. Technical Report 20030822,
PBE is a graphical interface that allows users with littlenor World Wide Web Consortium, 2003.

knowledge of XPath, XQuery, a£QL to define complex and op- [9] S. Cohen, Y. Kanza, Y. A. Kogan, W. Nutt, Y. Sagiv, and ArGe

timized queries on XML documents.. The only required S,k,mds brenik. Equix easy querying in XML databasesWebDB (Informal
be able to understand XML types written using pretty inteitnd Proceedings)pages 43-48, 1999.

standard conventions of type regular expressions. At resvwe) .)
found the usage of PBE cmte si?nple an% intuitive. Of coulse t (10] M. Erwig. X'n%: A visual XML query languageJournal of Visual
. . . s T L C ting4(1):5-45, 2003.

is a subjective view, but PBE has two objective and imporéaht an.guages and Computinga(1)) i)

vantages with respect to other graphical query languadesfifst [11] I. Filha, A. Ls.aender, and A. da Silva. Querying Semisstured Data
is that it generates queries that are provably correct vesipect E]S{EE:;?SEI%'”IES V(\Q/Sgégllnterface. Workshop on Information
to types. The type of the result is displayed to the user aigd th 9 s :

constitutes a first and immediate visual yardstick to cherka- [12] H. Hosoya and B. Pierce. XDuce: A typed XML processinuplaage.

tic correctness of the resulting query. The second advarisatat ACM Transactions on Internet Technolo@(2):117-148, 2003.

its semantics is formally—thus, unambiguously—defineds th [13] C. Miachon. Langages de requétes pour XML a base de patterns :

an important advancement over some current approachesiéh wh conception, optimisation et implantatioRhD thesis, Université Paris

the standard usage and learning methods are based on ftdal a Sud, available at: http://www.Iri.fr/ miachon/these-gedniachon.ps,

error” techniques (a.k.a. “click and hope”) since while fhemal 2006.

semantics will be of littel or no use to the unexperiencedy@am- [14] K. D. Munroe and Y. Papakonstantinou. BBQ: A visual ifaee for

mer, it is an important basis to develop, test, and optimassible integrated browsing and querying of XML. WLDB, 2000.

implementations of PBE. [15] M. Petropoulos, Y. Papakonstantinou, and V. Vassal@saphical
The implementation of PBE developed in OCaml is in alpha- query interfaces for semistructured data: the QURSED BysIOIT,

testing. It relies for its graphical part on LablGTK, on tBuce’s 5(2):390-438, May 2005.

type englne for .Co.mp.utlng .tabl.e entrles,. Qnd Ug@-, as. bapk- [16] M. Zloof. Query-by-example: A data base languadM Systems

end. Its kismet is its inclusion in the offici@Duce distribution Journal 16(4):324—343, 1977.

(http://www.cduce.org), but before some improvements are

