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Records are finite functions from keys to values. In this work we focus on two main distinct usages of

records: structs and maps. The former associate different keys to values of different types, they are accessed

by providing nominal keys, and trying to access a non-existent key yields an error. The latter associate all

keys to values of the same type, they are accessed by providing expressions that compute a key, and trying

to access a non-existent key usually yields some default value such as null or nil. Here, we propose a type
theory that covers both kinds of usage, where record types may associate to different types either single keys

(as for structs) or sets of keys (as for maps) and where the same record expression can be accessed and used

both in the struct-like style and in the map-like style we just described. Since we target dynamically-typed

languages our type theory includes union and intersection types, characterized by a subtyping relation. We

define the subtyping relation for our record types via a semantic interpretation and derive the decomposition

rules to decide it, define a backtracking-free subtyping algorithm that we prove to be correct, and provide a

canonical representation for record types that is used to define various type operators needed to type record

operations such as selection, concatenation, and field deletion.
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1 INTRODUCTION
In 1965, C.A.R. Hoare proposed in a series of papers on “record handling” an extension for a general

purpose language, there supposed to be ALGOL 60, to manipulate an arbitrary number of records
each belonging to a limited number of record classes [Hoare 1965, 1966a,b]. Not only the proposal

was rapidly adopted by ALGOL, but Dahl and Nygaard also adapted it for their language, Simula I,

yielding the concepts of objects and classes (Simula 67). Ever since then, records have become the

Swiss Army knife data structure of modern computer languages. They are used for a wide palette of

purposes such as relations (as in relational databases), maps (a.k.a., associative arrays, dictionaries,

hashes, lookup tables), modules, objects, configuration files, data serialization. JSON, the de facto
standard format for data-interchange, is a language formed essentially of records and lists thereof.

The same holds true for YAML, a different data serialization format used for configuration files.

In general terms, record values are sets of key and value pairs in which all keys are pairwise

distinct and are used to access the values they are paired with. In this work, we focus on two

main distinct usages of records: structs and maps. In a nutshell, the former associate different keys

to values of different types, they are accessed by providing nominal keys, and trying to access a

non-existent key yields an error; the latter associate all keys to values of the same type, they are

accessed by providing expressions that compute a key, and trying to access a non-existent key

usually yields some default value such as null or nil. More generally, the main differences from a
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programming language point of view can be summarized as follows (though exceptions apply in

each case):

Maps:
- All keys of a single map have the same type and so do the values they are mapped to.

- It is not necessary to know all the keys at compile time: they can be dynamically discovered.

- It is sensible to give a default value.

- Keys may be indexed: it is possible to iterate over them.

- Keys are values: keys used for map selection can be results of expressions.

- Accessing a key that is not defined does not yield an error

- Maps are (often) mutable data structures with mutable components.

Structs:
- Different keys in the same structure can be mapped to values of different types.

- Keys may be restricted to a specific set (e.g., strings, atoms, identifiers, ...).

- It is necessary to know all the different keys at compile time.

- Keys do not support indexing.

- Keys are not necessarily values, they may form a separate set of names.

- Accessing a key that is not defined yields an error.

- Structs are (often) immutable data-structures but may have mutable components.

Besides these linguistic differences, maps and structs may have different implementations, typically,

hashes or search trees for maps; arrays or contiguous locations for structs.
1

When both are available, the choice to use one or the other depends on the nature of the

application; in some cases, even for the same application both choices may reasonably apply, and

the final choice depends on the amount of information that is available about the data to process:

for instance, to parse JSON we want to use structs if we know the field name and data type of each

JSON element, while for parsing unknown JSON data we should definitively use maps.

In some languages, the type used for keys is different between structs and maps (e.g., in Elixir

[Elixir] struct keys must be atoms—cf. Footnote 7, page 14—, while map keys can be any value, even

functions; differently, in Hive [Hive] struct keys are not values—just names—, while map keys are

values of primitive types). Sometimes, a different terminology is used, so the identifiers for fields in

a struct are usually called “labels”, “field names”, “attribute names”, while for maps the word “key”

is prevalent. We will use both “labels” and “keys”, privileging the latter when speaking of maps.

Some languages do not make any syntactic distinction for defining maps and structs (e.g.,

Lua [Lua], Ballerina [Ballerina]), in other languages they are distinct but tightly related (e.g., in

Elixir, structs are wrappers around maps providing them with further capabilities), others make

them completely disjoint (e.g., Go Language [Go], Erlang [Erlang], Swift [Swift]); in the last case

there is a wealth of blog posts and tutorials about when to use one rather than the other. Many

languages do not provide them as primitive data types, but rather as libraries or specific classes, in

which case they lack specific types for them (e.g., Ruby [Ruby] and Scala [Scala] provide classes

for both structs and maps, F# [F#], JavaScript, Julia [Julia], OCaml [OCaml], and Rust [Rust]

have primitive objects/records/structs and libraries/classes for maps, while Python and Perl have

primitive maps/dictionaries/hashes and records/structs are provided by external libraries/classes).

While it is sensible to have different implementations for maps and structs, it is less justified to

have different types for them, especially in languages in which the two data structures share the

same or similar syntax for expressions and the same set of operations (as a matter of fact, both

are finite functions from keys to values). This is the case for some object-oriented languages in

1
Typically but not necessarily: for instance, Erlang makes this distinction already for maps according to whether they have

more or less than 32 fields, hashes in the former case and contiguous locations in the latter.
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which maps have all the same interface typing different implementations (e.g., in Java); a language

like Ballerina permits to specify in a record type a default type for unspecified fields (thus mixing

structs and maps characteristics) while Erlang’s and Elixir’s Typespecs permit mixing in the same

record type the type specification of single fields (as in structs) and of mappings from key types to

value types (as in maps) [Elixir; Erlang]. The latter case is the inspiration of our work.

In this article, we argue that a single (syntactic) representation for both struct and maps is

possible, and that it can be typed by a unique type constructor that covers both cases. In this case,

we will speak generically of “record expressions” (or just “records”) as sets of associations between

keys and values. The corresponding “record types” will be sets of associations from “key-types”

to types, each key-type being either a single key (as in the types for struct) or a set of keys (as

in the types for maps). What distinguishes records used as maps from records used as structs is

the way they are accessed. We distinguish two kinds of accesses: map-like access and struct-like

access. When using records as maps, it must be possible to compute the key to access a field (i.e.,

to obtain keys as the result of an expression) and trying to access a key that is not present in the

record should not produce a run-time error. When using records as structs, fields are accessed

directly by the nominal key and trying to access a key that is not present in the struct yields an

error (preferably, a statically-detected one). Of course, it will be possible to use both kinds of access

on a same record: the different semantics will be reflected by different typing rules for the access

expressions. Some languages already make this distinction for accesses: for instance in Elixir (but it

is the same syntax as in JavaScript and in Ballerina) if r is a record expression, key is a nominal

key, and keyexp an expression that computes a key, then r.key raises an exception if a field with

key key is not present in the result of r (i.e., struct-like access), while r [keyexp] returns nil if

the key resulting from keyexp is not present in (the result of) r (i.e., map-like access). Likewise,

Scala uses the syntax r (key) for struct-like access and r get keyexp for map-like access; however

Scala also permits the use of generic expressions in the former—as in r (keyexp)—while Elixir has a
specific access function for this case—i.e., fetch!(r ,keyexp) (cf. Section 4.5).

Contributions. Per se, defining a type system that encompasses both structs and maps does

not look like an insurmountable task, and certainly it is not so hard to do it for languages with

simple or no subtyping relation. The challenge here is that we aim at defining types for dynamic

languages such as JavaScript, Erlang, or Elixir. As all current attempts demonstrate (e.g., Flow,

TypeScript, Hack, . . . ) this requires types that include union and intersection type connectives,

which imply the presence of a sophisticated subtyping relation. Thus, the real challenge we tackle

here is to define a type system with union, intersection, and record (i.e., struct+map) types. This

means to show how to define and efficiently decide the subtyping relation for these types, and how

to type record operations for expressions whose types may be arbitrary combinations of unions

and intersections of record types. In particular, our technical contributions can be summarized as

follows: we introduce record types that cover both struct-like and maps-like usages (Section 4);

we define a new family of functions that we call “quasi K-step functions” (Definition 4.6); we

define the subtyping relation of our record types by interpreting them as sets of quasi K-step
functions (Formula (21)), derive from this interpretation the decomposition rules to be used to

decide the subtyping relation, and prove it correct (Lemma 4.7); we define a backtracking-free

subtyping algorithm Φ for different variations of our record types (formulas (17–19), and (22)) and

prove it correct (Theorem 4.5); we introduce and formalize different operations on records such

as map/struct field selection, record concatenation, and map/struct field deletion and provide a

canonical representation for record types which is used to define various type operators needed to

type these record operations (Sections 4.2 and 4.4). Finally, we also study how to extend this theory

to account for mutation since, in modern languages, records are often also mutable structures, in
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which fields can be added removed, and modified; for space reasons this extension is not presented

in the main text, but the motivated reader will find its presentation in Appendix F.

We want to conclude this discussion on our contributions, by stressing that we think that the

interest of this work is less in defining a catch-them-all theory for the different usage of records,

than in developing some general implementation guidelines that, with minimal adaptions, can

capture all the aspects outlined above. This is not just a theoretical challenge: at the moment

of writing the very implementation techniques introduced here are being experimented by the

development teams of Elixir and Ballerina languages to be included in their compilers.

Outline. Section 2 gives the background for our presentation—i.e., semantic subtyping [Frisch

et al. 2008] and the theory of quasi-constant functions [Frisch 2004]—and covers relevant related

work. Section 3 introduces a simple record calculus where records are typed as structs. Section 4 is

the core of our contribution: we extend the expressions and types of the previous calculus to deal

with generic maps; we give a representation of record types as unions of some specific record type

atoms (§4.1) and use this representation to define type operators used to type various record opera-

tions, namely, map and struct selection, map and struct deletion, and record concatenation (§4.2); we

use the representation to prove the correctness of a backtracking-free subtyping algorithm (§4.3);

we refine the theory to allow record types to specify maps from specific sets of keys, which in

particular requires generalizing quasi-constant functions to quasi K-step functions together with the

corresponding decomposition rule (§4.4); finally, we discuss our design choices and several possible

variations of the features presented (§4.5). Section 5 discusses related work. Section 6 concludes

the presentation by a more detailed analysis of the contributions of this work and by describing

current and future work on the subject. This work includes an appendix containing material that,

for space constraints, could not be presented in the main text, namely, extra definitions, several

proofs, and the extension of the theory to account for mutatable data structures (the appendix is

available on the ACM Digital Library in supplemental material section).

2 BACKGROUND
In this section we outline the two pillars on which our record system is built. The first is semantic

subtyping [Frisch et al. 2008], a technique to endow set-theoretic type connectives in a type system.

The second is the theory of quasi-constant functions [Frisch 2004] that we use to give semantics to

record expressions and types. The reader can refer to the cited works for more details.

2.1 Semantic subtyping
Semantic subtyping [Frisch et al. 2002, 2008], [Castagna and Frisch 2005] is a technique to add

union, intersection, and negation type connectives to a type system so that the types satisfy all

the commutative and distributive laws we expect from their set-theoretic interpretation. It is a

general approach on which records types are grafted in next section. The key of the approach is the

subtyping relation which is defined by giving an interpretation J·K of types as sets and then defining

𝑡1 ≤ 𝑡2 as the inclusion of the interpretations, that is, 𝑡1 ≤ 𝑡2 =
def J𝑡1K ⊆ J𝑡2K. Intuitively, we can see

J𝑡K as the set of values that inhabit the type 𝑡 in the language. By interpreting union, intersection,

and negation as the corresponding operations on sets and by giving appropriate interpretations to

the other constructors, we ensure that subtyping will satisfy all expected laws.

2.1.1 Types. Formally, we proceed as follows. We first fix two countable sets: a set C of language
constants (ranged over by 𝑐) and a set B of basic types (ranged over by 𝑏). For example, we can take

constants to be Boolean values and integers: C = {true, false, 0, 1, -1, . . . }. B might then contain

Bool and Int; however, we also assume that, for every constant 𝑐 , there is a “singleton” basic type
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which corresponds to that constant alone (for example, a type for true, which will be a subtype of

Bool). We assume that a function B : B → P(C) assigns to each basic type the set of constants

of that type and that a function 𝑏 ( ·) : C → B assigns to each constant 𝑐 a basic type 𝑏𝑐 such that

B(𝑏𝑐 ) = {𝑐}.

Definition 2.1 (Types). The set T of types is the set of terms 𝑡 that are coinductively produced by
𝑡 ::= 𝑏 | 𝑡 × 𝑡 | 𝑡 → 𝑡 | 𝑡 ∨ 𝑡 | ¬𝑡 | 0

and that satisfy two additional constraints: (1) regularity: the term must have a finite number
of different sub-terms; (2) contractivity: every infinite branch must contain an infinite number of
occurrences of the product or arrow type constructors.

We use the abbreviations 𝑡1 ∧ 𝑡2 =
def ¬(¬𝑡1 ∨ ¬𝑡2), 𝑡1 ∖ 𝑡2 =

def

𝑡1 ∧ (¬𝑡2), and 1 =
def ¬0 (in particular,

1 is the supertype of all types, sometimes denoted by any or top). We refer to 𝑏, ×, and→ as type
constructors, and to ∨, ¬, ∧, and ∖ as type connectives. As customary, connectives have priority over

constructors and negation has the highest priority—e.g., ¬𝑠∨𝑡 → 𝑢∧𝑣 denotes ((¬𝑠)∨𝑡) → (𝑢∧𝑣).
Coinduction accounts for recursive types, and it is coupled with a contractivity condition which

excludes infinite terms that do not have a meaningful interpretation as types or sets of values: for

instance, the trees satisfying the equation 𝑡 = 𝑡 ∨ 𝑡 (which gives no information on which values

are in it) or 𝑡 = ¬𝑡 (which cannot represent any set of values) do not satisfy the contractivity

condition. Contractivity also gives an induction principle on T that allows us to apply the induction

hypothesis below type connectives (union and negation), but not below type constructors (product

and arrow): we use it in Section 2.1.2 in the definition of a relation noted (𝑑 : 𝑡). As a consequence
of contractivity, types cannot contain infinite unions or intersections. The regularity condition is

necessary to ensure the decidability of the subtyping relation.

To define semantic subtyping we must define a type interpretation J.K : T → P(D) which
interprets types into sets of elements of D for some suitable domain D. To ensure that type

connectives have a set-theoretic semantics, the definition must satisfy (𝑖) J𝑡1∨𝑡2K = J𝑡1K∪J𝑡2K,
(𝑖𝑖) J¬𝑡K = D∖J𝑡K, and (𝑖𝑖𝑖) J0K = ∅. Next we must find a domain D in which it is possible to

give a set-theoretic interpretation of the type constructors and in particular of function spaces.

Intuitively, if we interpret functions as binary relations on D, then the interpretation of 𝑡1→𝑡2
should be the set of binary relations in which if the first projection is in (the interpretation of) 𝑡1,

then the second projection is in (the interpretation of) 𝑡2. In other words, J𝑡1→𝑡2K should denote the
set P(J𝑡1K×J𝑡2K), where the over-line denotes set complement.

2
But this would imply P(D2) ⊆ D,

which is impossible for cardinality reasons. Frisch et al. [2008] proved that one obtains the same

subtyping relation by considering the set of finite approximations of the functions in 𝑡1→𝑡2. This

corresponds to replacing P(J𝑡1K×J𝑡2K) by Pfin (J𝑡1K×J𝑡2K) where Pfin denotes the restriction of the

powerset to finite subsets.
3
This yields the interpretation that we define next.

2.1.2 Type interpretation and subtyping relation. The interpretation domain D can be defined

inductively as the set of terms produced by the following grammar

𝑑 ::= 𝑐 | (𝑑,𝑑) | {(𝑑,𝑑), ..., (𝑑, 𝑑)}

2
Strictly speaking, the outermost is the complement w.r.t. D×(D∪{Ω}) , that is, P

(
(J𝑡1K×J𝑡2K ∩ (D×(D∪{Ω}) )

)
where

Ω is a constant such that Ω∉D. As explained by Castagna [2023, Section 3.2], Ω is a constant denoting a type-error whose

purpose is to avoid 1→1 to denote the set of all functions (see Frisch et al. [2008, Section 4.2] for full details). Since Ω does

not play any role in the interpretation of record types we omit it and use this approximation all the paper long.

3
Intuitively, this interpretation with finite powersets induces the same subtyping relation as the one induced by generic

powersets, since P(𝑋 )⊆P (𝑌 ) ⇔ P
fin
(𝑋 )⊆P

fin
(𝑌 ) : see [Frisch et al. 2008] for details.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 196. Publication date: August 2023.



196:6 Giuseppe Castagna

where 𝑐 ∈ C. In other terms, the domain is the solution of D = C + (D×D) + Pfin (D×D). The
interpretation function is then defined so that it satisfies the following equalities:

J0K = ∅ J¬𝑡K = D ∖ J𝑡K J𝑡1 ∨ 𝑡2K = J𝑡1K ∪ J𝑡2K
J𝑏K = B(𝑏) J𝑡1 × 𝑡2K = J𝑡1K × J𝑡2K J𝑡1→𝑡2K = Pfin (J𝑡1K×J𝑡2K)

where, in particular, we interpret function spaces by considering the finite approximations of their

functions. We cannot take the equations above directly as an inductive definition of J·K because
types are not defined inductively but coinductively. Therefore, we give a definition which validates

these equalities and which uses the aforementioned induction principle on types and structural

induction on D. We define J.K : T→P(D) as J𝑡K = {𝑑 ∈ D | (𝑑 : 𝑡)} where (𝑑 : 𝑡) is the following
binary predicate defined by induction on the pair (𝑑, 𝑡) ordered lexicographically:

(𝑐 : 𝑏) = 𝑐 ∈ B(𝑏)
((𝑑1, 𝑑2) : 𝑡1 × 𝑡2) = (𝑑1 : 𝑡1) and (𝑑2 : 𝑡2)

({(𝑑1, 𝑑
′
1
), . . . , (𝑑𝑛, 𝑑 ′𝑛)} : 𝑡1 → 𝑡2) = ∀𝑖 ∈ {1, . . . , 𝑛}. if (𝑑𝑖 : 𝑡1) then (𝑑 ′𝑖 : 𝑡2)

(𝑑 : 𝑡1 ∨ 𝑡2) = (𝑑 : 𝑡1) or (𝑑 : 𝑡2)
(𝑑 : ¬𝑡) = not (𝑑 : 𝑡)
(𝑑 : 𝑡) = false otherwise

The pair D and J.K is a set-theoretic model of types (see [Frisch et al. 2008, Definition 4.4] for the

formal definition). It induces the subtyping relation defined as 𝑡1 ≤ 𝑡2 ⇐⇒def J𝑡1K ⊆ J𝑡2K. This
particular model is called the universal since it induces the best (i.e., largest) possible subtyping
relation definable by a set-theoretic model (see Frisch et al. [2008, Section 5.3]).

2.1.3 Subtyping algorithm. The subtyping relation is decidable. Deciding whether 𝑡1 is a subtype

of 𝑡2 is equivalent to deciding whether 𝑡1 ∧ ¬𝑡2 is the empty type, insofar as 𝑡1 ≤ 𝑡2 ⇔ J𝑡1K ⊆
J𝑡2K⇔ J𝑡1K ∩ (D ∖ J𝑡2K) ⊆ ∅ ⇔ J𝑡1 ∧ ¬𝑡2K ⊆ ∅ ⇔ 𝑡1 ∧ ¬𝑡2 ≤ 0. The subtyping algorithm relies

on the property that every type can be put into a particular disjunctive normal form, that is, it is

equivalent to (i.e., it has the same interpretation as) a union of uniform intersections of atoms and

negations of atoms, where an atom is either a product, an arrow, or a basic type, and intersections

are uniform when they are composed only of atoms of the same constructor (i.e., all arrows, all

products, all basic types). To decide 𝑡1 ≤ 𝑡2 the system puts 𝑡1 ∧ ¬𝑡2 in normal form, that is, it

transforms it into a union of intersections that have one of the following three forms∧
𝑏∈𝑃

𝑏 ∧
∧
𝑏′∈𝑁
¬𝑏′

∧
𝑡1×𝑡2∈𝑃

𝑡1×𝑡2 ∧
∧

𝑡 ′
1
×𝑡 ′

2
∈𝑁
¬(𝑡 ′

1
×𝑡 ′

2
)

∧
𝑡1→𝑡2∈𝑃

𝑡1→𝑡2 ∧
∧

𝑡 ′
1
→𝑡 ′

2
∈𝑁
¬(𝑡 ′

1
→𝑡 ′

2
) (1)

and checks the emptiness of the union, which is equivalent to checking the emptiness of all

intersections that compose it. Emptiness for the first form in (1) can be checked directly. The

emptiness of the other two forms is checked by decomposing them into simpler subtyping problems

and recording them as hypothesis for coinduction. More precisely, the intersection of products

in (1) is empty if and only if:
4

∀𝑁 ′ ⊆ 𝑁 .

( ∧
𝑡1×𝑡2∈𝑃

𝑡1 ≤
∨

𝑡 ′
1
×𝑡 ′

2
∈𝑁 ′

𝑡 ′
1

)
or

( ∧
𝑡1×𝑡2∈𝑃

𝑡2 ≤
∨

𝑡 ′
1
×𝑡 ′

2
∈𝑁∖𝑁 ′

𝑡 ′
2

)
(2)

A similar decomposition for the intersections of arrows can be found in [Frisch et al. 2008, Section

6.2] (we also recall it in Appendix A) together with the proofs of soundness, correctness, and

termination of the algorithm (the last follows from the regularity of the types).

4
To understand the rationale of this transformation the reader can consider the case in which both 𝑃 and 𝑁 contain just

one atom, namely, the case for 𝑡1×𝑡2 ≤ 𝑡 ′
1
×𝑡 ′

2
. There are just two cases to check (𝑁 ′=∅ and 𝑁 ′=𝑁 ) and it is not difficult to

see that the condition above becomes: (𝑡1≤0) or (𝑡2≤0) or (𝑡1≤𝑡 ′
1
and 𝑡2≤𝑡 ′

2
) , as expected.
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2.1.4 Implementation. A naive implementation of the decomposition (2) would compute all the

subsets of 𝑁 and check for each of them the “or” clauses in (2). The problem of such an implemen-

tation is that if one of the “or” clauses fails, then this invalidates all the hypotheses we added to

check it (e.g., to implement coinduction for checking the emptiness of a recursive type, one has to

add the hypothesis that the type is empty, and then proceed by applying the decomposition to the

type which, in turn, looks for the emptiness of some subterms or the type, and so on and so forth);

we thus have to backtrack to the point where the failed hypothesis was added and remove all the

hypotheses subsequently introduced, before checking the next “or” clause. Frisch [2004] proved

that this can be avoided by defining a Boolean function Φ as follows

Φ(𝑡1, 𝑡2,∅) = false

Φ(𝑡1, 𝑡2, 𝑁∪{𝑡 ′1×𝑡 ′2}) = ( (𝑡1 ≤ 𝑡 ′
1
) or Φ(𝑡1∖𝑡 ′1, 𝑡2, 𝑁 ) ) and ( (𝑡2 ≤ 𝑡 ′

2
) or Φ(𝑡1, 𝑡2∖𝑡 ′2, 𝑁 ) )

which clearly does not use backtracking. Φ takes two non-empty types 𝑡1 and 𝑡2 and a set of product

atoms 𝑁 and returns whether 𝑡1×𝑡2 ≤
∨

𝑡 ′
1
×𝑡 ′

2
∈𝑁 𝑡 ′

1
×𝑡 ′

2
. It is then easy to use Φ to implement (2).

Notice that

∧
𝑡1×𝑡2∈𝑃 𝑡1×𝑡2 = (

∧
𝑡1×𝑡2∈𝑃 𝑡1) × (

∧
𝑡1×𝑡2∈𝑃 𝑡2). Let 𝑠𝑖 =

∧
𝑡1×𝑡2∈𝑃 𝑡𝑖 for 𝑖 = 1, 2. Then

𝑠1×𝑠2 ∧
∧

𝑡 ′
1
×𝑡 ′

2
∈𝑁
¬(𝑡 ′

1
×𝑡 ′

2
) ≤ 0 ⇐⇒ 𝑠1×𝑠2 ≤

∨
𝑡 ′

1
×𝑡 ′

2
∈𝑁
𝑡 ′
1
×𝑡 ′

2
⇐⇒ 𝑠1 ≤ 0 or 𝑠2 ≤ 0 or Φ(𝑠1, 𝑠2, 𝑁 )

It is possible to define an analogous Φ-function for arrow atoms. Its definition can be found

in [Castagna 2020, Sections 4.2, 4.3] together with a detailed description of how Φ-functions work
and of the data-structures to be used to implement them efficiently. The proof of the correctness of

their definition can be found in [Frisch 2004, Chapter 7].

2.2 Quasi-constant functions
From their earliest formalizations (e.g., Hoare [1965, 1966a,b], Cardelli [1984], Bruce and Longo

[1988]) record values are considered finite mappings from a given set of labels L to values, that is,

functions that map a finite set of labels {ℓ1, ..., ℓ𝑛} ⊆ L into values and are undefined on the other

labels, that is, on L∖{ℓ1, ..., ℓ𝑛}. In order to simplify the presentation, we depart from this view and

follow the approach introduced by Alain Frisch in his PhD dissertation [Frisch 2004, Chapter 9]

which considers record values (and record types) to be functions that are total on L and constant

on nearly all labels (i.e., on a cofinite subset of L). Frisch calls such functions the quasi-constant
functions. The idea being that a record value maps nearly all labels to a specific constant (denoting

undefined) apart from a finite set of labels which are mapped to the values of the language.

Definition 2.2 ([Frisch 2004]). Let 𝑍 denote some set, a function 𝑟 : L → 𝑍 is quasi-constant if
there exists 𝑧 ∈ 𝑍 such that the set {ℓ∈L | 𝑟 (ℓ) ≠ 𝑧} is finite; in this case we denote this set by dom(𝑟 )
(i.e., the domain of 𝑟 ) and the element 𝑧 by def (𝑟 ) (i.e., the default value of 𝑟 ). We use L _ 𝑍 to
denote the set of quasi-constant functions from L to 𝑍 and the notation {[ℓ1 = 𝑧1, . . . , ℓ𝑛 = 𝑧𝑛, = 𝑧]}
to denote the quasi-constant function 𝑟 : L _ 𝑍 defined by 𝑟 (ℓ𝑖 ) = 𝑧𝑖 for 𝑖 = 1..𝑛 and 𝑟 (ℓ) = 𝑧 for
ℓ ∈ L∖{ℓ1, . . . , ℓ𝑛}.

Although this notation is not univocal (unless we require 𝑧𝑖 ≠ 𝑧 and the ℓ𝑖 ’s to be pairwise

distinct), this is largely sufficient for the purposes of this work. If (𝑍ℓ )ℓ∈L is a family of subsets of 𝑍

indexed by L, we denote by ⊲
∏

ℓ∈L 𝑍ℓ the subset of L _ 𝑍 formed by all quasi-constant functions

𝑟 such that 𝑟 (ℓ) ∈ 𝑍ℓ for all ℓ ∈ L (intuitively, ⊲
∏

ℓ∈L 𝑍ℓ is a “type” of quasi-constant functions).

2.2.1 Containment. We are going to use quasi-constant functions to embed records in our type

system. More precisely, we will add to types some quasi-constant functions from labels to types,
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which will be interpreted set-theoretically as subsets of L _ D (precisely, of L_D⊥: see Sec-
tion 3.2.1). Therefore, we need to extend the subtyping algorithm to check the emptiness of Boolean

combinations of such sets. For that we need a decomposition formula analogous to what (2) does

for products. This is given by Lemma 9.1 in [Frisch 2004], which is stated as follows (see the cited

reference for the proof):

Lemma 2.3 (Frisch [2004]). Let (𝑋𝑝 )𝑝∈𝑃 and (𝑋𝑛)𝑛∈𝑁 be two families of elements of L _ P(D).
Let 𝐿 =

⋃
𝑖∈𝑃∪𝑁 dom(𝑋𝑖 ). Then

(⋂
𝑝∈𝑃 ⊲

∏
ℓ∈L 𝑋𝑝 (ℓ)

)
⊆

(⋃
𝑛∈𝑁 ⊲

∏
ℓ∈L 𝑋𝑛 (ℓ)

)
if and only if either⋂

𝑝∈𝑃 def (𝑋𝑝 ) = ∅, or for every map ] : 𝑁 → 𝐿∪{ }(
∃ℓ∈L .

(⋂
𝑝∈𝑃

𝑋𝑝 (ℓ) ⊆
⋃

𝑛∈𝑁 |] (𝑛)=ℓ
𝑋𝑛 (ℓ)

) )
or

(
∃𝑛◦∈𝑁 .

(
] (𝑛◦) =

)
and

(⋂
𝑝∈𝑃

def (𝑋𝑝 ) ≤ def (𝑋𝑛◦ )
) )

A detailed explanation of the formula in the statement is given by Castagna [2020, Section 4.5].

2.2.2 Merge operator. The last ingredient we need to define is a specific operator on quasi-constant

functions, that we will use to give semantics to record concatenation and field deletion.

Let 𝑍 denote some set, we endow the set L _ 𝑍 with a merge operator parametric in an element

of 𝑍 . Given 𝑧 ∈ 𝑍 and 𝑟1, 𝑟2 ∈ L _ 𝑍 , the operator 𝑟1 ⊕𝑧 𝑟2 returns the quasi-constant function

𝑟 ∈ L _ 𝑍 such that 𝑟 (ℓ) = 𝑟1 (ℓ) if 𝑟1 (ℓ) ≠ 𝑧 and 𝑟 (ℓ) = 𝑟2 (ℓ) if 𝑟1 (ℓ) = 𝑧. That is, the 𝑟1 mappings

equal to 𝑧 are replaced by the 𝑟2’s corresponding ones.

3 A SIMPLE STRUCT CALCULUS
In this section we present the basic record calculus, in which records play just the role of structs

and on which we build the rest of our theory (in particular, records as maps: cf. Section 4). It is

a lambda-calculus typed with set-theoretic types to which we add some specific quasi-constant

functions on types and expressions. We also add pattern matching, but we do it just at the end of

the section so as to focus on records first.

3.1 Expressions
Let L be a countable set of labels ranged over by ℓ and C a countable set of constants ranged over

by 𝑐 . We consider the set of expressions E ranged over by 𝑒 and the set of valuesV ranged over by

𝑣 defined as follows (where 𝐼 is finite):

Expressions 𝑒 ::= 𝑐 | _∧𝑖∈𝐼 𝑡𝑖→𝑡𝑖𝑥 .𝑒 | 𝑥 | 𝑒 𝑒 | {ℓ == 𝑒, ... , ℓ == 𝑒} | 𝑒 +++ 𝑒 | 𝑒.ℓ | 𝑒\ℓ
Values 𝑣 ::= 𝑐 | _∧𝑖∈𝐼 𝑡𝑖→𝑡𝑖𝑥 .𝑒 | {ℓ == 𝑣, ... , ℓ == 𝑣}

This is the functional core of CDuce [Benzaken et al. 2003] where pairs have been replaced by

records.
5
The functional part is a _-calculus with constants in which _-abstractions are explicitly

annotated by their (intersection) type. Record expressions have the form {ℓ1 == 𝑒1, ... , ℓ𝑛 == 𝑒𝑛}: they
are possibly empty finite sets of fields associating pairwise distinct labels to expressions. We use

𝑒.ℓ to denote (struct-like) field selection, 𝑒\ℓ to denote (struct-like) field deletion, and 𝑒1 +++ 𝑒2 for

record concatenation with priority given to the fields in 𝑒2.

Let 𝑋 be a set and ⊥ a constant not in 𝑋 , we use the notation 𝑋⊥ to denote the set 𝑋 ∪ {⊥}
and the fact that ⊥ ∉ 𝑋 . In what follows, we use the constant ⊥ to indicate that a field (in a

record expression, in a record type, or in their interpretations) is undefined. In this sense the

record expressions defined by the grammar above are just syntactic sugar to denote quasi-constant

5
As a matter of fact, products and, more generally, tuples expressions and types can be encoded as record expressions and

closed record types (see later on) whose domain is an initial segment of natural numbers.
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functions in L _ E⊥ whose default value is ⊥, that is, {ℓ1 == 𝑒1, ... , ℓ𝑛 == 𝑒𝑛} is syntactic sugar for
{[ℓ1 == 𝑒1, ... , ℓ𝑛 == 𝑒𝑛, = ⊥]}. The reduction semantics is defined by the following rules

(_∧𝑖∈𝐼 𝑡𝑖→𝑡𝑖𝑥 .𝑒)𝑣 { 𝑒{𝑣/𝑥} (3)

{ℓ1 == 𝑣1, ... , ℓ𝑛 == 𝑣𝑛}.ℓ { 𝑣𝑖 if ℓ ≡ ℓ𝑖 (4)

𝑣1 +++ 𝑣2 { 𝑣2 ⊕⊥ 𝑣1 (5)

𝑣\ℓ { {[ℓ == ⊥, == 𝑐◦]}⊕𝑐◦𝑣 (6)

where 𝑐◦ is a constant not in E⊥ (the choice of 𝑐◦ is not important as long as it is different from ⊥),
plus the rules for a leftmost-outermost weak reduction strategy, that is, 𝐸 [𝑒] { 𝐸 [𝑒′] if 𝑒 { 𝑒′,
where 𝐸 ::= [ ] | 𝐸𝑒 | 𝑣𝐸 | 𝐸.ℓ | 𝐸\ℓ | {ℓ1 == 𝑣, ..., ℓ𝑖 == 𝐸, ..., ℓ𝑛 == 𝑒}.

The reduction in (3) is the classic call-by-value beta reduction. Selection is implemented by

(4) and it is undefined if ℓ ∉ {ℓ1, ....ℓ𝑛}. (5) and (6) use the merge operator ⊕𝑧 of Section 2.2.2, to

define the reductum of concatenations and deletions, respectively. Since merge is defined only for

quasi-constant functions, then the semantics is undefined if in (5) and (6) either 𝑣 , or 𝑣1, or 𝑣2 is not

a record value. The reductum of (5) is the record value formed by all the fields in 𝑣2 plus all the

fields in 𝑣1 that are undefined in 𝑣2 . The reductum of (6) is the record value in which the field ℓ is

undefined and all other fields are as in 𝑣 .

3.2 Types
We consider two kinds of record types, open and closed, formed by two kinds of field types,

mandatory and optional:

Types 𝑡 ::= 𝑐 | 𝑏 | 𝑡 → 𝑡 | {{{𝑓 , . . . , 𝑓 }}} | {|{|{|𝑓 , . . . , 𝑓 |}|}|} | 𝑡 ∨ 𝑡 | ¬𝑡 | 0
Field types 𝑓 ::= ℓ == 𝑡 | ℓ ⇒ 𝑡

A field type maps a label into a type. A mandatory field type “ℓ == 𝑡” means that a field for the label

ℓ must be present and contain a value of type 𝑡 . An optional field type “ℓ ⇒ 𝑡” means that if a field

for the label ℓ is present, then it must contain a value of type 𝑡 (the syntax is inspired by Erlang,

which uses := and => for mandatory and optional field types, respectively [Erlang, Section 7.2]).

Similarly to expressions, record types are just syntactic sugar for some specific quasi-constant

functions in L _ T⊥. Precisely, consider a record type with field types, 𝑓1,...,𝑓𝑛 , where each 𝑓𝑖 is

either ℓ𝑖 == 𝑡𝑖 or ℓ𝑖 ⇒ 𝑡𝑖 ; then the closed record type {|{|{|𝑓1, ..., 𝑓𝑛|}|}|} is syntactic sugar for the quasi-

constant function {[ℓ1 = 𝜏1, ..., ℓ𝑛 = 𝜏𝑛, = ⊥]}, while the open record type {{{𝑓1, ..., 𝑓𝑛}}} is syntactic

sugar for the quasi-constant function {[ℓ1 = 𝜏1, ..., ℓ𝑛 = 𝜏𝑛, = 1∨⊥]} where, in both cases, 𝜏𝑖 = 𝑡𝑖
if 𝑓𝑖 is mandatory, and 𝜏𝑖 = 𝑡𝑖 ∨ ⊥ if 𝑓𝑖 is optional. In other words, a mandatory field ℓ == 𝑡 states

that the label ℓ is associated to a value of type 𝑡 , while an optional field ℓ ⇒ 𝑡 indicates that either

the field for ℓ is undefined or it contains a value of type 𝑡 ; all the other fields are undefined if the

record is closed, and are either undefined or contain some value (of any type) if the record is open.

Formally, we just added to our types a new type constructor with new atoms, the record type
atoms, that are the quasi-constant functions from L to T⊥ whose default value is either ⊥ or 1∨⊥.
In this section we use 𝑟 to range over these atoms, that is, 𝑟 will denote a quasi-constant function

in L_T⊥ such that either def (𝑟 ) = ⊥ (i.e., 𝑟 is a closed record type atom) or def (𝑟 ) = 1∨⊥ (i.e., 𝑟

is an open record type); in Section 4 we will allow also the case def (𝑟 ) = 𝑡∨⊥, for any type 𝑡 .

3.2.1 Subtyping. It is easy to modify the definitions of Section 2.1 for the above types. Since

records replace products, then the definition of the interpretation for products is replaced by

J𝑟K = ⊲
∏

ℓ∈L J𝑟 (ℓ)K ⊆ L _ D⊥ where 𝑟 is a record type atom and J⊥K = {⊥}.
The universal model for these types uses the interpretation domainD = C+L_D⊥+Pfin (D×D),

and we interpret types as sets composed of elements of this domain inductively defined by:
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𝑑 ::= 𝑐 | {[ℓ == 𝜕, ..., ℓ == 𝜕, == ⊥]} | {(𝑑, 𝑑), ..., (𝑑,𝑑)} 𝜕 ::= 𝑑 | ⊥
The interpretation uses the binary predicate (𝑑 : 𝑡) definition of Section 2.1.2 where we replace the

clause for products with:

({[ℓ1 == 𝜕1, ..., ℓ𝑛 == 𝜕𝑛, == ⊥]}: 𝑟 ) =
(
∀𝑖∈[1..𝑛] . (𝜕𝑖 : 𝑟 (ℓ𝑖 )) or (𝜕𝑖 = ⊥ and ⊥ ≤ 𝑟 (ℓ𝑖 ))

)
and(

∀ℓ ∈ L∖{ℓ1, ..., ℓ𝑛} . ⊥ ≤ 𝑟 (ℓ)
)
.

with 𝑟 ∈ L _ T⊥. As before every type is equivalent to a union of uniform intersections of atoms

or their negation, and to decide the emptiness of intersections of record type atoms and their

negations we use Lemma 2.3: just notice that for each atom 𝑟 , since def (𝑟 ) is either ⊥ or 1∨⊥, then∧
𝑟 ∈𝑃 def (𝑟 ) contains ⊥ and, thus, is never empty (i.e.,

⋂
𝑝∈𝑃 def (𝑋𝑝 ) = ∅ in the lemma’s statement

never holds).

3.2.2 Typing. Typing the functional part is standard. The algorithmic typing rules are:

[Const]

Γ ⊢ 𝑐 : 𝑏𝑐
[Var]

Γ ⊢ 𝑥 : Γ(𝑥)
𝑥 ∈ dom(Γ)

[→I]

∀𝑖 ∈ 𝐼 Γ, 𝑥 : 𝑠𝑖 ⊢ 𝑒 : 𝑡 ′𝑖 ≤ 𝑡𝑖

Γ ⊢ _∧𝑖∈𝐼 𝑠𝑖→𝑡𝑖𝑥 .𝑒 : ∧𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖 )
[→E]

Γ ⊢ 𝑒1 : 𝑡1 Γ ⊢ 𝑒2 : 𝑡2

Γ ⊢ 𝑒1𝑒2 : 𝑡1 ◦ 𝑡2
𝑡1 ≤ 0→ 1
𝑡2 ≤ dom(𝑡1)

where the operators dom() and ◦ are defined as dom(𝑡) =
def

max{𝑢 | 𝑡 ≤ 𝑢 → 1} and 𝑡◦𝑠 =
def

min{𝑢 |
𝑡 ≤ 𝑠 → 𝑢}. In short, dom(𝑡) is the largest domain of any single arrow that subsumes 𝑡 while 𝑡 ◦ 𝑠 is
the smallest codomain of any single arrow that subsumes 𝑡 and has domain 𝑠 . These operators are

needed because the type inferred for the function 𝑒1 in [→E] may be different from a single arrow.

In general, this type (if smaller than 0→1, that is, the type of all functions) will be a disjunctive
normal form of arrow atoms for which computing the domain and the result of an application is

not straightforward (see Castagna [2023, §4.1.2] for a simple explanation and Castagna [2020, §4.4.3

in the online extended version] for a detailed description on how to compute the ◦ operator). A
similar problem happens for record operations since the types of the records involved in selection,

concatenation, and deletion are, in general, disjunctive normal forms of record type atoms. To

address this problem we define three type operators, one for each operation on records which gives:

[Sel]

Γ ⊢ 𝑒 : 𝑡 ≤ {{{ℓ == 1}}}

Γ ⊢ 𝑒.ℓ : 𝑡 .ℓ
[Del]

Γ ⊢ 𝑒 : 𝑡 ≤ {{{}}}

Γ ⊢ 𝑒\ℓ : 𝑡\ℓ
[Conc]

Γ ⊢ 𝑒1 : 𝑡1 ≤ {{{}}} Γ ⊢ 𝑒2 : 𝑡2 ≤ {{{}}}

Γ ⊢ 𝑒1 +++ 𝑒2 : 𝑡1 +++ 𝑡2

Record operations require expressions to be typed by a subtype of the empty open record {{{}}}, which
is the type of all records;

6
furthermore, selection requires the selected field to be defined (i.e., the

type of 𝑒 must be a subtype of {{{ℓ == 1}}} and, thus, cannot map ℓ to ⊥). The selection type operator is

defined as 𝑡 .ℓ =
def

min{𝑢 | 𝑡 ≤ {{{ℓ == 𝑢}}}}; we show in Section 4 how to compute it. The concatenation

and deletion operators are more complex. To type concatenation and deletion we need to type the

merge operator of Section 2.2.2. It is easy to define it for record atoms: if 𝑟1, 𝑟2 : L_T⊥, we define

(𝑟1 +++𝑡 𝑟2) (ℓ) =
{
𝑟2 (ℓ) 𝑟2 (ℓ) ∧ 𝑡 ≤ 0
(𝑟2 (ℓ) ∖ 𝑡) ∨ 𝑟1 (ℓ) otherwise

(7)

It is then easy to see that, 𝑟1 +++ 𝑟2 is defined as 𝑟1 +++⊥ 𝑟2: it returns the record type with all the fields

surely defined in 𝑟2 (i.e., those for which 𝑟2 (ℓ) ∧ ⊥ ≤ 0) and where the other fields have as type the

union of the type of the field in 𝑟1 (i.e., 𝑟1 (ℓ)) and of the non-optional part (if any) of the field in 𝑟2 (i.e.,

𝑟2 (ℓ) ∖ ⊥). For instance, {|{|{|𝑎 == Int, 𝑏 == Bool|}|}|} +++ {|{|{|𝑎 ⇒ Bool|}|}|} = {|{|{|𝑎 == Int∨Bool, 𝑏 == Bool|}|}|} since

𝑎may be undefined on the right hand-side while𝑏 is undefined in it, and {|{|{|𝑎 == Int|}|}|} +++ {{{}}} = {{{𝑎 == 1}}}

6
We use the shorthand Γ ⊢ 𝑒 : 𝑡 ≤ 𝑡 ′ for a rule with premises Γ ⊢ 𝑒 : 𝑡 and side condition 𝑡 ≤ 𝑡 ′ .
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since 𝑎 is surely defined though we cannot know whether its definition is taken from the right

operand or left one. We postpone the definition of 𝑡1 +++𝑡 𝑡2 for generic (record) types to Section 4

where we generalize it for maps. With such a definition the concatenation type operator 𝑡1 +++ 𝑡2 will

be defined as 𝑡1 +++⊥ 𝑡2 while the deletion type operator will be defined as 𝑡\ℓ =
def

𝑡 +++𝑐◦ {[ℓ == ⊥, == 𝑐◦]}
(with 𝑐◦ any constant different from ⊥): that is, at type level, deletion sets the type of the field ℓ to

⊥ and leaves the type of the other fields unchanged.

Finally, expressions defining records are typed by the corresponding closed record type:

[Recd]

Γ ⊢ 𝑒1 : 𝑡1 · · · Γ ⊢ 𝑒𝑛 : 𝑡𝑛

Γ ⊢ {ℓ1 == 𝑒1, ... , ℓ𝑛 == 𝑒𝑛} : {|{|{|ℓ1 == 𝑡1, ... , ℓ𝑛 == 𝑡𝑛|}|}|}

3.2.3 Variations. We have seen in the introduction that there exists a lot of variations on the

semantics of record operations. Since we cannot consider all of them, we just give an example

of a common one. In our calculus, 𝑒\ℓ works also when ℓ is not defined in 𝑒 , but some languages

(e.g., Elixir) require the field to be present for deletion. It is possible to encode such a discipline

by a suitable pattern matching (see Section 3.3) or by directly modifying the static and dynamic

semantics to do so. The modifications in the latter case are really minimal: it suffices to use for the

typing rule [Del] the same premise as in rule [Sel].

Also, the generic 𝑡1 +++𝑡 𝑡2 can be used to type record operations other than concatenations and

fields deletions. For instance, Frisch [2004, Section 9.5] shows that, given an expression 𝑒 of record

type 𝑡 and a set of labels 𝐿 = {ℓ1, ..., ℓ𝑛}, the record obtained by restricting 𝑒 to the fields in 𝐿 is

typed by 𝑡 +++𝑐◦ {[ℓ1 == 𝑐◦, ..., ℓ𝑛 == 𝑐◦, == ⊥]} and the record obtained by deleting in 𝑒 all fields that

are not of type 𝑡 ′ has type {[ == ⊥]}+++¬𝑡 ′ 𝑡 .

3.3 Pattern matching
The calculus defined in this section still misses an essential ingredient, that is, a way to test whether

a record field is defined or not: without it, optional field types are useless. We could add an ad-hoc
expression to perform this check, but we prefer to implement it via pattern matching since it is

more general and it plays an important role for the definition of the types for mutable records

(omitted in this presentation for space reasons and included for completeness in Appendix F: see in

particular Section F.3). Thus, we add to our expressions a matching expression formed by one or

more “|”-separated branches, each composed by a pattern 𝑝 and an expression 𝑒 that is executed

when the pattern is matched:

Expressions 𝑒 ::= . . . | match 𝑒 with𝑝→ 𝑒 | ... |𝑝→ 𝑒

Patterns 𝑝 ::= 𝑥 | 𝑡 | {ℓ = 𝑝} | (𝑥:=𝑐) | 𝑝∧𝑝 | 𝑝|𝑝

with the restriction that 𝑝1 and 𝑝2 must have distinct capture variables in 𝑝1∧𝑝2 and the same

capture variables in 𝑝1|𝑝2.

The expression match 𝑒 with𝑝1 → 𝑒1 | ... |𝑝𝑛 → 𝑒𝑛 evaluates 𝑒 to a value and matches it against

the patterns 𝑝𝑖 ’s in a left-to-right order. If the pattern 𝑝𝑖 matches the value, then this produces a

substitution for the capture variables in 𝑝𝑖 that is applied to 𝑒𝑖 before its evaluation. A pattern is

either a capture variable 𝑥 which matches any value and binds the value to 𝑥 ; or a type 𝑡 , which

matches any value of type 𝑡 yielding an empty substitution; or the (open) record pattern {ℓ = 𝑝}
that matches any record value containing at least a field ℓ with a value 𝑣 that matches 𝑝 (whose

resulting substitution is returned); or the constant pattern (𝑥:=𝑐) which matches any value and

binds 𝑥 to the constant 𝑐; or the intersection pattern 𝑝1∧𝑝2 that matches values that match both

𝑝1 and 𝑝2 (and returns the union of the substitutions); or the union pattern 𝑝1|𝑝2 which matches

values that match either 𝑝1 or 𝑝2 testing them in the order.
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𝑣/𝑥 = {𝑣/𝑥}
𝑣/𝑡 = { } if ⊢ 𝑣 : 𝑡

𝑣/{ℓ = 𝑝} = 𝜎 if 𝑣 = {..., ℓ == 𝑣 ′, ...} and 𝑣 ′/𝑝 = 𝜎

𝑣/(𝑥:=𝑐) = {𝑐/𝑥}
𝑣/𝑝1∧𝑝2 = 𝜎1 ∪ 𝜎2 if 𝑣/𝑝1 = 𝜎1 and 𝑣/𝑝2 = 𝜎2

𝑣/𝑝1|𝑝2 = 𝑣/𝑝1 if 𝑣/𝑝1 ≠ fail
𝑣/𝑝1|𝑝2 = 𝑣/𝑝2 if 𝑣/𝑝1 = fail

𝑣/𝑝 = fail otherwise

Fig. 1. Semantics of patterns

Formally, we define a function (·)/(·) that, given a value 𝑣 and a pattern 𝑝 , yields a result 𝑣/𝑝
which is either fail or a substitution 𝜎 mapping the capture variables in 𝑝 to values (subterms of 𝑣).

This function is defined in Figure 1. Then, we augment the reduction rules with

match 𝑣 with 𝑝1 → 𝑒1 | ... |𝑝𝑛 → 𝑒𝑛 { 𝑒𝑖𝜎 if 𝑣/𝑝𝑖 = 𝜎 and 𝑣/𝑝 𝑗 = fail for 𝑗 < 𝑖

and add 𝐸 ::= match𝐸 with𝑝1 → 𝑒1 | ... |𝑝𝑛 → 𝑒𝑛 to the evaluation contexts. Our patterns are not

standard, but they allow us to encode a large variety of different patterns. For instance, a more

common syntax would be 𝑝 ::= | 𝑐 | 𝑥 | {ℓ = 𝑝, ... , ℓ = 𝑝} | 𝑝 as 𝑥 | 𝑝|𝑝 , with wild-cards and

constants instead of types, with as-patterns “𝑝 as 𝑥” (in OCaml syntax; 𝑥@𝑝 in Haskell) instead

of conjunction, and with multi-field record patterns. We can encode and 𝑐 as 1 and 𝑏𝑐 ; “𝑝 as 𝑥”
is equivalent to 𝑝∧𝑥 ; a multi-field (open) record pattern {ℓ1 = 𝑝1, ... , ℓ𝑛 = 𝑝𝑛} is encoded by the

intersection {ℓ1 = 𝑝1}∧ ... ∧ {ℓ𝑛 = 𝑝𝑛}, while the closed record pattern {|{|{|ℓ1 = 𝑝1, ... , ℓ𝑛 = 𝑝𝑛|}|}|} (i.e.,
the pattern that matches records having exactly the fields ℓ1, ... , ℓ𝑛 matching the respective patterns)

can then be encoded as {ℓ1 = 𝑝1, ... , ℓ𝑛 = 𝑝𝑛}∧{|{|{|ℓ1 = 1, ... , ℓ𝑛 = 1|}|}|}. Given any pattern 𝑝 , we can

define a type *𝑝+ that characterizes exactly the set of values that match the pattern:

*𝑥+ = 1 *𝑡+ = 𝑡 *𝑝1∧𝑝2+ = *𝑝1 + ∧ * 𝑝2+
*(𝑥:=𝑐)+ = 1 *{ℓ = 𝑝}+ = {{{ℓ == *𝑝+}}} *𝑝1|𝑝2+ = *𝑝1 + ∨ * 𝑝2+

It can be shown that, for every well-typed value 𝑣 and every pattern 𝑝 , we have 𝑣/𝑝 ≠ fail if and
only if ∅ ⊢ 𝑣 : *𝑝+. This allows us to formalize purely at the level of types, exhaustiveness and

redundancy checks performed on pattern matching. The typing rule for match is the following.

[Match]

Γ ⊢ 𝑒0 : 𝑡0 for 𝑖 = 1..𝑛, either 𝑡𝑖 ≤ 0 or Γ, 𝑡𝑖/𝑝𝑖 ⊢ 𝑒𝑖 : 𝑡

Γ ⊢ match 𝑒0 with𝑝1 → 𝑒1 | ... |𝑝𝑛 → 𝑒𝑛 : 𝑡

𝑡0 ≤
∨𝑛

𝑖=1
*𝑝𝑖+

𝑡𝑖 = (𝑡0∖
∨

𝑗<𝑖 *𝑝 𝑗+) ∧ *𝑝𝑖+

The rule deduces the type 𝑡0 of the matched expression. The side condition 𝑡0 ≤
∨𝑛

𝑖=1
*𝑝𝑖+ ensures

that the matching is exhaustive, that is, that all the values that can be produced by 𝑒0 (i.e., the values

in 𝑡0) are accepted by some pattern. Then it computes the type 𝑡𝑖 that contains all the values that are

captured by the 𝑖-th branch. These are the values that can be produced by 𝑒0 (i.e., those in 𝑡0) minus

those that are captured by a preceding branch (i.e., those in

∨
𝑗<𝑖 *𝑝 𝑗+) and (intersected those) that

match 𝑝𝑖 (i.e., those in *𝑝𝑖+). When 𝑡𝑖 is empty, then the branch is redundant (see Castagna [2023,

§5.1] for details on the redundancy check) and the typing of 𝑒𝑖 is skipped. Otherwise, 𝑒𝑖 is typed

under the hypothesis Γ extended with a type environment produced by 𝑡𝑖/𝑝𝑖 . Given a type 𝑡 and a

pattern 𝑝 with 𝑡≤ * 𝑝+, the operator 𝑡/𝑝 produces the type environment assumed for the variables

in 𝑝 when a value of type 𝑡 is matched against 𝑝 and the matching succeeds. It is defined as:

𝑡/𝑡 ′ = ∅ 𝑡/(𝑥:=𝑐) = 𝑥 : 𝑏𝑐 𝑝1∧𝑝2 = (𝑡/𝑝1)∪(𝑡/𝑝2)
𝑡/𝑥 = 𝑥 : 𝑡 𝑡/{ℓ = 𝑝} = 𝑡 .ℓ/𝑝 𝑡/𝑝1|𝑝2 = ((𝑡 ∧ *𝑝1+)/𝑝1)∪((𝑡 ∖ *𝑝1+)/𝑝2)
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and satisfies the property that for every 𝑡 , 𝑝 , and 𝑣 , if ∅ ⊢ 𝑣 : 𝑡 and 𝑣/𝑝 = 𝜎 , then, for every variable

𝑥 in 𝑝 , the judgment ∅ ⊢ 𝑥𝜎 : (𝑡/𝑝) (𝑥) holds.
Thanks to pattern matching we can now check whether an optional field with label ℓ is present

before selecting it, as simply as “match 𝑒 with {ℓ == 1}→ ...”. Also, we can capture its content in

a capture variable 𝑥 and in case of absence give 𝑥 a default value, say, nil by using the constant

pattern “match 𝑒 with {ℓ == 𝑥}|(𝑥:=nil)→ ...”. Also notice that the expression 𝑒.ℓ for selection is

no longer needed (though, we keep it for convenience) since it can be encoded as “match 𝑒 with {ℓ ==
𝑥}→𝑥”: for this expression the rule [Match] requires the type 𝑡 of 𝑒 to be a subtype of {{{ℓ == 1}}}
(exhaustiveness condition) and deduces for the expression the type 𝑡 .ℓ , which coincides with the

rule [Sel]. Likewise, to define the delete operation that requires the presence of the field ℓ to be

deleted, we no longer need to modify the typing rules as we outlined in Section 3.2.3: it suffices to

encode it as “match 𝑒 with{{{ℓ == 1}}}→ 𝑒\ℓ” which returns a static type error if ℓ is not present in 𝑒 .

The type system presented in this section is sound: every well-typed expression either diverges

or returns a value of the same type (see [Frisch 2004]). It describes records (and, partially, pattern

matching) as they are currently implemented in the language CDuce.

4 UNIFYING STRUCTS WITH MAPS
Extending the previous calculus to handle maps, is conceptually simple. First, labels must be

computable, that is, it must be possible to obtain them as results of expressions: therefore L, the
set of all labels, must be a subset ofV , the set of all values of the language. Second, we must add

expressions to delete and select labels that are computed by expressions: therefore we supplement

the expressions 𝑒.ℓ and 𝑒\ℓ for structs with two new expressions 𝑒.[𝑒] and 𝑒\[𝑒] that are map

oriented. Third, since record concatenations of Section 3.1 cannot compute labels, then we introduce

the expression 𝑒1
←⟨[𝑒2]=𝑒3⟩ that adds (or updates) the field with label computed by 𝑒2 and content

computed by 𝑒3 to the map computed by 𝑒1. Finally, we allow record types—which are quasi-constant

functions in L_T⊥—to specify their default value: we add to field types the default field “ ⇒ 𝑡”.

The rest remains unchanged:

Expressions 𝑒 ::= · · · | 𝑒.[𝑒] | 𝑒\[𝑒] | 𝑒←⟨[𝑒]=𝑒⟩
Field Types 𝑓 ::= · · · | ⇒ 𝑡

The semantics of new expressions of map-selection and map-deletion is defined as follows:

{ℓ1 == 𝑣1, ... , ℓ𝑛 == 𝑣𝑛}.[ℓ] {
{
𝑣𝑖 if ℓ ≡ ℓ𝑖 for some 𝑖 ∈ [1..𝑛]
nil otherwise

(8)

𝑣\[ℓ] { {[ℓ == ⊥, == 𝑐◦]}⊕𝑐◦𝑣 (9)

𝑣←⟨[ℓ]=𝑒⟩ { 𝑣 +++ {ℓ == 𝑒} (10)

where nil is a distinguished constant returned when the selected field is undefined (e.g., Ballerina,

Elixir, and Lua use nil, JavaScript uses undefined, Scala uses None, ...) and the evaluation contexts

are updated by adding the productions 𝐸 ::= 𝐸.[𝑒] | 𝑣 .[𝐸] | 𝐸\[𝑒] | 𝑣\[𝐸] | 𝐸←⟨[𝑒]=𝑒⟩ | 𝑣←⟨[𝐸]=𝑒⟩.
The default field “ ⇒ 𝑡” defines the type of the fields that are not already specified in a record

type: for example, {{{ℓ1 ⇒ 𝑡1, ℓ2 == 𝑡2, ⇒ 𝑡3}}} specifies that every label different from ℓ1 and ℓ2 is

mapped to 𝑡3. Note that for the default field we used the syntax “⇒” of optional fields since the

default fields always contain at least ⊥. Thus, {{{ℓ1 ⇒ 𝑡1, ℓ2 == 𝑡2, ⇒ 𝑡3}}} denotes the quasi-constant

function {[ℓ1 = 𝑡1∨⊥, ℓ2 == 𝑡2, = 𝑡3∨⊥]}. Observe that we no longer need to differentiate between

open and closed record types, since this difference can be expressed by specifying either “ ⇒ 0”
(for a closed record type) or “ ⇒ 1” (for an open one) for the default field. As for label selection

(which can be encoded by matching), we keep for convenience the syntax of both record types (but

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 196. Publication date: August 2023.



196:14 Giuseppe Castagna

use mainly open ones), although this is a source of redundancy since {{{𝑓1, ..., 𝑓𝑛}}} = {{{𝑓1, ... , 𝑓𝑛, ⇒
1}}} = {|{|{|𝑓1, ... , 𝑓𝑛, ⇒ 1|}|}|} and {|{|{|𝑓1, ... , 𝑓𝑛|}|}|} = {|{|{|𝑓1, ... , 𝑓𝑛, ⇒ 0|}|}|} = {{{𝑓1, ... , 𝑓𝑛, ⇒ 0}}}.
With this new syntax we can now express the type of maps from labels to, say, integers as

{{{ ⇒ Int}}} (or, equivalently, {|{|{| ⇒ Int|}|}|}). This syntax covers the simple case of maps whose

domain is always the whole set of labels. This is compatible with what happens for JavaScript objects

where the set of labels (i.e., the properties names) is the set of all strings. Likewise, in Ballerina the

type map<T> is the set of mappings from keys of type string to values of type T: we show later in

Section 4.4 how to modify the calculus to refine domains. The new syntax also allows us to combine

structs with maps in the same type, as we showed by the example {{{ℓ1 ⇒ 𝑡1, ℓ2 == 𝑡2, ⇒ 𝑡3}}}. Thus,
for instance, it is easy to express by a type the fact that a specific label is used to determine the

kind of the map, as in {{{output == "int", ⇒ Int}}} ∨ {{{output == "str", ⇒ String}}}.
The interpretation and the subtyping relation for the new types are still the ones given in

Section 3.2.1: the only difference is that given a record atom 𝑟 ∈ L _ T⊥, with def (𝑟 ) = 𝑡∨⊥ now

𝑡 can be any type while, before, 𝑡 could be only 0 or 1 (from now on 𝑟 will range on these newer

atoms). Typing instead needs important modifications. We require not only that L ⊆ V but also

that L can be expressed as a type. For simplicity, we suppose L to be a basic type, but equivalently

we might imagine L to be some type expression (e.g., in Ballerina and JavaScript L = string,
in Go L = 1∖({{{}}}∨slice∨(0→1)), in Lua L = 1∖(nil∨NaN), in Elixir L = atom for struct-like

records and, as in Erlang, L = 1 for maps)
7
. The typing rules for the new selection and delete

expressions are similar to the corresponding ones for structs:

[M-Sel]

Γ ⊢ 𝑒1 : 𝑡1 ≤ {{{}}} Γ ⊢ 𝑒2 : 𝑡2 ≤ L
Γ ⊢ 𝑒1 .[𝑒2] : 𝑡1.[𝑡2]

[M-Del]

Γ ⊢ 𝑒1 : 𝑡1 ≤ {{{}}} Γ ⊢ 𝑒2 : 𝑡2 ≤ L
Γ ⊢ 𝑒1\[𝑒2] : 𝑡1\[𝑡2]

with the notable difference that they use new type operators for selection and deletion that are

defined for sets of labels rather than single ones. Likewise, map update uses a specific type operator:

[M-Upd]

Γ ⊢ 𝑒1 : 𝑡1 ≤ {{{}}} Γ ⊢ 𝑒2 : 𝑡2 ≤ L Γ ⊢ 𝑒3 : 𝑡3

Γ ⊢ 𝑒1
←⟨[𝑒2]=𝑒3⟩ : 𝑡1←⟨[𝑡2]=𝑡3⟩

We define all these new type operators in Section 4.2, but first we need to give a suitable represen-

tation of our record types.

4.1 Representation of record types.
All record types (i.e., all subtypes of {{{}}}) can be represented as disjunctive normal forms of record
type atoms (see §3.2). This representation is used when deciding subtyping on record types (cf.

Lemma 2.3). However, to compute the type operators used by the typing rules for record selection,

deletion, concatenation, and update, disjunctive normal forms are inappropriate because of the

presence of negated record type atoms in them. It is thus convenient to use a different representation

based on a generalization of the record type atoms of Section 3.2: in this representation, negation is

directly integrated in the atoms. To that end we use and adapt some results by Frisch [2004].

Let 𝜏 range over T⊥—i.e., the “types” of field contents—while 𝑡 still ranges over T . When working

with the type of the fields of a record type, all set-theoretic operations are relative to T⊥. In particular,
the complement of 𝜏 —denoted by not(𝜏) to distinguish it from type negation “¬”— is performed

in T⊥: for instance not(0) = 1∨⊥, not(𝑡) = ¬𝑡∨⊥, and not(⊥) = 1.

Definition 4.1 (Frisch [2004]). Let 𝐿 = {ℓ1, ... , ℓ𝑛} ⊂ L be a finite set of labels. If (𝜏ℓ )ℓ∈𝐿
is a family of types indexed on 𝐿, 𝑆 is a finite set of types, and 𝑡0 is a type, we use the notation

7
In Go slices are descriptors for contiguous segments of arrays; in Elixir atoms are colon-prefixed user-defined constants.
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⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ to denote the type {{{ℓ1 == 𝜏ℓ1 , ... , ℓ𝑛 == 𝜏ℓ𝑛 , ⇒ 𝑡0}}} ∖
∨

𝑠∈𝑆{{{ℓ1 ⇒ 1, ... , ℓ𝑛 ⇒
1 , ⇒ ¬𝑠}}} (where, with an abuse of notation, the field “ℓ == 𝑡∨⊥” stands for the field “ℓ ⇒ 𝑡”).

In practice, every type 𝑠 in 𝑆 adds to the type {{{ℓ1 == 𝜏ℓ1 , ... , ℓ𝑛 == 𝜏ℓ𝑛 , ⇒ 𝑡0}}} a constraint

interpreted as “... and there exists a label not in 𝐿 whose value is of type 𝑠”. The record types of the

form ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ are the building blocks to represent all record types, that is all subtypes of

{{{}}}, as a single union, since they satisfy the following properties (cf. Frisch [2004, §9.1.4]):

⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ ; 0⇔ ∀ℓ ∈ 𝐿, 𝜏ℓ ; 0 and ∀𝑠 ∈ 𝑆, 𝑡0 ∧ 𝑠 ; 0 (11)

⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ ∧ ⎷(𝜏 ′ℓ )ℓ∈𝐿 ; 𝑡 ′
0
; 𝑆 ′ ⌄ = ⎷((𝜏ℓ∧𝜏 ′ℓ )ℓ∈𝐿 ; 𝑡0 ∧ 𝑡 ′0 ; 𝑆 ∪ 𝑆 ′ ⌄ (12)

⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ ∖ ⎷(𝜏 ′ℓ )ℓ∈𝐿 ; 𝑡 ′
0
; ∅ ⌄ = ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ∪ {¬𝑡 ′0} ⌄ ∨

∨
ℓ0∈𝐿
⎷(𝜏 ℓ0

ℓ
)ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ (13)

where 𝜏
ℓ0
ℓ
is defined as 𝜏ℓ∧not(𝜏 ′ℓ) if ℓ = ℓ0 and 𝜏ℓ otherwise.

Using the last two properties it is not difficult to transform every record type in disjunctive

normal form into a union of records of the form ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄:
Theorem 4.2 (Frisch [2004]). Let 𝐿 ∈ Pfin (L) a finite set of labels and 𝑡 a type such that 𝑡 ≤ {{{}}}

and dom(𝑡) ⊆ 𝐿. Then there exists a finite set 𝜋𝐿
rec (𝑡) of types of the form ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ such that

𝑡 ≃
∨

⎷(𝜏ℓ )ℓ ∈𝐿 ; 𝑡0 ; 𝑆 ⌄∈𝜋𝐿
rec (𝑡 )

⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄

Proof. If 𝑡 ≤ {{{}}}, then it is equivalent to

∨
𝑖∈𝐼 (

∧
𝑝∈𝑃𝑖 𝑟𝑝 ∧

∧
𝑛∈𝑁𝑖
¬𝑟𝑛) where the 𝑟 ’s are record

type atoms, that is, record types of the form ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; ∅ ⌄. By applying (12) we can transform∧
𝑝∈𝑃𝑖 𝑟𝑝 into a record of the form ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄. By successively applying (13) to the intersection

of the record thus obtained and each record in

∧
𝑛∈𝑁𝑖
¬𝑟𝑛 we obtain the result. □

Hereafter we use R to range over records of the form ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ and consider them our new

record type atoms (of which our previous atoms—ranged over by 𝑟—are just the special case for

𝑆 = ∅). They can be used for the internal representation of record types since, as per Theorem 4.2,

every subtype of {{{}}} is equivalent to a union of the form

∨
𝑖∈𝐼 R𝑖 : this property yields definitions for

type operators that are simpler than with disjunctive normal forms, as we show next.

4.2 Type operators
Theorem 4.2 allows us to formally define and compute the type operators we used in the typing

rules. Let us start with 𝑡 .ℓ , the projection of a record type 𝑡 on a single label ℓ .

Struct-selection. Let ℓ be a label in L, 𝑡 be a type such that 𝑡 ≤ {{{}}}, and 𝐿 be a finite set of labels

such that dom(𝑡) ⊆ 𝐿. Define 𝝅 ℓ (𝑡) = min{𝜏 | 𝑡 ≤ {{{ℓ == 𝜏}}}}, that is, the projection on ℓ of 𝑡 . Then,

it is clear that we have

𝝅 ℓ (𝑡) =
{ ∨

⎷(𝜏𝑚 )𝑚∈𝐿 ; 𝑡0 ; 𝑆 ⌄∈𝜋𝐿
rec (𝑡 ) 𝜏ℓ if ℓ ∈ 𝐿∨

⎷(𝜏𝑚 )𝑚∈𝐿 ; 𝑡0 ; 𝑆 ⌄∈𝜋𝐿
rec (𝑡 ) 𝑡0∨⊥ if ℓ ∉ 𝐿

(14)

It is straightforward to see that the 𝑡 .ℓ operator we used in the rule [Sel] is defined as 𝝅 ℓ (𝑡) if
𝝅 ℓ (𝑡) ∧ ⊥ ≃ 0 (i.e., if 𝝅 ℓ (𝑡) is a type, viz., if the field ℓ is defined) and is undefined otherwise, and

to compute it, it suffices to take 𝐿 = dom(𝑡).

Map-selection. Regarding the map-selection operator 𝑡 .[𝑡 ′] used in [M-sel], let 𝑡 ≤ {{{}}} and 𝑡 ′ ≤ L
and consider the following union

∨
ℓ∈𝑡 ′ 𝝅 ℓ (𝑡). Notice that even if 𝑡 ′ may be an infinite set of labels

(e.g., string), it is always possible to express this union as a finite union. This results from two

properties, namely that dom(𝑡) is finite, and that for all ℓ1, ℓ2 ∈ 𝑡 ′∖dom(𝑡), we have 𝝅 ℓ1 (𝑡) = 𝝅 ℓ2 (𝑡).
Therefore,

∨
ℓ∈𝑡 ′ 𝝅 ℓ (𝑡) is equivalent to the finite union 𝝅 ℓ̄ (𝑡) ∨

∨
ℓ∈dom(𝑡 )∧𝑡 ′ 𝝅 ℓ (𝑡) where ℓ̄ is any
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label in 𝑡 ′∖dom(𝑡), if any.8 Then 𝑡 .[𝑡 ′] is defined as

∨
ℓ∈𝑡 ′ 𝝅 ℓ (𝑡) if ⊥ ∧

∨
ℓ∈𝑡 ′ 𝝅 ℓ (𝑡) ≃ 0 and as

nil ∨ (∨ℓ∈𝑡 ′ 𝝅 ℓ (𝑡) ∖ ⊥) otherwise. Also, we may want the type-checker to emit a warning when∨
ℓ∈𝑡 ′ 𝝅 ℓ (𝑡) ≤ ⊥ (i.e., when the selection will surely yield nil), as well as when 1 ≤ ∨

ℓ∈𝑡 ′ 𝝅 ℓ (𝑡)
(i.e., when the selection may spill over the “open” part of the record type 𝑡 , whose type is 1∨⊥),
since both are situations in which, even though the expressions are well-typed (i.e., they cannot

produce stuck expressions at run-time) they may conceal some problem (selecting a field that is

surely undefined does not make much sense).

Map-deletion. Regarding the map-deletion operator 𝑡∖[𝑡 ′] used in [M-Del], it just adds ⊥ to all

the fields whose label is in 𝑡 ′, since they all may become undefined (though, just one of them will

actually become undefined: the one for the label computed in the delete expression), that is: let

𝑡 ≤ {{{}}} with dom(𝑡) ⊆ 𝐿 and 𝑡 ′ ≤ L, then 𝑡∖[𝑡 ′] = ∨
⎷(𝜏ℓ )ℓ ∈𝐿 ; 𝑡0 ; 𝑆 ⌄∈𝜋𝐿

rec (𝑡 )⎷(𝜏 ′ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ where
𝜏 ′ℓ is 𝜏ℓ∨⊥ if ℓ ∈ 𝐿 ∧ 𝑡 ′ and is 𝜏ℓ otherwise.

Map-update. The map-update operator 𝑡←⟨[𝑡1]=𝑡2⟩ is very similar to the map-deletion one, but

it uses 𝑡2 instead of ⊥ to update the fields (and the default 𝑡0 types), that is: let 𝑡 ≤ {{{}}} with

dom(𝑡) ⊆ 𝐿 and 𝑡1 ≤ L, then 𝑡←⟨[𝑡1]=𝑡2⟩ =
∨
⎷(𝜏ℓ )ℓ ∈𝐿 ; 𝑡0 ; 𝑆 ⌄∈𝜋𝐿

rec (𝑡 )⎷(𝜏 ′ℓ )ℓ∈𝐿 ; 𝑡 ′
0
; 𝑆 ⌄ where 𝜏 ′ℓ is

𝜏ℓ∨𝑡2 if ℓ ∈ 𝐿 ∧ 𝑡1 and is 𝜏ℓ otherwise, and 𝑡
′
0
is 𝑡0 ∨ 𝑡2 if 𝑡1 ∖ 𝐿 ; 0 and 𝑡0 otherwise.

9

Record concatenation (and struct-deletion). Finally, it remains to define the 𝑡1 +++𝑡 𝑡2 operator where
𝑡 is any type and 𝑡1 and 𝑡2 are non-empty subtypes of {{{}}} (the operator is undefined if 𝑡1 or 𝑡2 is not

a record type). This operator defines both the record type concatenation operator 𝑡1 +++ 𝑡2 used in

[Conc] (defined as 𝑡1 +++⊥ 𝑡2), and the struct deletion operator 𝑡∖ℓ (defined as 𝑡 +++𝑐◦ ⎷{⊥ℓ } ; 𝑐0 ; ∅ ⌄).
Equation (7) defines the concatenation for two atoms, which in the new representation are two

atoms of the form ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; ∅ ⌄. In that specific case the operator is exact, in the sense that it

yields the type formed by all record values obtained by the concatenation of records of the first

type with records of the second type. Frisch [2004, Theorem 9.6] proves that, in general, it is not

possible to give an exact definition for the operator, the problem happening, of course, with types

⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ in which 𝑆 is not empty. However, it is possible to define a sound approximation

that is operationally indistinguishable from the exact definition [Frisch 2004, Lemmas 9.12–9.17]:

just disregard 𝑆 sets.
10
Formally, this is obtained by defining the +++𝑡 operator on two atoms in the

new representation as follows:

⎷(𝜏1

ℓ )ℓ∈𝐿 ; 𝑡1 ; 𝑆1 ⌄ +++𝑡 ⎷(𝜏2

ℓ )ℓ∈𝐿 ; 𝑡2 ; 𝑆2 ⌄ = ⎷(𝜏3

ℓ )ℓ∈𝐿 ; 𝑡3 ; ∅ ⌄ (15)

where for all ℓ∈𝐿, 𝜏3

ℓ is 𝜏
2

ℓ if 𝜏
2

ℓ ∧𝑡 ≤ 0 and is (𝜏2

ℓ ∖𝑡)∨𝜏1

ℓ otherwise and, likewise, 𝑡3 is 𝑡2 if 𝑡2∧𝑡 ≤ 0 and

is (𝑡2∖𝑡) ∨ 𝑡1 otherwise (notice that 𝑆1 and 𝑆2 were simply discarded). Finally, for the concatenation

of two record types, since each type is equivalent to a union of record atoms, this is given by the

formula (∨
𝑖∈𝐼

R𝑖
)
+++𝑡

(∨
𝑗∈ 𝐽

R𝑗
)
=

∨
𝑖∈𝐼 , 𝑗∈ 𝐽

(R𝑖 +++𝑡 R𝑗 ) (16)

Remark 4.3 (Internal representation of records atoms). Transforming any subtype of {{{}}}
into a union of records by applying the proof of Theorem 4.2 to the disjunctive normal form of the
type is easy. The formulæ above, then, provide an effective definition of the type operators. In the

8
Here, and in what follows we use the ambiguity that a subtype of L denotes a set of labels and, thus, we mix set-theoretic

(e.g., ∈) with type-theoretic (e.g., ∧) notations, to lighten the presentation.

9
For a more precise typing, both map-deletion and map-update (or their corresponding typing rules) should be specialized

to work as the corresponding struct cases, when the type of the expression computing the label is a singleton type.

10
The intuition for this property is that, as the definition of 𝝅 ℓ (𝑡 ) shows, the 𝑆 constraints do not give any information

about the value obtained from a selection, which is the only possible observation we can perform on records.
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language of Section 3 the exact content of 𝑆 for a type ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ is not needed: what is needed
is just to know whether 𝑆 is empty or not in order to apply (11) (since 𝑡0 is either ⊥ or 1∨⊥, then for a
non-empty type, by (13), the only possible non-empty type 𝑠 in 𝑆 is 1). So the internal representation
of record type atoms can use just a simple Boolean to flag if 𝑆 is non-empty (and another for 𝑡0)
and the type pretty printer will display in the list of fields “(+ others)” for the types in which this
flag is on. This is no longer true for maps since the full information of 𝑆 is needed to check that, say,
{|{|{| ⇒ Int|}|}|} ∖ {|{|{| ⇒ Int ∨ Bool|}|}|} = ⎷{} ; Int ∨ ⊥ ; {¬Int ∧ ¬Bool)} ⌄ is empty.

The system presented in this section subsumes the one of Section 3 and preserves its meta-

theoretic properties. In particular, soundness of the type system can be proved by a routine extension

of the inductive proof of the soundness of the system of Section 3 (see Appendix B).

4.3 Implementation of the Subtyping Algorithm
The formulas in Section 4.2 give an effective definition of the type operators used in the typing rules.

To complete the description of how typing can be implemented, it still remains to describe how to

implement subtyping for our new record types. Lemma 2.3 describes the formal decomposition

one has to perform to check subtyping for a disjunctive normal form of records (i.e., a union of

intersections of record atoms or their negations). But in order to implement this check we have to

define for the formula in the lemma’s statement, a (backtrack free) Φ function that is analogous to

the Φ function we gave in Section 2.1.4 for the product decomposition formula (2).

Since the implementation of the subtyping algorithm manipulates directly types in disjunctive

normal form (see Castagna [2020, §4.3]) we define Φ to work on them (the transformation into

a union of record atoms described by Theorem 4.2 must be applied only to compute record type

operators). More precisely, we need Φ to decide whether

∧
R∈𝑃 R ∧

∧
R∈𝑁 ¬R is empty, where the

R’s in 𝑃∪𝑁 are of the form ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡 ; ∅ ⌄. Thanks to (12), we can move the first intersection

inside the records and consider it as a unique record R◦. Then we have

R◦ ≤
∨
R∈𝑁

R ⇐⇒ (R◦ ≤ 0) or Φ(R◦, 𝑁 ) (17)

with Φ(R◦, 𝑁 ) defined as:

Φ(R◦,∅) = false

Φ(R◦, 𝑁 ∪ {R}) = ( def (R◦) ≤ def (R) and
∀ℓ ∈ 𝐿 . (R◦ (ℓ) ≤ R(ℓ) or Φ(R◦ ∧ {{{ℓ : not(R(ℓ))}}}, 𝑁 ))
) or ( def (R◦) ̸≤ def (R) and Φ(R◦, 𝑁 ) )

(18)

where 𝐿 =
⋃

R∈𝑁∪{R◦ } dom(R).
Notice that in the second clause of (18) the two propositions that form the “or” are mutually

exclusive. Therefore, this clause can be equivalently expressed in a programming-oriented way as

Φ(R◦, 𝑁 ∪ {R}) = if def (R◦) ≤ def (R)
then ∀ℓ ∈ 𝐿 . ( R◦ (ℓ) ≤ R(ℓ) or Φ(R◦ ∧ {{{ℓ : not(R(ℓ))}}}, 𝑁 ) )
else Φ(R◦, 𝑁 )

(19)

This definition of Φ works both in the case we have structs (i.e., when def (R) is either 1∨⊥ or ⊥)
and more generally in the case for maps (i.e., when def (R) is 𝑡∨⊥ for some type 𝑡 ).11

To prove the correctness of (17) we use the representation and properties introduced in the

previous section. In particular, by property (13) it is easy to prove the following lemma

11
Just a caveat. The intersection of two “pure” maps—e.g. {{{ ⇒ Int}}} and {{{ ⇒ String}}}—is never empty since it always

contains at least the empty record expression {}.
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Lemma 4.4. Let ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ ; 0 and 𝑁 be a set of types of the form ⎷(𝜏 ′ℓ )ℓ∈𝐿 ; 𝑡 ′
0
; ∅ ⌄, then

⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ ≤
∨
𝑡 ∈𝑁

𝑡 ⇐⇒ ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; ∅ ⌄ ≤
∨
𝑡 ∈𝑁

𝑡

Proof. Since ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ ≤ ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; ∅ ⌄, then the right to left implication is

obvious. The converse implication is proved by induction on the cardinality of 𝑁 . The case for

|𝑁 | = 0 is immediate since both containment relations are false. The inductive case follows from

the application of property (13) and the induction hypothesis.

The previous lemma plays a key role to prove the correctness of (17):

Theorem 4.5. Let 𝑁 be a set of types of the form ⎷(𝜏 ′ℓ )ℓ∈𝐿 ; 𝑡 ′
0
; ∅ ⌄. Then

⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ ≤
∨
𝑡 ∈𝑁

𝑡 ⇐⇒ (⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ ≤ 0) or Φ(⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄, 𝑁 )

Proof. If ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ is empty then the result holds. Otherwise, we proceed by induction

on the size of 𝑁 .

If 𝑁 is empty then Φ(⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄, 𝑁 ) = false and
∨

𝑡 ∈𝑁 𝑡 ≤ 0. Therefore, as stated by

definition (18), the left-hand side of the statement holds if and only if ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ ≤ 0
If 𝑁 = 𝑁 ′ ∪ {⎷(𝜏 ′ℓ )ℓ∈𝐿 ; 𝑡 ′

0
; ∅ ⌄}, then we apply the definition (18) where R◦ = ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄

and R = ⎷(𝜏 ′ℓ )ℓ∈𝐿 ; 𝑡 ′
0
; ∅ ⌄. By (13) the left-hand side of the theorem’s statement is equivalent to

⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ∪ {¬𝑡 ′0} ⌄ ∨
∨
ℓ0∈𝐿
⎷(𝜏 ℓ0

ℓ
)ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ ≤

∨
𝑡 ∈𝑁 ′

𝑡 (20)

where for each ℓ0 ∈ 𝐿 the type ⎷(𝜏 ℓ0
ℓ
)ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ is equivalent to R◦ ∧ {{{ℓ0 : not(R(ℓ0))}}}, with R

and R◦ defined as just above formula (20).

A union of types is smaller than a type if and only if every summand of the union is smaller than

that type, so we are going to prove it by applying the induction hypothesis on 𝑁 ′.
Let us examine the first summand of the left-hand side of (20) and check whether

⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ∪ {¬𝑡 ′0} ⌄ ≤
∨
𝑡 ∈𝑁 ′

𝑡

By induction hypothesis this holds if and only if either (𝑖) ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ∪ {¬𝑡 ′
0
} ⌄ is empty or

(𝑖𝑖) Φ(⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ∪ {¬𝑡 ′
0
} ⌄, 𝑁 ′). For the (𝑖) case, since ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ is not empty, then

by (11) the type is empty only if 𝑡0 ∧ ¬𝑡 ′0 is empty, that is def (R◦) ≤ def (R). If def (R◦) ≰ def (R),
then we are in case (𝑖𝑖) and have to check Φ(⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ∪ {¬𝑡 ′0} ⌄, 𝑁 ′) which by Lemma 4.4 is

equivalent to Φ(⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; ∅ ⌄, 𝑁 ′) and thus to Φ(R◦, 𝑁 ′).
For the other summands we have to prove for every ℓ0 ∈ 𝐿 that

⎷(𝜏 ℓ0
ℓ
)ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ ≤

∨
𝑡 ∈𝑁 ′

𝑡

By induction hypothesis this is equivalent to proving that either (𝑖) the left-hand side is empty,

that is, that 𝜏
ℓ0
ℓ0
is empty, that is—by the definition of 𝜏

ℓ0
ℓ0
—, R◦ (ℓ0) ≤ R(ℓ0), or (𝑖𝑖) proving the truth

of Φ(⎷(𝜏 ℓ0
ℓ
)ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄, 𝑁 ′), that is, of Φ(R◦ ∧ {{{ℓ0 : not(R(ℓ0))}}}, 𝑁 ′)

Summing up, we have proved by induction that if ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ is not empty then (20) is

equivalent to checking both these two proposition disjunctions:

(1) (def (R◦) ≤ def (R)) or (def (R◦) ≰ def (R) and Φ(R◦, 𝑁 ′))
(2) ∀ℓ0 ∈ 𝐿 . ( (R◦ (ℓ0) ≤ R(ℓ0)) or Φ(R◦ ∧ {{{ℓ0 : not(R(ℓ0))}}}, 𝑁 ′) )
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To conclude notice that if (def (R◦) ≰ def (R) and Φ(R◦, 𝑁 ′)) holds, then by induction hypothesis

we have R◦ ≤
∨

𝑡 ∈𝑁 ′ 𝑡 and, a fortiori, R◦ ≤
∨

𝑡 ∈𝑁 ′∪{R} 𝑡 . It is therefore useless to check the other

proposition (2) above, which thus must be checked only when def (R◦) ≤ def (R). This yields
( def (R◦) ≰ def (R) and Φ(R◦, 𝑁 ′) )

or ( def (R◦) ≤ def (R) and (∀ℓ0 ∈ 𝐿 . (R◦ (ℓ0) ≤ R(ℓ0) or Φ(R◦ ∧ {{{ℓ0 : not(R(ℓ0))}}}, 𝑁 ′))
that is (modulo renaming) the second clause in (18), which proves the theorem. □

4.4 Erlang-style maps
In the first part of this section we defined a very simple case of maps whose domain was always

the set of all labels. This suits languages in which record keys are of a specific and limited type

(e.g., strings for Ballerina’s maps and JavaScript’s objects, integers and strings for PHP). However,

there exist more refined type-systems that allow a larger range of keys in maps, and for which it

makes sense to specify the domain of the maps. For instance, in Go the syntax map[int]string
denotes the type of maps from strings to integers, which is the same as Scala’s Map[Int,String]
and Swift’s [Int: String]. We want to extend the previous system so that it is possible to restrict

the domain of the maps and still be able to combine them with single field declarations as in

{|{|{|input == "int", Int ⇒ Int|}|}|} ∨ {|{|{|input == "str", String ⇒ Int|}|}|} which is a slightly modified

version of the type we defined at the beginning of Section 4, except we replaced the wildcard “ ”

with a domain type. Let us call this union type S. The idea that the (mandatory) field input in the

records of type S is used as a flag to specify the kind of map the record contains. It becomes then

possible to deduce the type S→(integer|nil) for the following function (in pseudo-syntax):

function foo(x : S) =
match x with

| { input = "int" } -> x.[42]
| _ -> x.["42"]

Thematch expression checks whether the field input contains the string "int" and if so it deduces

that x maps integers to integers, otherwise it deduces that it maps strings to integers. Since the

union S is formed by closed record types, trying to select in x anything that is not an integer in the

first branch and that is not a string in the second branch would yield a static type error.

In some languages, like Erlang and Elixir, it is possible to define the union type above. For

instance, in Elixir Typespec’s syntax [Elixir] the type S can be defined as follows:
12

%{input: "str", optional(string)=>integer} | %{input: "int", optional(integer)=>integer}.

However, such types are not actually used (apart from for documentation): Dialyzer [Lindahl and

Sagonas 2004], the current default static analysis tool for Erlang and Elixir ignores them, since it

does not even blink when the function foo above is given type S→(function()) which states

that the result of foo is a function.

Erlang and Elixir allow specifying map types from any type to any type. Thus, it is possible

to define fine-grained map types such as %{1..* =>integer, *..0 => boolean} which maps

positive integers to integers and negative ones to Boolean values (n..m is Elixir notation for the

interval between 𝑛 and𝑚 where * is the symbol for infinite). Since there is no constraint on the

domain of the map, it is possible to define maps in which different fields have overlapping domains,

such as %{1..* => integer, *..5 => boolean}. In case of overlap Typespec states that the leftmost

field has the priority. Clearly this is not compatible with the theory we defined so far (and, more

generally, with the semantic subtyping approach) which disregards the order of the fields. If we

take the declaration face-value and read it at the light of the interpretation we gave so far, the type

12
In Typespec, record types are prefixed by % and are closed (open ones need to specify optional(any)=>any), while basic

types are suffixed with open-closed parentheses—e.g., integer(), string()—: we omitted the latter to enhance readability.
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%{1..* => integer, *..5 => boolean} must be interpreted as the set of records where every field

labeled by a number larger than 1 is either undefined or associated to an integer value, and every

field labeled a number smaller than 5 is ever undefined or associated to a Boolean value. Thus, in

these records every field labeled by a number between 1 and 5 must be undefined, since otherwise

it should be associated to a value that is both an integer and a Boolean, which is impossible. In

other words the type above is equivalent to %{6..* => integer, *..0 => boolean, 1..4 => none}
(none is Typespec’s empty type). We think that an unbridled use of the domains of maps could be

a source of confusion (practical examples of this kind of confusion are discussed in Section 5 on

related work). Therefore, we propose to forbid any overlapping between domains in the same map,

still preserving the possibility for a domain to overlap with single labels, as it was the case with the

maps defined so far. For instance, a type such as the above will be forbidden, but it will be possible

to define the type {{{1 == Int, 2 ⇒ Bool, Int ⇒ String}}} whose records have a mandatory field 1 of

type integer, an optional field 2 of type boolean, and map any integer other than 1 and 2 to a string

(since it is an open record type, these records may contain other fields for non-integer labels). In

other words, we want to allow a record type to specify several fields of the form 𝑡 ⇒ 𝑡 , provided

that the domains that are not singleton have pairwise empty intersections. However, enforcing

distinct domains to have empty intersections is not straightforward. Even if we require that for

each record type atom the domains of its fields do not overlap, this is not enough since the overlap

may take place when we compare, intersect, or union different record types. For instance, simple

maps with just one field definition such as {{{1..∗ ⇒ Int}}} and {{{∗..5⇒ Bool}}} obviously satisfy the

condition, but their intersection is the type {{{1..∗ ⇒ Int, ∗..5⇒ Bool}}}, that is, the very type that

we discussed as being problematic since it has overlapping domains. To avoid this problem we

propose to restrict the domains of maps to be drawn from a predefined fixed set of key-types that
are mutually non overlapping. In practice, this amounts to modify the definition of fields as follows:

Fields 𝑓 ::= ℓ == 𝑡 | ℓ ⇒ 𝑡 | 𝑘 ⇒ 𝑡

Key Types 𝑘 ::= Int | Bool | String | 1×1 | 0→1 | {{{}}} |
where ℓ denotes a value of type L. For the sake of simplicity, we used in the definition of key-types

only three basic types (Int, Bool, and String) but in practice each language will choose some specific

basic types (e.g., in Elixir key-types will also include atom(), the type of all atoms, but only String
in JavaScript). For the sake of the example we also added 1×1 the type of all pairs (introduced in

Section 2.1). What does matter is that all the key-types (different from ) are pairwise disjoint and

that their union is equivalent to L, that is it covers all the admitted record labels.
13
In the case

above if we suppose that we specified in the key-types all basic types, then we also have that the

union of all key-types is equivalent to 1 (i.e., all values can be used as keys for maps, as in Erlang).

As we already hinted, if a field of the form 𝑘 ⇒ 𝑡 is present in a record type, it means that the

records of that type must map every value in 𝑘 other than those already defined in the record type to
a value of type 𝑡 or to be undefined. The presence of a field ⇒ 𝑡 in a record type means that the

records of that type map any value of L not already specified by a field or a key-type in the type to
a value of type 𝑡 or to be undefined. For instance, the record value {1 == true, 2 == 42} has many

possible types among which {{{1 == Bool, Int⇒ Int}}}, {{{Int⇒ Bool, 2 == Int}}}, {{{Int⇒ Int∨Bool, ⇒
String}}}; however it has neither type {{{Int ⇒ Int}}}—since 1 is mapped to a Boolean—, nor type

{{{Int⇒ Bool, Int⇒ Int}}}, since all fields must have non-overlapping left-hand sides.

The approach we propose allows maps from any value (to any value). It is less flexible than

Erlang’s unrestricted approach since, for instance, we cannot define maps from pairs of integers, but

13
Since the union of all key-types is equivalent to L, the presence of “ ” among them constitutes just a convenient syntactic

sugar. We could require that the union of all key types is just contained in L: in that case the presence of “ ” would be

necessary. Here we preferred to consider only the first case since it yields simpler definitions and simpler proofs.
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only maps from pairs of values: {{{1×1⇒ Int}}} but not {{{Int×Int⇒ Int}}} (see however Section 4.5 on

design choices). But it has two important advantages: first, it greatly simplifies the definition and

decision procedure of the subtyping relation since, as we show next, we can reuse all the definitions,

formulas, and algorithms defined so far for records with just minimal modifications; second and

foremost, it eliminates a bunch of ambiguities that overlapping domains would surely generate.

In order to account for these new map types, we have to switch from quasi-constant functions to

the more general quasi K-step functions: these are step functions14 that are constants on a predefined
finite partition K of the domain apart from on a finite set of elements.

In the previous sections, we interpreted record atoms into quasi-constant functions of the form

{[ℓ1 = 𝜏1, ..., ℓ𝑛 = 𝜏𝑛, = 𝜏𝑤]} where the 𝜏𝑖 ’s are of the form 𝑡 or 𝑡∨⊥. The idea now is that the new

record atoms of this section will be interpreted in quasi K-step functions of the form:

{[ℓ1 = 𝜏1, ...ℓ𝑛 = 𝜏𝑛, bool = 𝜏 ′
1
, int = 𝜏 ′

2
, string = 𝜏 ′

3
, prod = 𝜏 ′

4
, arrow = 𝜏 ′

5
, recd = 𝜏 ′

6
]}

denoting the quasi K-step function that maps ℓ𝑖 to 𝜏𝑖 and the key-types Bool, Int, String, etc., in the

respective 𝜏 ′𝑖 ’s. In other words, the “ ” field for the default value that in quasi-constant functions cov-

ered all the keys in L not specified in a type, is in quasi K-step functions partitioned into the various
key-types (6 in our example, forming ourK), whose union yieldsL. For instance, an open record type
such as {{{"a" == Int, String⇒ Bool}}}—which maps the string "a" into integers, any other string into

Boolean values, and does not set any constraint on the remaining keys—, denotes the quasi K-step
function {["a"= Int, bool=1∨⊥, int=1∨⊥, string=Bool∨⊥, prod=1∨⊥, arrow=1∨⊥, recd=1∨⊥]},
while its closed record type counterpart {|{|{|"a" == Int, String⇒ Bool|}|}|} denotes the quasi K-step func-
tion {["a" = Int, bool=⊥, int=⊥, string=Bool∨⊥, prod=⊥, arrow=⊥, recd=⊥]}. In both cases notice

that records of these types map all strings to Boolean values or undefined, except "a" which must be

mapped to an integer. As before thewild-card “ ” key-type, denotes all the other keys not specified in

the record type, but here it is just some syntactic sugar to avoid repeating the fields: e.g., {{{ ⇒ Int}}}
is equivalent to {{{Int⇒ Int,Bool⇒ Int, String⇒ Int, 1×1⇒ Int, 0→1⇒ Int,{{{}}}⇒ Int}}}.15

Extending the previous theory to account for quasi K-step functions requires minimal modifica-

tions. The main difference is that the default value function def (R) now becomes a family of types

indexed over the set of key-types K = {bool, int, string, prod, arrow, recd}. Formally,

Definition 4.6 (Quasi K-step function). Let L denote a set of keys, and K a finite partition of
L (i.e., all 𝑘 ∈ K are pairwise disjoint and L =

⋃
𝑘∈K 𝑘). Let 𝑍 denote some set, a function 𝑟 : L → 𝑍

is a quasi K-step function, if for all 𝑘 ∈ K there exists 𝑧𝑘 ∈ 𝑍 such that the set {ℓ ∈ 𝑘 | 𝑟 (ℓ) ≠ 𝑧𝑘 } is
finite; we denote by dom(𝑟 ) the union of all these finite sets, and by def (𝑟 )𝑘 the element 𝑧𝑘 . We use
L K_ 𝑍 to denote the set of quasi K-step functions from L to 𝑍 .

If K = {𝑘1, ..., 𝑘𝑚} we use the notation {[ℓ1 = 𝑧1, . . . , ℓ𝑛 = 𝑧𝑛, 𝑘1 = 𝑧′
1
, . . . , 𝑘𝑚 = 𝑧′𝑚]} to denote

the quasi K-step function 𝑟 : L K_ 𝑍 defined by 𝑟 (ℓ𝑖 ) = 𝑧𝑖 for 𝑖 = 1..𝑛 and 𝑟 (ℓ) = 𝑧′𝑗 for
ℓ ∈ 𝑘 𝑗∖{ℓ1, . . . , ℓ𝑛} and 𝑗 = 1..𝑚. The universal model for Erlang-style maps is the same as the

one defined in Section 3.2.1 and so is the definition of the binary predicate (𝑑 : 𝑡), with the only

difference that we have 𝑟 ∈ L K_ T⊥ (instead of 𝑟 ∈ L _ T⊥) in the following clause:

({[ℓ1 == 𝜕1, ..., ℓ𝑛 == 𝜕𝑛, == ⊥]}: 𝑟 ) =
(
∀𝑖∈[1..𝑛] . (𝜕𝑖 : 𝑟 (ℓ𝑖 )) or (𝜕𝑖 = ⊥ and ⊥ ≤ 𝑟 (ℓ𝑖 ))

)
and(

∀ℓ ∈ L∖{ℓ1, ..., ℓ𝑛} . ⊥ ≤ 𝑟 (ℓ)
)
.

(21)

If (𝑍ℓ )ℓ∈L is a family of subsets of 𝑍 indexed by L, we denote by K

∏
ℓ∈L 𝑍ℓ the subset of L

K_ 𝑍

formed by all quasi K-step functions 𝑟 such that 𝑟 (ℓ) ∈ 𝑍ℓ for all ℓ ∈ L. Without loss of generality,

14
A step function is a piecewise constant function having only finitely many pieces.

15
We could also use union on key-types to avoid repetition: e.g., {{{Int∨Bool⇒ Int}}} for {{{Int⇒ Int,Bool⇒ Int}}}.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 196. Publication date: August 2023.



196:22 Giuseppe Castagna

we just consider the case in which K contains only infinite sets (since every finite key-type can be

dealt by directly specifying the type of each of its key). Under this hypothesis Lemma 2.3 becomes:

Lemma 4.7 (Map Containment). Let (𝑋𝑝 )𝑝∈𝑃 and (𝑋𝑛)𝑛∈𝑁 be two families of elements of L K_
P(D). Let 𝐿 =

⋃
𝑖∈𝑃∪𝑁 dom(𝑋𝑖 ). Then

(⋂
𝑝∈𝑃 K

∏
ℓ∈L 𝑋𝑝 (ℓ)

)
⊆

(⋃
𝑛∈𝑁 K

∏
ℓ∈L 𝑋𝑛 (ℓ)

)
if and only if

either
⋂

𝑝∈𝑃 def (𝑋𝑝 ) = ∅, or for every map ] : 𝑁 → 𝐿 ∪ K(
∃ℓ∈L .

(⋂
𝑝∈𝑃

𝑋𝑝 (ℓ) ⊆
⋃

𝑛∈𝑁 |] (𝑛)=ℓ
𝑋𝑛 (ℓ)

) )
or

(
∃𝑛◦∈𝑁,𝑘∈K.

(
] (𝑛◦) = 𝑘

)
and

(⋂
𝑝∈𝑃

def (𝑋𝑝 )𝑘 ≤ def (𝑋𝑛◦ )𝑘
) )

Proof. See Appendix C.1 □

The reader whowent through the proof in Appendix C.1 will have noticed that the hypothesis that

every key-type 𝑘 is infinite is actually used. This means that the case of a field such as Bool⇒ Int
must be checked by considering it as syntactic sugar for two fields true⇒ Int and false⇒ Int.

Checking the emptiness of an intersection of the new record atoms and their negation requires

checking the default values component-wise. In particular, to verify the containment of the new

maps it suffices to change the definition of (19) into

Φ(R◦, 𝑁 ∪ {R}) = if ∀𝑘 ∈ K . (def (R◦))𝑘 ≤ (def (R))𝑘
then ∀ℓ ∈ 𝐿 . ( R◦ (ℓ) ≤ R(ℓ) or Φ(R◦ ∧ {{{ℓ : not(R(ℓ))}}}, 𝑁 ) )
else Φ(R◦, 𝑁 )

(22)

Finally, we have to define the type operators for these new maps. Again, we have to make min-

imal modifications with respect to Section 4.1 and 4.2. We can use the same notation for record

atoms as in Definition 4.1, that is, ⎷(𝜏ℓ )ℓ∈𝐿 ; 𝑡0 ; 𝑆 ⌄ but with the restriction that 𝑡0 and the

types in 𝑆 are tuples whose arity is the cardinality of K. In particular, if K = {𝑘1, ..., 𝑘𝑛}, then
⎷(𝜏ℓ )ℓ∈𝐿 ; (𝑡1×...×𝑡𝑛) ; ∅ ⌄ represents the record {{{ℓ1 == 𝜏ℓ1 , ... , ℓ𝑛 == 𝜏ℓ𝑛 , 𝑘1 ⇒ 𝑡1, ..., 𝑘𝑛 ⇒ 𝑡𝑛}}} while
for ⎷(𝜏ℓ )ℓ∈𝐿 ; (𝑡1×...×𝑡𝑛) ; 𝑆 ⌄ every (𝑠1×...×𝑠𝑛) in 𝑆 adds to the type above the constraint “... and

there exists a key-type 𝑘𝑖 and a label ℓ in 𝑘𝑖 ∖ 𝐿 that is mapped into a value of type ¬𝑠𝑖” (since, a
tuple is in the negation of a tuple type, if one of its projections does so). Properties (11–13) and

Theorem 4.2, continue to hold, and so do Lemma 4.4 and Theorem 4.5: it suffices to specialize their

proofs to the case in which the default type and the types in the 𝑆 ’s sets of the atoms are all tuples

of the same arity. In particular, Theorem 4.5 proves the correctness of (22), since this formula is the

specialization of (19) when the default type is a tuple.

Regarding type operators, we have to change the definition of label projection as follows

𝝅 ℓ (𝑡) =
{ ∨

⎷(𝜏𝑚 )𝑚∈𝐿 ; 𝑡0 ; 𝑆 ⌄∈𝜋𝐿
rec (𝑡 ) 𝜏ℓ if ℓ ∈ 𝐿∨

⎷(𝜏𝑚 )𝑚∈𝐿 ; 𝑡0 ; 𝑆 ⌄∈𝜋𝐿
rec (𝑡 ) 𝜋𝑖 (𝑡0)∨⊥ if ℓ ∈ (𝑘𝑖 ∖ 𝐿)

(23)

where 𝜋𝑖 denotes tuple projection. As before, 𝑡 .ℓ is 𝝅 ℓ (𝑡) if 𝝅 ℓ (𝑡)∧⊥ ≃ 0 and is undefined otherwise.

Notice that the definition is well-given, since the 𝑘𝑖 ’s key-types partition the set of labels and if

ℓ ∉ 𝐿, then there exists one and only one 𝑘𝑖 such that ℓ ∈ (𝑘𝑖 ∖ 𝐿).
Regarding map-selection, again, as before we have that 𝑡 .[𝑡 ′] is defined as

∨
ℓ∈𝑡 ′ 𝝅 ℓ (𝑡) if ⊥ ∧∨

ℓ∈𝑡 ′ 𝝅 ℓ (𝑡) ≃ 0 and as nil ∨ (∨ℓ∈𝑡 ′ 𝝅 ℓ (𝑡) ∖ ⊥) otherwise. The only difference is that to express∨
ℓ∈𝑡 ′ 𝝅 ℓ (𝑡) as a finite union we have to pick a random label ℓ̄𝑖 not in 𝐿 for each key-type 𝑘𝑖 .

Finally, while map-deletion does not change (the operator does not use the 𝑡0 parts), the map-

update operator must update the 𝑡0 parts component-wise, that is: let 𝑡 ≤ {{{}}} with dom(𝑡) ⊆ 𝐿 and

𝑡 ′ ≤ L, then 𝑡←⟨[𝑡 ′]=𝑡 ′′⟩ = ∨
⎷(𝜏ℓ )ℓ ∈𝐿 ; (𝑡1×...×𝑡𝑛 ) ; 𝑆 ⌄∈𝜋𝐿

rec (𝑡 )⎷(𝜏 ′ℓ )ℓ∈𝐿 ; (𝑡 ′
1
×...×𝑡 ′𝑛) ; 𝑆 ⌄ where 𝜏 ′ℓ is

𝜏ℓ∨𝑡 ′′ if ℓ ∈ 𝐿 ∧ 𝑡 ′ and is 𝜏ℓ otherwise, and for 𝑖 = 1..𝑛 the type 𝑡 ′𝑖 is 𝑡𝑖 ∨ 𝑡 ′′ if 𝑡 ′ ∧ 𝑘𝑖 ; 0 and 𝑡𝑖
otherwise. Likewise, for the concatenation type operator we can apply the same formula as before,
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that is (15), but where the set-theoretic operations to compute 𝑡3 are intended to be performed on

tuples and computed component-wise.

4.5 Design and variations
The decision of restricting the domains of maps to a predefined set of key-types is both a design

and an implementation choice. It is possible to define a theory for maps with overlapping domains,

but in that case, there would not be any difference between record types and an intersection

of function types whose codomain may contain an undefined value. Indeed, when comparing

two records, we would have to compare mappings with possibly partially overlapping domains,

which would require the level of sophistication used to compare intersections of arrow types. For

example, the type %{1..* => integer, *..0 => boolean} would be akin to the function type

( [1..∗] → Int∨⊥) ∧ ([∗..0] → Bool∨⊥), while its open record type counterpart would correspond

to ( [1..∗] → Int∨⊥) ∧ ([∗..0] → Bool∨⊥) ∧ (¬Int→ 1∨⊥), yielding all the possible ambiguities

we already pointed out (see also Section 5 on related work for examples of such ambiguities in

real-world languages). The advantage of our choice is not only that it avoids all such ambiguities,

but also that it yields a compact representation of records types (i.e., as unions of atoms of the form

⎷(𝜏ℓ )ℓ∈𝐿 ; (𝑡1×...×𝑡𝑛) ; 𝑆 ⌄: see also Remark 4.3), an intuitive implementation of type operators

for records, and a simple and efficient backtracking-free subtyping algorithm, via the function Φ
defined in (22). Last but not least, this solution provides a solid starting point for future work: in

particular, it does not seem conceptually difficult to extend this system with row polymorphism

(though, the technical development looks hard: see Section 6) by adding to the representation of

record types of Theorem 4.2 information about row variables; instead, we do not have a clue about

how this extension could be done if record types were generic intersections of arrow types.

The price to pay is lesser freedom than the one permitted by Erlang’s Typespec syntax for maps

(but freedom that, as far as we know, is used only for documentation purposes, rather than for

performing precise type analysis) and less precise typing of maps resulting to fewer statically-

detected errors—but, without hindering soundness. For instance, in the formulation given in this

section it is not possible to specify that the keys of a given map are, say, only pairs of integers:

statically, we can just enforce that all keys are pairs of values (of any type) and using a pair of

strings is accepted, even if it will always return nil. That said, the theory leaves a lot of margin for

variations.

Key-types partitions. To apply Lemma 4.7 on map containment, we need the set of keys to

be partitioned into a finite number of infinite key-types. This partition must be the same for

the whole program, but nothing prevents us to use different partitions in different programs.

Therefore, this partitioning can be user-defined. Of course, this raises modularity concerns when

combining programs with different partitions. But again, this is a problem of language design and

implementation, not of types. For instance, at the moment of writing we are studying with the

development team of Elixir the possibility of having user-defined partitions for maps whose keys

are tuples. The idea is that the programmer will be allowed to declare the tuple key-types used in

her/his program (e.g., pairs of integers, triplets of a string and two integers,...). Record type atoms

will store in their tuple component a binary tree (instead of a single default type) that represents

the finite partition of the tuple space, and when composing two different programs the subtyping

algorithm will merge the two corresponding trees to compute the meet of the two partitions (finite

partitions form a complete lattice). Once this will be achieved, then we will study how to make

the system infer this partition, without the need for the programmer to declare them, thus making

their use transparent.
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Default values. Another obvious variation that our theory can account for are record expressions

with a default value (which is a feature of Ballerina’s records). For instance, one could allow the

program to initialize the constant part of a record expression, by using the syntax {ℓ1 == 𝑒1, ...ℓ𝑛 ==

𝑒𝑛, _ == 𝑒}. It would then be possible to relax the constraint that fields for (infinite) key-types must be

optional—e.g., {"uno" == 1, "due" == 2, == 0} is a map of type {{{String == Int}}} (notice the mandatory

field in the type). The selection of a string key for a record of this type will then have type Int (rather
than nil∨Int) and we should modify the map-selection operator 𝑡 .[𝑡 ′] to be undefined when the

projection contains ⊥. To obtain the same behavior as before it will suffice to initialize all maps to

{_ == nil}. If we are working with quasi K-step functions, then record expressions could also specify
default values just for some specific key-types, such as in {"uno" == 1, "due" == 2, String == 0}.

Access primitives. Our theory can account for access primitives other than those defined at the

beginning of Section 4. This is the case, for instance, of Elixir’s fetch!(e1,e2) which returns the

value associated to the key returned by e2 in the field of the map returned by e1 and raises an error if

there is no such a field. We see that fetch!() performs a selection that lies between the struct-like

access of 𝑒. and the map-like access of 𝑒.[ ]: as in map-like accesses the key may be the result of an

expression; as in struct-like accesses if the key is absent, then it yields a run-time error. Likewise, the

typing of fetch!() is half-way between the two typing disciplines: as a struct-like access it yields a

static type error if e2 may return a key which is always undefined; as a map-like access it accepts a

selection if e2 will always return a key that may be undefined. For instance, if 𝑒1 : {|{|{|Int⇒ String|}|}|}
and 𝑒2 : 1, then 𝑒1.3 is ill typed, 𝑒1.[3] and 𝑒1.[𝑒2] have both type String∨nil, fetch!(𝑒1, 3) has

type String, fetch!(𝑒1, 𝑒2) is ill-typed, 𝑒1 .["3"] returns a warning, and fetch!(𝑒1, "3") is ill-typed.

The rationale of such a typing discipline is that a typical use of fetch!() in Elixir is to access

maps from references to process identifiers (both being unique internal identifiers) used to monitor

processes: when a process dies, a message with a reference is received and the programmer knows

that this reference must be present in the map, thought it is impossible to statically ensure it; the

absence of such a reference pinpoints a bug in the implementation of monitoring which must thus

raise a run-time error (and not just result in nil); however, trying to access such maps with a key

other than a reference is an error that must be captured at compile time. It is a simple exercise to

use the label projection type operator to define a fetch type operator implementing this discipline.

Selection primitives. Finally, we may want to devise a different type discipline for the selection

operations we already defined. Consider again 𝑒1 : {|{|{|Int⇒ String|}|}|}: we have seen that if 𝑒2 : 1, then
𝑒1.[𝑒2] has type String∨nil. This is sound, since whatever 𝑒2 returns, the result of the selection

will be either a string (i.e., 𝑒2 returns an integer key defined in the result of 𝑒1) or nil (in all

other cases). A warning is issued only if the type of 𝑒2 is contained in ¬Int (since the selection
will have type nil, that is, it will always return nil). However, we may want to implement a

stricter type discipline for map selection and raise an error (or issue a warning) whenever the

type of 𝑒2 is not completely contained in Int. Again, this can be obtained by a straightforward

modification of the 𝑡 .[𝑡 ′] operator in terms of the projection operator given in (23), namely: 𝑡 .[𝑡 ′]
is defined as

∨
ℓ∈𝑡 ′ 𝝅 ℓ (𝑡) if ⊥ ∧

∨
ℓ∈𝑡 ′ 𝝅 ℓ (𝑡) ≃ 0; else as nil ∨ (∨ℓ∈𝑡 ′ 𝝅 ℓ (𝑡) ∖ ⊥) if ∀𝑘 ∈ K and

∀ℓ ∈ (𝑘∧𝑡 ′)∖dom(𝑡), 𝝅 ℓ (𝑡) ≰ ⊥; and undefined otherwise.
16
Likewise, we can modify the second

constraint into ∀𝑘 ∈ K and ∀ℓ ∈ (𝑘∧𝑡 ′)∖dom(𝑡), 1 ≰ 𝝅 ℓ (𝑡) ≰ ⊥ if we want to impose the same

stricter discipline on open maps, too.

In this section, we presented some examples of variations that are possible in our framework; a

few more were discussed in the previous sections, but many others are possible. This same variety

16
Once again, we do not need to check all the labels in (𝑘∧𝑡 ′ )∖dom(𝑡 ) , a single one will suffice.
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can be found among the different definitions and implementations of records to be found in actual

programming languages. The common denominator of all these variations and the core of our

presentation is the interpretation of record values and record types as quasi K-step functions and

sets thereof, together with the various definitions this interpretation yields: the decomposition

of disjunctive normal forms of record types (Lemma 4.7), the backtracking-free implementation

of record subtyping (function Φ and Theorem 4.5), the compact representation of record type

atoms inducing a simple definition of record type projection and concatenation (Theorem 4.2,

and formulas (14), (23), (15), and (16)). The definition of typing rules for the various variations we

discussed and of the type-operators they use play a secondary role, and they are an accessory to

the presentation of the characteristics of the type interpretation and of the variety it permits.

5 RELATEDWORK
It is impossible in the remaining space to give an even approximated overview of the literature

on records and record types. Thus, we limit to list what we consider some important milestone,

acknowledging that the list is far from being complete.

We already recalled in the introduction that records were first proposed in 1965 by C.A.R. Hoare in

a series of papers on “record handling” whose adoption in Simula 67 yielded the concepts of objects

and classes. Cardelli [1984] introduced the basic notions of record types, as intended nowadays,

and the formal study of subtyping. Then, Wand [1987] introduced the concept of row-variables

to solve the type inference problem for records. His system was later refined and shown to have

principal types in [Jategaonkar and Mitchell 1988; Rémy 1989; Wand 1989] thus providing a flexible

integration of record types and Hindley-Milner type systems. Another important milestone is the

work on operations on records by Cardelli and Mitchell [1990] who describe a second-order type

system that incorporates extensible records. They give up type inference and principal typing but

gain in expressiveness: their work opens up the design space of operations on records (e.g., field

extraction, deletion, extension, update, akin to the operations we used here) and row-variables

fall out naturally from second-order type variables. They also identify static typing of record

concatenation as a particularly difficult problem because of label conflicts. Pottier [2000], building

on the work by Rémy [1995], types record concatenation by solving subtyping constraint systems

in which the type “Abs” for undefined fields is separated from all other types, akin to what we did

here by considering the (disjoint) union 𝑡 ∨ ⊥; this union in [Pottier 2000] is denoted by Either 𝑡
and is (meta-theoretically) equivalent to Abs∨ Pre 𝑡 . A categorical model for records (and bounded

polymorphism) was given by Bruce and Longo [1988] whose approach unifies the mathematical

understanding of polymorphic, dependent, and record types. In particular, they interpret records

as indexed products in a PER model, formalizing the idea that record types may be viewed as

dependent types. Interestingly, they stress that a key point of their semantics is its “set-theoretic”

flavor. The view of records as dependent types was put into practice by Chlipala [2010] who

introduces first-class type-level keys and records, making it possible to write record-manipulating

metaprograms and build domain specific languages (e.g., for the development of web applications).

The types for records in all the cited works cover only the struct usage scenario and not the one

for maps (according to the terminology we adopted in this work). Furthermore, none considers

either union or intersection types. The only work that studies records with set-theoretic types

and semantic subtyping is Frisch’s PhD thesis [Frisch 2004], which our work is built upon. Frisch

[2004] interprets records as quasi-constant functions and uses the interpretation to define the

subtyping relation and the decomposition rule to decide it, and to type the calculus with structs we

presented in Section 3. We conservatively extended his work to uniformly type both structs and

maps, including what we called the Erlang-style maps. For the latter, we conservatively extended

both the theory of quasi-constant functions (needed to define the subtyping relation) and the
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internal representation of records types (needed to define and compute the type operators used

in the typing rules). We also formalized for records the backtracking free algorithm—obtained by

adapting the one for product subtyping defined by Frisch [2004]—and proved it sound and complete.

TypeScript and Flow are two popular static type systems on the top of JavaScript that use unions,

intersections, and records types. They use a syntactic approach to subtyping and account for

mutability, which yields a subtyping relation different from the one studied here, therefore our

algorithms do not directly apply to them. Their languages of types can express the mix of structs

and maps in a limited form. For instance, Flow introduces “indexer properties” to type objects with

fields whose keys are not statically known, as exemplified by the listings below:

1 type A = { a: string, [string]: number, ... };
2 type B = { b: number,
3 [c: [string,number]]: number, ... };
4 type C = { [string]:string, ... };
5 const x : A = { a: "ok", b: 42 };
6 const y : A = { a: 42, b: "ok" }; // error

7 const z : B = { b: 3, e: "ok" }; // error
8 const u : A & C = { a: "ok", b: 3 } // error
9 const w : A & C = { a: "ok" } // error
10 function f(x: A & C) {
11 x.e++; x.e=3; x.e="ok"
12 }

The type A (line 1) types records in which label a is mapped to a string and any other label (by

default all labels are strings) is mapped to a number: this is shown by the definition of x (line 5)

which type-checks; trying to associate a to a value that is not a string or b to a value that is not

a number yields a static type error (line 6). Contrary to our approach, indexer properties are not

restricted to a finite set of key-types: this is shown by type B which maps both the label b (line 2)

and pairs of string and numbers (line 3) to numbers.
17
To avoid overlapping key-types, Flow allows

at most one indexer property in a record type, a restriction absent in our system. Indexer properties

work fine in simple cases, but problems arise when types are composed. The notation “...” in the

listing (lines 1 and 3) indicates that the record types are open, but this is overridden by the presence

of an indexer, as shown by the definition of z (line 7), which is statically rejected: since B is open,

then any key other than b or a string-number pair should be allowed to have any type, but Flow

motivates its rejection by the fact that e is not of type [string,number]; if we remove the indexer

(line 3) from the definition of B, then z type-checks. Furthermore, the ambiguity of overlapping

key-types can be reintroduced by using an intersection such as A & C, which ambiguously requires

labels other than a to be mapped both to numbers and to strings. Flow does not permit to build

a value of this type: the definition of u (line 8) fails since 3 is not of type string as required by C;

more surprisingly also w (line 9) also fails, apparently because not compatible with the indexer in C,

which suggests that indexers are not really optional fields. However, Flow allows a type like A & C

to be used contravariantly, with a rather unclear semantics, as the function f (lines 10-12) shows:

the function type-checks (even though no arguments can be defined for it); the two assignments

in its body suggest that the type checker consider x.e to be of type number|string, thus that it

approximated the intersection of the two indexers by their union; however, this is contradicted by

the expression x.e++ which types only if x.e is of type number; even stranger, if we replace x.e++

by x.e.length (which works only for strings), then it is rejected because the type-checker expects e

to be a number as specified in A, thus giving a priority to A over C in the intersection. These examples

show the kind of ambiguities that the system we presented in Section 4.4 is designed to avoid.

Typescript uses a much stricter approach, closer to the one in Section 4.4. It uses the same

syntax as Flow’s indexer properties (there, called indexed signatures) but it imposes two important

restrictions: first, as in our approach, only types from a predefined finite set of types (i.e., string,

number, symbol, or unions of their literals) can be used as key-types; second, if single fields are

present, then their type must refine the indexer type. So while the type A (line 1) will be rejected

17
The c prefixing the tuple type is an optional name used for documentation.
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because declaring a to be of type string is not compatible with the indexer, a type such as { a: string,

[string]: number|string } will be accepted. Indexers can be repeated, but they must obey the same

refinement rules as for single fields. TypeScript provides syntactic sugar for record types with only

one indexer: type C (line 4) can be equivalently written as Record<string,string>. Our approach is

more general, since it imposes no restriction on the types of single fields or of multiple indexers.

Luau [Luau], a gradually typed language by Roblox that recently adopted semantic subtyping [Jef-

frey 2022], uses the same solution as Flow, with more or less the same syntax but lesser problems

and clearer semantics: as Flow, it forbids both multiple indexers and the creation of values in the

intersection A & C (with clearer error messages); it also type-checks a function f with a parameter x

of type A & C (line 10); however, in the body of such a function an expression like x.e is (correctly)

given type number&string, which is why expressions such as x.e++ and x.e.length type check,

while any assignment to x.e is statically flagged as a type error. Another language whose type

system was inspired by semantic subtyping is Julia [Julia], but it provides only struct record types,

while maps are handled by a separate Dict collection. A formalization of Julia type system is given

by [Zappa Nardelli et al. 2018] but it does not cover record types.

Typed Clojure [Bonnaire-Sergeant et al. 2016] is an optional type system with union types and

struct-like record types which essentially behave as the records of Section 3 (without the operations

of concatenation and deletion). The interest of the work is that records are combined with multiple

dispatching and occurrence typing. While the former can be partially simulated by functions with

intersection types and pattern matching (as in Section 3.3), full-fledged occurrence typing for

semantic subtyping requires more sophisticated techniques introduced by Castagna et al. [2022].

Finally, quite recently Xu et al. [2023] proposed a calculus with unions and intersection where

records are built and typed by a merge operator which can be seen as a generalization to all types

of our record type merge operator of Section 2.2.2. The generalization allows the authors to encode

a variety of operations on traits and a rich set of record operators but, as for all formal studies we

cited above, their work covers only the records-as-structs usage scenario.

6 CONCLUSION
The motivation of this work comes from our recent and ongoing collaborations with the develop-

ment teams of two languages, Elixir and Ballerina, aiming at defining new type systems based on

semantic subtyping to be implemented in their compilers. In both cases, an important amount of

time was and is being spent on record types. Although the two languages are quite different, both

needed to type single records uniformly both as maps and as structs in the way presented here. For

this, the typing of records as implemented by the language CDuce and which is based on the theory

of quasi-constant functions by Frisch [2004, Section 9.1] was not enough, and we had to extend and

generalize both the theory and the algorithmic aspects of quasi-constant functions, by devising

the quasi K-step functions we introduced here. For the sake of the presentation, in this article we

recalled some results on records by Frisch [2004], such as the decomposition law of Lemma 2.3, the

properties (11-13), Definition 4.1, and Theorem 4.2: in those cases the original work is explicitly

cited; in all the other cases the results presented here are new. In particular, the function Φ for the

subtyping algorithm of Section 4.3 is a high-level formal specification and a generalization of what

happens in the (highly-optimized) code of the CDuce compiler, and that was never formalized;

the proof of its correctness (Theorem 4.5), thus, is a new result. Also, obviously, everything that

concerns maps (as opposed to structs) is original to this work: the definitions of the type operators

for map-like operations; the generalization of quasi-constant functions into quasi K-step functions;

the derivation of the corresponding decomposition law stated in Lemma 4.7, which generalizes

Lemma 2.3; the generalization of the Φ function to work with quasi K-step functions, and the fact

that the latter are defined so that they preserve all the previous meta-theoretic properties.
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The work presented here lays the foundation to type-check records in Ballerina, Elixir, and, we

hope, other languages, but both for Ballerina and Elixir, the problem of typing records goes well

beyond what we presented here.

For Ballerina, we had to formalize the fact that record fields in Ballerina may be mutable. The

challenging part was that the design principles of Ballerina require the subtyping relation to satisfy

properties at first sight counterintuitive to a functional programmer (immutable pointers can be

used where mutable ones are expected, reference types are covariant, pattern matching disregards

mutability) and this yielded an original and intriguing theory for records with mutable fields that

space constraints did not allow us to present here: the curious reader can find it in Appendix F.

For Elixir, apart from the conundrum of adapting types to its parser (meta-programming in Elixir

heavily restricts the possible syntactic choices for types), an important challenge was to take into

account the pervasive use of guards, which determine the types of functions and case expressions

and whose analysis must be adapted to our record types (see [Castagna et al. 2023]).

Another challenge for Elixir is polymorphism, without which libraries cannot be typed in any

sensible and practical way. While it is possible to graft on Elixir the polymorphic types defined

for semantic subtyping by Castagna et al. [2015, 2014], this is not enough to type even simple

record operations. We leave the reader as an exercise to understand why a definition as simple

as _𝑥._𝑦.(𝑥 +++ {ℓ == 𝑦}) cannot be given type ∀𝛼, 𝛽 . (𝛼 ∧ {{{}}}) → 𝛽 → (𝛼 ∧ {{{ℓ == 𝛽}}}). This would
be unsound (see Appendix E) and the only way we see to type this function—while preserving

the type of all fields of its arguments—is to use row polymorphism [Rémy 1989; Wand 1989] and

to type it as ∀𝛼, 𝛽 .{{{𝛼}}} → 𝛽 → {{{ℓ == 𝛽, 𝛼}}} where 𝛼 is a row variable. This is the reason why

we are currently studying how to combine semantic subtyping and row polymorphism, which is

particularly challenging: polymorphism is added to semantic subtyping by giving a set-theoretic

interpretation of types parametric in the interpretation of their type variables and requiring that

subtyping holds for all possible interpretations of the variables [Castagna and Xu 2011]. But this is

hard with row variables because the meaning of substitutions depends on the context in which they

are applied. For example, if we instantiate a variable 𝛼 by the row “ ⇒Bool”, then the instantiation

will have different meanings if we consider, say {{{𝛼}}} or {{{ℓ == Int, 𝛼}}}, since the instance of the latter
will require ℓ to be defined and mapped to an integer, while in the instance of the former ℓ is either

undefined or bound to a Boolean. Still some intriguing work to cut out.
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APPENDIX

A SUBTYPING DECOMPOSITION FOR ARROWS
The intersection of arrows in (1) is empty if and only if there exists 𝑡 ′

1
→𝑡 ′

2
∈ 𝑁 such that 𝑡 ′

1
≤∨

𝑡1→𝑡2∈𝑃 𝑡1 and for all 𝑃 ′ ⊊ 𝑃 (notice that the containment relation is strict)(
𝑡 ′
1
≤

∨
𝑡1→𝑡2∈𝑃 ′

𝑡1

)
or

( ∧
𝑡1→𝑡2∈𝑃∖𝑃 ′

𝑡2 ≤ 𝑡 ′
2

)
(24)

The correctness of this decomposition is proved by Frisch [2004, Section 4.4].

B TYPE SOUNDNESS
The type soundness of the system in Section 4 can be proved by a routine extension of the inductive

proofs of type preservation and progress of the system of Section 3.

Type preservation is proved by induction on the derivation of the type of the reducendum (cf.

[Frisch et al. 2008, Theorem 5.1]) and a case analysis on the last applied rule. Let us outline how

to extend the proof for the new selection operation introduced in Section 4. If we have that the

derivation of Γ ⊢ 𝑒 : 𝑡 ends by [M-Sel] and 𝑒 { 𝑒′, then we can deduce that Γ ⊢ 𝑒′ : 𝑡 :

• if 𝑒′ is obtained from 𝑒 as a context reduction, then the thesis follows from the induction

hypothesis and the monotony of the type projection operator 𝝅 ℓ ( ) and thus of the map-

selection type operator .[ ];
• if 𝑒′ is obtained by (8), then 𝑒 ≡ {ℓ1 == 𝑣1, ... , ℓ𝑛 == 𝑣𝑛}.[ℓ ′] and 𝑒′ ≡ 𝑣𝑘 if ℓ ′ ≡ ℓ𝑘 for some

𝑘 ∈ [1..𝑛] and 𝑒′ ≡ nil otherwise. Since 𝑒 is well typed, then Γ ⊢ {ℓ1 == 𝑣1, ... , ℓ𝑛 == 𝑣𝑛} : 𝑡1,

Γ ⊢ ℓ ′ : 𝑡2, and 𝑡 = 𝑡1.[𝑡2]. By inversion, we have that 𝑣𝑖 : 𝝅 ℓ𝑖 (𝑡1) for 𝑖 = 1..𝑛 and that 𝝅 ℓ (𝑡1) is
either⊥ or⊥∨1 for ℓ ∈ L∖{ℓ1, ..., ℓ𝑛}. Since ℓ ′ : 𝑡2, then 𝝅 ℓ ′ (𝑡1) ≤

∨
ℓ∈𝑡2

𝝅 ℓ (𝑡1). By definition
of 𝑡1 .[𝑡2], if ℓ ′ ∈ L∖{ℓ1, ..., ℓ𝑛}, then ⊥ ≤

∨
ℓ∈𝑡2

𝝅 ℓ (𝑡1) and therefore nil ≤ 𝑡 and the thesis

follows from 𝑒′ ≡ nil. Otherwise 𝑒′ ≡ 𝑣𝑘 : 𝝅 ℓ𝑘 (𝑡1) ≤ (
∨

ℓ∈𝑡2

𝝅 ℓ (𝑡1) ∖ ⊥) ≤ 𝑡 .

For progress, we prove that if 𝑒 is closed and ⊢ 𝑒 : 𝑡 then either 𝑒 is a value or it can be reduced. The

proof is an extension of the proof of [Frisch et al. 2008, Theorem 5.12] and is done by induction on

the derivation of ⊢ 𝑒 : 𝑡 . The cases for the rules [M-Sel] and [M-Del] are both straightforward and

follow the pattern of the rule for pair projection in the proof of [Frisch et al. 2008, Theorem 5.12].

C MAP CONTAINMENT
C.1 Proof of Lemma 4.7
We consider two cases. If the cardinality of K is 1, then it means that K = { }, that is, K is the

singleton that contains only the wildcard that represents L. In this case it is immediate to see that

the statement of the Lemma coincides with the one of Lemma 2.3 and hence it holds.

If the cardinality of K is strictly greater than 1 then we have K = {𝑘1, ..., 𝑘𝑚} with𝑚 > 1. We

can see a quasi K-step function 𝑟 : L → 𝑍 on K as a finite product. Let 𝐿
𝑐
_ 𝑍 denote the set of

constant functions from 𝐿 to 𝑍 , that is the set of all functions 𝑓 : 𝐿 → 𝑍 , such that 𝑓 (ℓ) = 𝑓 (ℓ ′)
for all ℓ, ℓ ′ ∈ 𝐿. A quasi K-step function 𝑟 in L K_ 𝑍 can then be identified as an element of the

following product

(
∏

ℓ∈dom(𝑟 )
𝑍 ) × ((𝑘1∖dom(𝑟 ))

𝑐
_ 𝑍 ) × ... × ((𝑘𝑚∖dom(𝑟 ))

𝑐
_ 𝑍 )

For instance the function {[ℓ1 = 𝑧1, . . . , ℓ𝑛 = 𝑧𝑛 , 𝑘1 = 𝑧′
1
, . . . , 𝑘𝑚 = 𝑧′𝑚]} corresponds to the product

(∏ℓ∈{ℓ1,...,ℓ𝑛 } 𝑓 (ℓ)) × 𝑟1 × ... × 𝑟𝑚 where 𝑓 (ℓ𝑖 ) = 𝑧𝑖 (for 𝑖 = 1..𝑛) and 𝑟𝑖 is the constant function that
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maps all labels in 𝑘𝑖∖{ℓ1, ..., ℓ𝑛} into 𝑧′𝑖 . Notice that this holds true for any quasi K-step function

whose domain is contained in {ℓ1, ..., ℓ𝑛}. In other words, given a finite set 𝐿 ⊂ L every quasi K-step
function 𝑟 : L K_ 𝑍 for which dom(𝑟 ) ⊆ 𝐿 holds, can be identified to an element of the product

(
∏
ℓ∈𝐿

𝑍 ) × ((𝑘1∖𝐿)
𝑐
_ 𝑍 ) × ... × ((𝑘𝑚∖𝐿)

𝑐
_ 𝑍 )

We have thus reduced the problem of inclusion in the statement of the lemma to the problem

of inclusion between an intersection and a union of finite Cartesian products of the form above.

Formula (2) solves the problem for products of arity 2, by considering all partitions of the set 𝑁

over the two projections of the products (𝑁 ′ for the first and 𝑁∖𝑁 ′ for the second). The formula in

the statement of the lemma generalizes formula (2) to products of arity 𝑛 (where 𝑛 is the cardinality

of 𝐿 ∪ K) by considering all partitions of 𝑁 over the set 𝐿 ∪ K (i.e., all mappings ] in 𝑁 → (𝐿 ∪ K):
see Appendix D for an explanation). For the first components of the product, it applies the same

check as in (2), which yields the(
∃ℓ∈L .

(⋂
𝑝∈𝑃

𝑋𝑝 (ℓ) ⊆
⋃

𝑛∈𝑁 |] (𝑛)=ℓ
𝑋𝑛 (ℓ)

) )
part of the formula. For the last𝑚 components it applies a different formula which checks the

inclusion between an intersection and a union of function spaces all with the same domain; in

particular, for a given ] it checks whether there exists 𝑘 ∈ K such that⋂
𝑝∈𝑃
((𝑘∖𝐿) → def(𝑋𝑝 )𝑘 ) ⊆

⋃
𝑛∈𝑁 𝑗

((𝑘∖𝐿) → def(𝑋𝑛)𝑘 )

where 𝑁𝑘 = {𝑛∈𝑁 | ] (𝑛) = 𝑘}. We can thus apply the decomposition rule for arrows as defined

by Frisch et al. [2008, Section 6.2] (i.e., formula (24) in Appendix A) which, since in this case all the

arrows have the same domain 𝑘∖𝐿, becomes:

∃𝑛◦ ∈ 𝑁𝑘 .∀𝑃 ′ ⊊ 𝑃 .
©«(𝑘∖𝐿) ⊆

⋃
𝑝∈𝑃 ′
(𝑘∖𝐿)ª®¬ or ©«

⋂
𝑝∈𝑃∖𝑃 ′

def(𝑋𝑝 )𝑘 ⊆ def(𝑋𝑛◦ )𝑘
ª®¬

Also notice that the left-hand side of the or’s above all have the form (𝑘∖𝐿) ⊆ ⋃
𝑝∈𝑃 ′ (𝑘∖𝐿), which

always holds except when 𝑃 ′ = ∅, for which the containment is false (since it is equivalent to

requiring 𝑘∖𝐿 to be empty which is impossible since 𝑘 is infinite and 𝐿 is always finite). Thus, in

the formula above what needs to be checked is only the right-hand side of the or for 𝑃 ′ = ∅, that is,
∃𝑛◦ ∈ 𝑁𝑘 .

⋂
𝑝∈𝑃 def(𝑋𝑝 )𝑘 ⊆ def(𝑋𝑛◦ )𝑘 which, by the definition of 𝑁𝑘 , yields the second part of

the formula of the statement, that is:(
∃𝑛◦∈𝑁,𝑘∈K.

(
] (𝑛◦) = 𝑘

)
and

(⋂
𝑝∈𝑃

def (𝑋𝑝 )𝑘 ≤ def (𝑋𝑛◦ )𝑘
) )

D TUPLE SUBTYPING
In this section we are going to show how to generalize the subtyping decomposition (2) for the case

of tuples. Let us first show how it works with triplets. In particular, we want to determine when∧
(𝑠1, 𝑠2, 𝑠3)∈𝑃

(𝑠1 , 𝑠2, 𝑠3) ∧
∧

(𝑡1, 𝑡2, 𝑡3)∈𝑁
¬(𝑡1 , 𝑡2, 𝑡3) (25)

is empty. The generalization of formula (2) is then defined as follows. The type in (25) is empty if

and only if:
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For all pairwise disjoint (and possibly empty) sets 𝑁1, 𝑁2, 𝑁3 such that 𝑁1 ∪ 𝑁2 ∪ 𝑁3 = 𝑁( ∧
(𝑠1, 𝑠2, 𝑠3)∈𝑃

𝑠1 ≤
∨

(𝑡1, 𝑡2, 𝑡3)∈𝑁1

𝑡1

)
or

( ∧
(𝑠1, 𝑠2, 𝑠3)∈𝑃

𝑠2 ≤
∨

(𝑡1, 𝑡2, 𝑡3)∈𝑁2

𝑡2

)
or

( ∧
(𝑠1, 𝑠2, 𝑠3)∈𝑃

𝑠3 ≤
∨

(𝑡1, 𝑡2, 𝑡3)∈𝑁3

𝑡3

)
(26)

holds. Why? In a nutshell because

¬(𝑡1 , 𝑡2, 𝑡3) ∧ (1 , 1,1) = (¬𝑡1 , 1, 1) ∨ (1 ,¬𝑡2, 1) ∨ (1 ,1,¬𝑡3) (27)

and therefore ∧
(𝑡1, 𝑡2, 𝑡3)∈𝑁

¬(𝑡1 , 𝑡2, 𝑡3) (28)

becomes an intersection of the union of three different sets: we distribute intersections over unions

and factorize the summands that have 1 in the same position. More precisely, we just consider

the case in which 𝑃 is not empty (otherwise the emptiness of (26) cannot hold) and that all 𝑠𝑖 ’s

are not empty (otherwise the emptiness of (26) is trivial). Since we are intersecting the negated

products with at least one product then we can also consider just their product parts, whence the

intersection with (1 ,1, 1) in (27).

We want to expand (28) into a union by distributing intersections over the unions shown in (27).

For that it may be simpler to think of intersections as multiplications and unions as sums. We are

thus trying to expand a multiplication of the form∏
𝑖∈𝑁
(𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 )

where 𝑎, 𝑏 and 𝑐 have the form (¬𝑡1 , 1, 1), (1 ,¬𝑡2,1), and (1 , 1,¬𝑡3) respectively.

Now if the cardinality of 𝑁 is, say 2, we have

(𝑎1 + 𝑏1 + 𝑐1) (𝑎2 + 𝑏2 + 𝑐2) = 𝑎1𝑎2 + 𝑎1𝑏2 + 𝑎1𝑐2 + 𝑏1𝑎2 + 𝑏1𝑏2 + 𝑏1𝑐2 + 𝑐1𝑎2 + 𝑐1𝑏2 + 𝑐1𝑐2

That is, it is the sum of all products of 2 factors obtained by choosing either 𝑎1 or 𝑏1 or 𝑐1 for the

first and 𝑎2 or 𝑏2 or 𝑐2 for the second. Since we are working with positive numbers we have that

the sum is zero if and only if all products are zero, that is, for all mapping ℎ : 1, 2→ {𝑎, 𝑏, 𝑐} we
must have ℎ(1)1ℎ(2)2 = 0. If the cardinality of 𝑁 is more than 2, say 𝑛, then we will obtain a sum

of products of 𝑛 factors, obtained by picking some summand in each sum in 𝑁 . That is, if 𝑛 is the

cardinality of 𝑁 ∏
𝑖∈𝑁
(𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 ) =

∑︁
ℎ:{1..𝑛}→{𝑎,𝑏,𝑐 }

ℎ(1)1 · ... · ℎ(𝑛)𝑛

In other words we considered all partitions of 𝑁 in three sets (that in formula (26) we called

𝑁1, 𝑁2, 𝑁3) which tell for each element in 𝑁 whether to take as factor the first, second, or third

summand of the element.

In the specific case we are considering, the set in which a triple (𝑡1 , 𝑡2, 𝑡3) of 𝑁 is mapped into,

tells us whether we have to take as factor (¬𝑡1 , 1, 1), (1 ,¬𝑡2, 1), or (1 ,1,¬𝑡3). And clearly

this multiplication (intersection) can be further simplified into a single set-theoretic product by

intersecting the factors component-wise. That is, in our case the elements of the sum (union) will

be of the following form:( ∧
(𝑡1, 𝑡2, 𝑡3)∈𝑁1

¬𝑡1 ,
∧

(𝑡1, 𝑡2, 𝑡3)∈𝑁2

¬𝑡2 ,
∧

(𝑡1, 𝑡2, 𝑡3)∈𝑁3

¬𝑡3

)
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therefore we have that (28) is equivalent to∨
∀𝑁1,𝑁2,𝑁3 partition of 𝑁

( ∧
(𝑡1, 𝑡2, 𝑡3)∈𝑁1

¬𝑡1 ,
∧

(𝑡1, 𝑡2, 𝑡3)∈𝑁2

¬𝑡2 ,
∧

(𝑡1, 𝑡2, 𝑡3)∈𝑁3

¬𝑡3

)
(29)

From this and from the observation that∧
(𝑠1, 𝑠2, 𝑠3)∈𝑃

(𝑠1 , 𝑠2, 𝑠3) = (
∧

(𝑠1, 𝑠2, 𝑠3)∈𝑃
𝑠1 ,

∧
(𝑠1, 𝑠2, 𝑠3)∈𝑃

𝑠2,
∧

(𝑠1, 𝑠2, 𝑠3)∈𝑃
𝑠3 )

it is easy to deduce (26) (just distribute the outer intersection over the union (29) and check

emptiness component-wise).

Finally, notice that what the formula (26) does is to generate all possible partitions of 𝑁 into

three sets.

Considering all possible partitions of 𝑁 into three sets is equivalent to consider all possible (total)

functions from 𝑁 to {1, 2, 3}.
So an equivalent way to write (26) is the following:

For all ℎ : 𝑁 → {1, 2, 3}

©«
∧

(𝑠1, 𝑠2, 𝑠3)∈𝑃
𝑠1 ≤

∨
ℎ ((𝑡1, 𝑡2, 𝑡3))=1

𝑡1
ª®¬ or ©«

∧
(𝑠1, 𝑠2, 𝑠3)∈𝑃

𝑠2 ≤
∨

ℎ ((𝑡1, 𝑡2, 𝑡3))=2

𝑡2
ª®¬ or ©«

∧
(𝑠1, 𝑠2, 𝑠3)∈𝑃

𝑠3 ≤
∨

ℎ ((𝑡1, 𝑡2, 𝑡3))=3

𝑡3
ª®¬ (30)

holds (where the unions are on all (𝑡1, 𝑡2, 𝑡3) such that ℎ((𝑡1, 𝑡2, 𝑡3)) = 𝑖 for 𝑖 = 1, 2, 3 ... sorry for

the ugly abbreviation).

And again equivalently:

For all ℎ : 𝑁 → {1, 2, 3}, there exists 𝑖 ∈ {1, 2, 3} such that:

©«
∧

(𝑠1, 𝑠2, 𝑠3)∈𝑃
𝑠𝑖 ≤

∨
ℎ ((𝑡1, 𝑡2, 𝑡3))=𝑖

𝑡𝑖
ª®¬ (31)

holds.

Now it is very easy to generalize the last formulation to the case of tuples of 𝑛 arity. We have that∧
(𝑠1, ..., 𝑠𝑛)∈𝑃

(𝑠1 , ..., 𝑠𝑛) ∧
∧

(𝑡1, ..., 𝑡𝑛)∈𝑁
¬(𝑡1 , ..., 𝑡𝑛) (32)

is empty if and only if for all ℎ : 𝑁 → [1..𝑛], there exists 𝑖 ∈ [1..𝑛] such that:

©«
∧

(𝑠1, ..., 𝑠𝑛)∈𝑃
𝑠𝑖 ≤

∨
ℎ ((𝑡1, ..., 𝑡𝑛))=𝑖

𝑡𝑖
ª®¬ (33)

holds.

E SOLUTION TO THE EXERCISE IN SECTION 6
Typing _𝑥 ._𝑦.(𝑥 +++ {ℓ == 𝑦}) by ∀𝛼, 𝛽 . (𝛼 ∧ {{{}}}) → 𝛽 → (𝛼 ∧ {{{ℓ == 𝛽}}}) is unsound. If the function
had this type, then the following application (_𝑥 ._𝑦.(𝑥 +++ {ℓ == 𝑦})) {ℓ == 42} true could be typed by
instantiating 𝛼 to {{{ℓ == Int}}} and 𝛽 to Bool. In this way, we would have deduced that the application

has type {{{ℓ == Int}}} ∧ {{{ℓ == Bool}}}, that is, 0. Therefore, we would have deduced that the result of

the application, {ℓ == 42}, has type 0 and thus, by subsumption, any possible type.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 196. Publication date: August 2023.



Typing Records, Maps, and Structs 196:35

F MUTATION
Records and mutations are often intertwined, especially in dynamic languages. In JavaScript, for

instance, every field is highly mutable: it can be added, modified, erased. Some languages introduce

a more controlled way of mutating: in Ballerina, lists and records are by default mutable but only

within certain limits established by the type statically declared for them (fields can be declared

to be readonly and there are ways to transform mutable fields into readonly ones and viceversa);

in Julia, it is exactly the opposite since records (i.e., composite types) are immutable by default

(even if their fields can contain mutable values) but they can be declared mutable. Some functional

languages introduce mutation via records: in OCaml a value of type ref int is a record with a

field contents that contains an integer, that is, a record of type {contents: int}; in CDuce a

value of type ref int is also a record, but with two fields instead, get (to read the location) and

set (to write the location), that is a record of type {set: int -> (), get: () -> int}, since
this directly enforces the classic invariant subtyping relation for reference types (see below).

In this section we define a unified theory of mutable locations that encompasses such different

type discipline as those defined for OCaml/CDuce references and those for Ballerina locations,

and then embed them in the record/map theory of the previous sections to type the structures of

Ballerina and similar languages. In particular, we define a unique framework in which we will be

able to interpret both the classic invariant mutable reference types that can be found in Rust or

CDuce and the mutable record types of Ballerina. These constitute two extreme points in the design

space for subtyping mutable locations. On one end of this design spectrum, invariant references

form a stricter discipline with stronger static safety guarantees, but they break subtyping insofar

as invariance is the only possible subtyping relation. On the other end of the spectrum there is

Ballerina, whose design principles require the subtyping relation to satisfy properties at first sight

counter-intuitive for a functional programmer (immutable pointers can be used where mutable

ones are expected, reference types are covariant, pattern matching disregards mutability). We will

see the details of it later on.

F.1 A theory of locations
The most general way to implement the ideas above is to add locations. Here we develop a general

theory of locations and then show how to use it to interpret Ballerina’s mutable structures and

classic invariant reference types.

We imagine a notion of location as a cell containing a value 𝑣 and which comes with two sets:

a set 𝑋1 of values that can be read from it, and a set 𝑋2 of values that can be written to it. These

two sets are used to drive the semantics of writes into the cell. We can for instance design the

operational semantics such that if we try to write a value 𝑣 in it, it simply discards it if 𝑣 ∉ 𝑋1; if

𝑣 ∉ 𝑋2, then either we can make the runtime raise an exception (as in Ballerina or the JVM) or

design the type system so that it statically ensures that such a situation will never happen (as in

languages with invariant reference types like Rust or CDuce). When 𝑋2 = ∅, then the location is

readonly: we can read values from it but we cannot write any. The need of the two distinct sets is

to avoid the paradoxes explained by Frisch et al. [2008, Appendix A].

If we interpret values as elements of a certain domain D, then a location is interpreted as a

triple (𝑑,𝑋1, 𝑋2) ∈ D × P(D) × P(D). Next we define some types to capture some specific sets

of locations. In what follows, we distinguish two different kinds of types: the classic invariant

reference types (as formalized by Frisch et al. [2008, Appendix A.2]) and Ballerina’s structures

components (i.e., the content of Ballerina tuples, arrays, maps, records, and tables). In Ballerina,

we will consider location types of the form loc(𝑡, 𝑏) where 𝑡 is a type and 𝑏 is a flag set to 1 for
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mutable locations and set to 0 for readonly locations. For classic invariant reference types we will

use ref (𝑡).
Let 𝑋 ⊆ D, we define the following operators that return a subset of D × P(D) × P(D):

ref (𝑋 ) = {(𝑑,𝑋1, 𝑋2) | 𝑑 ∈ 𝑋1 ⊆ 𝑋 ⊆ 𝑋2}

loc(𝑋, 1) = {(𝑑,𝑋1, 𝑋2) | 𝑑 ∈ 𝑋,𝑋1 ∪ 𝑋2 ⊆ 𝑋 }
loc(𝑋, 0) = {(𝑑,∅,∅) | 𝑑 ∈ 𝑋 }

Intuitively, we would like to define the interpretation of types so that Jref (𝑡)K = ref (J𝑡K) and
Jloc(𝑡, 𝑏)K = loc(J𝑡K, 𝑏). However, as it is the case for function spaces, for cardinality reasons it is

not possible to have D ⊆ D×P(D)×P(D). Thus, we proceed as for function spaces and define a

second interpretation E(.), called the extensional interpretation, and say that an interpretation is

a model if and only if for all types 𝑡 we have J𝑡K = ∅ ⇐⇒ E(𝑡) = ∅ (see [Frisch et al. 2008] for

details).

The extensional interpretations of types loc(𝑡, 𝑏) and ref (𝑡) are respectively defined as:

E(ref (𝑡)) = ref (J𝑡K)
E(loc(𝑡, 𝑏)) = loc(J𝑡K, 𝑏)

We use 1loc to denote the type of all locations, that is the type whose interpretation is J1locK =

D × P(D) × P(D). As usual, every type that contains only locations—i.e., every subtype of

1loc—can be expressed as a disjunctive normal form, that is, a union of intersections of loc(. , .)
atoms (respectively, ref (.) atoms) and of their negations. Determining subtyping then is equivalent

to determining the emptiness of the intersections that form the union of a disjunctive normal form.

The way to compute this is given by the two following lemmas:

Lemma F.1 ([Frisch et al. 2008]). Let (𝑋𝑖 )𝑖∈𝑃 and (𝑌𝑗 ) 𝑗∈𝑁 be two families of subsets of D. Then:⋂
𝑖∈𝑃

ref(𝑋𝑖 ) ⊆
⋃
𝑗∈𝑁

ref(𝑌𝑗 )

⇐⇒(⋂
𝑖∈𝑃

𝑋𝑖 = ∅
)
or

(
∃ 𝑗 ∈ 𝑁 .

⋂
𝑖∈𝑃

𝑋𝑖 ⊆ 𝑌𝑗 ⊆
⋃
𝑖∈𝑃

𝑋𝑖

)
Proof. The ⇐ implication is straightforward. For the opposite direction, we assume that⋂
𝑖∈𝑃 ref (𝑋𝑖 ) ⊆

⋃
𝑗∈𝑁 ref (𝑌𝑗 ) and

⋂
𝑖∈𝑃 𝑋𝑖 ≠ ∅. We define𝑍1 as

⋂
𝑖∈𝑃 𝑋𝑖 and𝑍2 as

⋃
𝑖∈𝑃 𝑋𝑖 . We pick

an element 𝑑 from 𝑍1, which is not empty by hypothesis. The triple (𝑑, 𝑍1, 𝑍2) is in
⋂

𝑖∈𝑃 ref (𝑋𝑖 ),
and thus, by hypothesis, also in

⋃
𝑗∈𝑁 ref (𝑌𝑗 ). This gives a 𝑗 such that (𝑑, 𝑍1, 𝑍2) is in ref (𝑌𝑗 ) and

the rest of the proof follows easily. □

It is easy to see that for the above interpretation we have ref (𝑡1) ≤ ref (𝑡2) ⇔ (𝑡1 ≤ 0) or (𝑡1 ≃
𝑡2): the interpretation generalizes the classic invariant subtyping for reference types to type system

with empty type.
18

Lemma F.2. (𝑋𝑖 )𝑖∈𝑃 and (𝑏𝑖 )𝑖∈𝑃 be two families of subsets of D and of 0 or 1, respectively. Then:⋂
𝑖∈𝑃

loc(𝑋𝑖 , 𝑏𝑖 ) ≃ loc(⋂𝑖∈𝑃 𝑋𝑖 ,min𝑖∈𝑃 𝑏𝑖 )

18
Formally, ref (𝑡1 ) ≤ ref (𝑡2 ) ⇔ Jref (𝑡1 )K ⊆ Jref (𝑡2 )K ⇔ Jref (𝑡1 )∧¬ref (𝑡2 )K = ∅ ⇔ E(ref (𝑡1 )∧¬ref (𝑡2 ) ) =

∅ ⇔ E(ref (𝑡1 ) ) ∩ (D∖E(ref (𝑡2 ) ) ) = ∅ ⇔ ref (J𝑡1K) ∩ (D∖ref (J𝑡2K) ) = ∅ ⇔ ref (J𝑡1K) ⊆ ref (J𝑡2K) ⇔ (J𝑡1K =

∅) or (J𝑡1K = J𝑡2K) ⇔ (𝑡1 ≤ 0) or (𝑡1 ≃ 𝑡2 ) .
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Proof. Straightforward.

Lemma F.3. Let (𝑋𝑖 )𝑖∈𝑃 and (𝑌𝑗 ) 𝑗∈𝑁 be two families of subsets of D and (𝑏𝑖 )𝑖∈𝑃 and (𝑏′𝑗 ) 𝑗∈𝑁 two
families of flags with value in {0, 1}. Then:⋂

𝑖∈𝑃
loc(𝑋𝑖 , 𝑏𝑖 ) ⊆

⋃
𝑗∈𝑁

loc(𝑌𝑗 , 𝑏
′
𝑗 )

⇐⇒(⋂
𝑖∈𝑃

𝑋𝑖 = ∅
)
or

(
min

𝑖∈𝑃
𝑏𝑖 = 0 and

⋂
𝑖∈𝑃

𝑋𝑖 ⊆
⋃
𝑗∈𝑁

𝑌𝑗

)
or

(
∃ 𝑗 ∈ 𝑁 .

⋂
𝑖∈𝑃

𝑋𝑖 ⊆ 𝑌𝑗 and 𝑏′𝑗 = 1

)
Proof. The⇐ implication is straightforward.

For the opposite direction, it is immediate to deduce from Lemma F.2 that

⋂
𝑖∈𝑃 𝑋𝑖 = ∅ im-

plies

⋂
𝑖∈𝑃 loc(𝑋𝑖 , 𝑏𝑖 ) = ∅ and, thus, the result. Therefore, we assume that

⋂
𝑖∈𝑃 loc(𝑋𝑖 , 𝑏𝑖 ) ⊆⋃

𝑗∈𝑁 loc(𝑌𝑗 , 𝑏
′
𝑗 ) and

⋂
𝑖∈𝑃 𝑋𝑖 ≠ ∅. By Lemma F.2 we can distinguish two cases.

Either min𝑖∈𝑃 𝑏𝑖 = 0, in which case we know that all elements of

⋂
𝑖∈𝑃 loc(𝑋𝑖 , 𝑏𝑖 ) have the form

(𝑑,∅,∅) with 𝑑 ∈ ⋂
𝑖∈𝑃 𝑋𝑖 . By hypothesis (𝑑,∅,∅) ∈

⋃
𝑗∈𝑁 loc(𝑌𝑗 , 𝑏

′
𝑗 ). Now it is easy to see that an

element of the form (𝑑,∅,∅) belongs to loc(𝑌𝑗 , 𝑏
′
𝑗 ) if and only if 𝑑 ∈ 𝑌𝑗 . Therefore, we deduce that

for every 𝑑 ∈ ⋂
𝑖∈𝑃 𝑋𝑖 there exists 𝑗 ∈ 𝑁 such that 𝑑 ∈ 𝑌𝑗 and we conclude that

⋂
𝑖∈𝑃 𝑋𝑖 ⊆

⋃
𝑗∈𝑁 𝑌𝑗 .

Or min𝑖∈𝑃 𝑏𝑖 = 1. In that case we define 𝑍 as

⋂
𝑖∈𝑃 𝑋𝑖 and pick an element 𝑑 from 𝑍 which is not

empty by hypothesis. Then the triple (𝑑, 𝑍, 𝑍 ) is in ⋂
𝑖∈𝑃 loc(𝑋𝑖 , 𝑏𝑖 ), and thus, by hypothesis, also

in

⋃
𝑗∈𝑁 loc(𝑌𝑗 , 𝑏

′
𝑗 ) which gives a 𝑗 such that (𝑑, 𝑍, 𝑍 ) is in loc(𝑌𝑗 , 𝑏

′
𝑗 ), with 𝑏′𝑗 = 1 since 𝑍 is not

empty.

□

As before, it is easy to see that by the lemma above we have 𝑡1 ≤ 𝑡2 ⇔ loc(𝑡1, 0) ≤ loc(𝑡2, 0) ⇔
loc(𝑡1, 0) ≤ loc(𝑡2, 1) ⇔ loc(𝑡1, 1) ≤ loc(𝑡2, 1). Therefore, in Ballerina, locations are covariant and

readonly locations can be used where writable ones are expected. Both facts may seem at first

surprising, but we explain their rationale in Section F.1.1. More generally we have, loc(𝑡1, 𝑏1) ≤
loc(𝑡2, 𝑏2) ⇔ (𝑡1 ≤ 0) or (𝑡1 ≤ 𝑡2 and 𝑏1 ≤ 𝑏2).

To handle locations we extend our calculus with the following constructions:

𝑒 ::= . . . | !𝑒 | (𝑒 := 𝑒) | cell𝑡1,𝑡2
𝑒

𝑣 ::= . . . | cell𝑡1,𝑡2
𝑣

The expressions !𝑒 and (𝑒 := 𝑒) are for dereferencing and assignment, while cell𝑡1,𝑡2
𝑒 is an

expression that defines a cell that contains the value resulting from the evaluation of 𝑒 and that

declares to return values of type 𝑡1 for reading and to accept values of type 𝑡2 for writing. The

intuition for the corresponding cell value is the one that we explained before, that is, the value

cell𝑡1,𝑡2
𝑣 is a cell in that contains a value 𝑣 , which refuses write operations of values not in 𝑡2, and

which silently discards writes of values not in 𝑡1. The expression !𝑒 returns the value stored in

the cell returned by 𝑒; the expression 𝑒1 := 𝑒2 stores the value returned by 𝑒2 in the cell cell𝑡1,𝑡2
𝑣

returned by 𝑒2 provided that this value is both of type 𝑡1 (otherwise it silently discards it), and of

type 𝑡2 (otherwise its semantics is undefined). This is formalized by the following definition of

the operational semantics, which rewrites a pair formed by an expression 𝑒 and a store 𝜍 (i.e., a

mapping from memory locations—ranged over by `— to values) into a new pair and where we use

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 196. Publication date: August 2023.



196:38 Giuseppe Castagna

() as result for assignments:

cell𝑡1,𝑡2
𝑣 ; 𝜍 { `; 𝜍{` ↦→ cell𝑡1,𝑡2

𝑣} with ` ∉ dom(𝜍)
!`; 𝜍 { 𝑣 ; 𝜍 if 𝜍 (`) = cell𝑡1,𝑡2

𝑣

` := 𝑣 ; 𝜍 { (); 𝜍{` ↦→ cell𝑡1,𝑡2
𝑣} if 𝜍 (`) = cell𝑡1,𝑡2

𝑣 ′ and 𝑣 : 𝑡1 ∨ 𝑡2
` := 𝑣 ; 𝜍 { (); 𝜍 if 𝜍 (`) = cell𝑡1,𝑡2

𝑣 ′ and 𝑣 : 𝑡2 ∖ 𝑡1

Notice that the semantics of writing a value 𝑣 into a cell cell𝑡1,𝑡2
𝑣 ′ is undefined when 𝑣 is not of

type 𝑡2. In general, it should be the task of the type system to statically ensure that such a situation

cannot happen, but in Ballerina this is accepted: the validity of each write is dynamically checked,

and any violation generates an error, that is, roughly:

` := 𝑣 ; 𝜍 { error; 𝜍 if 𝜍 (`) = cell𝑡1,𝑡2
𝑣 ′ and 𝑣 : ¬𝑡2

The semantic intuition underlying the definition of the new values is that, if 𝑣 denotes some

element 𝑑 , then cell𝑡1,𝑡2
𝑣 denotes the element (𝑑, J𝑡1K, J𝑡2K).

The definition of the typing rules depends on the kind of locations we are working with.

Let us start with the classic reference types. The first problem to solve is to define the typing of

the cell expressions. Intuitively, we would like to have the following rule:

Γ ⊢ 𝑒 : 𝑡1 𝑡1 ≤ 𝑡 ≤ 𝑡2

Γ ⊢ cell𝑡1,𝑡2
𝑒 : ref (𝑡)

that is, the expression 𝑒 must return a value that is in the “read-type” 𝑡1, in which case the expression

can be considered to be of type ref (𝑡) as long as we have 𝑡1 ≤ 𝑡 ≤ 𝑡2. This rule allows the system

to deduce for the same expression different reference types (i.e., all reference types whose type is

included between the type for reads and the type for writes of the cell expression). The intersection

rule, then deduces for the expression the intersection of the different types. In semantic subtyping

the intersection rule is not included in the system: it is an admissible rule, thanks to the fact that

intersections are accounted for in introduction rules (notably, when typing _-abstractions). Not

only: the theoretical framework also wants that the expression cell𝑡1,𝑡2
𝑒 has type ref (𝑡) if and only

if 𝑡1 ≤ 𝑡 ≤ 𝑡2; otherwise, following the semantic subtyping approach with function types, it should

have type ¬ref (𝑡). As a consequence, in order to preserve the admissibility of the intersection rule,

the rule for cells with classic reference types is:

Γ ⊢ 𝑒 : 𝑡1 ∀𝑖 = 1..𝑛. 𝑡1 ≤ 𝑠𝑖 ≤ 𝑡2 ∀𝑗 = 1..𝑚. ¬(𝑡1 ≤ 𝑠′𝑗 ≤ 𝑡2)
Γ ⊢ cell𝑡1,𝑡2

𝑒 : ∧𝑖=1..𝑛ref (𝑠𝑖 ) ∧ ∧𝑗=1..𝑚¬ref (𝑠′𝑗 )
The interest of this rule is mainly theoretical (i.e., it is needed to ensure that the model of values is

a model, that is, that for every value ⊢ 𝑣 : 𝑡 ⇐⇒ ⊬ 𝑣 : ¬𝑡 : see [Frisch et al. 2008, Theorem 5.5]). We

give its practical version later in the section.

The rules for dereferencing and assignment are, instead, much simpler. They are the classic rules

that are used in practice, that is:

Γ ⊢ 𝑒 : ref (𝑡)
Γ ⊢!𝑒 : 𝑡

Γ ⊢ 𝑒1 : ref (𝑡) Γ ⊢ 𝑒2 : 𝑡

Γ ⊢ (𝑒1 := 𝑒2) : ()

For the case of Ballerina’s location types, we proceed as we did for the classic reference types and

follow semantic intuition to define two rules for cells that take into account whether the location is

readonly or not

Γ ⊢ 𝑒 : 𝑡 𝑡1 ∨ 𝑡2 ≤ 𝑡

Γ ⊢ cell𝑡1,𝑡2
𝑒 : loc(𝑡, 1)

Γ ⊢ 𝑒 : 𝑡 𝑡1 ∨ 𝑡2 ≤ 0

Γ ⊢ cell𝑡1,𝑡2
𝑒 : loc(𝑡, 0)
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Oncemore it is possible to deduce different types for the same expression and therefore the two rules

above should be synthesized into a unique rule that preserves the admissibility of the intersection

rule and allows the system to deduce negated location types. Unfortunately, contrary to the case

with ref () types, it is not possible to derive the negative part of such a rule by negating the two

rules above: this would correspond to deduce that an expression 𝑒 does not have a given type 𝑡 .

The consequence of this fact is only of theoretical interest: we do not know whether the model of

values is a set-theoretic model. In practice, however, the two rules above are not only sufficient, but

even too general, and they should be restricted as we show below.

The rules for dereferencing and for assignment are almost the same as for classic reference types,

the only difference being that assignments are permitted only for writable locations:

Γ ⊢ 𝑒 : loc(𝑡, 𝑏)
Γ ⊢!𝑒 : 𝑡

Γ ⊢ 𝑒1 : loc(𝑡, 1) Γ ⊢ 𝑒2 : 𝑡

Γ ⊢ (𝑒1 := 𝑒2) : ()

However, if working in the language Ballerina there will not be explicit deref and update operations

as the above, since deref and updates are embedded directly in the operations of record read and

update:

Γ ⊢ 𝑒 : {{{ℓ == loc(𝑡, 𝑏)}}}
Γ ⊢ 𝑒.ℓ : 𝑡

Γ ⊢ 𝑒1 : {{{ℓ == loc(𝑡, 1)}}} Γ ⊢ 𝑒2 : 𝑡

Γ ⊢ (𝑒1 .ℓ = 𝑒2) : ()

that is, reading the field ℓ of a record requires that the record contains at least a field for it (the

expression is typed by an open record), and returns the corresponding type; likewise for update,

with the further constraint that the corresponding field must be a writable location. Similar rules

must be defined for tuples, arrays, maps, and lists, since in Ballerina their elements are locations.

Even though in Ballerina locations appear as subcomponents of particular structures, the advan-

tage of defining a type system by using explicit location types instead of embedding them directly

in the type of the structures at issue such as record types, is that one can use for subtyping record

types directly the formula (19) as is. The only difference will be that records (and tuples and array

...) map labels into location types, that is, into unions of intersections of loc(. , .) atoms and their

negations.

We just established the theoretical framework to subtype and type-check location expressions.

To avoid the paradoxes pointed out by Frisch et al. [2008, Appendix A] these come equipped with

two distinct read and write types which are checked at run-time to silently discard values used in

assignments or even to fail. Now, it is clear that in a practical setting we do not want assignments

to silently discard the passed values, therefore in practice we only allow cells in which both types

coincide, so that writing a forbidden value or writing a silently discarded one will have exactly the

same effect. This corresponds to restricting the syntax of a programming language so that only cell

expressions of the form cell𝑡,𝑡𝑒 are permitted. Under such a restriction the typing rules for cells

specialize as follows:

Γ ⊢ 𝑒 : 𝑡

Γ ⊢ cell𝑡,𝑡𝑒 : ref (𝑡)
Γ ⊢ 𝑒 : 𝑡 𝑠 ≤ 𝑡

Γ ⊢ cell𝑠,𝑠𝑒 : loc(𝑡, 1)
Γ ⊢ 𝑒 : 𝑡

Γ ⊢ cell0,0𝑒 : loc(𝑡, 0)

Implementation-wise the duplication of the types in a cell expression becomes useless, and therefore

in practice cell expressions will be a pair formed by an expression and just the type of allowed

writes, e.g., cell𝑡𝑒 rather than cell𝑡,𝑡𝑒 , with cell0𝑒 denoting readonly cells.

F.1.1 Rationale. The rationale of the two kinds of types is easy to explain. The use of ref (.) types
corresponds to the one that can be found in a statically-typed functional languages, where the type

system must ensure that there will be no stuck expression and, therefore, that all read and write
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operations will be well-typed. This yields to a generalization of the classic invariant subtyping rule

for reference types, since, as we already noticed: ref (𝑡1) ≤ ref (𝑡2) ⇔ (𝑡1 ≤ 0) or (𝑡1 ≃ 𝑡2).
The aims of the types of Ballerina are different and essentially twofold. The first point is that, for

its use-cases Ballerina needs covariant subtyping for mutable types, even though this may cause

run-time exceptions for write operations. But this is ok since in Ballerina philosophy, only reads are

safe—the type system statically ensures that every read operation returns only values of the expected

type—while writes are checked at runtime and can raise exceptions. As we have already seen, our

interpretation of loc(. , .) is covariant on the type component, since loc(𝑡1, 𝑏1) ≤ loc(𝑡2, 𝑏2) ⇔
(𝑡1 ≤ 0) or (𝑡1 ≤ 𝑡2 and 𝑏1 ≤ 𝑏2). The second reason is that Ballerina uses concurrency and for that

it is useful to guarantee that some data structures shared by different threads cannot be mutated, so

as to avoid the use of locks to access them. For that Ballerina relies on a specific basic type readonly
that is used to intersect other types to ensure that the values of the intersection cannot be mutated.

If a function parameter is declared as readonly, that means that the caller is guaranteeing that the

value it passed as an argument can never be mutated: thus we want to disallow read-and-write

data to be used where readonly data is expected, or this would disrupt this guarantee. Ballerina

requires locations to satisfy two further properties. First it must be possible to use readonly data

structures where their read-and-write counterpart is expected: as a matter of fact in both cases

write may fail at run-time, either because the value to be written is not compatible with the type

expected by the cell (write of a read-and-write cell) or because no value can be written in the cell

(write of a read-only cell). Thus, in this framework a read-only cell is exactly a read-and-write cell

writable with values of the empty type.
19
This is the meaning of the covariance of the writable

bits 𝑏1 and 𝑏2 in the example above. Second, from an operational point of view read-only cells

are indistinguishable from their unboxed counterpart: it is impossible to write a program that

distinguishes whether the values it is using are stored in a readonly cell or not. Therefore, we want

that read-only types satisfy the same subtyping relations as the types they box. In particular, we

want the following equality to hold:

loc(𝑡1, 0) ∨ loc(𝑡2, 0) ≃ loc(𝑡1∨𝑡2, 0)

so that it is not possible to distinguish the union of the values of two types from the union of the

readonly locations containing the values of these two types. This is guaranteed by our interpretation.

Notice instead that for read-and-write value while

loc(𝑡1, 1) ∨ loc(𝑡2, 1) ≤ loc(𝑡1∨𝑡2, 1)

holds, the converse in general does not: for instance, 𝑣 = cellInt∨Bool,Int∨Bool42 is in loc(Int∨Bool, 1)
but not in loc(Int, 1)∨loc(Bool, 1); if we in 𝑣 first an integer value then a Boolean one, both

operations will be successful while for values in loc(Int∨Bool, 1) one of the two must fail.

In practice, in our system we do not need to add the readonly type of Ballerina, since this can
be encoded as the recursive type which is the union of all basic types, all functions, and all tuples

and record with readonly subcomponents.

type 𝑋 = 1basic ∨ (loc(𝑋, 0) × loc(𝑋, 0)) ∨ {{{ ⇒ loc(𝑋, 0)}}} ∨ 0→ 1

In Ballerina syntax this roughly corresponds to:
20

19
More pragmatically, mutability is the default behavior in Ballerina, and the language designers did not want to require the

programmer to write specific functions for data that may happen to be read-only so that, unless this is necessary to ensure

specific properties (such as immutability of shared data), all functions are written for mutable data.

20
Keywords are in boldface. In particular readonly is the keyword Ballerina uses to declare a subcomponent of a structure

(e.g., a record field) to be readonly, while readonly is the name of the type that is being defined.
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type X = () | int | boolean | string | float | decimal
| empty -> any
| [ (readonly X...) ]
| { (readonly X...) }

type readonly = X

(keywords are in boldface) the last summand of the definition of X meaning records with only

readonly optional fields that include readonly values (Ballerina uses the syntax “...” to denote

open record types). In other terms, all fields are declared readonly and are optional fields whose

content is the recursion variable for readonly types. Likewise for tuples.

F.1.2 Universal model. To define a universal model it suffices to use the same technique as for

function spaces and consider finite powersets for Ballerina locations and cofinite powersets for

classic invariant references. That is.

loc(𝑋, 1) = {(𝑑,𝑋1, 𝑋2) | 𝑑 ∈ 𝑋,𝑋1 ∪ 𝑋2 ⊆ 𝑋 } ⊆ D × Pfin (D) × Pfin (D)
loc(𝑋, 0) = {(𝑑,∅,∅) | 𝑑 ∈ 𝑋 } ⊆ D × Pfin (D) × Pfin (D)

ref (𝑋 ) = {(𝑑,𝑋1, 𝑋2) | 𝑑 ∈ 𝑋1 ⊆ 𝑋 ⊆ 𝑋2} ⊆ D × Pfin (D) × Pcofin (D)
As before the elements of D—which now is defined as D = B + D×D + Pfin (D×DΩ) + (L _
D⊥) + (D×Pfin (D)×(Pfin (D)∪Pcofin (D)))—can be defined inductively, by adding the production

(𝑑, {𝑑1, ..., 𝑑𝑚}, {𝑑1, ...., 𝑑𝑛}) to model Ballerina locations and (𝑑, {𝑑1, ..., 𝑑𝑚},D∖{𝑑1, ...., 𝑑𝑛}) for
invariant reference types.

The definition of the predicate (𝑑 : 𝑡) is extended as follows:

( (𝑑, {𝑑1, ..., 𝑑𝑚},D∖{𝑑 ′1, ...., 𝑑 ′𝑛}) : ref (𝑡) ) = (𝑑 : 𝑡) ∧ ∀𝑖 .(𝑑𝑖 : 𝑡) ∧ ∀𝑗 .¬(𝑑 ′𝑗 : 𝑡)
( (𝑑, {𝑑1, ..., 𝑑𝑚}, {𝑑𝑚+1, ...., 𝑑𝑚+𝑛}) : loc(𝑡, 1) ) = (𝑑 : 𝑡) ∧ ∀𝑖 .(𝑑𝑖 : 𝑡)

( (𝑑, {}, {}) : loc(𝑡, 0) ) = (𝑑 : 𝑡)
From a formal point of view this means that in this model we have two distinct kind of locations,

those typed by ref (.) and those typed by loc(. , .). This however is needed just for defining the

subtyping relation and thus is it not a problem to use the same values for both types, which makes

it possible to use in a same language both kinds of location types used to classify the same set of

values.

Although in the formal system we just presented, cells with loc-types are first class values, in

a practical setting it is better to avoid such a scenario, for the simple reason that, as we already

pointed out, it is not possible to observationally distinguish (i.e, to find a context that tells apart)

a readonly location containing some value 𝑣 from the value 𝑣 itself. So in a practical setting one

should avoid this confusion, either by boxing all values into locations (i.e., all the values used in the

language are stored in locations), or to limit the use of locations as subcomponents of particular

structures (i.e., all elements of records, tuples, list, ... are locations). The latter approach corresponds

to considering the followingmodel (without the cofinite part):D = B+D×D+Pfin (D×DΩ)+(L _
(D×Pfin (D)×Pfin (D))⊥). In words, records map labels either to locations or to the undefined value,

and locations are used only for records. This is the approach followed by the language Ballerina

with a small caveat that we are going to explain in the next subsection.

F.2 Records with erasable fields
The theory of locations we presented so far, works for records values whose domain is fixed: if we

have a record value with a mutable location field, then all we can do is to modify the content of
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the field according to its static type, but we cannot erase that field, even if at the moment of the

creation of that value the field was declared to be optional. Likewise, we cannot add to a record

value an absent field even if that field was declared as optional. These two operations would require

the system to allow the program to write a location in a field that is ⊥ and to write ⊥ in a filed

that contains a location. But all a program can do is to write in a location a value that is in the

“write-type” associated to the location.

We want to modify the interpretation of record types and record values so that this becomes

possible. That is, whenever a record field is declared mutable (read and write) and optional, then it

means that this field can be not only mutated, but also erased if present and added if absent.

Recall that we write 𝑋⊥ for 𝑋 ∪ {⊥} with ⊥ ∉ 𝑋 . Without mutable types, record values are

interpreted as quasi-constant functions that map labels into either an element of the domain or

into ⊥, that is (L _ D⊥).
Simply adding locations to D, that is defining it as D = B + D×D + Pfin (D×DΩ) + (L _
D⊥) + (D×Pfin (D)×Pfin (D)) is not a solution good enough, since we would have a system that

would mix values of different types that are in practice indistinguishable one for the other, as it is

the case for values of type loc(𝑡, 0) and those of type 𝑡 . This is why in the previous subsection we

suggested limiting the use of locations as the codomain of quasi-finite functions. This corresponds

to interpreting record values as quasi constant functions in (L _ (D×Pfin (D)×Pfin (D))⊥). In
words, a record value is a map that associates each label either to a location or to ⊥.

If we want to allow the possibility for records to add and delete mutable optional fields, then

the required modification is straightforward, since it suffices to interpret records into locations

that contain either a value or ⊥, that is a function in (L _ (D⊥×Pfin (D⊥)×Pfin (D⊥))). The
difference is that while in the previous interpretation a label was mapped either to⊥ or to a location

containing some value, here a label always mapped to a location, that either contains ⊥ or it

contains some value. In this setting a record value in which the key 𝑘 is undefined corresponds to a

quasi-constant function that maps the key 𝑘 into a location containing ⊥. In practice this means

that the empty open record type {{{}}} is now interpreted as {[_ = loc(1∨⊥, 1)]}, while the closed
one {|{|{||}|}|} is {[_ = loc(⊥, 0)]}. The interesting part is the interpretation of records with optional

fields: for instance {|{|{|ℓ ⇒ Int|}|}|} is interpreted as {[ℓ = loc(Int∨⊥, 1), _ = loc(⊥, 0)]}, and a record

in which the location associated to ℓ contains the value ⊥ means that the field ℓ is absent. It now

becomes possible for record values of type {|{|{|ℓ ⇒ Int|}|}|} to add the field ℓ even if it is absent (just,

write an integer in its location), and to delete the field ℓ even when it is present (just, write ⊥ in it).

When computing the various set-theoretic operations (in particular complement) on the content of

locations, one must take into account that the interpretation domain is 1 ∨ ⊥ rather than just 1.
From the language point of view there are some modifications, too, because in this setting the

addition and removal of fields are now side effects and must be typed accordingly: namely, we must

check that whenever we add or remove a field from a record expression, the field is declared as

optional in the type of the record expression.

F.3 Matching values
The last modification we are going to describe is the addition of a new type to allow precise typing

of pattern matching expressions as they are implemented in Ballerina.

In Ballerina the matching expression looks only at the content of the locations that form a record

value, but at not at their mutability. A pattern such as { x = int ...} (written in Ballerina’s

syntax) matches every record value in which the field x is defined and contains an integer value,

whatever its mutability status is. In other terms, this pattern matches a record value {𝑥 = 𝑣} for
some very different definitions of 𝑣 , e.g. 𝑣 = cell0,042 (the location contains an integer and it is

readonly) 𝑣 = cellInt,Int42 (the location contains an integer, now and after any possible mutation),
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and 𝑣 = cell1,142 (the location contains an integer now but this may not be true after a mutation,

since its read-write type permits to assign any value to the location). Therefore, in the case where

the field of the value contains a writable mutation, the fact that the match succeeded does not imply

that the matched value is of type { x = int ...}: values of this type are values for which the type

system statically ensures that a selection of the field x always returns an integer for every possible

mutations (e.g., the first two definitions of 𝑣 above); instead the pattern { x = int ...} matches

also values in which the field x is a location that currently contains an integer but for which the

type system does not ensure that it will always contain integers, since by some later mutation the

field x could be updated with a value different from an integer (e.g., the third definition of 𝑣).

This is a design choice of Ballerina justified by the fact that when a program is processing untyped

input (e.g., from an HTTP request with a body of application/json), the program will receive the

input as a value of type json. This kind of input is processed by the matching expression. We do

not want to make that input to be immutable, since we want to allow the program to transform the

JSON code by directly mutating it instead of generating a local copy (particularly, in a gateway

scenario). Even if it was immutable, we would not want users to have to declare the type as readonly

in order to get the right result: unsophisticated users are not expected to know about readonly

types. Processing the input—i.e., using a match expression on that input—needs just to consider the

value part of the mutable cells, which explains the semantics of the pattern { x = int ...} we
described above. In order to take into account mutability—i.e., the type of the input—a different

operator called “is” is provided: the programmer has the possibility to match only values whose

type “is” { x = int ...}.
In order to capture in a type the set of values accepted by record patterns as the above, we extend

the types for location with a new “∞” flag:

loc(𝑋, 0) = {(𝑑,∅,∅) | 𝑑 ∈ 𝑋 }
loc(𝑋, 1) = {(𝑑,𝑋1, 𝑋2) | 𝑑 ∈ 𝑋,𝑋1 ∪ 𝑋2 ⊆ 𝑋 }
loc(𝑋,∞) = {(𝑑,𝑋1, 𝑋2) | 𝑑 ∈ 𝑋,𝑋1 ∪ 𝑋2 ⊆ D}

As beforeE(loc(𝑡, 𝑏)) = loc(J𝑡K, 𝑏), so that our interpretationwill validate the equation Jloc(𝑡, 𝑏)K =
loc(J𝑡K, 𝑏). Thus, a value of type loc(𝑡,∞) is a location that contains a value of type 𝑡 whatever its

write and read types are.

The modifications to make to the theory in order to include this new type are really minimal.

The typing rules must be modified to account for the existence of this new type in particular we

have:

Γ ⊢ 𝑒 : 𝑡

Γ ⊢ cell𝑡1,𝑡2
𝑒 : loc(𝑡,∞)

Γ ⊢ 𝑒 : 𝑡 𝑡1 ∨ 𝑡2 ≤ 𝑡

Γ ⊢ cell𝑡1,𝑡2
𝑒 : loc(𝑡, 1)

Γ ⊢ 𝑒 : 𝑡 𝑡1 ∨ 𝑡2 ≤ 0

Γ ⊢ cell𝑡1,𝑡2
𝑒 : loc(𝑡, 0)

while for reads and writes we have

Γ ⊢ 𝑒 : {{{ℓ == loc(𝑡, 𝑏)}}} 𝑏 ≤ 1

Γ ⊢ 𝑒.ℓ : 𝑡

Γ ⊢ 𝑒 : {{{ℓ == loc(𝑡,∞)}}}
Γ ⊢ 𝑒.ℓ : 1

Γ ⊢ 𝑒1 : {{{ℓ == loc(𝑡, 1)}}} Γ ⊢ 𝑒2 : 𝑡

Γ ⊢ (𝑒1.ℓ = 𝑒2) : ()

Γ ⊢ 𝑒1 : {{{ℓ == loc(𝑡,∞)}}} Γ ⊢ 𝑒2 : 𝑡 ′

Γ ⊢ (𝑒1 .ℓ = 𝑒2) : ()

where the order on the read/write flags is 0 ≤ 1 ≤ ∞. The rules for locations with the∞ flag state

that reading such a location will return some value (of generic type 1) and that values of any type

can be assigned to them.

Lemma F.2 holds as it is, without any modification to its statement.
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Regarding Lemma F.3, we have to extend it to take into account the types of the form loc(𝑡,∞).
The extension is straightforward and it consists of adding two more clauses to cover the case when

min𝑖∈𝑃 𝑏𝑖 = ∞, and slightly modifying the third clause in the statement, that is.

Lemma F.4. Let (𝑋𝑖 )𝑖∈𝑃 and (𝑌𝑗 ) 𝑗∈𝑁 be two families of subsets of D and (𝑏𝑖 )𝑖∈𝑃 and (𝑏′𝑗 ) 𝑗∈𝑁 two
families of flags with value in {0, 1,∞}. Then:⋂

𝑖∈𝑃
loc(𝑋𝑖 , 𝑏𝑖 ) ⊆

⋃
𝑗∈𝑁

loc(𝑌𝑗 , 𝑏
′
𝑗 )

⇐⇒(⋂
𝑖∈𝑃

𝑋𝑖 = ∅
)
or

(
min

𝑖∈𝑃
𝑏𝑖 = 0 and

⋂
𝑖∈𝑃

𝑋𝑖 ⊆
⋃
𝑗∈𝑁

𝑌𝑗

)
or

(
∃ 𝑗 ∈ 𝑁 .

⋂
𝑖∈𝑃

𝑋𝑖 ⊆ 𝑌𝑗 and 𝑏′𝑗 ≥ 1

)
or

(
∃ 𝑗 ∈ 𝑁 . 𝑌𝑗 = D and 𝑏′𝑗 = 1

)
or ©«

⋂
𝑖∈𝑃

𝑋𝑖 ⊆
⋃

{ 𝑗∈𝑁 |𝑏′
𝑗
=∞}

𝑌𝑗
ª®¬

Proof. The proof for the cases when min𝑖∈𝑃 𝑏𝑖 is either 0 or 1 are essentially the same as in the

proof of Lemma F.3. In this proof there remains a further case to examine, that is when min𝑖∈𝑃 𝑏𝑖 is
∞. The last two clauses in the statement of the lemma cover the case when min𝑖∈𝑃 𝑏𝑖 = ∞, that
is when 𝑏𝑖 = ∞ for all 𝑖 ∈ 𝑃 . In that case it is easy to see that

⋂
𝑖∈𝑃 loc(𝑋𝑖 , 𝑏𝑖 ) is the set of all

triplets (𝑑,𝑋1, 𝑋2) such that 𝑑 ∈ ⋂
𝑖∈𝑃 𝑋𝑖 where 𝑋1 and 𝑋2 are any subsets of D. If we assume that⋂

𝑖∈𝑃 loc(𝑋𝑖 , 𝑏𝑖 ) ⊆
⋃

𝑗∈𝑁 loc(𝑌𝑗 , 𝑏
′
𝑗 ), then this in particular implies that for all 𝑑 ∈ ⋂

𝑖∈𝑃 𝑋𝑖 we have

that (𝑑,D,D) must belong to

⋃
𝑗∈𝑁 loc(𝑌𝑗 , 𝑏

′
𝑗 ). Now, given a set of triplets loc(𝑋,𝑏) there are only

two possible cases for (𝑑,D,D) to belong to loc(𝑋,𝑏): either (𝑖) 𝑋 = D and 𝑏 ≥ 1, since then for

both 𝑏 = 1 and 𝑏 = ∞ we have that (𝑑,D,D) belongs to loc(𝑋,𝑏) or (𝑖𝑖) we have that 𝑑 ∈ 𝑋 and

𝑏 = ∞. In the first case (𝑑,D,D) belonging to

⋃
𝑗∈𝑁 loc(𝑌𝑗 , 𝑏

′
𝑗 ) implies that there exists 𝑗 ∈ 𝑁

such that 𝑌𝑗 = D and 𝑏′𝑗 = 1 (which is covered by the fourth clause) or 𝑏′𝑗 = ∞ (which is covered

by the last clause). In the second case the same hypothesis yields that for every 𝑑 ∈ ⋂
𝑖∈𝑃 𝑋𝑖 there

exists a 𝑗 ∈ 𝑁 such that 𝑑 ∈ 𝑌𝑗 and 𝑏
′
𝑗 = ∞, which implies that

⋂
𝑖∈𝑃 𝑋𝑖 ⊆

⋃
{ 𝑗∈𝑁 |𝑏′

𝑗
=∞} 𝑌𝑗 (covered

by the last clause). We have obtained the result. □

In summary the proof of the lemma above tells us that to check the containment given in the

statement we need first to compute the intersection

⋂
𝑖∈𝑃 𝑋𝑖 and check whether it is empty. If

such is not the case, then we compute min𝑖∈𝑃 𝑏𝑖 and according to the result we apply one of the

following cases:

(1) if min𝑖∈𝑃 𝑏𝑖 = 0, then we check whether

⋂
𝑖∈𝑃 𝑋𝑖 ⊆

⋃
𝑗∈𝑁 𝑌𝑗 ;

(2) if min𝑖∈𝑃 𝑏𝑖 = 1, then we check whether there exists 𝑗 ∈ 𝑁 such that 𝑏′𝑗 ≥ 1 and

⋂
𝑖∈𝑃 𝑋𝑖 ⊆ 𝑌𝑗

(3) if min𝑖∈𝑃 𝑏𝑖 = ∞, then we check whether there exists a 𝑗 ∈ 𝑁 such that 𝑏′𝑗 = 1 and 𝑌𝑗 = D
and, if not, we check whether

⋂
𝑖∈𝑃 𝑋𝑖 is contained in the union of all 𝑌𝑗 such that 𝑏′𝑗 = ∞.

Finally, it is straightforward to transpose this to deciding subtyping for locations: it suffices to

replace the sets 𝑋 ’s and 𝑌 ’s with (the interpretation of) the types and substitute for each use of D
either 1 or, if we are in the case of erasable field discussed in Section F.2, 1 ∨ ⊥.

Thanks to this extension, we can reuse the technique to type patternmatching that we described in

Section 3.3 with minimal changes. Accounting for the Ballerina’s semantics of record patterns does

not require any significant modification to the definitions given in Section 3.3: the only definition

that needs to be modified is the one of accepted type of a pattern, so that it reflects Ballerina’s

semantics of pattern matching. In particular, we want the accepted type of the pattern { x = int
...} to be the type{{{𝑥 == loc(Int,∞)}}}. More generally, we will have *{ℓ = 𝑝}+ = {{{ℓ == loc(*𝑝+,∞)}}}.
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