
41

Gradual Typing with Union and Intersection Types

GIUSEPPE CASTAGNA, CNRS - Université Paris Diderot, France
VICTOR LANVIN, École Normale Supérieure de Cachan, France

We propose a type system for functional languages with gradual types and set-theoretic type connectives
and prove its soundness. In particular, we show how to lift the definition of the domain and result type of an
application from non-gradual types to gradual ones and likewise for the subtyping relation. We also show
that deciding subtyping for gradual types can be reduced in linear time to deciding subtyping for non-gradual
types and that the same holds true for all subtyping-related decision problems that must be solved for type
inference. More generally, this work not only enriches gradual type systems with unions and intersections
and with the type precision that arise from their use, but also proposes and advocates a new style of gradual
types programming where union and intersection types are used by programmers to instruct the system to
perform fewer dynamic checks.

CCS Concepts: •Theory of computation→Type theory; • Software and its engineering→ Functional
languages;

Additional Key Words and Phrases: Gradual typing, set-theoretic types, union types, intersection types,
negation types

ACM Reference Format:
Giuseppe Castagna and Victor Lanvin. 2017. Gradual Typing with Union and Intersection Types. Proc. ACM
Program. Lang. 1, ICFP, Article 41 (September 2017), 55 pages.
https://doi.org/10.1145/3110285

1 INTRODUCTION
A static type system can be an extremely powerful tool for a programmer, providing early error
detection, and offering strong compile-time guarantees on the behavior of a program. However,
compared to dynamic typing, static typing often comes at the expense of development speed and
flexibility, as statically-typed code might be more difficult to adapt to changing requirements.
Gradual typing is a recent and promising approach that tries to get the best of both worlds [Siek
and Taha 2006]. The idea behind this approach is to integrate an unknown type, usually denoted
by “?”, which informs the compiler that additional type checks may have to be performed at run
time. Therefore, the programmer can gradually add type annotations to a program and controls
precisely how much checking is done statically versus dynamically. Gradual typing thus allows
the programmer to finely tune the distribution of dynamic and static checking over a program.
However, gradualization of single expressions has more limited breadth. We argue that adding
full-fledged union and intersection types to a gradual type system makes the transition between
dynamic typing and static typing smoother and finer grained, giving even more control to the
programmer. In particular, we are interested in developing gradual typing for the semantic subtyping
approach [Frisch et al. 2008], where types are interpreted as sets of values. In this approach union

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2017 Copyright held by the owner/author(s).
2475-1421/2017/9-ART41
https://doi.org/10.1145/3110285

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

https://doi.org/10.1145/3110285
https://doi.org/10.1145/3110285

41:2 Giuseppe Castagna and Victor Lanvin

and intersection types are naturally interpreted as the corresponding set-theoretic operations,
and the subtyping relation is defined as set-containment, whence the name of set-theoretic types.
This yields an intuitive and powerful type system in which several important constructions —
eg, branching, pattern-matching, and overloading— can be typed very precisely. Set-theoretic
types, however, exacerbate the shortcomings of static typing. In particular, type reconstruction for
intersection type systems is, in general, undecidable. The consequence is that programmers have to
add complete type annotations for every variable, which may hinder their development speed; all
the more so given that union and intersection type annotations can be syntactically heavy. Adding
gradual typing to set-theoretic types may help to alleviate this issue by providing a way to relax the
rigidity of certain type annotations via the addition of a touch of dynamic typing, while keeping
the full power of static types for critical parts of code.
We said that adding set-theoretic types to a gradual type system makes the transition between

dynamic typing and static typing smoother. This is for example the case for function parameters
that are to be bound to values of basic types: in the current setting, the only way to gradualize their
type is to use “?”, while with union and intersection types more precise gradualizations become
possible. We illustrate this fact in an ML-like language by progressively refining the following
example that we borrow from Siek and Vachharajani [2008].

let succ : Int -> Int = ...
let not : Bool -> Bool = ...

let f (condition : Bool) (x : ?) : ? =
if condition then
succ x

else
not x

This example cannot be typed using only simple types: the type of x as well as the return type of f
change depending on the value of condition. However, this piece of code is perfectly valid in a
gradual type system, the compiler will simply add dynamic checks to ensure that the value bound
to x can be passed as an argument to succ or not according to the case. Moreover, it will also add
checks to ensure that the value returned by f is used correctly. Nevertheless, there are some flaws
in this piece of code. For example, it is possible to pass a value of any type as the second argument
of f (the type system ensures that the first argument will always be a Boolean). In particular, if
one applies the function f to (a Boolean and) a value of type string, then the application will
always fail, independently from the value of condition, and despite the fact that the application is
statically considered well-typed. This problem can be avoided by set-theoretic types, in particular
by using the union type Int | Bool to type the parameter x of the function so as to ensure that
every second argument of f that is neither an integer nor a Boolean will be statically rejected by
the type checker. This is obtained by the following code

let f (condition : Bool) (x : (Int | Bool)) : (Int | Bool) =
if condition then
succ ((Int) x)

else
not ((Bool) x)

The code above shows that the use of union types fixes the shortcoming we pointed out. However
in order to ensure that the applications of succ and not are both well typed we also had to add

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:3

two type casts1 that check at run-time whether the argument has the required type and raise an
exception otherwise.
Remark. The use of explicit type-casts should not surprise the reader. Any language with union
types needs an operation to dynamically check the type of values that are given union types.
Such operations may have different forms and be implemented in different ways and at different
degrees: they range from the simple check of constructors/tags (eg, when unions are restricted
to datatypes/variant-types), to value inspection primitives such as those of Typed Racket [Tobin-
Hochstadt and Felleisen 2008] (eg, procedure?, number?, etc.), till the unconstrained check of the
type of a value returned by an expression e , that is,

match e with t1 -> e1 | | tn -> en
which is used in languages like CDuce [Benzaken et al. 2003] where unions are full fledged.2 This
article studies the latter case and therefore a type cast (t)e is just syntactic sugar for3

match e with t -> e | _ -> raise "Cast error".
□

In this second definition of f we have ensured, thanks to union types, that every application of f
has now a chance to succeed. However, this is obtained at the expenses of the programmer who
has now the burden to insert in the code the type-cases/type-casts necessary to ensure safety (in
the sense established by Wright and Felleisen [1994]). By using set-theoretic types in conjunction
with gradual types, it is possible both to ensure that f will only be applied to booleans or integers
and to delegate the insertion of type casts to the system. This is shown by the following piece of
code that our system will compile into the previous one.
let f (condition : Bool) (x : (Int | Bool) & ?) : (Int | Bool) =

if condition then
succ x

else
not x

In this example, the variable x is of type ((Int | Bool) & ?), where “&” denotes an intersection.
This indicates that x has both type (Int | Bool) and type ?. Intuitively, this means that the function
f accepts as a second argument a value of any type (which is indicated by ?), as long as this value
is also an integer or a Boolean. The effect of having added “& ?” in the type of the parameter is
that the programmer is no longer required to add the explicit casts in the body of the function:
the system will take care of it at compile time. The combination of a union type with “& ?” to
type a parameter corresponds to a programming style in which the programmer asks the system
to statically enforce that the function will be applied only to arguments in the union type and
delegates to the system the dynamic checking, where/if necessary, for each case in the union; and
while adding explicit casts in a five-line example such as the above is quite straightforward, in

1Although we used a C-like syntax these type casts do not perform any type conversion or promotion: they are just dynamic
type-checks.
2The cost of run-time “deep” type-cases is frequently misunderstood and overestimated. This is occasionally expressed by
the belief that having only a restricted set of type inspection primitives would greatly improve runtime performance in
terms of time and/or space. Frisch [2004] shows that since most of the values already encode their type information, then in
strict languages the overhead of deep dynamic type-cases can be made small: lambda-abstractions must keep their type
annotations at runtime but no other subexpression needs to be type-decorated (though in some languages one might need
to differentiate constants of different types, e.g. booleans from integers in OCaml). Unconstrained dynamic type-check can
then be implemented very efficiently by using the static type information available at compile time (Frisch [2004] proves
that it is possible to implement it optimally for every given exploration strategy for values): in practice, it often turns out to
be a check of the topmost constructor of a value.
3A proper definition is match e with t & x -> x | _ -> raise "Cast error" where e is evaluated just once.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:4 Giuseppe Castagna and Victor Lanvin

general (eg, in thousand-line modules), it is not always so, whence the interest of having a system
that adds all and only the casts that are necessary to ensure type safety. Finally, note that the return
type of f is no longer gradual (as it was in the first definition), since union types allow us to define
it without any loss of precision. This allows the system to statically reject all cases in which the
value expected from f is neither an integer nor a Boolean and which, with the first definition,
would be detected only at run-time.

In all the examples above the return type of the function f can be easily and automatically
deduced and could, therefore, be omitted. But there are cases in which providing the return type
of a function allows the system to deduce a better type and, thus, accept more programs. This is
particularly true in conjunction with intersection types, since they allow the programmer to specify
different return types for different argument configurations. Consider again the function f above.
Since it always returns either an integer or a Boolean, we used as return type (Int | Bool). By
using an intersection type it is possible to give f a more precise type in which the return type of f
depends on the type of x:
let f : (Bool -> (Int & ?) -> Int) & (Bool -> (Bool & ?) -> Bool) =

λcondition. λx.
if condition then
succ x

else
not x

This time, in the body of f, the variable x has type (Int & ?) | (Bool & ?). This type is
equivalent4 to ((Int | Bool) & ?). Hence, the function can be defined with the same body as
before, and it accepts as arguments the same values. However, the return type of f now directly
depends on the type of x (more precisely, on the type of the value bound to x): if it is of type Int,
then the function necessarily returns an integer (that is, if the application does not fail), and the
same goes for an argument of type Bool.
Having a return type that depends on the type of the input is reminiscent of the typing of

overloaded functions (also known as “ad hoc polymorphism”). This correspondence is indeed
a strong one, since intersections of arrow types can be used to type overloaded functions (eg,
see Benzaken et al. [2003]; Castagna et al. [1995]; see also Forsythe [Reynolds 1996] which uses a
limited form of overloading known as coherent overloading). As a matter of fact, our function f is
just a curried function that when applied to a Boolean argument returns an overloaded function.
This can better be seen by considering type equivalences: the type we declared above for f

(Bool -> (Int & ?) -> Int) & (Bool -> (Bool & ?) -> Bool)

is equivalent to the type
Bool -> (((Int & ?) -> Int) & ((Bool & ?) -> Bool))

Therefore an equivalent way to define f would have been
let f (condition : Bool) : ((Int & ?) -> Int) & ((Bool & ?) -> Bool) =

λx.if condition then
succ x

else
not x

4 Although we did not formally define any equivalence relation, the reader will easily recognize here a classic distributivity
rule of set-theoretic unions and intersections. Slightly more formally, in this introduction we consider two types to be
equivalent if they are both one subtype of the other (according to Frisch et al. [2008]) and where “?” is considered as some
distinguished base type that intersects all the other types.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:5

which shows in a clear way that the application of f to a (necessarily Boolean) argument returns
an overloaded function whose result type depends on the type of its argument: the two occurrences
of “?” in the input types of the overloaded function indicate that, in both cases (ie, whatever the
type of the argument is), some dynamic cast may be needed in the body of the function and, thus,
may have to be added at compile-time.

We want to conclude this introduction by mentioning singleton types, that we do not consider in
this work but that can be straightforwardly added to our theory without any further modification.
In a language such as CDuce every value also denotes the singleton type that contains only that
value. In particular CDuce features two separate types for true and false and the type Bool is
then simply defined as the union true | false. In this language, it is then possible to define the
most precise type for f without using neither gradual types nor explicit type casts:5

let f : (true -> Int -> Int) & (false -> Bool -> Bool) =
fun condition x -> if condition then succ x else not x

Likewise, in Typed Racket, a similar typing is obtained by “case->”, which provides a limited form
of intersection:
(: f : (case-> (-> True Integer Integer) (-> False Boolean Boolean)))
(define (f condition x) (if condition (add1 x) (not x)))

with the caveat that partial applications are not allowed. Of course this works in both cases only
because Bool is a finite type, but in general it is not possible to replace gradual types or (equivalently)
explicit type casts by using singleton types.

1.1 Overview
The examples given so far provide a brief outline of the characteristics of the system we are
going to study. In a nutshell, this work develops a theory for gradual set-theoretic types, that
is, types that besides the usual type constructors —eg, arrows, products, integers, ...— include a
gradual “?” basic type and set-theoretic type connectives: union, intersection, and negation (in
the set-theoretic type approach negations are indissociable from unions and intersections). This
amounts to defining and deciding their subtyping relation, using them to type a core functional
language, and defining a compilation scheme that inserts all and only the type casts required to
ensure that every non-diverging well-typed expression will either return a value or raise a cast
error. To that end, we proceed as follows. In Section 2, we define the syntax and semantics of the
types we are interested in. In particular, we use abstract interpretation [Cousot and Cousot 1977] to
define the semantics of our gradual types, following a technique introduced by Garcia et al. [2016].
Section 3 presents a gradually-typed language and its associated type system. This language is an
explicitly-typed lambda calculus with a typecase, the latter included to fully exploit set-theoretic
types. Section 4 presents the target language, a gradually-typed lambda calculus with explicit casts.
In particular, we define its type system and operational semantics and prove its soundness. Finally,
section 5 describes a compilation procedure that automatically inserts casts guaranteeing that
every well-typed term of our gradually typed language is compiled into a term that if it converges,
then it reduces either to a value or to a cast error. A conclusion with directions for future work
ends this presentation. For space reasons, lemmas, proofs, and a few definitions are provided as
supplemental material in an appendix available on-line.
5In CDuce “if e then e1 else e2” is just syntactic sugar for “match e with true -> e1 | false -> e2”. The
current public release of CDuce requires all function parameters, such as condition and x, to be explicitly typed and,
thus, it does not accept the code below. The code below is executable on a experimental prototype version (available at
http://www.cduce.org/ocaml/bi) based on the work by Castagna et al. [2016] and that uses a bi-directional type system to
infer the types of the parameters of functions.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

http://www.cduce.org/ocaml/bi

41:6 Giuseppe Castagna and Victor Lanvin

1.2 Contributions
The main contribution of this work is the definition of the static and the dynamic semantics of
a language with gradual types and set-theoretic type connectives and the proof of its soundness.
In particular, we show how to lift the definition of domain and result type of an application from
set-theoretic types to gradual types and likewise for the subtyping relation. We also show that
deciding subtyping for gradual types can be reduced in linear time to deciding subtyping on set-
theoretic types and that the same holds true for all subtyping-related decision problems needed
for type inference (notably, computing domains and result types). More generally, this work not
only enriches gradual type systems with unions and intersections and with the type precision that
arises from their use, but also proposes and advocates a new style of programming with gradual
types where union and intersection types are used by the programmer to instruct the system to
perform fewer dynamic checks.

1.3 Related Work
Our work combines set-theoretic types with gradual typing. The part on set-theoretic types is
based on the semantic subtyping framework, as presented by Frisch et al. [2008], while for what
concerns the addition of gradual typing we followed and adapted the technique based on abstract
interpretation by Garcia et al. [2016] called “Abstracting Gradual Typing” (AGT). However, due
to the specific needs of our type system and the difficulty of finding a suitable Galois connection
(a standard construction for abstract interpretation), we could apply directly the AGT approach
only to “lift” subtyping. In particular, the approach proposed by Garcia et al. [2016] focuses on
consistent subtyping, whereas dealing with set-theoretic types requires more precise properties
—most notably for lemmas related to term substitution— hence the need for new operators and for
a specific dynamic semantics.
There exist other attempts at integrating gradual typing with union and/or intersection types,

but none is as general as the one presented here, insofar as they just consider either a partial set of
type connectives or limited forms thereof. Siek and Tobin-Hochstadt [2016] study gradual typing
for a language with type-case, union types, and recursive types. Intersection and negation types
are not considered and union types are in a restricted version, since it is not possible to form the
union of any two types but just of types having different top-most constructors: so for instance
it is not possible to union two arrows. This limitation is reflected in the type-case expression
which can only check the topmost constructor of a value (eg, integer, product, arrow, ...) but not
its type. The different cases of the type-case construction of Siek and Tobin-Hochstadt [2016]
are functions that, if selected, are applied to the matched value; this allows a form of occurrence
typing [Tobin-Hochstadt and Felleisen 2008]. Our type-case is more general than the one by Siek
and Tobin-Hochstadt [2016] since expressions can be checked against any type, and occurrence
typing can be encoded (see Footnote 13 later on). For the sake of simplicity we considered neither
product nor recursive types (though all their theory is already developed by Frisch et al. [2008]) and
disregarded blame, but otherwise our work subsumes the one by Siek and Tobin-Hochstadt [2016].

Jafery and Dunfield [2017] present a type system that contains both refinement sums and gradual
sums. Similarly to our approach, they define a gradually-typed source language and a type-directed
translation to a target language that contains casts. However, their approach is very different from
ours: their sums are disjoint unions in which elements are explicitly injected by a constructor; as
such, their sums do not have the set-theoretic property of unions (eg, they are neither idempotent,
nor commutative, nor satisfy usual distribution laws). Also, gradual typing is confined to sum types,
since the motivation of their work is to allow the programmer to gradually add refinements that
make the enforcement of exhaustive pattern matching possible, a problem that does not subsists in

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:7

our work or, more generally, in languages with set-theoretic types where exhaustiveness of pattern
matching is easily verifiable.6 Finally, Jafery and Dunfield [2017] leave intersection types as future
work.

Our approach also relates to a recent work by Lehmann and Tanter [2017], which presents a way
to combine gradual typing with full-fledged refinement types, where formulae can contain unions,
intersections, and negations. They encounter problems similar to ours, most notably when trying
to find a suitable Galois connection to use for AGT. However, our work focuses on set-theoretic
types which behave differently from refinement types, in particular when it comes to subtyping,
function types, or when evaluating casts.

For what concerns programming languages, there have been few attempts at providing a language
with union and intersection type connectives and some form of gradual typing, whether it be via
generics or using a specific unknown type. Facebook’s Flow [Chaudhuri 2014] is an impressive
gradually-typed version of JavaScript that provides union and intersection types, occurrence typing,
as well as a type “any” that behaves as our unknown type “?”: however any is used in Flow only to
shunt off the type system, but not to insert casts. By inserting by hand appropriate type annotations
and casts it is possible to make the examples of our introduction type-check in Flow. Therefore, it
would be interesting to see how to use our system to give the programmer the option to let Flow
add the necessary casts and annotations. Also, even though an implementation is available, there
is no detailed (let alone formal) definition of Flow’s type system: our work certainly provides a
good starting point for it. Typed Racket is another example that provides sound gradual typing
(in a coarser-grained form than the one obtained by using explicit gradual types) as well as true
union types. It does not support full intersection types (just the limited form we showed to be
provided by the case-> construct in which types are considered in order from the first to the last), it
includes recursive types and polymorphic function, performs a limited form of type reconstruction,
and, above all, is a full-fledged programming language. It also features occurrence typing [Tobin-
Hochstadt and Felleisen 2008], which refines the types of some variable depending on the result
of a conditional, and that can be encoded by our typecase construct. As it is the case for Flow, in
Typed Racket the examples of our introduction are accepted only after the insertion of explicit type
inspection primitives by the programmer. Contrary to Flow, however, using our system to insert
these casts in Typed Racket does not seem appropriate, both for the absence in Typed Racket of an
explicit “unknown” type and, more generally, for the general spirit of the approach.

2 TYPES
In this section, we define the syntax of set-theoretic types (that in this work we call “static types”)
and extend them to obtain gradual types. We define the semantics of the latter in terms of the
former. This semantic is then used to lift to gradual types relevant definitions given for set-theoretic
types, notably the subtyping relation.

2.1 Type Syntax
Definition 1. (Types) The set STypes of static types and the set GTypes of gradual types are

inductively generated by the following grammars:

t ∈ STypes ::= b | t → t | t ∨ t | t ∧ t | ¬t | 0 | 1

τ ∈ GTypes ::=? | b | τ → τ | τ ∨ τ | τ ∧ τ | ¬t | 0 | 1

6This is due to the specific definition of set-theoretic patterns which combine singleton types and set-theoretic connectives
in such a way that checking exhaustiveness amounts to checking a subtyping relation: see, for instance, [Castagna et al.
2016, sect. 4.2].

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:8 Giuseppe Castagna and Victor Lanvin

where b ranges over the set of base types (eg, Int, Bool, ...). We also single out the atomic (gradual)
types as follows:

a ∈ Atom ::= b | t → t α ∈ GAtom ::=? | b | τ → τ

The set STypes of static types, ranged over by s , t , . . . , is formed by basic types, the type constructor
“→” for function types, type connectives for union, intersection and negation types, as well as 0 and
1 which denote respectively the bottom and the top type. The set GTypes of gradual types, ranged
over by σ , τ , . . . , is obtained by adding to the static types the unknown type “?”, which stands for
the absence of type information (not to be confused with 0 or 1). As anticipated, we also included
negation types, which correspond to the set-theoretic complement (ie, a well-typed expression
has type ¬t if and only if it does not have type t). These play an important role in our theory
insofar as all subtyping-related algorithms as well as the type-inference of type-case expressions
fundamentally rely on them.7 Notice however that we do not allow negations of gradual types. (the
reason is that we could neither conceive any reasonable interpretation for a type such as “¬ ?”, nor
we were able to deduce it from our formalization). We use the standard convention that connectives
(ie, ∧, ∨, and ¬) are given a higher precedence than constructors (ie,→). We also use the symbol “\”
to denote the difference of a (possibly gradual) type with another, this being defined in the usual
set-theoretic way, that is, τ \ t

def
= τ ∧ ¬t .

We suppose that static types come equipped with the subtyping relation ≤ defined by Frisch
et al. [2008] (our static types are a strict subset of those defined in [Frisch et al. 2008]). As hinted
in the introduction, this subtyping relation is defined by interpreting static types as sets of values
(ie, either constants or λ-abstractions) that have that type, and then defining subtyping as set
containment (ie, a static type s is a subtype of a static type t if and only if t contains all the values of
type s). More precisely: Int is the set of all integers; Bool is the set {true, false}; 0 is the empty
set; 1 is the set of all (well-typed) values; type connectives are interpreted as the corresponding
set-theoretic operators (eg, s ∨ t is the union of the values of the two types, while ¬t is the set of all
values that are not in/of type t); s → t is set of all λ-abstractions that when applied to a value of
type s return only results of type t . In particular, 0 → 1 is the set of all functions8, which is why we
call every subtype of 0 → 1 a function type. We use ≃ to denote the equivalence relation induced
by the subtyping relation (ie, t1 ≃ t2 if and only if t1 ≤ t2 and t2 ≤ t1): intuitively, two static types
are equivalent if and only if they denote the same set of values.

In the Introduction we described the intuitive semantics of gradual types. In the next section we
formalize this intuition. But before that let us stress again that ? must not be confused with 0 or 1:
for instance, a function of type ?→ Int can take an argument of a certain unknown type and return
an integer, but, contrary to 1 → Int, this application might fail if the unknown type turns out at
runtime not to be a super-type of the type of the argument; likewise, while the application of a
function in Int →? to an integer may return some result (whose type is unknown), the application
to an integer of a function in Int → 0 always diverges (since, if it converged, then it ought to
return a value belonging to the empty type, which is impossible).

2.2 Semantics of Types
Since STypes ⊂ GTypes, then any definition on gradual types can be implicitly restricted to static
types. However, this containment is strict and, thus, the converse is not so straightforward. In the
rest of this section we present a way to do this reverse operation, namely, to lift the definitions of
relations (foremost, subtyping) and operators (eg, domain and result type) given on static types to
7The use of negation types becomes interesting for the programmer mainly in the presence of polymorphism —cf. [Castagna
et al. 2015, 2014]— which is why in this work we put the emphasis essentially on unions and intersections.
8Actually, for every type t , all types of the form 0→t are equivalent and each of them denotes the set of all functions.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:9

gradual types. Our approach uses abstract interpretation [Cousot and Cousot 1977] to interpret
gradual types as sets of static types, as first proposed by Garcia et al. [2016].

Concretization. The first step in lifting the semantics of static types to gradual types is to define
the concretization of a gradual type as a set of static types. This is based on the intuition that the
gradual type ? can turn out to be any type, that is, the set of its possible interpretations is STypes.
Formally, we define the concretization function γ such that γ (τ) returns the set of static types
obtained by replacing each occurrence of ? in τ by some static type.

Definition 2. (Concretization) The concretization function γ : GTypes → 𝒫(STypes) is defined
as follows:

γ (?) = STypes
γ (τ1 ∨ τ2) = {t1 ∨ t2 | ti ∈ γ (τi)}

γ (τ1 ∧ τ2) = {t1 ∧ t2 | ti ∈ γ (τi)}

γ (¬t) = {¬t}

γ (τ1 → τ2) = {t1 → t2 | ti ∈ γ (τi)}

γ (b) = {b}

γ (0) = {0}

γ (1) = {1}

In our set-theoretic framework, the concretization of a gradual type has several interesting
properties. In particular, for every gradual type τ , the set of its concretizations γ (τ) has a maximum
and a minimum with respect to the subtyping relation ≤. That is, (γ (τ), ≤) is a closed sublattice of
(STypes, ≤). This is a direct consequence of the fact that the set of static set-theoretic types is a
complete lattice, bounded by 1 and 0.

Proposition 1. (Gradual Extrema) For every gradual type τ ∈ GTypes, there exist in γ (τ) two
static types, noted τ ⇑ and τ ⇓, such that for every type t ∈ γ (τ), τ ⇓ ≤ t ≤ τ ⇑.
Moreover, τ ⇑ (resp. τ ⇓) is obtained from τ by replacing all covariant occurrences of ? by 1 (resp. 0)
and all contravariant occurrences of ? by 0 (resp. 1).

Subtyping. Subtyping is a binary relation on static types. We want to define a conservative
extension of this predicate to gradual types. More generally, given any predicate P(t1, · · · , tn) on
static types, we want to define a predicate P̃(τ1, · · · ,τn) on gradual types such that P̃ coincides
with P on static types (conservative extension) and encompasses the intuition of gradual typing.
This is done by using the concretization function as follows:

Definition 3. (Predicate lifting [Garcia et al. 2016]) For every predicate P ∈ STypesn , we define
its consistent lifting P̃ ∈ GTypesn as:

P̃(τ1, · · · ,τn)
def

⇐⇒ ∃(t1, · · · , tn) ∈ γ (τ1) × · · · × γ (τn) s .t . P(t1, · · · , tn)

Notice that, since γ (t) = {t} for every static type t , then P̃ coincides with P on static types.
Intuitively, a predicate is true for some gradual type if and only if the static counterpart of

the predicate is true for some particular concretization of these types. If we apply lifting to the
subtyping relation, we obtain that, for every pair of gradual types σ and τ , σ ≤̃ τ if and only if there
exist two types (s, t) ∈ γ (σ)×γ (τ) such that s ≤ t (the relation ≤̃ is usually referred to as “consistent
subtyping”). However, this definition can be simplified using the fact, stated by Proposition 1, that
(γ (τ), ≤) is a sublattice of (STypes, ≤).

Proposition 2. (Consistent subtyping) For every pair of gradual types σ ,τ , the following equiva-
lence holds:

σ ≤̃ τ ⇐⇒ σ⇓ ≤ τ ⇑

This proposition is important since it implies that the subtyping problem for gradual types can be
linearly reduced (as explained in Proposition 1) to the same problem on static types and, thus, that
we can re-use the algorithms that already exist for static types. In particular, since τ ⇑ and τ ⇓ are of

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:10 Giuseppe Castagna and Victor Lanvin

the same size as τ , then the decision problems of ≤̃ and ≤ have the same algorithmic complexity.
This property also illustrates the (well-known) fact that consistent subtyping ≤̃ is not transitive.
Indeed, ? is a consistent subtype of every type (as ?⇓= 0) but also a consistent super-type of every
type (as ?⇑= 1). Thus, if consistent subtyping were to be transitive, it would collapse to the trivial
full relation where σ ≤̃ τ for every gradual types σ and τ . We think that gradual quasi-subtyping
would have been more appropriate a name for this relation, but we preferred to adopt the accepted
terminology.

2.3 Operators on Types
Lifting subtyping from static to gradual types was easy: we just adapted standard techniques of
abstract interpretation on the lines of Garcia et al. [2016]. Lifting type operators, instead, is far
more difficult and constitutes one of the hardest technical achievements of our work. Operators on
types are necessary to define type inference. In particular, in order to type any functional language
(notably, to type its applications) one needs at least two operators: (i) the dom(.) operator that
given a function type t (ie, a subtype of 0 → 1, that is, a type that only contains values that are
λ-abstractions) returns the domain dom(t) of the functions in that type and (ii) the infix binary
application operator ◦, called the result type operator, that given a function type t and a type s
subtype of dom(t) returns the type t ◦ s of all values resulting from the application of a function
of type t to an argument of type s . To explain why lifting these operators to gradual types is
challenging let us consider the dom(.) operator (but a similar argument holds for the result type
operator too).

If we do not have any type connective, then, in general, all function types are of the form s → t .
Therefore defining the domain and result operators is trivial: dom(s → t) is s (the type on the left
of the arrow) and if s ′ ≤ s , then (s → t) ◦ s ′ is t (the type on the right of the arrow). Adding type
connectives makes such definitions more difficult since one must determine what is the domain
of, say, the function type ((Int → Bool) ∧ ¬Int) ∨ (¬(Bool → Int) ∧ (Int → Int)) or what
is the type of the result when a function of this type is applied to some argument. The solution
to this problem is given by Frisch et al. [2008] and consists in transforming every function type
into an equivalent —with respect to ≃, the equivalence relation induced by ≤— type in disjunctive
normal form, which is a type formed by unions of intersections of literals (ie, of atoms or their
negation). For such a type it is then easy to define dom() (eg, the domain of an intersection of arrows
is the union of the domains of the arrows; the domain of a union of arrows is the intersection of
their domains) and, to a lesser extent, ◦. Unfortunately it is not possible to adapt this technique to
gradual types: since the transitive closure of ≤̃ is the trivial full binary relation on GTypes, then it is
unsound to consider, as with static types, the equivalence relation induced by ≤̃ (since it is the full
relation too). The solution we propose is to define a different concretization function for gradual
types called applicative concretization9 that is tailored to the definition of the two operators at
issue. The resulting definitions are quite technical and barely intuitive but they have the properties
we seek for, since they allow us to define in Section 3 a type-inference system that enjoys the
subject-reduction and progress properties. We first give the formal definitions, followed by an
intuitive explanation, and then give an a posteriori justification of our definitions by showing that
our new concretization function corresponds to transforming gradual types into gradual normal
forms (that are the natural gradual extension of the normal forms for static types) by applying a
rewriting system that preserves the semantics of dom(.) and ◦. For space reasons we just hint at
this a posteriori justification: all details can be found in the appendix available on-line.

9Strictly speaking, what we are going to define is not a concretization function, in the sense of abstract interpretation, but
rather a function that distills the functional characteristics of a given type.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:11

The applicative concretization is defined as follows (where 𝒫f denotes the set of finite subsets):

Definition 4. (Applicative Concretization) The applicative concretization γ+
𝒜

of a gradual type τ
is defined as:
γ+
𝒜

: GTypes → 𝒫f (𝒫f (GTypes))
γ+
𝒜
(τ1 ∨ τ2) = γ

+
𝒜
(τ1) ∪ γ+

𝒜
(τ2)

γ+
𝒜
(τ1 ∧ τ2) = {T1 ∪T2 | Ti ∈ γ+

𝒜
(τi) for i = 1, 2}

γ+
𝒜
(σ → τ) = {{σ → τ }}

γ+
𝒜
(¬t) = γ−

𝒜
(t)

γ+
𝒜
(0) = ∅

γ+
𝒜
(1) = {∅}

γ+
𝒜
(b) = {∅}

γ+
𝒜
(?) = {{?→?}}

γ−
𝒜

: STypes → 𝒫f (𝒫f (STypes))
γ−
𝒜
(t1 ∨ t2) = {T1 ∪T2 | Ti ∈ γ−

𝒜
(ti) for i = 1, 2}

γ−
𝒜
(t1 ∧ t2) = γ

−
𝒜
(t1) ∪ γ−

𝒜
(t2)

γ−
𝒜
(s → t) = {∅}

γ−
𝒜
(¬t) = γ+

𝒜
(t)

γ−
𝒜
(0) = {∅}

γ−
𝒜
(1) = ∅

γ−
𝒜
(b) = {∅}

Notice that that both functions produce sets of (respectively, gradual and static) arrow types.
Next we use the applicative concretization to define the domain and result operators on gradual

types:

Definition 5. (Gradual Type Operators) Let τ and σ be two gradual types such that τ ≤̃ 0 → 1
and σ ≤̃ d̃om(τ). The gradual domain of τ , noted d̃om(τ) and the gradual result type of the application
of τ to σ , noted τ ◦̃σ are respectively defined as follows:

d̃om(τ)
def
=

∧
S ∈γ +

𝒜
(τ)

∨
ρ→ρ′∈S

ρ⇑ τ ◦̃σ
def
=

∨
S ∈γ +

𝒜
(τ)

∨
Q⊊S

σ ≰̃
∨

(ρ→ρ′)∈Q ρ
σ ⇑∧

∨
(ρ→ρ′)∈S\Q ρ⇑≰0

∧
(ρ→ρ′)∈S\Q

ρ ′

In order to explain and justify the definitions above, let us recall the details of how the operators
of domain and result are defined for set-theoretic types [Frisch et al. 2008] and, thus, for our
static types. Given a static function type t (ie, a type t such that t ≤ 0 → 1) its domain dom(t)
is semantically defined in [Frisch et al. 2008] as the greatest type t ′ such that t ≤ t ′ → 1. Such a
type is uniquely defined modulo the equivalence relation ≃ and its definition is preserved by this
equivalence, that is, two equivalent types have the same domain. Given a static type t , there exists
a type equivalent to t that is in disjunctive normal form, that is, a type which is a union of uniform
intersections10 of atoms or their negations. In particular if t is a function type, then all its disjunctive
normal forms have the following shape:

t ≃
∨
f ∈F

∧
j ∈Pf

sj → tj ∧
∧
n∈Nf

¬(sn → tn) (1)

Frisch et al. [2008] prove that the domain of the disjunctive normal form above is equivalent to∧
f ∈F

∨
j ∈Pf

sj (2)

and since the domain is preserved by ≃, then the type in (2) is also equivalent to dom(t), the domain
of t . Since for every type t it is possible effectively to compute a disjunctive normal form equivalent
to it, then the domain of a function type can be effectively computed, too. Frisch et al. [2008]
proceed similarly for the result type: if t is a functional type with a disjunctive normal form as in
10Uniform means that the atoms in the intersections are either all arrows or all basic types

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:12 Giuseppe Castagna and Victor Lanvin

(1) and s is a subtype of dom(t), then the result type t ◦ s is defined semantically (as the least type
t ′ such that t ≤ s → t ′), it is preserved by equivalence, and it is proved to be equivalent to:

t ◦ s ≃
∨
f ∈F

∨
Q⊊Pf

s≰
∨
q∈Q sq

∧
p∈Pf \Q

tp (3)

We do not explain the formula above: the details are given by Frisch et al. [2008] (a simpler and more
detailed presentation is given by Castagna [2015, sect. 4.4.3]). We just invite the reader to recognize
in (2) and (3) the patterns of the formulæ given in Definition 5 and see that what the applicative
concretization of Definition 4 does is nothing but to transform a gradual type into a particular
disjunctive normal form represented as a finite set (the union) of finite sets (the intersections) of
arrow types. This correspondence is not just intuitive but is formalized in the appendix. Here we
just outline its main ideas.

First, notice that neither (2), the definition of domain, nor (3), the definition of result, depend on the
negated arrows of the normal form: the setNf (ofNegative atoms) does not occur in them, just the set
Pf (of Positive atoms) is used. Sinceγ+

𝒜
yields a normal form tailored for these operators, then it does

not produce any negated arrow (they are erased by the caseγ−
𝒜
(s → t) = {∅}). This becomes evident

when one applies γ+
𝒜

to a static functional type t like in (1): γ+
𝒜
(t) = {{sj → tj | j ∈ Pf } | f ∈ F },

which represents
∨

f ∈F
∧

j ∈Pf sj → tj , namely, the positive atoms of the normal form.
Second, for what concerns the definition of domain it is easy to see that this precisely corresponds

to the definition given in (2) where γ+
𝒜

gives the decomposition in disjunctive normal form and
where the domain of an arrow ρ → ρ ′ is assumed to be the set of all the values in all possible
concretizations of ρ, that is ρ⇑.

Third, there is the interpretation of the unknown type ?. Since we are only interested in possible
interpretations of gradual types as functions, we interpret ? in the same way as ? → ?, hence the
definition of γ+

𝒜
(?).

Fourth and last, the formula for the result type in Definition 5 nearly corresponds to the formula
in (3) where γ+

𝒜
gives the decomposition in disjunctive normal form. There are however two

differences, both in the definition of the sets Q on which the inner union ranges over. The first
one is straightforward: since we are working with gradual types we replaced the relation ≰ by
its consistent lifting ≰̃. The second is much subtler, it is a consequence of the first difference, and
requires to understand how the formula in (3) works. Once again, for a detailed explanation of this
formula we invite the reader to consult the one given by Castagna [2015, sect. 4.4.3]; for this work
it suffices to say that when we remove from Pf the arrows that are in Q , then the domain of (the
intersection of) the arrows that remain has a non-empty intersection with the type of the argument
(ie, these remaining arrows form a set of arrows that may handle the argument). This is so because
Q always contains arrows that alone cannot completely handle the argument (ie, the type of the
argument is not a subtype of the domain of the arrows in Q : this is condition s ≰

∨
q∈Q sq). The

consequence of replacing the gradual relation ≰̃ for its non-gradual counterpart ≰ is that now Q
contains arrows that alone may not completely handle the argument. We must ensure that we are
not removing too many arrows, that is, that the arrows we remove cannot turn out (at run-time) to
be exactly those that were supposed to handle the argument. In other terms, we have to ensure
that, as for the formula in (3), the domain of the arrows that remain has a non-empty intersection
with the type of the argument. This is exactly what the condition σ⇑ ∧

∨
(ρ→ρ′)∈S\Q ρ⇑ ≰ 0 in

Definition 5 does.
As an example, consider the function type (?→ Bool) ∧ (Int → Int) applied to the type Int.

Intuitively, the result type must be Int: either (i) the domain of the first arrow turns out to be

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:13

incompatible with Int, and thus only the second arrow contributes to the result by returning an Int,
or (ii) also the first arrow can handle the argument, but then the result must be of type Bool ∧ Int,
that is, the empty set of values, which means that the application cannot return any value and thus
it must diverge; so if a result is returned by this application, then it will be of type Int. Since the
applicative concretization of the function type is the singleton { {?→ Bool; Int → Int} }, then the
only set S to consider when computing the result type of the application is {?→ Bool; Int → Int}.
Moreover, Int ≰̃ ? holds, but Int ≰̃ Int does not. As such, the only two choices for Q ⊊ S are
Q = ∅ (which yields the summand Bool∧Int of the result type) andQ = {?→ Bool} (which yields
the summand Int of the result type), hence the result type Int ∨ (Bool ∧ Int) which is the result
we expected, as it is equivalent to Int.

To justify the need for the second condition, consider this time the same function type but applied
to an argument of type Bool. Intuitively, the only possible result type is Bool, since a function of type
Int→Int cannot be applied to a Boolean. However, since Bool ≰̃ ? and Bool ≰̃ Int, then without
the second condition, there would be three possible choices for Q ⊊ S , namely, Q = {? →Bool},
Q = {Int→Int}, and Q = ∅. This would give the result type Bool∨Int∨(Bool∧Int), which is
equivalent to Bool ∨ Int. This return type, although sound, is not correct since the application
cannot return a value of type Int. The problem comes from the fact that Q = {? →Bool} is not
a valid choice, since the function types that remain in S\Q , that is just Int→Int, cannot handle
an argument of type Bool. Hence the need for the second condition, which excludes the previous
case and ensures that the functions in S\Q will always be able to handle at least some values of the
argument type.

The technical justification of Definitions 4 and 5 is that they allow us to define in the next sections
a type system that satisfies the subject reduction and progress properties. We can however also give
a less technical and more semantic justification of these definitions by showing that they correspond
to transposing to gradual types the definitions given for set-theoretic types. In particular, if we
transpose the notion of disjunctive normal forms from set-theoretic types to gradual types we
obtain gradual types of the following form:

∨
i ∈If ,1

∧
j ∈Ji

σj → τj ∧
∧
j ∈Jn

¬(sj → tj) ∨
∨
i ∈If ,2

∧
j ∈Ji

σj → τj ∧
∧
j ∈Jn

¬(sj → tj)∧ ?

∨
∨
i ∈Ib,1

∧
j ∈Ji

bj ∧
∧
j ∈Jn

¬bj ∨
∨
i ∈Ib,2

∧
j ∈Ji

bj ∧
∧
j ∈Jn

¬bj∧ ?

It is possible to define a rewriting system that transforms every gradual type into a gradual
disjunctive normal form (see its definition in the Appendix). This system is strongly normalizing
but it is not confluent. This is expected: as a static type is equivalent to several distinct disjunctive
normal forms, so the rewriting system maps a gradual type in distinct gradual disjunctive normal
forms. This was not a problem with static types since the (semantically defined) domain and result
operators were preserved by type equivalence. We cannot have the same result for gradual types
since the equivalence relation induced by consistent subtyping is trivial, but we can easily transpose
it since we can show (cf. Appendix)that the rewriting system preserves the gradual domain and
result operators of Definition 5, thus providing a more “semantic” justification for them. In other
terms, the equivalence relation induced by the rewriting systems is a sound approximation of the
semantic relation for gradual types, the one induced by the lifting of subtyping being too coarse to
be of any use.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:14 Giuseppe Castagna and Victor Lanvin

3 GRADUALLY-TYPED LANGUAGE
We next define a language that uses the types of the previous section and give the corresponding
typing rules.

3.1 Language Syntax
3.1.1 Grammar. The gradually typed language we consider here is a typed lambda calculus

tailored to set-theoretic types.

Definition 6. (Gradually Typed Lambda Calculus) The terms constituting the gradually typed
lambda calculus are defined by the following grammar:

Terms e ::= x | c | λIx . e | e e | (e ∈ t)?e : e

Values v ::= x | c | λIx . e

Interfaces I ::= {σi → τi | i ∈ I } (I a finite set)

In an ML-like language, union types are always tagged, meaning they can be eliminated by
pattern matching on their constructors. However, our set-theoretic type system allows the use of
untagged unions (for example Int ∨ Bool), which can only be eliminated dynamically. Thus, we
need to keep a dynamic representation of types, and allow for dynamic type tests which are noted
(e ∈ t)?e1 : e2. Such a test will reduce to expression e1 if the result of the evaluation of e has type t ,
or to expression e2 otherwise. Moreover, note that only static types are allowed to be dynamically
checked against. The reason for this is that checking a value v against a gradual type τ would
intuitively amount to checking that the type of v is a subtype of τ , but then it would be the same
as checking v against either τ ⇑ or τ ⇓ (according to the semantics we want to give to the type case),
that is, in both cases a static type (which is why we chose to let the programmer unambiguously
specify the static type the expression must be checked against).

The second difference from the usual lambda calculus is the use of explicit interfaces in lambda
expressions. An interface is simply a set of arrows, which stands for the set of all the types
of the function. For instance, in this syntax the fourth definition of f we gave in the intro-
duction becomes λ {Bool→Int∧?→Int ; Bool→Bool∧?→Bool}constant Giving explicit function types
to abstractions allows us to have more precise types. For example, consider the function types
τ1 = (Int → Int) ∧ (Bool → Bool) and τ2 = (Int ∨ Bool) → (Int ∨ Bool). Both types have the
same domain (that is, Int ∨ Bool), and, in fact, every function of type τ1 is also of type τ2, but not
vice-versa. Indeed, τ1 is more precise than τ2: when applying a function of type τ1 to an argument
of type Int, we can deduce statically that the result will be of type Int. Whereas, when applying a
function of type τ2 to the same argument, the only information we can deduce is that the result
will be of type Int ∨ Bool. Thus, the former type conveys more information than the latter, but it
cannot be expressed if only function parameters are explicitly typed.

3.1.2 Interfaces. With static types, the type of a function is the intersection of the types in its
interface, as it is a value of each of those types. For example, the type of a well-typed function
having the interface {Int → Int; Bool → Bool} is the intersection (Int → Int)∧(Bool → Bool).
However, with gradual types this interpretation is less clear-cut since, for instance, there are two
possible ways to understand the interface {Int → Int; ?→?}. One could say that a function with
this interface returns a value of type Int when applied to an argument of type Int, and returns
something else when applied to an argument that is not of type Int. Or, one could interpret the
interface as stating that the type of this function is the intersection (Int → Int) ∧ (?→?) which,
according to the definition of the result type given in the previous section, means that it returns a
result of type Int∧ ? when given an argument of type Int.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:15

x : τ ∈ Γ

Γ ⊢ x : τ
(Tx)

Γ ⊢ c : B(c)
(Tc)

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 τ1 ≤̃ 0→1 τ2 ≤̃ d̃om(τ1)

Γ ⊢ e1 e2 : τ1◦̃τ2
(Tapp)

∀(σ → τ) ∈ I, Γ,x : σ ⊢ e : τ ′ τ ′ ≤̃ τ

Γ ⊢ λIx . e : TypeOf(I)
(Tλ)

Γ ⊢ e : τ

{
τ ≰̃ ¬t =⇒ Γ ⊢ e1 : σ1
τ ≰̃ t =⇒ Γ ⊢ e2 : σ2

Γ ⊢ ((e ∈ t)?e1 : e2) : σ1 ∨ σ2
(Tcase)

Fig. 1. Typing rules for the gradually typed language

For this work we chose the first approach, since it seems more intuitive and closer to the spirit
of gradual types. However, to keep the intuition that the type of a function is the intersection of
the types in its interface (and thus ease the formalization), we decided to put a restriction on the
interfaces: all the domains (left part) of the arrows of an interface have to be pairwise distinct.
Formally, in what follows, we will only consider valid the interfaces {σi → τi | i ∈ I } such that
∀(i, j) ∈ I 2, i , j =⇒ (σi ∧ σj)

⇑ ≤ 0. Moreover, we also impose the condition ∀i ∈ I ,σ⇑

i ≰ 0, since
an arrow of an interface is only meaningful if its domain is not empty. For instance, the interface
{Int → Int; ?→?} is not a valid interface (because Int∧ ?, 0), but {Int → Int; (? \Int) →?} is.
This definition is not restrictive, as the transformation of an arbitrary interface to a valid interface
can be done statically, although this can lead to an exponential blow-up on the size of an interface.
For example, the invalid interface {Nat → Nat; Even → Even; ?→?} can be converted statically
into the (intuitively) equivalent interface

{ (Nat\Even) → Nat ; (Nat∧Even) → (Nat∧Even) ; (Even\Nat) → Even ; (? \(Nat∧Even)) →? }

Moreover, interfaces that contain several overlapping gradual types (that is, gradual types that
have some concretizations in common) can be rewritten using the same method. For example, the
interface {(?→ Int; ?→ Bool} can simply be converted into the interface {? → Int ∨ Bool}.

According to this new definition, we will use TypeOf(I) to denote the type associated to a valid
interface I, that is, the intersection of its types. Formally, we define the operator TypeOf as follows:

TypeOf(I) =
∧

(σ→τ)∈I

σ → τ

3.2 Typing
Having defined the syntax of the language and the type of lambda expressions, we now use the
operators defined in the previous section to provide typing rules for this language. The rules are
presented in Figure 1 and assume that we are given a function B that associates to every constant c
its static type B(c).

The typing rules (Tx) and (Tc) are the usual rules for typing variables and constants respectively,
while the typing rule for lambda expressions (Tλ) formalizes the explanations we gave earlier. Notice
that, as in any gradual type system, adding a subsumption rule would make the system unsound
(since the transitive closure of subtyping is the full relation, then by two consecutive applications
of subsumption it would be possible to give any type to every well-typed term). Therefore our
systems uses a more “algorithmic presentation” in which the checks of the subtyping relation
are distributed over the rules. In particular the rule (Tλ), checks that the inferred return type is a
subtype of the type specified by the programmer in the interface (ie, τ ′ ≤̃ τ which is equivalent to
τ ′⇓ ≤ τ ⇑). This is used to type functions such as λ {Int→ ?}x . x or, even simpler, λ {Nat→Int}x . x .

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:16 Giuseppe Castagna and Victor Lanvin

The typing rule for applications, (Tapp) is also straightforward, using the definitions of Section 2.
Given an application e1e2, we just need to ensure that the type τ1 of e1 is a function type (ie, a
subtype of 0 → 1, which is equivalent to checking τ ⇓1 ≤ 0 → 1), and that the type of e2 is a
consistent subtype of the domain of e1 (equivalently, τ ⇓2 ≤ d̃om(τ1) since the domain always is a
static type). The return type of the application is then defined using the result type operator ◦̃.
To explain the rule (Tcase), let us first remind the definition of its static counterpart, as defined

by Frisch et al. [2008].

Γ ⊢ e : t ′
{
t ′ ≰ ¬t =⇒ Γ ⊢ e1 : s
t ′ ≰ t =⇒ Γ ⊢ e2 : s

Γ ⊢ ((e ∈ t)?e1 : e2) : s
The intuition behind this rule is that if we can statically prove that a branch will not be evaluated,
then it does not need to be typed.11 Given a type-case (e ∈ t)?e1 : e2, we know that the set of values
that e can reduce to is given by the type t ′ of e . Therefore, saying that the first branch cannot
be evaluated amounts to saying that t ′ ∧ t ≃ 0, which is set-theoretically equivalent to t ′ ≤ ¬t .
Thus, the branch e1 should be evaluated only if t ′ ≰ ¬t , hence the condition. Naturally, the same
reasoning can be done with expression e2, providing the second case of this rule.
To deduce the gradual equivalent of this rule, we use the definition of predicate lifting to lift

the operator ≰, which yields the following definition: τ ≰̃ σ ⇐⇒ ∃(t , s) ∈ γ (τ) × γ (σ), t ≰ s . As
for subtyping, this definition can be simplified using the extrema of concretizations: τ ≰̃ σ ⇐⇒

τ ⇑ ≰ σ⇓. Notice that this definition—ie, the lifting of≰— is not equivalent to the negation of ≤̃ —the
lifting of ≤—, whose definition is ¬(τ ≤̃ σ) ⇐⇒ ∀(t , s) ∈ γ (τ) × γ (σ), t ≰ s ⇐⇒ τ ⇓ ≰ σ⇑. The
condition t ′ ≰ ¬t then lifts to the condition τ ≰̃ ¬t presented in rule (Tcase) which is equivalent to
τ ⇑ ≰ ¬t (since ¬t⇓ = ¬t). Likewise for t ′ ≰ t and τ ≰̃ t

Rationale: The language we defined in this section is an abstraction of the language the program-
mer is supposed to program with. Notice that we did not define the semantics of this language and
a fortiori we did not prove any soundness or safety property of the type system defined above. The
semantics of this language will be given by translating its terms into the “cast language” we define
in the next section. The translation is defined in Section 5 where we also prove (cf. Theorem 3) that
every well-typed term of this language is translated into a well-typed term of the cast language.
The soundness of the cast language’s type systems (cf. Theorem 2) implies safety (as expressed in
Corollary 1) of the type system of Figure 1.

4 CAST LANGUAGE
In so-called “sound” gradual typing the compiler must insert dynamic checks into gradually-typed
programs to ensure that they do not get stuck at execution. In the previous section we defined our
gradually-typed language. In this section we present the target language that includes casts, and
give its static and dynamic semantics.

4.1 Syntax
The target language we consider is closely related to the gradually-typed lambda calculus that was
defined in the previous section.

11Actually, it must not be typed, otherwise every type-case expression would always be typed by the union of the types of
its two cases and the only typeable overloaded functions would be the coherent ones, as in Forsythe [Reynolds 1996]. For
instance, it would not be possible to deduce that λx .(x ∈Int)?(−x):not(x) has type (Int → Int) ∧ (Bool → Bool): see
§3.3 in [Frisch et al. 2008] for a detailed explanation.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:17

Definition 7. (Cast Language) The terms constituting the cast language are defined by the following
grammar:

Terms⟨⟩ e ::= x | c | λI
⟨τ ⟩ x . e | e e | (e ∈ t)?e : e | ⟨τ ⟩ e

Values⟨⟩ v ::= c | λI
⟨τ ⟩ x . e

Interfaces I ::= {σi → τi | i ∈ I }

Errors ℰ ::= CastError

As before, every interface I = {σi → τi | i ∈ I }must satisfy the conditions ∀(i, j) ∈ I 2, (σi∧σj)
⇑ ≤

0, and ∀i ∈ I ,σ⇑

i ≰ 0.
The most important addition of this language to the gradually-typed language of the previous

section is the presence of the cast expression ⟨τ ⟩ e which verifies whether the value resulting from
the evaluation of the expression e has type τ and returns the value itself or CastError, accordingly.
The other difference is that lambda-abstractions now include cast annotations. The notation

λI
⟨τ ⟩ x . e denotes the cast of the function λ

Ix . e to the type τ . The idea behind this notation is that a
lambda expression “stores” a cast in order to evaluate it, only when the function is applied. This lazy
evaluation of casts allows us to avoid unnecessary but costly η-expansions which, as pointed out
by Takikawa et al. [2016], hinder the practical interest of sound gradual typing. Moreover, to ease
the formalization, we do not include uncast lambda-abstractions of the form λIx . e in the grammar.
This has two implications. First, this obviously comes at a performance cost, since we may add
unnecessary casts to certain functions (most notably, fully statically-typed functions). Second, as
a consequence, the compilation procedure will always add casts, even in fully statically-typed
programs. However, these casts should never result in a cast error. To ease the notation, we may
write λIx . e as syntactic sugar for an abstraction that stores an identity cast, that is, λI

⟨TypeOf(I)⟩
x . e .

Rationale: Our main objective in this section is to prove the soundness of the cast language,
which will allow us to prove that the execution of the compilation of every well-typed term of the
gradually-typed language is sound. To achieve this, we start by defining a set of typing rules for
the cast language, before giving its operational semantics. We must proceed in this order because
the presence of casts and type-cases makes the operational semantics depend on type inference.

4.2 Typing
The intuition of the type system in the previous section was that a term is well typed if there exist
some concretizations of the gradual types occurring in it for which the execution would succeed. A
well-typed term, then, will be compiled into a term of the cast language above by inserting in it all
the dynamic checks necessary to ensure the progress property, that is, that its execution will either
diverge,12 or converge to a value, or raise a cast error. To prove this property of the compilation
of a well-typed term, we define a type system for the cast language satisfying the above progress
property —ie, in which every well-typed converging term yields either a value or a cast error— and
then prove that well-typed terms of the gradual language are compiled into well-typed terms of
the cast language.

The key case for the type system of the cast language is, as expected, the typing of applications.
Consider, for example, an application e1 e2, where e1 is of type ?→? and e2 is of type Int. This
application is well-typed, since e1 is known to be a function that can be applied to any argument,
of any type: that fact that e1 is well typed with type ?→? ensures that e1 contains all the casts
necessary to guarantee that its argument (of type ?) will not be misused. Consider now the same

12An example of well-typed term that diverges is ωω where ω def
= λ{(?→?)∧?→?} .xx .

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:18 Giuseppe Castagna and Victor Lanvin

application but where e1 is of type ?. This time, this application must not be considered well-typed,
since e1 is not necessarily a function: at run-time its gradual type may turn out to be, say, Int (eg, if
e1 reduces to 42) and the application would thus reduce to a stuck term. Correcting this application
would require adding a cast: for example, (⟨?→?⟩ e1) e2, which is well-typed since it is an instance
of the previous case (the function (⟨?→?⟩ e1) is well typed with type ?→?, provided that e1 is well
typed).

In the absence of type connectives the typing of an application is easily solved: whenever the type
e1 is not an arrow, the application is not well typed (eg, see the typing of the cast languages in [Siek
and Taha 2006; Wadler and Findler 2009]). Type connectives make this issue more difficult. Consider
again the application e1 e2 and suppose that the type of e1 is (Int → Int)∧ ?. In the gradually-typed
language of Section 3 this application is well-typed since the domain of this function is 1: this
function can be applied to any argument. However, in the cast language the situation is quite
different, since whether this application is to be considered well-typed or not depends on the type
of e2. If for instance e2 is of type Int, then we know that this application cannot fail since the type
(Int → Int)∧ ? guarantees that e2 is a function that can (at least) be applied to integer arguments.
If instead e2 is, say, of type Bool, then this application may fail, notably in the case that ? does not
turn out to be a subtype of Bool → 1. Therefore this application is not a well-typed term of the
cast language, even though it could be transformed into one at compile time by a suitable cast of
the function (eg, (⟨Bool → 1⟩ e1) e2). This example shows that, even if the domain of a function
of type (Int → Int)∧ ? is 1, we are guaranteed that the application of such a function will not
fail only if the argument is of type Int. We say that Int is the safe domain of the functions of
type (Int → Int)∧ ?, that is, what we call safe domain is the type of all the arguments for which
the application of these functions cannot get stuck (ie, all the arguments for which the functions
need not to be cast). In particular, while the domain of ? is 1, the safe domain of ? is 0, since it
is not possible to guarantee that the application of a “function” of type ? will not fail, whatever
argument we use. Likewise, the domain and safe domain of ?→? are both 1: a function of type ?→?
contains in its body all the casts necessary to ensure that the execution will not get stuck, whatever
argument the function is applied to. To define the safe domain operator, we replicate the method
used in Section 2 to define the domain operator, and start by giving a new concretization function.

Definition 8. (Safe Applicative Concretization) For every gradual type τ , we define the safe
applicative concretization γ+

𝒮
of τ as follows:

γ+
𝒮

: GTypes → 𝒫f (𝒫f (GTypes))

γ+
𝒮
(τ1 ∨ τ2) = γ

+
𝒮
(τ1) ∪ γ+

𝒮
(τ2)

γ+
𝒮
(τ1 ∧ τ2) = {T1 ∪T2 | Ti ∈ γ+

𝒮
(τi) for i = 1, 2}

γ+
𝒮
(σ → τ) = {{σ → τ }}

γ+
𝒮
(¬t) = γ−

𝒮
(t)

γ+
𝒮
(0) = ∅

γ+
𝒮
(1) = {∅}

γ+
𝒮
(b) = {∅}

γ+
𝒮
(?) = {{0 →?}}

γ−
𝒮

: STypes → 𝒫f (𝒫f (STypes))

γ−
𝒮
(t1 ∨ t2) = {T1 ∪T2 | Ti ∈ γ−

𝒮
(ti) for i = 1, 2}

γ−
𝒮
(t1 ∧ t2) = γ

−
𝒮
(t1) ∪ γ−

𝒮
(t2)

γ−
𝒮
(s → t) = {∅}

γ−
𝒮
(¬t) = γ+

𝒮
(t)

γ−
𝒮
(0) = {∅}

γ−
𝒮
(1) = ∅

γ−
𝒮
(b) = {∅}

The only difference between γ+
𝒜

and γ+
𝒮

is the concretization of ? which the latter concretizes using
only its safe domain. Next, we use this definition to define the safe domain operator, similarly to the
domain operator.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:19

Definition 9. (Safe Gradual Domain) For every gradual type τ verifying τ ≤̃ 0 → 1, we define
the safe gradual domain of τ , noted d̃om

𝒮
(τ), as follows:

d̃om
𝒮
(τ) =


∧

S ∈γ +
𝒮

(τ)

∨
σ→ρ ∈S

σ⇑ if τ ⇑ ≤ 0 → 1

0 otherwise

This definition is the same as the definition of the domain given in Section 2 except an important
difference: if τ ⇑ ≰ 0 → 1, then the safe domain of τ is defined as 0. This formalizes the intuition
that, if τ is not always a function type (ie, there exists a concretization of τ that is not a function
type), then its safe domain is empty.

The definition of safe domain allows us to type applications in the cast language, but there still
is a class of terms of the cast language that poses a problem: the lambda-abstractions. The problem
comes from the use of interfaces and can be illustrated by considering the rule (Tλ) in Figure 1
which shows that once we have inferred the type of the body of the function, we still have to check
that this type is a consistent subtype of the type the programmer wrote in the interface, insofar as
the latter is the one used to type the function. The situation is similar for the abstractions in the cast
language, but in this case consistent subtyping is not strict enough to ensure progress. Consider
for instance a lambda-abstraction of the cast language of the form λ {Int→Int→Int}x . e (for the sake
of simplicity we omitted the cast in the lambda abstraction: consider it to be the identity cast). If
this lambda expression is well-typed, then so is the double application ((λ {Int→Int→Int}x . e)3) 5.
However requiring that the type of the body e is a consistent subtype of Int → Int does not suffice
to ensure progress. Take for e the expression ⟨?⟩x: this expression has type ? and ? ≤̃ Int→Int,
nevertheless the application above would return (3)5, a stuck expression. Therefore, to compare
the type of the body with the one recorded in the interface we need a relation ⊑ that is strictly
finer than consistent subtyping. The problem can be reframed into a more general one, namely,
that consistent subtyping does not satisfy the substitution property: replacing in a given context a
term of some gradual type by a term of a consistent subtype does not preserve progress. Hence the
need for a stronger relation ⊑ on types which enjoys the substitution property and is preserved
during the evaluation of a term: for instance, in the example λ {Int→Int→Int}x . e above we want
that whatever value e reduces to, it will preserve progress in a context where an expression of type
Int → Int is expected. In particular, this relation has to be transitive (which is not the case of
consistent subtyping), and must retain enough information about function types so that reducing
under an application still produces a well-typed term. Consider a term e of type τ that reduces
into a term e ′ of type τ ′. First of all, we want to make sure that we did not lose information when
reducing e , or that τ ′ is more precise than τ . This amounts to saying that every concretization of τ ′
is also a concretization of τ , which can be written as τ ′⇑ ≤ τ ⇑. Note that this relation is transitive,
and it implies subtyping. Secondly, if τ is always a function type (ie, τ ⇑ ≤ 0 → 1), then although
the previous condition implies that τ ′ is also a function type, it does not say anything about the
applicative concretizations of τ and τ ′. Thus we do not know anything about the relation between
the domains and results of τ and τ ′. We want to make sure that the subtyping relation between
τ and τ ′ also translates to their applicative concretizations. Formally, this can be written as the
condition:

γ+
𝒮
(τ ′) ⊂ γ+

𝒮
(τ)

Using the intuition that the applicative concretization is representing a normal form, this amounts
to saying that if τ is a union of intersections, then τ ′ is a union of fewer intersections than τ . The

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:20 Giuseppe Castagna and Victor Lanvin

x : τ ∈ Γ

Γ ⊢ x : τ
(T ⟨⟩

x)
TypeOf(I) ≤̃ τ ∀(σ → ρ) ∈ I, Γ,x : σ ⊢ e : ρ ′ ρ ′ ⊑ ρ

Γ ⊢ λI
⟨τ ⟩ x . e : τ

(T ⟨⟩

λ)

Γ ⊢ c : B(c)
(T ⟨⟩

c)
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 τ ⇑1 ≤ 0 → 1 τ ⇑2 ≤ d̃om

𝒮
(τ1)

Γ ⊢ e1 e2 : τ1◦̃τ2
(T ⟨⟩

app)

Γ ⊢ e : σ
Γ ⊢ ⟨τ ⟩ e : τ

(T ⟨⟩

cast)

Γ ⊢ e : τ

{
τ ≰̃ ¬t =⇒ Γ ⊢ e1 : σ1
τ ≰̃ t =⇒ Γ ⊢ e2 : σ2

Γ ⊢ ((e ∈ t)?e1 : e2) : σ1 ∨ σ2
(T ⟨⟩

case)

Fig. 2. Typing rules for the cast language

same reasoning can be done with the result types, which gives the same condition but with γ+
𝒜
.

Hence the definition of the applicative subtyping.

Definition 10. (Applicative Subtyping) For every gradual types σ and τ such that σ⇑ ≤ 0 → 1
and τ ⇑ ≤ 0 → 1, we define the applicative subtyping relation as follows:

σ ⪯ τ ⇐⇒

{
γ+
𝒮
(σ) ⊂ γ+

𝒮
(τ)

γ+
𝒜
(σ) ⊂ γ+

𝒜
(τ)

Note that the subset relation used in this definition uses the syntactic equality over types. That is,
{{Int → Int}} ⊂ {{Int → Int}; {Bool → Bool}} but {{Int → Int}} 1 {{Nat → Int}} even
if Int → Int ≤ Nat → Int. We are only interested in finding a possible subtyping relation that has
the required properties (substitution property and preservation during evaluation), not in finding
the most general one. As such, we chose to only consider the syntactic equality between types
since it makes the relation general enough and easier to use than a subtyping-based definition.

We can then define the compatible subtyping, which possesses all the properties we are looking
for, as it will be formalized in Theorem 1.

Definition 11. (Compatible Subtyping) For every gradual types σ and τ , we define the compatible
subtyping ⊑ as follows:

σ ⊑ τ ⇐⇒

{
σ⇑ ≤ τ ⇑

τ ⇑ ≤ 0 → 1 =⇒ σ ⪯ τ

The typing rules for the cast language are presented in Figure 2, and are directly derived from
the rules of the gradually-typed language presented in Section 3. The differences are the addition
of a rule (T ⟨⟩

cast) for the typing of cast expressions and the modifications of the rules (T ⟨⟩
app) and (T

⟨⟩

λ)

in the way we just outlined. In particular, the example we discussed above, λ {Int→Int→Int}x .⟨?⟩x ,
is not well typed because ? @ Int→Int.

The rule (T ⟨⟩

cast) is straightforward and states that the expression ⟨τ ⟩ e has type τ , independently
of the type of e . The reason for that is that if e converges, then either e will reduce to a value of type
τ —and so the whole expression will— or a cast error will be raised: in either cases the expression
will not be stuck.

The rule (T ⟨⟩
app) is modified to ensure that the type on the left-hand side of an application is

always a function type, that is, all of its concretizations are a subtype of 0 → 1. This translates

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:21

to the condition τ ⇑1 ≤ 0 → 1. Moreover, we also want to ensure that the type of the argument is
always accepted by the function, which amounts to saying that all its concretizations are in the
safe domain of the function. Hence the condition τ ⇑2 ≤ d̃om

𝒮
(τ1).

Finally, rule (T ⟨⟩

λ) returns the type of the cast embedded in the lambda abstraction and uses the
stricter compatible subtyping relation ⊑ to check that the body of the abstraction is compatible
with the one written in the interface.

As a result, this type system enjoys a substitution property with respect to the compatible
subtyping, which is formalized in the following theorem.

Theorem 1. (Substitution) For every terms of the cast language e, e ′ ∈ Terms⟨⟩ and every typing
context Γ, if Γ,x : σ ⊢ e : τ and Γ ⊢ e ′ : σ ′ where σ ′ ⊑ σ , then Γ ⊢ e[x := e ′] : τ ′ and τ ′ ⊑ τ .

Finally, notice that the inference rules of Figure 2 are deterministic: the system infers a unique
type for every well-typed expression. This property is important since type inference is used in
the next subsection to define the operational semantics which, thanks to this property, will be
deterministic, too.

4.3 Operational Semantics
The small-step reduction rules for the cast language are presented in Figure 3 and are divided in
four categories: cast, type-case, application, and context.
The definition of the reduction contexts at the bottom of the figure corresponds to a leftmost

outermost weak reduction strategy which is applied by the two context reduction rules, (RE) and
(RE−fail), which respectively propagate the computation and raise the cast errors at top-level.
The reduction rules for type casts applied to constants, (Rcast−c) and (Rcast−c−fail), are straight-

forward: if the type of the constant is a subtype of the target type, then the cast succeeds and the
constant is returned; otherwise, the cast fails and the expression reduces to a cast error. The cast
rules for lambda-abstractions (Rcast−λ) and (Rcast−λ−fail) look similar. However, there is an important
difference, that is, that casts for lambda-abstractions are evaluated lazily at the moment of their
application. So instead of performing an η-expansion, as it is customary in cast languages for
gradual typing, the rule (Rcast−λ) “stores” the cast in the lambda-expression to evaluate it later. Note
that if a lambda expression is preceded by multiple casts, then the rule (Rcast−λ) erases all of them,
except for the last one. Indeed, storing all the successive casts of a function would introduce a chain
of casts when computing the result of an application, where the only relevant cast would be the
outermost one (as it represents the type that is expected by the rest of the program). Therefore,
removing these casts preserves the soundness of the evaluation while reducing the number of
possible cast errors. Notice that if we can already statically determine that a given cast will always
fail —ie, because the cast type is not a consistent subtype of the interface—, then the (Rcast−λ−fail)

rule raises outright the cast error.
The rule (Rcase−L) is slightly less intuitive. If v is a value, then the semantics of the expression

((v ∈ t)?e1 : e2) in a language without gradual types consists in checking whether the type of v is
a subtype of t (since, by subsumption, this implies that the value has type t) and executing e1 if
so, and e2 otherwise. As we explained in Footnote 2, this test can be efficiently implemented by
using the type information available at compile time. In the presence of gradual types, checking the
subtyping relation between the type τ of v and t (ie, τ ⇓ ≤ t), although sound, is not the best choice
for selecting e1, since it might yield the insertion of casts that will always fail. Instead we have to
select e1 only if the type of v is always a subtype of τ , that is, whatever concretization its type will
turn out to be (ie, τ ⇑ ≤ t). This is done by the rule (Rcase−L) , while rule (Rcase−R) corresponds to the

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:22 Giuseppe Castagna and Victor Lanvin

Cast

B(c) ≤̃ τ

⟨τ ⟩ c 7→ c
(Rcast−c)

¬(B(c) ≤̃ τ)

⟨τ ⟩ c 7→ CastError
(Rcast−c−fail)

TypeOf(I) ≤̃ τ

⟨τ ⟩ λI
⟨τ ′⟩ x . e 7→ λI

⟨τ ⟩ x . e
(Rcast−λ)

¬(TypeOf(I) ≤̃ τ)

⟨τ ⟩ λI
⟨τ ′⟩ x . e 7→ CastError

(Rcast−λ−fail)

Type-case

∅ ⊢ v : τ τ ⇑ ≤ t

((v ∈ t)?e1 : e2) 7→ e1
(Rcase−L)

∅ ⊢ v : τ τ ⇑ ≰ t

((v ∈ t)?e1 : e2) 7→ e2
(Rcase−R)

Application

∃(σi → τi) ∈ I B(c) ≤̃ σi

(λI
⟨τ ⟩ x . e)c 7→ ⟨τ ◦̃B(c)⟩ e[x := ⟨σi ⟩ c]

(Rapp−c)
∄(σi → τi) ∈ I B(c) ≤ σ⇑

i

(λI
⟨τ ⟩ x . e)c 7→ CastError

(Rapp−c−fail)

∃(σi → τi) ∈ I TypeOf(I′) ≤̃ σi

(λI
⟨τ ⟩x .e)(λ

I′

⟨τ ′⟩y.e
′) 7→ ⟨τ ◦̃τ ′⟩ e[x :=λI′

⟨σi ⟩
y.e ′]

(Rapp-λ)
∄(σi → τi)∈I TypeOf(I′)⇓ ≤ σ⇑

i

(λI
⟨τ ⟩x .e)(λ

I′

⟨τ ′⟩y.e
′) 7→ CastError

(Rapp-λ-fail)

Context
e 7→ e ′

E[e] 7→ E[e ′]
(RE)

e 7→ CastError

E[e] 7→ CastError
(RE−fail)

E ::= □ | Ee | vE | (E ∈ t)?e : e | ⟨τ ⟩ E

Fig. 3. Small-step reduction semantics for the cast language

other case. To understand the need of this stricter check consider the following expression

((f = λ {?→?}x .(1 + ⟨Int⟩x) ∈ (Bool → Bool)) ? (f true) : false

that checks whether f is of type Bool → Bool, applies it to true if this holds, and return false
otherwise. In this term f is bound to a dynamically-typed version of the successor function,
since it is given type ?→?. This type is a consistent subtype of Bool → Bool. However, since
(?→?)⇑ = 0 → 1 is not a subtype of Bool → Bool, then the reduction rule (Rcase−R) applies and
the second branch is selected, which is arguably the correct choice. Selecting the first branch, as
the simpler subtyping check would do, would yield to a term that always fails since it would try to
cast the argument of f , that is true, to Int.13

The rules (Rapp−∗) for application are themost difficult ones. First of all, remember that we evaluate
function casts in a lazy way and, in particular, when the functions are applied. So the application
rules perform two operations at once: the substitution corresponding to the beta reduction, and the

13Notice that for this example we used an extended syntax of type case in which the tested term is also bound to a variable.
As explained in Section E in the Appendix of [Castagna et al. 2014] this extended syntax can be encoded in our syntax
and provides a finer-grained typing for the type-case expression, similar to the occurrence typing of Tobin-Hochstadt and
Felleisen [2008].

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:23

evaluation of the cast embedded in the function. The latter consists in η-expanding the function
to apply the appropriate casts to its argument and to its result, and we perform it directly on the
reductum of the beta-reduction. More precisely, when evaluating the expression (λI

⟨τ ⟩ x . e)v the
lambda-expression expects an argument whose type is a subtype of its domain, not of d̃om(τ)
(which is the domain of the cast function). As such, x cannot simply be substituted by v in the
expression e: an additional check must be performed on v . Hence, we look in the interface for an
arrow σi → τi whose input type σi is compatible with the type of v and we substitute for x the
expression ⟨σi ⟩ v (or its reductum). Two observations: first, this target type σi , if it exists, is unique
thanks to the property that interfaces have pairwise disjoint input types. Second, if the argument is
a lambda-abstraction, then the cast it contains is erased by the cast to the target type, and thus
the former does not dictate how the argument can be used in the body of the function. Therefore,
the choice of the target type should not depend on the cast contained by the argument (since it is
erased) but on the interface contained in the argument, which explains why we had to split the
application rule in two subcases, one for constants (which uses the type of the argument to select
the target type) and the other for abstractions (which uses the interfaces of the argument to select
the target type). Notice that the target type may also not exist (rules Rapp−c−fail and Rapp−λ−fail),
which corresponds to a case in which the η-expansion would (later) raise a cast error, and so this
is what the rules (Rapp−c−fail) and (Rapp−λ−fail) do: for an example, consider an application such as
(λInt→Int

⟨?→Int⟩
x .1+x) true that is well-typed —the function is cast to ?→ Int and thus it can be applied

to any argument— but obviously reduces to a cast error, since there is no domain in the interface
that is compatible with the type of the argument.

4.4 Soundness
To prove the soundness of the cast language, we prove the usual lemmas, starting with subject
reduction. Since we defined the compatible subtyping relation to be preserved during the evaluation
and to enjoy a substitution property (see Theorem 1), the subject reduction lemma can be directly
worded as follows.

Lemma 1. (Subject Reduction) — For every terms e1, e2 ∈ Terms⟨⟩ and every typing context Γ, if
e1 7→ e2 and Γ ⊢ e1 : τ1, then Γ ⊢ e2 : τ2 and τ2 ⊑ τ1.

We then prove the progress lemma, stating that every well-typed term that is not a value can be
reduced. In our case, it can be reduced either to another term or to a cast error.

Lemma 2. (Progress) — For every term e ∈ Terms⟨⟩ , if ∅ ⊢ e : τ then e ∈ Values⟨⟩ or ∃e ′ ∈
Terms⟨⟩, e 7→ e ′ or e 7→ CastError.

Finally, the soundness of the cast language is a direct consequence of the two previous lemmas.

Theorem 2. (Soundness) — For every term e ∈ Terms⟨⟩ , if ∅ ⊢ e : τ then either e diverges or
∃v ∈ Values⟨⟩ such that e 7→∗ v or e 7→∗ CastError.

This soundness property will allow us to prove, in the next section, that the dynamic semantics
of the gradually-typed lambda calculus resulting from its compilation to the cast language is sound
with respect to the typing rules presented in Section 3.

5 COMPILATION
In this section, we define the compilation procedure of the gradually-typed lambda calculus to the
cast calculus. By proving that the compilation rules map well-typed terms of the gradually-typed
calculus into well-typed terms of the cast calculus and using the soundness of the latter, we can
prove that the execution of compiled well-typed gradually-typed terms is sound.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:24 Giuseppe Castagna and Victor Lanvin

x : τ ∈ Γ

Γ ⊢ x { x : τ
(Cx)

Γ ⊢ e { e ′ : τ

{
τ ≰̃ ¬t =⇒ Γ ⊢ e1 { e ′1 : σ1
τ ≰̃ t =⇒ Γ ⊢ e2 { e ′2 : σ2

Γ ⊢ ((e ∈ t)?e1 : e2) { ((e ′ ∈ t)?e ′1 : e
′
2) : σ1 ∨ σ2

(Ccase)

Γ ⊢ c { c : B(c)
(Cc)

Γ ⊢ e1 { e ′1 : τ1 τ ⇑2 ≤ d̃om
𝒮
(τ1)

Γ ⊢ e2 { e ′2 : τ2 τ ⇑1 ≤ 0 → 1

Γ ⊢ e1 e2 { e ′1 e
′
2 : τ1◦̃τ2

(Capp−1)

Γ ⊢ e1 { e ′1 : τ1 τ ⇑2 ≰ d̃om
𝒮
(τ1)

Γ ⊢ e2 { e ′2 : τ2 τ ⇓2 ≤ d̃om
𝒮
(τ1) τ ⇑1 ≤ 0 → 1

Γ ⊢ e1 e2 { ⟨τ1◦̃τ2⟩ (e
′
1 ⟨d̃om𝒮

(τ1)⟩ e
′
2) : τ1◦̃τ2

(Capp−2)

Γ ⊢ e1 { e ′1 : τ1
Γ ⊢ e2 { e ′2 : τ2

τ ⇑1 ≰ 0 → 1 or τ ⇓2 ≰ d̃om
𝒮
(τ1)

Γ ⊢ e1 e2 { (⟨τ2 → (τ1◦̃τ2)⟩ e
′
1) e

′
2 : τ1◦̃τ2

(Capp−3)

∀σi → τi ∈ I,

Γ,x : σi ⊢ e { ei : τ ′i
e ′i =

{
ei if τ ′i ⊑ τi

⟨τi ⟩ ei otherwise

Γ ⊢ λIx . e { (λIx .(x ∈ σ⇑

1)? e
′
1 : · · · : (x ∈ σ⇑

i−1)? e
′
i−1 : e

′
i) : TypeOf(I)

(Cλ)

Fig. 4. Compilation rules for the gradually-typed language

5.1 Compilation Rules
The compilation rules for the gradually-typed language are presented in Figure 4. They are directed
by the type system of the cast language, since we want to translate terms of the gradually-typed
lambda calculus to well-typed terms of the cast language. For this reason the judgments in the
rules have the form Γ ⊢ e { e ′ : τ , meaning that under the typing hypothesis Γ the term e of the
gradually-typed language is translated into the term e ′ of the cast language and that the latter has
type τ .

The compilation rules for constants (Cc), variables (Cx) and typecases (Ccase) are straightforward:
the first two are the identity translation while the last one is just the component-wise translation
of all sub-expressions.

There are three rules to compile applications, denoted by (Capp−i). This comes from the fact that
there are three possible ways to compile an application: either (i) the application can be compiled
“as is”, or (ii) the right-hand side of the application needs to be cast to a type compatible with the
type of the function, or (iii) the left-hand side needs to be cast to a function type compatible with
the type of the argument.

The first case corresponds to the rule (Capp−1) and is a direct consequence of the typing rules of
the cast language. That is, if the two sides of the application compile respectively to e ′1 and e

′
2 such

that e ′1 e
′
2 is already a well-typed term of the cast language, then no cast is needed.

Otherwise, given an application e1 e2 whose two sides respectively compile into e ′1 : τ1 and e
′
2 : τ2

we have to decide whether to cast the function e ′1 (to an arrow whose domain is τ2) or its argument

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:25

e ′2 (to the safe domain of τ1). There is one case for which no doubt is possible, namely when τ1 is
not a function type (ie, τ ⇑1 ≰ 0 → 1). In this case we must dynamically verify that e ′1 returns a
lambda-abstraction and therefore we apply the cast to the function. This is done by the rule (Capp−3).
If instead τ1 is a function type, then we have to ensure that, at runtime, the type of the function is
compatible with the type of the argument. Unfortunately there does not exist a recipe that works
in all circumstances: it is not difficult to find two types τ1 and τ2 in which neither the choice of
casting the argument nor the choice of casting the function is always better.14 Note however that
if we cast the function, then we do it to an arrow type, while the cast of the argument does not
impose any particular constraint on the type in the cast. Thus casting the function looks like a
stronger requirement than casting the argument: by casting the function to an arrow we loose all
the information given by the use of connectives in its type and we flatten its domain and its safe
domain into a unique type. This is the reason why, in our compilation rules, we privilege to cast the
argument to the safe domain of the function, but only if such a cast has a chance to succeed, that
is, only if the type of the argument is a consistent subtype of the safe domain (ie, τ ⇓2 ≤ d̃om

𝒮
(τ1)):

this is done by rule (Capp−2). The condition τ ⇓2 ≤ d̃om
𝒮
(τ1) ensures that we will not try to apply

to the argument a cast that is statically known to always fail: for instance, if we apply a function
of type (Int → Int)∧ ? to an argument of type Bool it would be completely useless to cast this
argument to Int, the safe domain of the function, since the cast would always fail. Thus, in this
case, even though e ′1 has a functional type, we will instead cast the function to the type Bool →?.
This last case is handled by the rule (Capp−3): if τ ⇓2 ≰ d̃om

𝒮
(τ1), then the rule (Capp−3) is used again,

and the cast is applied to the function. Since τ2 → (τ1◦̃τ2) ≤̃ τ1, we statically know that this cast
may succeed.
Finally, there remains the translation rule for lambda abstractions. Here the difficulty comes

from the use of interfaces and, more generally, of intersection types. When a lambda abstraction is
given an interface containing more than one type —i.e., it is typed by an intersection type—, then
the function is type-checked several times, once for each type in the interface. The compilation is
driven by the type system and during the typing-checking of the expression, casts are inserted to
ensure soundness. The consequence of type-checking the same expression several times is that
each time different casts may be added, and these may be incompatible from one pass to the other.
Let us show this by an example: consider the following identity function with a bizarre but correct
interface.

λ {Int→Int ; (?\Int)→Bool}x .x

The interface states that when the function is applied to an integer then the application returns an
integer and when it is applied to any other argument then it returns a Boolean, provided it does
not fail. How should we compile this function? If the function is applied to an integer, then no cast
is necessary, while for all other arguments the body needs to be cast to Bool. But since this cast
would be incorrect with an integer argument, the question arises whether we must insert this cast
or not. The solution is to compile the body of the function by a type-case that distinguishes the
two argument configurations, that is:

λ {Int→Int ; (?\Int)→Bool}x .(x∈Int) ? x : ⟨Bool⟩ x (4)

the body of the function is duplicated in all the branches but the cast to Bool is applied only if the
argument is not of type Int.
14Consider τ1 = ((Bool∨ ?)→ ?) ∨ ((Int→Int)∧ ?)) and τ2 = Bool∨ ?. The application is well-typed. However, if e′1 is the
successor function and e′2 is an integer, then casting the function (to Bool∨ ?→?) would fail while casting the argument (to
the safe domain Int) would not; taking instead for e′1 and e

′
2 the Boolean “not” function and true would fail for a cast on

the argument and succeed if the cast is on the function.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:26 Giuseppe Castagna and Victor Lanvin

This is exactly what the (Cλ) rule does. In particular it transforms the body of a lambda-abstraction
into a type case with as many branches as arrows in the interface, and puts into each branch the
translation of the body obtained under the hypothesis that the parameter of the function has the
input type of the arrow under consideration (the type case is not inserted if the interface is composed
of a single arrow). Remember that, given an abstraction λIx . e , its interface I = {σi → τi | i ∈ I }

verifies ∀i, j ∈ I , i , j =⇒ σ⇑

i ∧ σ⇑

j ≤ 0 and its domain is d̃om(TypeOf(I)) =
∨

i ∈I σ
⇑

i . This
means that the different cases of the typecase in the translation cover the whole domain of the
function and are not overlapping. Thus, the order in which they are considered does not matter. As
a consequence, for every value of type σ ≤̃ d̃om(TypeOf(I)), there exists a unique i ∈ I such that
σ⇑ ≤ σ⇑

i . This is the essence of the rule (Cλ): since the compilation of the body e of the abstraction
depends on the type of x , it checks the variable x against every possible type σ⇑

i and branches to
the corresponding compiled expression ei (where e { ei under the hypothesis that x has type σi).
Finally, to ensure that the compiled function is well-typed (in the type system of the cast language)
with respect to its interface, the rule also add casts to branches that require it. For instance, in our
example in (4) no cast is inserted in the first branch (since if x : Int then the body has type Int
which is exactly the type in the interface) but a cast is inserted in the second (since x , and thus the
body, has type ? \Int and ? \Int ̸⊑ Bool).

5.2 Safety and Soundness
The compilation procedure compiles gradually-typed terms to terms of the cast language, and thus
implicitly defines the reduction semantics of the gradually-typed language. The safety property for
this language states that the compilation of every well-typed term reduces to a value, a cast error,
or diverges. However, for this statement to be meaningful, the compilation must be exhaustive;
that is, it should be possible to compile every well-typed term of the gradually-typed language.
This is formally stated as follows.

Lemma 3. (Exhaustiveness of Compilation) — For every term e ∈ Terms and every typing context
Γ, if Γ ⊢ e : τ then Γ ⊢ e { e ′ : τ where e ′ ∈ Terms⟨⟩ .

Moreover, we can prove that the compilation procedure preserves the type of the compiled term.

Lemma 4. (Type Preservation by Compilation) — For every term e ∈ Terms and every typing
context Γ, if Γ ⊢ e { e ′ : τ then Γ ⊢ e ′ : τ .

These two lemmas can be summarized as the following theorem, proving the soundness of the
compilation procedure with respect to both type systems.

Theorem 3. (Soundness of Compilation) — For every term e ∈ Terms and every typing context Γ,
if Γ ⊢ e : τ then Γ ⊢ e { e ′ : τ , where e ′ ∈ Terms⟨⟩ and Γ ⊢ e ′ : τ .

The safety property of the cast language stated in Theorem 2 can then be “lifted” to the gradually-
typed lambda calculus.

Corollary 1. (Safety of the Gradually-Typed Language) — For every term e ∈ Terms, if ∅ ⊢ e : τ ,
then e { e ′ : τ where e ′ ∈ Terms⟨⟩ and either e ′ diverges, or ∃v ∈ Values⟨⟩ such that e ′ 7→∗ v and
∅ ⊢ v : τ ′ ≤̃ τ , or e ′ 7→∗ CastError.

6 CONCLUSION
In this work, we presented a foundational study for gradually-typed languages with union and
intersection types and argued that the combination of the former with the latter allows a smoother
and finer-grained transition between static and dynamic typing, than what is possible with the

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:27

current state of the art. As the use of the unknown type “?” allows the programmer to gradually
add type information in selected parts of the program, so the use of unions and intersections allows
the same programmer to gradually refine the type information about a given part of the program
or a single expression, thus enabling a new style of gradual programming. While adding unions
and intersections inside arrows brings real benefits at no cost, we have also seen that for adding
intersections on arrows there is instead a price to pay: intersections of arrows allow the programmer
to write overloaded functions, but when these are combined with gradual types their code needs to
be specialized to insert casts that depend on the type of the argument. This happens both in the
semantics of the cast language (where the cast to apply to the argument is different in the case of
interfaces with multiple arrows) and in the compilation rules (where the body of a λ-abstraction is
compiled into a type-case when the interface contains multiple arrows). Further research is needed
to study how to alleviate this cost.
The language presented in this work is minimalist and if we want our study to scale to real

world functional languages, then it is necessary to extend it in several directions, foremost by
adding advanced features, such as pattern matching, type recursion, and new type constructors (in
particular, products and records). Equally important will be the addition of polymorphic types, an
addition that we plan to pursue by drawing ideas from both the work on polymorphic set-theoretic
types by Castagna et al. [2015, 2014] and the work on polymorphic gradual types by Siek and
Vachharajani [2008] and Garcia and Cimini [2015]. This work will be followed by the study of some
forms of type reconstruction and local type inference on the basis of what was already done on
set-theoretic types by Castagna et al. [2016]. Only then we will be able to see whether and how the
techniques whose study started here apply to languages such as JavaScript and how they compare
and/or whether they may bring any contribution to approaches such as the one of the language
Flow that we described in Section 1.3 on related work.

From a more theoretical point of view, we saw that using type connectives increases the discre-
tionary of adding casts in an application. Our choice, embodied by the compilation rule (Capp−2),
was to push casts on the argument part of an application as much as possible. However, it may
be worth exploring whether by a “threesome” approach as proposed by Siek and Wadler [2010]
one could find more expressive intermediate solutions. Another property that may also be worth
verifying for our system is the gradual guarantee [Siek et al. 2015], which states that a program
that runs without errors still does with less precise type annotations.
We completely disregarded error-message generation, both at static and at dynamic time. In

particular, we did not considered the so-called blame. As pointed out by an anonymous referee, a
“blame theorem”, as presented by Wadler and Findler [2009], is not worth proving for our calculus,
since the wrong casts might be blamed. The reason for that lies in the fact that we chose to collapse
casts on functions (see rule Rcast−λ in Figure 3). While this choice makes the calculus simpler
without hindering soundness, it yields a formalism unfit to finger culprits. In particular, complete
monitoring [Dimoulas et al. 2012] fails for a calculus that omit casts in this way since it cannot
keep track of every owner of a term (see Dimoulas et al. [2012] for a general discussion). We are
currently studying a different cast language that will make the study of blame and error-message
generation possible, so that whenever the execution of a program results in a cast error, then it is
the dynamically-typed part of the program that must be blamed for that. Finally, we would like to
explore how this study applies when one tries to extend it with generalized abstract data types.

ACKNOWLEDGMENTS
The authors would like to thank Tommaso Petrucciani, Jeremy Siek, Éric Tanter, and the anonymous
reviewers for their remarks and suggestions which allowed us to significantly improve this work.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:28 Giuseppe Castagna and Victor Lanvin

REFERENCES
Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. 2003. CDuce: an XML-centric general-purpose language. In

Proceedings of the 8th ACM SIGPLAN International Conference on Functional Programming (ICFP ’03). ACM, 51–63.
Giuseppe Castagna. 2015. Covariance and Contravariance: a fresh look at an old issue (a primer in advanced type systems

for learning functional programmers). (2015). Unpublished manuscript, available at the author’s web page.
Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. 1995. A calculus for overloaded functions with subtyping.

Information and Computation 117, 1 (1995), 115–135.
Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. 2015. Polymorphic Functions with Set-Theoretic Types.

Part 2: Local Type Inference and Type Reconstruction. In Proceedings of the 42nd ACM Symposium on Principles of
Programming Languages (POPL ’15). ACM, 289–302.

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and Luca Padovani. 2014. Polymorphic
Functions with Set-Theoretic Types. Part 1: Syntax, Semantics, and Evaluation. In Proceedings of the 41st ACM Symposium
on Principles of Programming Languages (POPL ’14). ACM, 5–17.

Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. 2016. Set-Theoretic Types for Polymorphic Variants. In
Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (ICFP ’16). ACM, 378–391.

Avik Chaudhuri. 2014. Flow: A static type checker for JavaScript. Facebook. https://flowtype.org.
Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL ’77). ACM, 238–252.

Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Complete Monitors for Behavioral Contracts. In
Programming Languages and Systems - 21st European Symposium on Programming, ESOP’́12. 214–233.

Alain Frisch. 2004. Regular Tree Language Recognition with Static Information. In IFIP 18th World Computer Congress TC1,
3rd International Conference on Theoretical Computer Science (TCS2004) (IFIP), Vol. 155. Kluwer/Springer, 661–674.

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic Subtyping: dealing set-theoretically with
function, union, intersection, and negation types. J. ACM 55, 4 (2008), 1–64.

Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for Gradual Programs. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, 303–315.

Ronald Garcia, Alison M Clark, and Éric Tanter. 2016. Abstracting gradual typing. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). ACM, 429–442.

Khurram A. Jafery and Joshua Dunfield. 2017. Sums of Uncertainty: Refinements Go Gradual. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL ’17). ACM, 804–817.

Nico Lehmann and Éric Tanter. 2017. Gradual refinement types. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL ’17). ACM, 18–20.

John C. Reynolds. 1996. Design of the Programming Language Forsythe. Technical Report CMU-CS-96-146. Carnegie Mellon
University.

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Proceedings of Scheme and Functional
Programming Workshop. ACM, 81–92.

Jeremy G. Siek and Sam Tobin-Hochstadt. 2016. The Recursive Union of Some Gradual Types. In A List of Successes That Can
Change the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, Sam Lindley, Conor McBride,
Phil Trinder, and Don Sannella (Eds.). Springer, 388–410.

Jeremy G. Siek and Manish Vachharajani. 2008. Gradual typing with unification-based inference. In Proceedings of the 2008
Symposium on Dynamic languages. ACM, 7.

Jeremy G. Siek, Michael M Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined criteria for gradual typing. In
LIPIcs-Leibniz International Proceedings in Informatics, Vol. 32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Jeremy G. Siek and Philip Wadler. 2010. Threesomes, with and Without Blame. In Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’10). ACM, 365–376.

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual
Typing Dead?. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). ACM, 456–468.

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed Scheme. In Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’08). ACM, 395–406.

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’T Be Blamed. In Proceedings of the 18th European
Symposium on Programming Languages and Systems (LNCS). Springer, 1–16.

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation
115, 1 (1994), 38 – 94.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

https://flowtype.org

Gradual Typing with Union and Intersection Types 41:29

A APPENDIX
In this appendix, we present full definitions of the language and type system we studied throughout
this paper, along with complete proofs of all the results.

A.1 Gradual Types
A.1.1 Extreme Concretizations and Subtyping. For every gradual type τ , we define its maximal

concretization by substituting every positive occurrence of ? by 1 and every negative occurrence of
? by 0. We do the opposite to define its minimal concretization. The following definition formalizes
this.

Definition 12. (Extreme Concretizations) For every type τ ∈ GTypes, we mutually define the
maximal (resp. minimal) concretization of τ , noted τ ⇑ (resp. τ ⇓) as follows:

.⇑ : GTypes → STypes

?⇑ = 1

(τ1 ∨ τ2)
⇑ = τ ⇑1 ∨ τ ⇑2

(τ1 ∧ τ2)
⇑ = τ ⇑1 ∧ τ ⇑2

(σ → τ)⇑ = σ⇓ → τ ⇑

t⇑ = t

.⇓ : GTypes → STypes

?⇓ = 0

(τ1 ∨ τ2)
⇓ = τ ⇓1 ∨ τ ⇓2

(τ1 ∧ τ2)
⇓ = τ ⇓1 ∧ τ ⇓2

(σ → τ)⇓ = σ⇑ → τ ⇓

t⇓ = t

Based on this definition, we can now formalize the intuition that the extreme concretizations of
a gradual type τ belong to its concretization γ (τ) and are the extreme elements of this set.

Theorem 4. (Gradual Extrema) For every type τ ∈ GTypes, the following properties hold:
(1) ∀t ∈ γ (τ), t ≤ τ ⇑

(2) ∀t ∈ γ (τ),τ ⇓ ≤ t
(3) τ ⇑ ∈ γ (τ)
(4) τ ⇓ ∈ γ (τ)

Proof. Let τ ∈ GTypes. The four properties must be proved all at once, by induction over the
type τ . We will only prove properties (1) and (3), as properties (2) and (4) are extremely similar.

• τ = τ1 ∨ τ2. By definition of the maximal concretization, we have τ ⇑ = τ ⇑1 ∨ τ ⇑2 .
By induction hypothesis, it holds that τ ⇑1 ∈ γ (τ1) and τ ⇑2 ∈ γ (τ2). And, by definition of γ :

γ (τ) = {t1 ∨ t2 | t1 ∈ γ (τ1), t2 ∈ γ (τ2)}

Therefore, τ ⇑ ∈ γ (τ), which proves property (3).
Now, let t be any type ofγ (τ). By definition ofγ , there exist two types t1 ∈ γ (τ1) and t2 ∈ γ (τ2)

such that t = t1 ∨ t2. By induction hypothesis, it holds that t1 ≤ τ ⇑1 and t2 ≤ τ ⇑2 . Since the
set-theoretic union is monotonic with respect to set containment (a.k.a. subtyping), we obtain
that t1 ∨ t2 ≤ τ ⇑1 ∨ τ ⇑2 . This proves property (1).

• τ = τ1 ∧ τ2. This case is similar to the previous one and is proved in the same way, since the
set-theoretic intersection is also monotonic with respect to set containment.

• τ = µ → σ . By definition of the maximal concretization, we have τ ⇑ = µ⇓ → σ⇑.
By induction hypothesis, it holds that µ⇓ ∈ γ (µ) and σ⇑ ∈ γ (σ). And, by definition of γ :

γ (τ) = {u → s | u ∈ γ (µ), s ∈ γ (σ)}

Therefore, τ ⇑ ∈ γ (τ), which proves property (3).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:30 Giuseppe Castagna and Victor Lanvin

Let t be any type of γ (τ). By definition of γ , there exist two types u ∈ γ (µ) and s ∈ γ (σ) such
that t = u → s . Moreover, by induction hypothesis, it holds that µ⇓ ≤ u and s ≤ σ⇑. Hence
the following inequalities:

t = u → s ≤ u → σ⇑ By covariance of the codomain

≤ µ⇓ → σ⇑ By contravariance of the domain

= τ ⇑

This proves property (1).
• τ =?. By definition of the maximal concretization, we have ?⇑= 1. Since γ (?) = STypes, it is
obvious that ?⇑∈ γ (?), hence property (3).
Moreover, for every static type t , it holds that t ≤ 1, hence property (1).

• τ ∈ STypes. This case is trivial given that, for every static type t , t⇑ = t , and γ (t) = {t}.
Hence, it is obvious that t ≤ t⇑ and that t⇑ ∈ γ (t). This last case concludes the proof by
induction.

□

Definition 13. (Subtyping of Gradual Types) Using the concretization function γ , subtyping is
defined on gradual types as follows:

∀(σ ,τ) ∈ GTypes2,σ ≤̃ τ ⇐⇒ ∃(s, t) ∈ γ (σ) × γ (τ), s ≤ t

Proposition 3. (Reduction of Consistent Subtyping) Deciding consistent subtyping is equivalent to
deciding static subtyping. In particular, it holds that:

∀(σ ,τ) ∈ GTypes2,σ ≤̃ τ ⇐⇒ σ⇓ ≤ τ ⇑

Proof. Let σ ,τ be two gradual types.
• Assume that σ ≤̃ τ . By definition of ≤̃, there exists two static types (s, t) ∈ γ (σ) × γ (τ) such
that s ≤ t .
By Theorem 4, it holds that σ⇓ ≤ s and t ≤ τ ⇑. By transitivity of static subtyping, we deduce
that σ⇓ ≤ τ ⇑.

• Now, assume that σ⇓ ≤ τ ⇑. According to Theorem 4, it holds that σ⇓ ∈ γ (σ) and τ ⇑ ∈ γ (τ).
Hence the proposition.

□

Definition 14. (Equivalence of Gradual Types) We define the equivalence relation ≊ on gradual
types such that for all types σ ,τ ∈ GTypes,

σ ≊ τ ⇐⇒

{
σ⇓ ≃ τ ⇓

σ⇑ ≃ τ ⇑

where ≃ denotes the equivalence of two static types (subtyping wise).

A.1.2 Static Domains and Results. When considering non-gradual, set-theoretic types, the first
step to define the domain and result type of a function is usually to define a disjunctive normal
form for types.

Definition 15. (Static Disjunctive Normal Form) A static type t is said to be in disjunctive normal
form (DNF) if it is of the form:

t ≡
∨
i ∈I

∧
j ∈Ji

lj

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:31

where lj are static literals, that is, static atoms or negation of static atoms:

l ::= a | ¬a

and atoms are defined as:
a ::= s → t | 0 | 1 | b

It is possible to go even further by defining a uniform disjunctive normal form, that is, a normal
form that does not contain heterogeneous intersections (ie. intersection of an arrow and a base
type).

Definition 16. (Static Uniform Disjunctive Normal Form) A static type t is said to be in uniform
disjunctive normal form (uDNF) if it is of the form:

t ≡
∨
f ∈F

∧
j ∈Jf

sj → tj ∧
∧
n∈Nf

¬(sn → tn)∨
p∈P

∧
j ∈Jp

bj ∧
∧
n∈Np

¬bn

Having defined this, it is then possible to show that every type is equivalent (w.r.t. static subtyping)
to a type in uniform disjunctive normal form.

Proposition 4. (Equivalence to Static uDNF) Every static type t is equivalent to a type in uniform
disjunctive normal form:

t ≃
∨
f ∈F

∧
j ∈Jf

sj → tj ∧
∧
n∈Nf

¬(sn → tn)∨
p∈P

∧
j ∈Jp

bj ∧
∧
n∈Np

¬bn

In particular, if t is a function type (that is, t ≤ 0 → 1), then

t ≃
∨
f ∈F

∧
j ∈Jf

sj → tj ∧
∧
n∈Nf

¬(sn → tn)

The domain and result type of a function type are then defined on disjunctive normal forms as
follows.

Definition 17. (Static Domain) For every static type t ≤ 0 → 1 in uDNF, we define the domain of
t as follows, using the notations of Definition 16:

dom(t) =
∧
f ∈F

∨
j ∈Jf

sj

Definition 18. (Static Result) For every static type t ≤ 0 → 1 in uDNF, and every static type s ,
we define the result type of the application of t to s as follows, using the notations of Definition 16:

t ◦ s =
∨
f ∈F

∨
Q⊊Jf

s≰
∨
q∈Q sq

∧
p∈Jf \Q

tp

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:32 Giuseppe Castagna and Victor Lanvin

Since every static type is equivalent to a type in disjunctive normal form (according to Proposi-
tion 4), the set of static types can be partitioned into equivalence classes for ≃ such that every class
contains at least one type in disjunctive normal form. Fortunately, the definitions of the domain
and result are invariant by equivalence (that is, if two normal forms are equivalent for ≃, then they
have the same domain and result). Thus, it is possible to define the domain and result on every
equivalence class (that is, for every static type), independently of the choice of the representative
in disjunctive normal form.

A.1.3 Applicative Concretization. Unfortunately, the same reasoning cannot be applied directly
to gradual types, without a suitable equivalence relation. Indeed, the subtyping-based equivalence
presented in Definition 14 is not precise enough. For example, consider the two following gradual
types, that can be considered to be in disjunctive normal form:

τ =? ∧((Int∧ ?) → Bool)

σ =? ∧((Bool∧ ?) → Bool)

It holds that τ ≊ σ . However, they are not intuitively the same. In particular, applying the first
one to an argument of type Int returns a value of type Bool ∨(Bool∧ ?) ≊ Boolwhereas applying
the second one to the same argument returns a value of type ?.

Hence the need for a stronger equivalence relation that encompasses the properties of function
types. The solution we propose consists in defining new concretization functions that correspond
to the transformation of a type into its disjunctive normal form. This leads to the definition of the
applicative concretization given in Definition 4.

A.1.4 Gradual Domains and Results. Using the intuition that γ+
𝒜
(τ) represents a disjunctive

normal form of τ , we can now define the domain and the result type of a gradual type by analogy
with static types. The definition of the gradual domain, presented in Definition 5 is simply the
gradual equivalent of its static counterpart, presented in Definition 17. Unfortunately, lifting the
result type operator is not as easy, due to the criterion s ≰

∨
q∈Q sq that appears in Definition 18.

This requires lifting the predicate ≰, which is not the same as negating the predicate ≤̃. Indeed, by
definition of predicate lifting operations, we have for every gradual types τ and σ ,

τ ≰̃σ ⇐⇒ ∃(t , s) ∈ γ (τ) × γ (σ), t ≰ s

whereas the negation of ≤̃ is defined by

¬(τ ≤̃ σ) ⇐⇒ ∀(t , s) ∈ γ (τ) × γ (σ), t ≰ s

Thankfully, we can once again give a simple definition of the predicate ≰̃, using the same
technique as for ≤̃:

∀τ ,σ ∈ GTypes,τ ≰̃σ ⇐⇒ ∃(t , s) ∈ γ (τ) × γ (σ), t ≰ s

⇐⇒ τ ⇑ ≰ σ⇓

Thus, the gradual lifting of the criterion s ≰
∨

q∈Q sq is σ⇑ ≰
(∨

(ρ→ρ′)∈Q ρ
)⇓
. Hence the

definition of the gradual result given in Definition 5.

A.1.5 Gradual Disjunctive Normal Forms. In this section, we give some a posteriori intuition for
the applicative concretization functions. We first define a rewriting system that rewrites any gradual
type into an equivalent disjunctive normal form (with respect to ≊), prove its termination, and
show that the applicative concretization is preserved by rewriting. Thus, any operator defined on

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:33

disjunctive normal forms (such as the domain or the result) can also be defined using the applicative
concretization. We start by giving the definition of the rewriting system.

Definition 19. (DNF Rewriting System) — We define the following rewriting system, noted ℛDNF,
on gradual types:

ℛDNF : GTypes → GTypes

σ ∧ (τ1 ∨ τ2) 7→ℛ (σ ∧ τ1) ∨ (σ ∧ τ2) (ℛ1a
DNF)

(τ1 ∨ τ2) ∧ σ 7→ℛ (τ1 ∧ σ) ∨ (τ2 ∧ σ) (ℛ1b
DNF)

¬(τ1 ∨ τ2) 7→ℛ (¬τ1) ∧ (¬τ2) (ℛ2
DNF)

¬(τ1 ∧ τ2) 7→ℛ (¬τ1) ∨ (¬τ2) (ℛ3
DNF)

¬¬τ 7→ℛ τ (ℛ4
DNF)

E(τ) 7→ℛ E(τ ′) if τ 7→ℛ τ ′ (ℛ5
DNF)

where the rewriting contexts are defined as:

E ::= τ ∨ E | E ∨ τ | τ ∧ E | E ∧ τ | ¬E | □

We now verify that the rewriting system ℛDNF preserves the previously defined relation ≊.

Proposition 5. (Preservation of equivalence) — For every gradual types σ and τ , if σ 7→∗
ℛ τ then

σ ≊ τ .

Proof. Since ≊ is an equivalence relation (and is thus transitive), the proof is simply done by
cases over a one-step reduction σ 7→ℛ τ and is then generalized by transitivity to an arbitrary
reduction.

• (ℛ1a
DNF): σ ∧ (τ1 ∨ τ2) 7→ℛ (σ ∧ τ1) ∨ (σ ∧ τ2)

By definition of the maximal and minimal interpretations of a type, we have:

(σ ∧ (τ1 ∨ τ2))
⇑ = σ⇑ ∧ (τ ⇑1 ∨ τ ⇑2)

((σ ∧ τ1) ∨ (σ ∧ τ2))
⇑ = (σ⇑ ∧ τ ⇑1) ∨ (σ⇑ ∧ τ ⇑2)

Since De Morgan’s laws hold for static types, it is clear that:

σ⇑ ∧ (τ ⇑1 ∨ τ ⇑2) ≃ (σ⇑ ∧ τ ⇑1) ∨ (σ⇑ ∧ τ ⇑2)

Hence the preservation of the maximal interpretation. The same goes for the minimal inter-
pretation, which proves that the rule (ℛ1a

DNF) preserves the equivalence ≊.
• (ℛ1b

DNF): Unions and intersections are evidently commutative for the relation ≊. This case
is therefore a direct consequence of the previous one by commutativity of the intersection
constructor.

• (ℛ2
DNF), (ℛ

3
DNF), (ℛ

4
DNF): these three cases are actually immediate since only static types can

be negated, and are therefore simple applications of De Morgan’s laws.
• (ℛ5

DNF): E(τ) 7→ℛ E(τ ′) if τ 7→ℛ τ ′

This case is proved by induction over the rewriting context E:
– E = σ ∨ E ′, in which case we have σ ∨ E ′(τ) 7→ℛ σ ∨ E ′(τ ′).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:34 Giuseppe Castagna and Victor Lanvin

By induction hypothesis, we know that E ′(τ) ≊ E ′(τ ′). Hence the following equivalences:

(E(τ))⇑ ≡ (σ ∨ E ′(τ))⇑

≡ σ⇑ ∨ (E ′(τ))⇑

≃ σ⇑ ∨ (E ′(τ ′))⇑ (by induction hypothesis)

≡ (σ ∨ E ′(τ ′))⇑

≡ (E(τ ′))⇑

Naturally, the same reasoning holds for the minimal interpretation of E(τ), which proves
this first case.

– The three other union and intersection cases are similar and are proved in the same way.
– E = ¬E ′, in which case we have ¬E ′(τ) 7→ℛ ¬E ′(τ ′).
Once again, since only purely static types can be negated, and given that ≃ is a congruence
on static types, this case is immediate. This concludes the last case for the rewriting context
as well as the last rewriting rule, hence the proposition.

□

We also state the following results, formalizing the intuition behind the applicative concretization.

Proposition 6. (Preservation of equivalence by γ+
𝒜
) — For every gradual types σ and τ , if σ 7→∗

ℛ τ
then γ+

𝒜
(σ) = γ+

𝒜
(τ).

Proof. Immediate by definition of γ+
𝒜
, which is preserved by every rule of ℛDNF. □

Now that we have proved that the rewriting system preserves the equivalence of two gradual
types, we need to prove that it correctly produces types in disjunctive normal form. Thus, we start
by defining what it means for a gradual type to be in disjunctive normal form.

Definition 20. (Gradual Disjunctive Normal Form) A gradual type σ is said to be in disjunctive
normal form (DNF) if it is of the form:

σ ≡
∨
i ∈I

∧
j ∈Ji

γj

where γj are gradual literals, that is, gradual atoms or negation of static atoms:

γ ::= α | ¬a

Proposition 7. (Soundness of rewriting) — For every gradual types τ and σ , if τ 7→∗
ℛ σ and

σ ̸7→ℛ , then σ is in disjunctive normal form.

Proof. This proof is done by contradiction. Let τ and σ be two gradual types such that τ 7→∗
ℛ σ .

Let us assume that σ is not in disjunctive normal form. It is then possible to prove, by complete
induction on σ , that it can be reduced using ℛDNF.

• σ ≡ σ1 ∨ σ2.
A union of two types in disjunctive normal form is a type in disjunctive normal form.
Therefore, at least one of the two types σ1 and σ2 is not in DNF.
Suppose that σ1 is not in DNF. By induction hypothesis, σ1 can be rewritten to a gradual type
σ ′
1 . Rewriting contexts allow us to rewrite on the left of a union. Therefore, σ ≡ σ1 ∨ σ2 7→ℛ

σ ′
1 ∨ σ2, hence the contradiction.

Similarly, if σ2 is not in DNF, the same argument holds since we can apply a rewriting rule to
the right of a union.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:35

• σ ≡ σ1 ∧ σ2.
An intersection of two intersections of literals is a type in disjunctive normal form. Therefore,
at least one of the two types σ1 and σ2 is not an intersection of literals.
Suppose that σ1 is not an intersection of literals. This means that σ1 contains at least one
union that is not under an arrow, or a union or intersection below a negation. Reasoning on
the topmost constructor of σ1, there are three possible subcases:
– The topmost constructor of σ1 is a union, that is, σ1 ≡ σ1,1 ∨ σ1,2. In this case, we have σ ≡

(σ1,1∨σ1,2)∧σ2. Therefore, σ can be rewritten using the rule (ℛ1b
DNF) to (σ1,1∧σ2)∨(σ1,2∧σ2)

– The topmost constructor of σ1 is an intersection. Since σ1 is strictly smaller than σ , it is
possible to apply the induction hypothesis to σ1 which states that σ1 can be rewritten to a
type σ ′

1 .
By definition of rewriting contexts, it is possible to rewrite to the left of an intersection,
hence σ ≡ σ1 ∧ σ2 7→ℛ σ ′

1 ∧ σ2.
– The topmost constructor of σ1 is a negation, that is, σ1 ≡ ¬t . Since σ1 is not a literal, it is
not in disjunctive normal form. By induction hypothesis, σ1 rewrites to a types σ ′

1 .
Once again, by definition of rewriting contexts, it is possible to rewrite to the left of an
intersection, hence σ ≡ σ1 ∧ σ2 7→ℛ σ ′

1 ∧ σ2.
The case of σ2 is proved symmetrically: using (ℛ1a

DNF) or by rewriting to the right of an
intersection.

• σ ≡ ¬s .
Since σ is not in disjunctive normal form, s is not an atom. Therefore, the topmost constructor
of s is necessarily a union, an intersection, or a negation.
– s = s1 ∨ s2.
In this case, σ ≡ ¬(s1 ∨ s2) 7→ℛ ¬s1 ∧ ¬s2 by the rule ℛ2

DNF.
– s = s1 ∧ s2.
In this case, σ ≡ ¬(s1 ∧ s2) 7→ℛ ¬s1 ∨ ¬s2 by the rule ℛ3

DNF.
– s = ¬t .
In this case, σ ≡ ¬¬t 7→ℛ t by the rule ℛ4

DNF.
In all three cases, σ can be rewritten, hence the contradiction, and the last case of the proof.

□

We now state that the rewriting system is terminating, thus effectively rewriting any type to an
equivalent type in disjunctive normal form.

Proposition 8. (Termination of Rewriting) — ℛDNF is terminating, that is, there is no infinite
chain of the form

τ1 7→ℛ τ2 7→ℛ · · ·

Proof. This is a common result in rewriting theory. It is proven by defining the multiset path
ordering based on the following ordering on connectives: ¬ > ∧ > ∨. This ordering is, by
construction, strictly decreasing for every rewriting rule. □

As a consequence, we deduce the following proposition:

Proposition 9. (Existence of DNF) — For every gradual type τ , there exists a gradual type σ such
that τ ≊ σ and σ is in disjunctive normal form.

Proof. Let τ be any gradual type. Consider any rewriting chain starting from τ : τ 7→ℛ τ1 7→ℛ

· · · . According to Proposition 8, such a chain is necessarily finite. Let τn be its last element. Formally,
τ 7→∗

ℛ τn ̸7→ℛ .

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:36 Giuseppe Castagna and Victor Lanvin

Now, according to Proposition 7, τn is in disjunctive normal form. Moreover, by Proposition 5, it
holds that τ ≊ τn , hence the proposition. □

Remark: It is clear that union and intersection constructors are commutative for the equivalence
relation ≊. Thus, the disjunctive normal form of a given type is not unique. In particular, types
below a union or an intersection can be reordered as necessary without altering the equivalence
property.

We now prove that, similarly to non-gradual set-theoretic types, every gradual type is equivalent
to a type in uniform disjunctive normal form, that is, a type whose intersections contain only
arrows or only base types.

Definition 21. (Gradual Uniform Disjunctive Normal Form) — A gradual type σ is said to be in
uniform disjunctive normal form (uDNF) if it is of the form:

σ ≡
∨
i ∈If ,1

∧
j ∈Ji

σj → τj ∧
∧
j ∈Ni

¬(sj → tj)

∨
∨
i ∈If ,2

∧
j ∈Ji

σj → τj ∧
∧
j ∈Ni

¬(sj → tj)∧ ?

∨
∨
i ∈Ib,1

∧
j ∈Ji

bj ∧
∧
j ∈Ni

¬bj

∨
∨
i ∈Ib,2

∧
j ∈Ji

bj ∧
∧
j ∈Ni

¬bj∧ ?

Proposition 10. (Existence of uDNF) — For every gradual type τ , there exists a gradual type σ
such that τ ≊ σ and σ is in uniform disjunctive normal form.

Proof. Let τ be any gradual type. According to Proposition 9, there exists a gradual type σ in
disjunctive normal form such that τ ≊ σ :

σ ≡
∨
i ∈I

∧
j ∈Ji

α j ∧
∧
n∈Ni

¬an

First of all, it is clear that ¬0 ≃ 1 and ¬1 ≃ 0. Therefore, any negation of 1 or 0 can be replaced by
the opposite type. Moreover, we also have the following equivalences, for every gradual type τ :

τ ∧ 1 ≊ τ

τ ∨ 1 ≊ 1

τ ∧ 0 ≊ 0

τ ∨ 0 ≊ τ

These are direct consequences of the properties of the union and intersection of static types, and
the definitions of 1 and 0.

Therefore, given that ≊ is a congruence, any occurrence of 1 or 0 can be removed from σ while
preserving the equivalence of τ and σ .
We now prove that we can safely remove any heterogeneous intersection from σ . Consider the

following cases:
• There exists an intersection i ∈ I that contains two terms (j, j ′) ∈ J 2i such that α j = σ ′ → τ ′

and α j′ = b.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:37

Developing the maximal interpretation of α j ∧ α j′ , we obtain:

(α j ∧ α j′)
⇑ = α⇑

j ∧ α ′⇑

j

= (σ ′⇓ → τ ′⇑) ∧ b

≃ 0

The same reasoning shows that (α j ∧ α j′)
⇓ ≃ 0. Therefore, it holds that α j ∧ α j′ ≊ 0. Thus,

the whole intersection i is equivalent to the empty type and can be removed from σ .
• ∃i ∈ I , ∃j ∈ Ji , ∃n ∈ Ni , α j = σ ′ → τ ′ and an = b.
Developing the maximal interpretation of α j ∧ ¬an gives:

(α j ∧ ¬an)
⇑ = α⇑

j ∧ ¬a⇓n

= (σ ′⇓ → τ ′⇑) ∧ ¬b

≃ σ ′⇓ → τ ′⇑

= (σ ′ → τ ′)⇑

The same reasoning shows that

(α j ∧ ¬an)
⇓ ≃ (σ ′ → τ ′)⇓

Therefore, it holds that
α j ∧ ¬an ≊ σ ′ → τ ′ = α j

Thus, we can safely remove the atom an from the intersection i while preserving the equiva-
lence of σ and τ .

• ∃i ∈ I , ∃j ∈ Ji , ∃n ∈ Ni , α j = b and an = s → t .
Once again, we develop the maximal interpretation of α j ∧ ¬an :

(α j ∧ ¬an)
⇑ = α⇑

j ∧ ¬a⇓n

= b ∧ ¬(s⇓ → t⇑)

≃ b = α⇑

j

The same reasoning shows that (α j ∧ ¬an)
⇓ = b = α⇓

j . Hence, we have α j ∧ ¬an ≊ α j .
Therefore, the atom an can once again be safely removed from the intersection i .

• There is only one case of heterogeneous intersection left, which is the case of an intersection
containing the negation of an arrow as well as the negation of a base type. However, if this
intersection also contains a positive arrow or base type, then it falls into one of the two
previous cases. Therefore, there are only two subcases left: either the intersection does not
contain any positive literal, or the only positive literal it contains is ?.
These two cases are handled in the same, following way. Consider such an intersection i ∈ I :

τi =
∧

j ∈(Ji∪Ni)

γj

This intersection is effectively equivalent to the following one:

τ ′i =
∧

j ∈(Ji∪Ni)

γj ∧ 1

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:38 Giuseppe Castagna and Victor Lanvin

Remarking that 1 ≊ 1→ ∨ 1B where 1B is the union of all base types and 1→ = 0 → 1 is the
set of all functional values, we obtain the following equivalence:

τ ′i ≊
∧

j ∈(Ji∪Ni)

γj ∧ (1→ ∨ 1B)

≊ ©­«
∧

j ∈(Ji∪Ni)

γj ∧ (0 → 1)
ª®¬ ∨

∨
b ∈B

∧
j ∈Ji

γj ∧ b

This type is in disjunctive normal form and is such that every intersection contains at least
one positive literal that is not ?. Therefore, it can be handled using the previous cases. Hence,
τi is equivalent to a type in uniform disjunctive normal form τi,DN F .
Now, it is easy to see that, given a type in disjunctive normal form, replacing any of its
intersections by a type in DNF still produces a type in DNF.
Using this fact, we can safely replace the intersection τi by τi,DN F in σ , producing a type σ ′

in disjunctive normal form such that σ ≊ σ ′. This concludes the last case.

In conclusion, τ is equivalent to a type in disjunctive normal form that does not contain heteroge-
neous intersections. Reordering intersections and separating those which contain an occurrence of
? gives the form presented in Definition 21, which concludes the proof. □

We immediately deduce the following corollaries:

Corollary 2. (uDNF for Function Types) Every gradual type τ such that τ ⇓ ≤ 0 → 1 can be
written in disjunctive normal form as:

τ ≊
∨
i ∈If ,1

∧
j ∈Ji

σj → τj ∧
∧
j ∈Jn

¬(sj → tj)

∨
∨
i ∈If ,2

∧
j ∈Ji

σj → τj ∧
∧
j ∈Jn

¬(sj → tj)∧ ?

∨
∨
i ∈Ib

∧
j ∈Ji

bj ∧
∧
j ∈Jn

¬bj∧ ?

As a remark, note that the definition of the uniform disjunctive normal form can be simplified
when dealing with safe function types (that is, gradual types that are always a subtype of 0 → 1).

Corollary 3. (uDNF for Safe Function Types) Every gradual type τ such that τ ⇑ ≤ 0 → 1 can be
written in disjunctive normal form as:

τ ≊
∨
i ∈If ,1

∧
j ∈Ji

σj → τj ∧
∧
j ∈Jn

¬(sj → tj)

∨
∨
i ∈If ,2

∧
j ∈Ji

σj → τj ∧
∧
j ∈Jn

¬(sj → tj)∧ ?

where for every i ∈ If ,2, Ji , ∅.

A.2 Cast Language
A.2.1 Syntax.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:39

Definition 22. (Cast Language) The terms constituting the cast language are defined by the
following grammar:

Terms⟨⟩ e ::= x | c | λI
⟨τ ⟩ x . e | e e | (e ∈ t)?e : e | ⟨τ ⟩ e

Values⟨⟩ v ::= c | λI
⟨τ ⟩ x . e where τ ⇑ ≰ 0

Interfaces I ::= {σi → τi | i ∈ I }

Errors ℰ ::= CastError

A.2.2 Operators. We define the Safe Applicative Concretization on gradual types as presented
in Definition 8. We also define the Safe Gradual Domain as presented in Definition 9, following
the same intuition as for the gradual domain defined in Definition 5. Using these operators, we
define the subtyping relations presented in Definition 10 and Definition 11. We then prove several
properties on these relations, ultimately leading to a substitution property.

Proposition 11. The relation ⪯ is reflexive and transitive.

Proof. Trivial by definition of ⪯. □

Proposition 12. The relation ⊑ is reflexive and transitive.

Proof. The result is immediate by Proposition 11 and since the relation defined by σ⇑ ≤ τ ⇑ is
symmetric and transitive. □

Proposition 13. Denoting by ⊒⊑ the equivalence relation defined as the symmetric closure of ⊑,
the following results hold, for every gradual types σ and τ :

σ ∨ τ ⊒⊑ τ ∨ σ

σ ∧ τ ⊒⊑ τ ∧ σ

σ ∧ 1 ⊒⊑ σ

σ ∨ 0 ⊒⊑ σ

σ ∧ σ ⊒⊑ σ

σ ∨ σ ⊒⊑ σ

Proof. Once again, the result is immediate since that, given any of these equations, the applica-
tive concretizations of both of its sides are equal. □

It particular, this proposition allows us to “reorganize” any intersection or union of any number
of terms while preserving the relation ⊑.

Lemma 5. For every gradual type τ , it holds that

0 ⊑ τ

Proof. Let τ be any gradual type. Since 0⇑ = 0 ≤ t for any type t , it holds that 0⇑ ≤ τ ⇑.
Moreover, if τ ≤ 0 → 1, since γ+

𝒮
(0) = γ+

𝒜
(0) = ∅, we immediately deduce 0 ⪯ τ . □

Lemma 6. For every gradual types σ1,σ2 and τ1,τ2, if σ1 ⊑ τ1 and σ2 ⊑ τ2 then

σ1 ∨ σ2 ⊑ τ1 ∨ τ2

Proof. Let σ1,σ2,τ1,τ2 be any gradual types such that σ1 ⊑ τ1 and σ2 ⊑ τ2. We prove the two
points of Definition 11.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:40 Giuseppe Castagna and Victor Lanvin

• By definition of compatible subtyping, it holds that σ⇑

1 ≤ τ ⇑1 and σ⇑

2 ≤ τ ⇑2 . Hence, according to
the set-theoretic definitions of the union and of static subtyping, it holds that σ⇑

1 ≤ τ ⇑1 ∨τ
⇑

2 , and
σ⇑

2 ≤ τ ⇑1 ∨τ ⇑2 . Thus, according to the same definitions, it holds that σ⇑

1 ∨σ⇑

2 ≤ τ ⇑1 ∨τ ⇑2 . Finally,
according to the definition of the maximal concretization, we deduce (σ1 ∨ σ2)

⇑ ≤ (τ1 ∨ τ2)
⇑.

• Suppose that (τ1 ∨ τ2)
⇑ ≤ 0 → 1. Therefore, it holds that τ ⇑1 ≤ 0 → 1 and τ ⇑2 ≤ 0 → 1. Thus,

by hypothesis, we have σ1 ⪯ τ1 and σ2 ⪯ τ2.
Let S ∈ γ+

𝒮
(σ1 ∨ σ2). We want to show that S ∈ γ+

𝒮
(τ1 ∨ τ2). By definition of γ+

𝒮
, we know that

S ∈ γ+
𝒮
(σ1) or S ∈ γ+

𝒮
(σ2). We suppose S ∈ γ+

𝒮
(σ1), the second case is proved in the same way.

Since σ1 ⪯ τ1, we know that S ∈ γ+
𝒮
(τ1). By definition of γ+

𝒮
, it holds that S ∈ γ+

𝒮
(τ1 ∨ τ2),

hence the result. The same reasoning can be done with γ+
𝒜
, which proves the proposition.

□

Corollary 4. For every gradual types σ ,τ and ρ, if σ ⊑ τ then the following result holds:

σ ⊑ τ ∨ ρ

Proof. This is an immediate corollary of Lemma 6 with σ2 = 0, using Lemma 5. □

Lemma 7. For every gradual types σ and τ verifying τ ⇑ ≤ 0 → 1, it holds that:

σ ⊑ τ =⇒ d̃om
𝒮
(τ) ≤ d̃om

𝒮
(σ)

Proof. Let σ and τ be any gradual types such that τ ⇑ ≤ 0 → 1 and σ ⊑ τ .
Let S ∈ γ+

𝒮
(σ). Since σ ⪯ τ , we know that S ∈ γ+

𝒮
(τ). Since it holds by reflexivity that∨

ρ→ρ′∈S

ρ⇑ ≤
∨

ρ→ρ′∈S

ρ⇑

we can take the intersection of the left hand side for every S = T ∈ γ+
𝒮
(τ), yielding∧

T ∈γ +
𝒮

(τ)

∨
ρ→ρ′∈T

ρ⇑ ≤
∨

ρ→ρ′∈S

ρ⇑

Since this equation does not depend on the choice of S anymore, we can take the intersection of
the right hand side over γ+

𝒮
(σ), giving∧

T ∈γ +
𝒮

(τ)

∨
ρ→ρ′∈T

ρ⇑ ≤
∧

S ∈γ +
𝒮

(σ)

∨
ρ→ρ′∈S

ρ⇑

Which is the result. □

Lemma 8. For every gradual types σ ,τ and ρ such that τ ⇑ ≤ 0 → 1 and ρ⇑ ≤ d̃om(τ), it holds
that:

σ ⊑ τ =⇒ σ ◦̃ρ ⊑ τ ◦̃ρ

Proof. Let σ ,τ and ρ be any gradual types such that τ ⇑ ≤ 0 → 1, ρ⇑ ≤ d̃om(τ) and σ ⊑ τ .
To ease the notation, for any set of arrows S , we will denote by (CS) and (DS) the following
conditions:

(CS) ρ⇑ ≰
∨

(ν→ν ′)∈S

ν⇓

(DS) ρ⇑ ∧
∨

(ν→ν ′)∈S

ν⇑ ≰ 0

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:41

By reflexivity of ⊑, we can immediately write:∨
S ∈γ +

𝒜
(σ)

∨
Q⊊S

Q verifies (CQ) and (DS\Q)

∧
(ρ→ρ′)∈S\Q

ρ ′ ⊑
∨

S ∈γ +
𝒜

(σ)

∨
Q⊊S

Q verifies (CQ) and (DS\Q)

∧
(ρ→ρ′)∈S\Q

ρ ′

Applying Corollary 4, we deduce that:∨
S ∈γ +

𝒜
(σ)

∨
Q⊊S

Q verifies (CQ) and (DS\Q)

∧
(ρ→ρ′)∈S\Q

ρ ′ ⊑
∨

S ∈γ +
𝒜

(σ)

∨
Q⊊S

Q verifies (CQ) and (DS\Q)

∧
(ρ→ρ′)∈S\Q

ρ ′

∨
∨

S ∈γ +
𝒜

(τ)\γ +
𝒜

(σ)

∨
Q⊊S

Q verifies (CQ) and (DS\Q)

∧
(ρ→ρ′)∈S\Q

ρ ′

However, by hypothesis, we have σ ⪯ τ . Therefore, γ+
𝒜
(σ) ⊂ γ+

𝒜
(τ) and it holds that γ+

𝒜
(τ) =

γ+
𝒜
(σ) ⊔ (γ+

𝒜
(τ)\γ+

𝒜
(σ)). Thus, the left hand side of the equation can be rewritten yielding:∨

S ∈γ +
𝒜

(σ)

∨
Q⊊S

Q verifies (CQ) and (DS\Q)

∧
(ρ→ρ′)∈S\Q

ρ ′ ⊑
∨

T ∈γ +
𝒜

(τ)

∨
Q⊊T

Q verifies (CQ) and (DT \Q)

∧
(ρ→ρ′)∈T \Q

ρ ′

Which is the result. □

Lemma 9. For every gradual types σ and τ , and every gradual type ρ such that ρ⇑ ≤ 0 → 1, it
holds that:

σ ⊑ τ =⇒ ρ◦̃σ ⊑ ρ◦̃τ

Proof. Let σ , τ and ρ be three gradual types, such that ρ⇑ ≤ 0 → 1 and σ ⊑ τ .
Let S ∈ γ+

𝒜
(γ), and any strict subset S ′ ⊊ S verifying the following conditions:

(1) σ⇑ ≰
∨

(ρ→ρ′)∈S ′
ρ⇓

(2) σ⇑ ∧
∨

(ρ→ρ′)∈S\S ′
ρ⇑ ≰ 0

Since, by hypothesis, σ⇑ ≤ τ ⇑, we immediately deduce that τ ⇑ must verify the same conditions,
that is:

(1′) τ ⇑ ≰
∨

(ρ→ρ′)∈S ′
ρ⇓

(2′) τ ⇑ ∧
∨

(ρ→ρ′)∈S\S ′
ρ⇑ ≰ 0

Therefore, by Corollary 4, it holds that:∨
S ′⊊S

σ ⇑≰
∨

(ρ→ρ′)∈S′ ρ⇑

σ ⇑∧
∨

(ρ→ρ′)∈S\S′ ρ⇑≰0

∧
(ρ→ρ′)∈S\S ′

ρ ′ ⊑
∨
S ′⊊S

τ ⇑≰
∨

(ρ→ρ′)∈S′ ρ⇑

τ ⇑∧
∨

(ρ→ρ′)∈S\S′ ρ⇑≰0

∧
(ρ→ρ′)∈S\S ′

ρ ′

as the union in the right hand side contains more terms than the union in the left hand side.
Since this is valid for every S ∈ γ+

𝒜
(γ), using Lemma 6, we can take the union on both sides

yielding:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:42 Giuseppe Castagna and Victor Lanvin

x : τ ∈ Γ

Γ ⊢ x : τ
(T ⟨⟩

x)
Γ ⊢ c : B(c)

(T ⟨⟩
c)

TypeOf(I)⇓ ≤ τ ⇑ ∀(σ → ρ) ∈ I, Γ,x : σ ⊢ e : ρ ′ ρ ′ ⊑ ρ

λI
⟨τ ⟩ x . e : τ

(T ⟨⟩

λ)

Γ ⊢ e : σ
Γ ⊢ ⟨τ ⟩ e : τ

(T ⟨⟩

cast)
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 τ ⇑1 ≤ 0 → 1 τ ⇑2 ≤ d̃om

𝒮
(τ1)

Γ ⊢ e1 e2 : τ1◦̃τ2
(T ⟨⟩

app)

Γ ⊢ e : τ

{
τ ⇑ ≰ ¬t Γ ⊢ e1 : σ1
τ ⇑ ≰ t Γ ⊢ e2 : σ2

Γ ⊢ ((e ∈ t)?e1 : e2) : σ1 ∨ σ2
(T ⟨⟩

case−both)

Γ ⊢ e : τ

{
τ ⇑ ≰ ¬t

τ ⇑ ≤ t
Γ ⊢ e1 : σ1

Γ ⊢ ((e ∈ t)?e1 : e2) : σ1
(T ⟨⟩

case−L)

Γ ⊢ e : τ

{
τ ⇑ ≤ ¬t

τ ⇑ ≰ t
Γ ⊢ e2 : σ2

Γ ⊢ ((e ∈ t)?e1 : e2) : σ2
(T ⟨⟩

case−R)

Γ ⊢ e : τ τ ⇑ ≤ 0
Γ ⊢ ((e ∈ t)?e1 : e2) : τ

(T ⟨⟩
case−none)

Fig. 5. Full typing rules for the cast language

∨
S ∈γ +

𝒜
(γ)

∨
S ′⊊S

σ ⇑≰
∨

(ρ→ρ′)∈S′ ρ⇑

σ ⇑∧
∨

(ρ→ρ′)∈S\S′ ρ⇑≰0

∧
(ρ→ρ′)∈S\S ′

ρ ′ ⊑
∨

S ∈γ +
𝒜

(γ)

∨
S ′⊊S

τ ⇑≰
∨

(ρ→ρ′)∈S′ ρ⇑

τ ⇑∧
∨

(ρ→ρ′)∈S\S′ ρ⇑≰0

∧
(ρ→ρ′)∈S\S ′

ρ ′

Which is the result. □

Lemma 10. For every gradual types σ1, σ2, τ1 and τ2 such that τ ⇑1 ≤ 0 → 1 and τ ⇑2 ≤ 0 → 1, if
σ1 ⊑ σ2 and τ1 ⊑ τ2 then it holds that:

τ1◦̃σ1 ⊑ τ2◦̃σ2

Proof. Immediate by transitivity of ⊑ and Lemmas 8 and 9. □

A.2.3 Type System. The full typing system for the cast language is presented in Figure 5.

Proposition 14. (Uniqueness of Typing) For every term e ∈ Terms⟨⟩ , if Γ ⊢ e : τ and Γ ⊢ e : τ ′
then τ ≡ τ ′.

Proof. Trivial by structural induction on e since all the typing rules are deterministic in e . □

Proposition 15. (Emptiness of 0) For every value v ∈ Values⟨⟩ , if Γ ⊢ v : τ then τ ⇑ ≰ 0.

Proof. Trivial by cases on v . If v is a constant, then τ = B(c) ≰ 0. If v is a lambda, by definition
of Values⟨⟩ , it holds that τ ⇑ ≰ 0. □

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:43

Theorem 5. (Well-Typedness after Substitution) For every terms of the cast language e, e ′ ∈ Terms⟨⟩

and every typing context Γ, if Γ,x : σ ⊢ e : τ and Γ ⊢ e ′ : σ ′ where σ ′ ⊑ σ then Γ ⊢ e[x := e ′] : τ ′
where τ ′ ⊑ τ .

Proof. Let Γ be any typing context, and e, e ′ ∈ Terms⟨⟩ . We have the following hypotheses:
(H1) Γ,x : σ ⊢ e : τ
(H2) Γ ⊢ e ′ : σ ′

(H3) σ ′ ⊑ σ

The proof is done by structural induction on e .
• e = x . In this particular case, σ = τ , and e[x := e ′] = e ′. By hypothesis (H2), it holds that
Γ ⊢ e[x := e ′] : σ ′, hence the result by hypothesis (H3)

• e = y , x . Since x does not appear in e , by hypothesis (H1), it holds that Γ ⊢ e : τ . Moreover,
we have e[x := e ′] = e , hence the result.

• e = c . Since x does not appear in e and ∅ ⊢ c : B(c), the result is trivial.
• e = λI

⟨τλ ⟩
y. eλ . Note that if y = x then the result is trivial since the term is left unchanged by

substitution of x . Therefore we consider in the following that y , x .
First of all, by inversion of (T ⟨⟩

λ) on hypothesis (H1), it holds that τλ = τ , and TypeOf(I)⇓ ≤ τ ⇑λ .
We want to show that Γ ⊢ λI

⟨τλ ⟩
y. (eλ[x := e ′]) : τλ , which gives the result by reflexivity of ⊑.

To apply the rule (T ⟨⟩

λ) and deduce this result, we need to prove:

∀(σy → ρy) ∈ I, Γ,y : σy ⊢ eλ[x := e ′] : ρ ′y ρ ′y ⊑ ρy

Let σy → ρy ∈ I. By inversion of (T ⟨⟩

λ) and (H1), it holds that

Γ,x : σ ,y : σy ⊢ eλ : ρ ′y ρ ′y ⊑ ρy

By induction hypothesis, substituting x by e ′ in eλ implies:
Γ,y : σy ⊢ eλ[x := e ′] : ρ ′′y ρ ′′y ⊑ ρ ′y

By transitivity of ⊑, we deduce that ρ ′′y ⊑ ρy , hence the result.
• e = e1 e2. By inversion of (T ⟨⟩

app) in (H1), we have the following hypotheses:

(H1inv) Γ,x : σ ⊢ e1 : τ1
(H2inv) Γ,x : σ ⊢ e2 : τ2

(H3inv) τ ⇑1 ≤ 0 → 1

(H4inv) τ ⇑2 ≤ d̃om
𝒮
(τ1)

(H5inv) τ = τ1◦̃τ2

We want to apply (T ⟨⟩
app) to e[x := e ′] ≡ (e1[x := e ′])(e2[x := e ′]), and thus we need to prove

the four required premises.
Applying the induction hypothesis to (H1inv) gives us that Γ ⊢ e1[x := e ′] : τ ′1 (1st premise)
where τ ′1 ⊑ τ1 (*). By definition of compatible subtyping, it holds that τ ′⇑1 ≤ τ ⇑1 . By (H3inv)
and transitivity of static subtyping, we deduce the 3rd premise, τ ′⇑1 ≤ 0 → 1.
Applying the induction hypothesis to (H2inv) gives us that Γ ⊢ e2[x := e ′] : τ ′2 (2nd premise)
where τ ′2 ⊑ τ2 (**). Now, applying Lemma 7 to (*) and (H3inv), we deduce that d̃om𝒮

(τ1) ≤

d̃om
𝒮
(τ ′1). By definition of compatible subtyping and (**), it holds that τ ′⇑2 ≤ τ ⇑2 , and by

(H4inv) and transitivity, we deduce that τ ′⇑2 ≤ d̃om
𝒮
(τ ′1), which is the last premise.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:44 Giuseppe Castagna and Victor Lanvin

Applying (T ⟨⟩
app) to e[x := e ′] shows that Γ ⊢ e[x := e ′] : τ ′1 ◦̃τ

′
2 , and by Lemma 10 with (*) and

(**), τ ′1 ◦̃τ
′
2 ⊑ τ1◦̃τ2, hence the result.

• e = (et ∈ t)?e1 : e2. By inversion of the typing rules, we always have:
(H1inv) Γ,x : σ ⊢ et : τt

Moreover, by induction hypothesis on et , the following hypotheses hold:
(IH1) Γ ⊢ et [x := e ′] : τ ′t
(IH2) τ ′t ⊑ τt

We then distinguish four possible cases.
– τ ′⇑t ≰ ¬t and τ ′⇑t ≰ t . By hypothesis (IH2), since static subtyping is transitive, it necessarily
holds that τ ⇑t ≰ ¬t and τ ⇑t ≰ t . Therefore, by inversion of (T ⟨⟩

case−both) on (H1), it holds that
Γ,x : σ ⊢ e1 : τ1 and Γ,x : σ ⊢ e2 : τ2. Moreover, we have τ ≡ τ1 ∨ τ2.
Applying the induction hypothesis to both e1 and e2 gives us that Γ ⊢ ei [x := e ′] : τ ′i where
τ ′i ⊑ τi (for i ∈ {1, 2}).
Moreover, applying (T ⟨⟩

case−both) to e[x := e ′] gives us that Γ ⊢ e[x := e ′] : τ ′1 ∨ τ ′2 . Hence the
result by Lemma 6.

– τ ′⇑t ≰ ¬t and τ ′⇑t ≤ t . By hypothesis (IH2), since static subtyping is transitive, it necessarily
holds that τ ⇑t ≰ ¬t . Thus, we can either inverse the rule (T ⟨⟩

case−both) or (T
⟨⟩

case−L) on (H1),
deducing that Γ,x : σ ⊢ e1 : τ1.
Applying the induction hypothesis to e1 gives us that Γ ⊢ e1[x := e ′] : τ ′1 and τ

′
1 ⊑ τ1. We

can then apply (T ⟨⟩

case−L) to e[x := e ′], which gives us Γ ⊢ e[x := e ′] : τ ′1 , hence the result.
– τ ′⇑t ≤ ¬t and τ ′⇑t ≰ t . This case is proved in the same way as the previous one.
– τ ′⇑t ≤ 0. Applying the rule (T ⟨⟩

case−none) to e[x := e ′] yields Γ ⊢ e[x := e ′] : τ ′t . Hence the
result by (IH2).

• e = ⟨τc ⟩ ec . By inversion of (T ⟨⟩

cast), we have Γ,x : σ ⊢ ec : ρ, and τ = τc . By induction
hypothesis, it holds that Γ ⊢ ec [x := e ′] : ρ ′ and ρ ′ ⊑ ρ. Thus, it immediately holds that
Γ ⊢ ⟨τc ⟩ ec [x := e ′] : τc , hence the result by reflexivity of ⊑, which concludes the proof.

□

A.2.4 Soundness. Before proving the subject reduction lemma, we prove the following result
which states that the reduction rules are deterministic, which is important in particular for rules
(Rapp−λ) and (Rapp−c).

Proposition 16. (Uniqueness of Reduction) — For every term e ∈ Terms⟨⟩ , if e 7→ e1 and e 7→ e2
then e1 = e2.

Proof. Let e ∈ Terms⟨⟩ such that e 7→ e1 and e 7→ e2. We reason by induction over e and by
cases over the rules used in both reductions. There are only several possibilities. The rules (Rapp−c)
and (Rapp−λ), due to their existential quantification, can possibly be applied in two different ways
to the same term. There are also pairs of rules, such as (Rcase−L) and (Rcase−R), that can be applied
to the same term. We distinguish the following cases:

• Both reductions use the rule (Rapp−c). e = (λI
⟨τ ⟩ x . e

′)c . By contradiction, assume that there

exist two distinct arrows (σi → τi) and (σj → τj) in I such that B(c) ≤ σ⇑

i and B(c) ≤

σ⇑

j . Therefore, it holds that B(c) ≤ σ⇑

i ∧ σ⇑

j . However, the interface criterion ensures that
σ⇑

i ∧σ⇑

j ≤ 0. Therefore, by transitivity, it holds that B(c) ≤ 0, which is a contradiction. Hence
we necessarily have i = j and e1 = e2.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:45

∃(σi → τi) ∈ I B(c) ≤ σ⇑

i

(λI
⟨τ ⟩ x . e)c 7→ ⟨τ ◦̃B(c)⟩ e[x := ⟨σi ⟩ c]

(Rapp−c)

∃(σi → τi) ∈ I TypeOf(I′)⇓ ≤ σ⇑

i

(λI
⟨τ ⟩ x . e)(λ

I′

⟨τ ′⟩ y. e
′) 7→ ⟨τ ◦̃τ ′⟩ e[x := λI

′

⟨σi ⟩
y. e ′]

(Rapp−λ)

∅ ⊢ v : τ τ ⇑ ≤ t

((v ∈ t)?e1 : e2) 7→ e1
(Rcase−L)

∅ ⊢ v : τ τ ⇑ ≰ t

((v ∈ t)?e1 : e2) 7→ e2
(Rcase−R)

TypeOf(I)⇓ ≤ τ ⇑

⟨τ ⟩ λI
⟨τ ′⟩ x . e 7→ λI

⟨τ ⟩ x . e
(Rcast−λ)

∅ ⊢ c : s s ≤ τ ⇑

⟨τ ⟩ c 7→ c
(Rcast−c)

TypeOf(I)⇓ ≰ τ ⇑

⟨τ ⟩ λI
⟨τ ′⟩ x . e 7→ CastError

(Rfail−λ)
∅ ⊢ c : s s ≰ τ ⇑

⟨τ ⟩ c 7→ CastError
(Rfail−c)

e 7→ e ′

E[e] 7→ E[e ′]
(RE)

e 7→ CastError

E[e] 7→ CastError
(Rfail−E)

∄(σi → τi) ∈ I B(c) ≤ σ⇑

i

(λI
⟨τ ⟩ x . e)c 7→ CastError

(Rapp−f ail−c)

∄(σi → τi) ∈ I TypeOf(I′)⇓ ≤ σ⇑

i

(λI
⟨τ ⟩ x . e)(λ

I′

⟨τ ′⟩ y. e
′) 7→ CastError

(Rapp−f ail−λ)

E ::= □ | Ee | vE | (E ∈ t)?e : e | ⟨τ ⟩ E

Fig. 6. Complete small-step reduction semantics for the cast language

• Both reductions use the rule (Rapp−λ). e = (λI
⟨τ ⟩ x . e

′)(λI
′

⟨τ ′⟩ y. e
′′). Once again, by contra-

diction, suppose that there exist two distinct arrows (σi → τi) and (σj → τj) in I such that
TypeOf(I′)⇓ ≤ σ⇑

i and TypeOf(I′)⇓ ≤ σ⇑

j . It holds that TypeOf(I
′)⇓ ≤ σ⇑

i ∧σ⇑

j ≤ 0, according
to the interface criterion. However, since TypeOf(I′)⇓ is an intersection of (static) arrows, it
cannot be empty, hence the contradiction. Thus, we necessarily have i = j and e1 = e2.

• The rules (Rcase−L) and (Rcase−R) cannot be used on the same term since their premises are
disjoint: it is not possible to have both τ ⇑ ≤ t and τ ⇑ ≰ t .

• The rules (Rcast−λ) and (Rf ail−λ) cannot be used on the same term since their premises are
disjoint.

• The rules (Rcast−c) and (Rf ail−c) cannot be used on the same term since their premises are
disjoint.

• The last case correspond to the rule (RE) being used for both reductions. However, since the
reduction contexts are defined deterministically, the result holds by induction.

□

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:46 Giuseppe Castagna and Victor Lanvin

We now prove the subject reduction lemma.

Lemma 11. (Subject Reduction) — For every typing context Γ, for every terms e1 and e2, if e1 7→ e2
and Γ ⊢ e1 : τ1 then Γ ⊢ e2 : τ2 and τ2 ⊑ τ1.

Proof. Let Γ be any typing context, and let e1, e2 be two terms such that e1 7→ e2 and Γ ⊢ e1 : τ1.
The proof of the theorem is done by case over the reduction rule used to reduce e1 into e2.

• (Rapp−c). In this case, e1 = (λI
⟨τ ⟩ x . e)c and e2 = ⟨τ ◦̃B(c)⟩ e[x := ⟨σi ⟩ c], where B(c) ≤ σ⇑

i and
(σi → τi) ∈ I.
By inversion of the typing rule (T ⟨⟩

app) on e1, it holds that Γ ⊢ λI
⟨τ ⟩ x . e : τλ , and that Γ ⊢ e1 :

τλ ◦̃B(c). Inversing the rule (T ⟨⟩

λ) then yields τλ = τ and, in particular, Γ,x : σi ⊢ e : τ ′i where
τ ′i ⊑ τi .
Moreover, applying (T ⟨⟩

cast) to ⟨σi ⟩ c yields Γ ⊢ ⟨σi ⟩ c : σi . Therefore, by Theorem 5, we deduce
that Γ ⊢ e[x := ⟨σi ⟩ c] : τ ′′i where τ ′′i ⊑ τ ′i ⊑ τi .
Finally, applying (T ⟨⟩

cast) to e2 yields Γ ⊢ ⟨τ ◦̃B(c)⟩ e[x := ⟨σi ⟩ c] : τ ◦̃B(c), hence the result by
reflexivity of ⊑.

• (Rapp−λ). In this case, e1 = (λI
⟨τ ⟩ x . e)(λ

I′

⟨τ ′⟩ y. e
′) and e2 = ⟨τ ◦̃τ ′⟩ e[x := λI

′

⟨σi ⟩
y. e ′], where

TypeOf(I′)⇓ ≤ σ⇑

i and (σi → τi) ∈ I.
Inversing the typing rule (T ⟨⟩

app) on e1 yields the following hypotheses:

(H1) Γ ⊢ λI
⟨τ ⟩ x . e : τλ

(H2) Γ ⊢ λI
′

⟨τ ′⟩ y. e
′ : τλ′

(H3) Γ ⊢ e1 : τλ ◦̃τλ′

Inversing the rule (T ⟨⟩
app) on (H1) and (H2) immediately shows that τλ = τ and τλ′ = τ ′.

Moreover, by inversion of (T ⟨⟩
app), it holds in particular that Γ,x : σi ⊢ e : τ ′i where τ

′
i ⊑ τi .

To apply the substitution theorem, we still need to prove that λI′
⟨σi ⟩

y. e ′ is well-typed, by

the rule (T ⟨⟩

λ). Since, by hypothesis, TypeOf(I′)⇓ ≤ σ⇑

i , the first premise of the rule holds.
Moreover, inversing the rule (T ⟨⟩

λ) on hypothesis (H2) yields that Γ,x : σ ⊢ e : ρ ′ where
ρ ′ ⊑ ρ for every (σ → ρ) ∈ I′, which is the second required premise. We can therefore apply
the rule (T ⟨⟩

λ) to deduce that Γ ⊢ λI
′

⟨σi ⟩
y. e ′ : σi .

Applying Theorem 5 then yields that e[x := λI
′

⟨σi ⟩
y. e ′] is well-typed, thus, by rule (T ⟨⟩

cast), it
holds that Γ ⊢ e2 : τ ◦̃τ ′, hence the result.

• (Rcase−L). In this case, we have e1 = (v ∈ t)?eL : eR and e2 = eL . Moreover, according to the
rule (Rcase−L), the following hypotheses hold:

(H1) ∅ ⊢ v : τ

(H2) τ ⇑ ≤ t

By inversion of the typing rules, there are four possible cases:
– By inversion of (T ⟨⟩

case−both). It holds that Γ ⊢ eL : σ1, and τ1 can be written as σ1 ∨ σ2. Thus,
e2 = eL is well-typed of type σ1, and by Lemma 6 we have σ1 ⊑ τ1.

– By inversion of (T ⟨⟩

case−L). It holds that Γ ⊢ eL : σ1, and τ1 = σ1. Hence the result by reflexivity
of the relation ⊑.

– By inversion of (T ⟨⟩

case−R). This case cannot occur since the hypothesis (H2) contradicts the
premises of the rule (T ⟨⟩

case−R).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:47

– By inversion of (T ⟨⟩
case−none). It holds that Γ ⊢ v : 0. Since, by hypothesis (H1),v can be typed

in an empty environment, we deduce that ∅ ⊢ v : 0. However, there is no value of type 0
in an empty environment, thus this case cannot occur.

• (Rcase−R). In this case, we have e1 = (v ∈ t)?eL : eR and e2 = eR . Moreover, the following
hypotheses hold:

(H1) ∅ ⊢ v : τ

(H2) τ ⇑ ≰ t

Once again, by inversion of the typing rules, we distinguish four possible cases:
– By inversion of (T ⟨⟩

case−both). It holds that Γ ⊢ eR : σ2, and τ1 can be written as σ1 ∨ σ2. Thus,
e2 = eR is well-typed of type σ2, and by Lemma 6 we have σ2 ⊑ τ1.

– By inversion of (T ⟨⟩

case−L). This case cannot occur since the hypothesis (H2) contradicts the
premises of the rule (T ⟨⟩

case−L).
– By inversion of (T ⟨⟩

case−R). It holds that Γ ⊢ eR : σ2, and τ1 = σ2. Hence the result by reflexivity
of the relation ⊑.

– By inversion of (T ⟨⟩
case−none). It holds that Γ ⊢ v : 0. Since, by hypothesis (H1),v can be typed

in an empty environment, we deduce that ∅ ⊢ v : 0. However, there is no value of type 0
in an empty environment, thus this case cannot occur.

• (Rcast−λ). In this case, we have e1 = ⟨τ ⟩ λI
⟨τ ′⟩ x .e and e2 = λI

⟨τ ⟩ x .e .

By inversion of the rule (T ⟨⟩

cast) on e1, we obtain that Γ ⊢ λI
⟨τ ′⟩ x .e : σ , for a gradual type σ ,

and that Γ ⊢ e1 : τ . Then, by inversion of the rule (T ⟨⟩

λ) on this term, we deduce that σ = τ ′
and:

∀(ρ1 → ρ2) ∈ I, Γ,x : ρ1 ⊢ e : ρ ′2 where ρ ′2 ⊑ ρ2

Moreover, by hypothesis of (Rcast−λ), it holds that TypeOf(I)⇓ ≤ τ ⇑. We can therefore apply
the rule (T ⟨⟩

λ) to e2 and deduce Γ ⊢ λI
⟨τ ⟩ x .e : τ . Hence the result by reflexivity of ⊑.

• (Rcast−c). In this case, we have e1 = ⟨τ1⟩ c and e2 = c . Moreover, according to the premises of
the rule (Rcast−c), it holds that ∅ ⊢ c : s and s ≤ τ ⇑1 .
Since s is a base type (and thus not a function type), it is not possible that τ ⇑1 ≤ 0 → 1 (or
else, by transitivity of static subtyping, we would have s ≤ 0 → 1). Moreover, it holds that
s⇑ ≤ τ ⇑1 , since s

⇑ = s . Thus, we have s ⊑ τ1.
• (RE) where e1 = eLeR and eL 7→ e ′L . That is, e2 = e ′LeR . By inversion of the rule (T ⟨⟩

app) for e1,
we can deduce the following hypotheses:

(H1) Γ ⊢ eL : σ1
(H2) Γ ⊢ eR : σ2

(H3) σ⇑

1 ≤ 0 → 1

(H4) σ⇑

2 ≤ d̃om
𝒮
(σ1)

(H5) τ1 = σ1◦̃σ2

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:48 Giuseppe Castagna and Victor Lanvin

In particular, given hypothesis (H1), we can apply the induction hypothesis on the reduction
eL 7→ e ′L to deduce two more hypotheses:

(IH1) Γ ⊢ e ′L : σ ′
1

(IH2) σ ′
1 ⊑ σ1

Note that the hypothesis (IH1) gives us the first premise to apply the rule (T ⟨⟩
app) to e ′LeR . The

second premise is given by (H2).
Now, according to (IH2) and the definition of ⊑, it holds that σ ′⇑

1 ≤ σ⇑

1 . Therefore, by
transitivity of static subtyping and hypothesis (H3), we deduce that σ ′⇑

1 ≤ 0 → 1. Using once
again (IH2) with Lemma 7, we can deduce that d̃om

𝒮
(σ1) ≤ d̃om

𝒮
(σ ′

1). Thus, by hypothesis
(H4) and by transitivity, it holds that σ⇑

2 ≤ d̃om
𝒮
(σ ′

1), which is the last premise of the rule
(T ⟨⟩

app).
We now have all the required hypotheses to apply the rule (T ⟨⟩

app) to e ′LeR , thus we can deduce
that e2 = e ′LeR is well-typed: Γ ⊢ e ′LeR : σ ′

1◦̃σ2. Applying Lemma 8 with hypothesis (IH2) and
(H3) gives us that σ ′

1◦̃σ2 ⊑ σ1◦̃σ2, hence the result (by hypothesis (H5)).
• (RE) where e1 = v e and e 7→ e ′. That is, e2 = v e ′. By inversion of the rule (T ⟨⟩

app) for e1, we
can deduce the following hypotheses:

(H1) Γ ⊢ v : σ1
(H2) Γ ⊢ e : σ2

(H3) σ⇑

1 ≤ 0 → 1

(H4) σ⇑

2 ≤ d̃om
𝒮
(σ1)

(H5) τ1 = σ1◦̃σ2

In particular, we can use the induction hypothesis on e using hypothesis (H2). We deduce
that Γ ⊢ e ′ : σ ′

2 where σ
′
2 ⊑ σ2. Using the definition of ⊑, and hypothesis (H4) we deduce that

σ ′⇑

2 ≤ σ⇑

2 ≤ d̃om
𝒮
(σ1). Applying back the rule (T ⟨⟩

app) to e2, we deduce that Γ ⊢ v e ′ : σ1◦̃σ ′
2.

We then conclude by applying Lemma 9.
• (RE) where e1 = (e ∈ t)?eL : eR and e 7→ e ′. That is, e2 = (e ′ ∈ t)?eL : eR . By inversion of the
typing rules for typecases, we deduce (independently of the typing rule used): that Γ ⊢ e : τ .
Applying the induction hypothesis to e yields Γ ⊢ e ′ : τ ′ where τ ′ ⊑ τ .
We then distinguish four possible cases:
– τ ′⇑ ≰ ¬t and τ ′⇑ ≰ t . Since τ ′⇑ ≤ τ ⇑, and since static subtyping is transitive, it necessarily
holds that τ ⇑ ≰ ¬t and τ ⇑ ≰ t . Therefore, by inversion of (T ⟨⟩

case−both), it holds that Γ ⊢ eL : τL
and Γ ⊢ eR : τR . Moreover, we have τ1 ≡ τL ∨ τR .
Applying the rule (T ⟨⟩

case−both) back to e2, we deduce that Γ ⊢ e2 : τL ∨ τR , hence the result.
– τ ′⇑ ≰ ¬t and τ ′⇑ ≤ t . As before, it necessarily holds that τ ⇑ ≰ ¬t . Thus, we distinguish
between two more cases.
Either τ ⇑ ≰ t , in which case we can inverse the rule (T ⟨⟩

case−both) on e1, which gives us that
Γ ⊢ eL : τL and Γ ⊢ eR : τR , as well as τ1 = τL ∨ τR . We can then apply the rule (T ⟨⟩

case−L) on
e2, yielding Γ ⊢ e2 : τL . We conclude using Corollary 4 to prove τL ⊑ τL ∨ τR .
The second case is τ ⇑ ≤ t . In this case we can inverse the rule (T ⟨⟩

case−L) on e1 yielding
Γ ⊢ eL : τL . Applying back the rule (T ⟨⟩

case−L) on e2 gives us that Γ ⊢ e2 : τL , hence the result.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:49

– τ ′⇑ ≤ ¬t and τ ′⇑ ≰ t . This case is proved in the same way as the previous one.
– τ ′⇑ ≤ 0. This case is immediate by applying the rule (T ⟨⟩

case−none) to e2 and Lemma 5.
• (RE) where e1 = ⟨τ ⟩ e and e 7→ e ′. This case is immediate since, by induction hypothesis, e ′

is well-typed. Applying the rule (T ⟨⟩

cast) then proves that ⟨τ ⟩ e ′ has type τ .
□

Lemma 12. (Progress) — For every term e ∈ Terms⟨⟩ , if ∅ ⊢ e : τ then e ∈ Values⟨⟩ or ∃e ′ ∈
Terms⟨⟩, e 7→ e ′ or e 7→ CastError.

Proof. Let e ∈ Terms⟨⟩ such that ∅ ⊢ e : τ . The proof is done by induction on e and by cases
over the last typing rule used in the proof ∅ ⊢ e : τ .

• (T ⟨⟩
x). This case cannot happen since no variable is well-typed in the empty context.

• (T ⟨⟩
c). In this case, e = c , therefore e ∈ Values⟨⟩ .

• (T ⟨⟩

λ). In this case, e = λI
⟨τ ⟩ x . e

′. Moreover, it holds by hypothesis that TypeOf(I)⇓ ≤ τ ⇑.
Since TypeOf(I)⇓ is an intersection of arrows and cannot be empty, it holds that τ ⇑ ≰ 0.
Therefore, e ∈ Values⟨⟩ .

• (T ⟨⟩

cast). In this case, e = ⟨τ ⟩ e ′, and by hypothesis ∅ ⊢ e ′ : σ . Therefore, by induction, several
cases can occur:
– e ′ ∈ Values⟨⟩ , where e ′ = λI

⟨σ ⟩
x . eλ . In this case, if TypeOf(I)⇓ ≤ τ ⇑ then e 7→ λI

⟨τ ⟩ x . eλ

by rule (Rcast−λ). Otherwise, if TypeOf(I)⇓ ≰ τ ⇑, then e 7→ CastError by rule (Rf ail−λ).
– e ′ ∈ Values⟨⟩ , where e ′ = c . In this case, ∅ ⊢ c : B(c) by rule (T ⟨⟩

c). If B(c) ≤ τ ⇑ then e 7→ c
by rule (Rcast−c). Otherwise, if B(c) ≰ τ ⇑ then e 7→ CastError by rule (Rf ail−c).

– ∃e ′′ ∈ Terms⟨⟩ such that e ′ 7→ e ′′. Since ⟨τ ⟩ □ is a valid reduction context, e 7→ ⟨τ ⟩ e ′′ by
rule (RE).

– e ′ 7→ CastError. Since ⟨τ ⟩□ is a valid reduction context, e 7→ CastError by rule (Rf ail−E).
This last subcase concludes the case for casts.

• (T ⟨⟩
app). In this case, e = e1e2 and τ = τ1◦̃τ2 where ∅ ⊢ e1 : τ1 and ∅ ⊢ e2 : τ2. Moreover, we

have τ ⇑1 ≤ 0 → 1 and τ ⇑2 ≤ d̃om
𝒮
(τ1).

Applying the induction hypothesis to e1 yields the following cases.
– e1 ∈ Values⟨⟩ , where e1 = c . This case cannot occur since τ1 = B(c) ≰ 0 → 1, which
contradicts the hypothesis.

– e1 ∈ Values⟨⟩ , where e1 = λI
⟨τ1 ⟩

x .e ′1. We can apply the induction hypothesis to e2, yielding
the following subcases.
∗ e2 ∈ Values⟨⟩ , where e2 = c . The application e1e2 can be reduced either by (Rapp−c) or
by (Rapp−f ail−c), since both premises cannot hold at the same time.

∗ e2 ∈ Values⟨⟩ , where e2 = λI
′

⟨τ2 ⟩
x .e ′2. As before, the application e1e2 can be reduced either

by (Rapp−λ) or (Rapp−f ail−λ) since both premises cannot hold at the same time.
∗ ∃e ′2 ∈ Terms⟨⟩ such that e2 7→ e ′2. In this case, since e1 is a value, the reduction context
e1 □ is valid, and thus e1e2 7→ e1e

′
2 by rule (RE).

∗ e2 7→ CastError. Once again, since e1 is a value, the reduction context e1 □ is valid, thus
e1e2 7→ CastError by rule (Rf ail−E).

– ∃e ′1 ∈ Terms⟨⟩ such that e1 7→ e ′1. The reduction context □ e2 is valid, thus e1e2 7→ e ′1e2 by
rule (RE).

– e1 7→ CastError. The reduction context □ e2 is valid, thus e1e2 7→ CastError by rule
(Rf ail−E). This last subcase concludes the case for applications.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:50 Giuseppe Castagna and Victor Lanvin

x : τ ∈ Γ

Γ ⊢ x : τ
(Tx)

Γ ⊢ c : B(c)
(Tc)

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 τ ⇓1 ≤ 0 → 1 τ ⇓2 ≤ d̃om(τ1)

Γ ⊢ e1 e2 : τ1◦̃τ2
(Tapp)

∀(σ → τ) ∈ I, Γ,x : σ ⊢ e : τ ′ τ ′⇓ ≤ τ ⇑

λIx . e : TypeOf(I)
(Tλ)

Γ ⊢ e : τ

{
τ ⇑ ≰ ¬t Γ ⊢ e1 : σ1
τ ⇑ ≰ t Γ ⊢ e2 : σ2

Γ ⊢ ((e ∈ t)?e1 : e2) : σ1 ∨ σ2
(Tcase−both)

Γ ⊢ e : τ

{
τ ⇑ ≰ ¬t

τ ⇑ ≤ t
Γ ⊢ e1 : σ1

Γ ⊢ ((e ∈ t)?e1 : e2) : σ1
(Tcase−L)

Γ ⊢ e : τ

{
τ ⇑ ≤ ¬t

τ ⇑ ≰ t
Γ ⊢ e2 : σ2

Γ ⊢ ((e ∈ t)?e1 : e2) : σ2
(Tcase−R)

Γ ⊢ e : τ τ ⇑ ≤ 0
Γ ⊢ ((e ∈ t)?e1 : e2) : τ

(Tcase−none)

Fig. 7. Full typing rules for the gradually typed language

• (T ⟨⟩
case−x). All these cases are treated in the same way. We have e = (e ′ ∈ t)?e1 : e2 and

∅ ⊢ e ′ : τ ′. We can therefore apply the induction hypothesis to e ′ which yields the following
cases.
– e ′ ∈ Values⟨⟩ . Since either B(c) ≤ t or B(c) ≰ t hold, e reduces to e1 by rule (Rcase−L) or
to e2 by rule (Rcase−R).

– ∃e ′′ ∈ Terms⟨⟩ such that e ′ 7→ e ′′. Since (□ ∈ t)?e1 : e2 is a valid reduction context,
e 7→ (e ′′ ∈ t)?e1 : e2 by rule (RE).

– e ′ 7→ CastError. Since (□ ∈ t)?e1 : e2 is a valid reduction context, e 7→ CastError by
rule (Rf ail−E). This last subcase concludes the case for typecases and the proof.

□

Theorem 6. (Soundness of Cast Language) — For every term e ∈ Terms⟨⟩ , if ∅ ⊢ e : τ then either
e diverges or ∃v ∈ Values⟨⟩ such that e 7→∗ v or e 7→∗ CastError.

Proof. Direct consequence of Lemmas 11 and 12. □

A.3 Compilation
A.3.1 Soundness of compilation. In this first part, we prove the soundness of the compilation

and the resulting safety property for the gradually-typed language.

Lemma 13. (Exhaustiveness of Compilation) — For every term e ∈ Terms and every typing context
Γ, if Γ ⊢ e : τ then Γ ⊢ e { e ′ : τ where e ′ ∈ Terms⟨⟩ .

Proof. Let Γ be any typing context and e ∈ Terms, such that Γ ⊢ e : τ . The proof is done by
induction and case disjunction on the last typing rule used in the derivation Γ ⊢ e : τ .

• (Tx). We have, by hypothesis, e = x and x : τ ∈ Γ. Therefore, the rule (Cx) can be applied,
yielding Γ ⊢ x { x : τ .

• (Tc). In this case, e = c and Γ ⊢ c : B(c). The rule (Cc) gives immediately the result: Γ ⊢ c {
c : B(c).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:51

x : τ ∈ Γ

Γ ⊢ x { x : τ
(Cx)

Γ ⊢ c { c : B(c)
(Cc)

Γ ⊢ e { e ′ : τ

{
τ ⇑ ≰ ¬t Γ ⊢ e1 { e ′1 : σ1
τ ⇑ ≰ t Γ ⊢ e2 { e ′2 : σ2

Γ ⊢ ((e ∈ t)?e1 : e2) { ((e ′ ∈ t)?e ′1 : e
′
2) : σ1 ∨ σ2

(Ccase−both)

Γ ⊢ e { e ′ : τ

{
τ ⇑ ≰ ¬t

τ ⇑ ≤ t
Γ ⊢ e1 { e ′1 : σ1

Γ ⊢ ((e ∈ t)?e1 : e2) { e ′1 : σ1
(Ccase−L)

Γ ⊢ e { e ′ : τ

{
τ ⇑ ≤ ¬t

τ ⇑ ≰ t
Γ ⊢ e2 { e ′2 : σ2

Γ ⊢ ((e ∈ t)?e1 : e2) { e ′2 : σ2
(Ccase−R)

Γ ⊢ e { e ′ : τ τ ⇑ ≤ 0
Γ ⊢ ((e ∈ t)?e1 : e2) { e ′ : τ

(Ccase−none)

Γ ⊢ e1 { e ′1 : τ1 τ ⇑2 ≤ d̃om
𝒮
(τ1)

Γ ⊢ e2 { e ′2 : τ2 τ ⇑1 ≤ 0 → 1

Γ ⊢ e1 e2 { e ′1 e
′
2 : τ1◦̃τ2

(Capp−1)

Γ ⊢ e1 { e ′1 : τ1 τ ⇑2 ≰ d̃om
𝒮
(τ1)

Γ ⊢ e2 { e ′2 : τ2 τ ⇓2 ≤ d̃om
𝒮
(τ1) τ ⇑1 ≤ 0 → 1

Γ ⊢ e1 e2 { ⟨τ1◦̃τ2⟩ (e
′
1 ⟨d̃om𝒮

(τ1)⟩ e
′
2) : τ1◦̃τ2

(Capp−2)

Γ ⊢ e1 { e ′1 : τ1
Γ ⊢ e2 { e ′2 : τ2

τ ⇑1 ≰ 0 → 1 or τ ⇓2 ≰ d̃om
𝒮
(τ1)

Γ ⊢ e1 e2 { (⟨τ2 → (τ1◦̃τ2)⟩ e
′
1) e

′
2 : τ1◦̃τ2

(Capp−3)

∀σi → τi ∈ I,

Γ,x : σi ⊢ e { ei : τ ′i
e ′i =

{
ei if τ ′i ⊑ τi

⟨τi ⟩ ei otherwise

Γ ⊢ λIx . e { (λIx .(x ∈ σ⇑

1)? e
′
1 : · · · : (x ∈ σ⇑

i−1)? e
′
i−1 : e

′
i) : TypeOf(I)

(Cλ)

Fig. 8. Full compilation rules for the gradually-typed language

• (Tapp). By hypothesis, e = e1e2 and Γ ⊢ e1e2 : τ1◦̃τ2, where Γ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2. Applying
the induction hypothesis to e1 and e2, we deduce:

(IH1) Γ ⊢ e1 { e ′1 : τ1
(IH2) Γ ⊢ e2 { e ′2 : τ2

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:52 Giuseppe Castagna and Victor Lanvin

We then distinguish the following cases on τ1:
– τ ⇑1 ≤ 0 → 1. We distinguish the following subcases on τ2:
∗ τ ⇑2 ≤ d̃om

𝒮
(τ1). We can apply the rule (Capp−1) using both (IH1) and (IH2) yielding

Γ ⊢ e1e2 { e ′1e
′
2 : τ1◦̃τ2, which is the result.

∗ τ ⇑2 ≰ d̃om
𝒮
(τ1) but τ ⇓2 ≤ d̃om

𝒮
(τ1). In this case, we can apply the rule (Capp−2) to deduce

Γ ⊢ e1e2 { ⟨τ1◦̃τ2⟩ (e
′
1⟨d̃om𝒮

(τ1)⟩ e
′
2) : τ1◦̃τ2, which is the result.

∗ τ ⇓2 ≰ d̃om
𝒮
(τ1). We can apply the rule (Capp−3) which yields Γ ⊢ e1e2 { (⟨τ2 →

(τ1◦̃τ2)⟩ e
′
1)e

′
2 : τ1◦̃τ2, hence the result.

– τ ⇑1 ≰ 0 → 1. In this case, the rule (Capp−3) can be applied using both (IH1) and (IH2)
yielding Γ ⊢ e1e2 { (⟨τ2 → (τ1◦̃τ2)⟩ e

′
1)e

′
2 : τ1◦̃τ2 which is the result.

• (Tλ). By hypothesis, e = λIx .e ′ and Γ ⊢ e : TypeOf(I). Moreover, for every (σi → τi) ∈ I, it
holds that Γ,x : σi ⊢ e ′ : τ ′i where τ

′⇓

i ≤ τ ⇑i .
Applying the induction hypothesis to e ′ for every typing context Γ,x : σi , we deduce the
following hypotheses:

(H) ∀(σi → τi) ∈ I, Γ,x : σi ⊢ e ′ { e ′′ : τ ′i where τ
′⇓

i ≤ τ ⇑i

Thus, we can apply the rule (Cλ) to deduce that

Γ ⊢ λIx . e { (λIx .(x ∈ σ⇑

1)? e
′
1 : · · · : (x ∈ σ⇑

i−1)? e
′
i−1 : e

′
i) : TypeOf(I)

Hence the result.
• (Tcase−both). By hypothesis, e = (et ∈ t)?e1 : e2 and Γ ⊢ e : σ1∨σ2 where Γ ⊢ et : σ , Γ ⊢ e1 : σ1
and Γ ⊢ e2 : σ2.
Applying the induction hypothesis to et , e1 and e2, we deduce:

(H1) Γ ⊢ et { e ′t : σ
(H2) Γ ⊢ e1 { e ′1 : σ1
(H3) Γ ⊢ e2 { e ′2 : σ2

Moreover, it holds, by hypothesis, that σ⇑ ≰ t and σ⇑ ≰ ¬t . Therefore, we can apply the rule
(Ccase−both) to deduce Γ ⊢ e { (e ′t ∈ t)?e ′1 : e

′
2 : σi ∨ σ2, which is the result.

• (Tcase−L). By hypothesis, e = (et ∈ t)?e1 : e2 and Γ ⊢ e : σ1 where Γ ⊢ et : σ and Γ ⊢ e1 : σ1.
Applying the induction hypothesis to e1, we deduce that Γ ⊢ e1 { e ′1 : σ1. Moreover, it holds
by hypothesis that σ⇑ ≰ ¬t and σ⇑ ≤ t . Therefore, we can apply the rule (Ccase−L) to deduce
that Γ ⊢ e { e ′1 : σ1, which is the result.

• (Tcase−R) this case is proved identically to the previous one.
• (Tcase−none). In this case, e = (et ∈ t)?e1 : e2 and Γ ⊢ e : σ where Γ ⊢ et : σ . Moreover, σ
verifies σ⇑ ≤ 0. Applying the induction hypothesis to et yields Γ ⊢ et { e ′t : σ . Thus, we
can apply the rule (Ccase−none) to deduce that Γ ⊢ e { e ′ : σ , which is the result. This case
concludes the proof.

□

Lemma 14. Let Γ be any typing context and let σ1, . . . ,σn be any gradual types verifying:

∀(i, j) ∈ {1;n}2, i , j =⇒ σ⇑

i ∧ σ⇑

j ≤ 0

∀i ∈ {1;n},σ⇑

i ≰ 0

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:53

Let e1, . . . , en ∈ Terms⟨⟩ verifying:

∀i ∈ {1;n}, Γ,x : σi ⊢ ei : τi
Then the following holds:

∀i ∈ {1;n}, Γ,x : σi ⊢ (x ∈ σ⇑

1)?e1 : . . . : (x ∈ σ⇑

n−1)?en−1 : en : τi
Proof. Let Γ be any typing context. The proof is done by induction on n.
• n = 1. Let σ1 be any gradual type and e1 ∈ Terms⟨⟩ such that Γ,x : σ1 ⊢ e1 : τ1. This case is
immediate since this hypothesis is exactly the result.

• n + 1. Let σ1, . . . ,σn+1 be any gradual types and e1, . . . , en+1 ∈ Terms⟨⟩ verifying the afore-
mentioned criteria. We pose e = (x ∈ σ⇑

1)?e1 : . . . : (x ∈ σ⇑

n−1)?en−1 : en .
Let i ∈ {1;n}. We distinguish the following cases on i:
– i = 1. By reflexivity of subtyping, it holds that σ⇑

1 ≤ σ⇑

1 . Moreover, by hypothesis, σ⇑

1 ≰ 0.
Therefore, σ⇑

1 ≰ ¬σ⇑

1 . Since we also know, by hypothesis, that Γ,x : σ1 ⊢ e1 : τ1, we can
apply the rule (T ⟨⟩

case−L) to deduce Γ,x : σ1 ⊢ e : τ1, which is the result.
– i > 1. By hypothesis, we have σ⇑

1 ∧ σ⇑

i ≤ 0. This is, for non-gradual set-theoretic types,
equivalent to σ⇑

i ≤ ¬σ⇑

1 . Moreover, by hypothesis it holds that σ⇑

i ≰ 0. Therefore, it
necessarily holds that σ⇑

i ≰ σ⇑

1 . Applying the induction hypothesis to e ′ = (x ∈ σ⇑

2)?e2 :
. . . : (x ∈ σ⇑

n−1)?en−1 : en , we deduce that Γ,x : σi ⊢ e ′ : τi . Thus, we can apply the rule
(T ⟨⟩

case−R) to e , which yields Γ,x : σi ⊢ e : τi , hence the result.
□

Lemma 15. (Type Preservation by Compilation) — For every term e ∈ Terms and every typing
context Γ, if Γ ⊢ e { e ′ : τ then Γ ⊢ e ′ : τ .

Proof. Let Γ be any typing context and e ∈ Terms, such that Γ ⊢ e { e ′ : τ . We show that
Γ ⊢ e ′ : τ by induction on e and case disjunction on the rule used to compiled e .

• (Cx). That is, Γ ⊢ x { x : τ . By hypothesis, x : τ ∈ Γ, thus we can apply the rule (T ⟨⟩
x) to

deduce Γ ⊢ x : τ .
• (Cx). In this case, Γ ⊢ c { c : B(c). We can immediately apply the rule (T ⟨⟩

c) to deduce that
Γ ⊢ c : B(c).

• (Ccase−both). That is, e = ((et ∈ t)?e1 : e2) and we have the following hypotheses:
(H0) Γ ⊢ e { ((e ′t ∈ t)?e ′1 : e

′
2) : σ1 ∨ σ2

(H1) Γ ⊢ et { e ′t : τt
(H2) Γ ⊢ e1 { e ′1 : σ1
(H3) Γ ⊢ e2 { e ′2 : σ2

(H4) τ ⇑t ≰ ¬t

(H5) τ ⇑t ≰ t

By induction hypothesis on (H1), (H2) and (H3), we deduce that Γ ⊢ e ′t : τt , Γ ⊢ e ′1 : σ1 and
Γ ⊢ e ′2 : σ2. Using the rule (T ⟨⟩

case−both) with hypotheses (H4) and (H5), we then deduce that
Γ ⊢ ((e ′t ∈ t)?e ′1 : e

′
2) : σ1 ∨ σ2, which is the result.

• (Ccase−L). That is, e = ((et ∈ t)?e1 : e2) and Γ ⊢ e { e ′1 : σ1 where Γ ⊢ e1 { e ′1 : σ1. By
induction hypothesis on this derivation, it holds that Γ ⊢ e ′1 : σ1, hence the result.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

41:54 Giuseppe Castagna and Victor Lanvin

• (Ccase−R). We have e = ((et ∈ t)?e1 : e2) and Γ ⊢ e { e ′2 : σ2 where Γ ⊢ e2 { e ′2 : σ2. By
induction hypothesis on this derivation, it holds that Γ ⊢ e ′2 : σ2, hence the result.

• (Ccase−none). By hypothesis, e = ((et ∈ t)?e1 : e2) and Γ ⊢ e { e ′t : τ where Γ ⊢ et { e ′t : τ .
By induction hypothesis, it holds that Γ ⊢ e ′t : τ , hence the result.

• (Capp−1). In this case, Γ ⊢ e1 e2 { e ′1 e
′
2 : τ1◦̃τ2 where Γ ⊢ e1 { e ′1 : τ1 and Γ ⊢ e2 { e ′2 : τ2.

By induction hypothesis, we deduce that Γ ⊢ e ′1 : τ1 and Γ ⊢ e ′2 : τ2. Moreover, by hypothesis
of rule (Capp−1), it holds that τ ⇑2 ≤ d̃om

𝒮
(τ1) and τ ⇑1 ≤ 0 → 1. Therefore, we can apply the

rule (T ⟨⟩
app) to deduce that Γ ⊢ e ′1e

′
2 : τ1◦̃τ2, which is the result.

• (Capp−2). By hypothesis, we have Γ ⊢ e1 e2 { ⟨τ1◦̃τ2⟩ (e ′1⟨d̃om𝒮
(τ1)⟩ e

′
2) : τ1◦̃τ2, where

Γ ⊢ e1 { e ′1 : τ1 and Γ ⊢ e2 { e ′2 : τ2.
By induction hypothesis, we deduce that Γ ⊢ e ′2 : τ2. Thus, applying the rule (T ⟨⟩

cast) yields
Γ ⊢ ⟨d̃om

𝒮
(τ1)⟩ e

′
2 : d̃om𝒮

(τ1).
Moreover, by induction hypothesis, we can also deduce that Γ ⊢ e ′1 : τ1. Since by hypothesis
of (Capp−2) it holds that τ ⇑1 ≤ 0 → 1, we can apply the rule (T ⟨⟩

app) to deduce that Γ ⊢

(e ′1⟨d̃om𝒮
(τ1)⟩ e

′
2) : τ1◦̃d̃om𝒮

(τ1). Thus, we can apply the rule (T ⟨⟩

cast) to finaly deduce that
Γ ⊢ ⟨τ1◦̃τ2⟩ (e

′
1⟨d̃om𝒮

(τ1)⟩ e
′
2) : τ1◦̃τ2, which is the result.

• (Capp−3). By hypothesis, we have Γ ⊢ e1 e2 { (⟨τ2 → (τ1◦̃τ2)⟩ e
′
1)e

′
2 : τ1◦̃τ2, where Γ ⊢ e1 {

e ′1 : τ1 and Γ ⊢ e2 { e ′2 : τ2.
By induction hypothesis on e1, we deduce that Γ ⊢ e ′1 : τ1. Therefore, we can apply the rule
(T ⟨⟩

cast) to deduce that Γ ⊢ (⟨τ2 → (τ1◦̃τ2)⟩ e
′
1) : τ2 → (τ1◦̃τ2).

It holds that (τ2 → (τ1◦̃τ2))
⇑ ≤ 0 → 1. Moreover, by definition of the safe domain, d̃om

𝒮
(τ2 →

(τ1◦̃τ2)) = τ ⇑2 . Applying the induction hypothesis to e2 we then deduce Γ ⊢ e ′2 : τ2, which
verifies τ ⇑2 ≤ d̃om

𝒮
(τ2 → (τ1◦̃τ2)) by reflexivity of static subtyping.

We can therefore apply the rule (T ⟨⟩
app), deducing the result: Γ ⊢ (⟨τ2 → (τ1◦̃τ2)⟩ e

′
1)e

′
2 : τ1◦̃τ2.

• (Cλ). In this case, we have Γ ⊢ λIx .e ′ { (λIx .(x ∈ σ⇑

1)? e
′
1 : · · · : (x ∈ σ⇑

i−1)? e
′
i−1 : e ′i) :

TypeOf(I) under the following hypotheses:

∀(σi → τi) ∈ I, Γ,x : σi ⊢ e ′ { ei : τ ′i
and

e ′i =

{
ei if τ ′i ⊑ τi

⟨τi ⟩ ei otherwise

Let (σi → τi) ∈ I. We want to show that Γ,x : σi ⊢ (x ∈ σ⇑

1)? e
′
1 : · · · : (x ∈ σ⇑

i−1)? e
′
i−1 : e

′
i : ρi

where ρi ⊑ τi , to be able to apply the rule (T ⟨⟩

λ).
First of all, we can apply the induction hypothesis to Γ,x : σi ⊢ e ′ { ei : τ ′i , yielding
Γ,x : σi ⊢ ei : τ ′i . We then distinguish the following cases:
– If τ ′i ⊑ τi . We have e ′i = ei , and thus Γ,x : σi ⊢ e ′i : τ

′
i , with τ ′i ⊑ τi by hypothesis. Hence

the result using Lemma 14.
– Otherwise, we have e ′i = ⟨τi ⟩ ei . Since we know by induction hypothesis that Γ,x : σi ⊢ ei :
τ ′i , we can apply the rule (T ⟨⟩

cast), yielding Γ,x : σi ⊢ ⟨τi ⟩ ei : τi . By reflexivity of ⊑, it holds
that τi ⊑ τi , hence the result using Lemma 14.

We can therefore apply the rule (T ⟨⟩

λ) to the compiled function (which contains an implicit
identity cast), deducing the result:

Γ ⊢ (λIx .(x ∈ σ⇑

1)? e
′
1 : · · · : (x ∈ σ⇑

i−1)? e
′
i−1 : e

′
i) : TypeOf(I)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

Gradual Typing with Union and Intersection Types 41:55

□

Theorem 7. (Soundness of Compilation) — For every term e ∈ Terms and every typing context Γ,
if Γ ⊢ e : τ then Γ ⊢ e { e ′ : τ , where e ′ ∈ Terms⟨⟩ and Γ ⊢ e ′ : τ .

Proof. Direct consequence of Lemmas 13 and 15. □

Corollary 5. (Safety of the Gradually-Typed Language) — For every term e ∈ Terms, if ∅ ⊢ e : τ ,
then e { e ′ : τ where e ′ ∈ Terms⟨⟩ and either e ′ diverges, or ∃v ∈ Values⟨⟩ such that e ′ 7→∗ v and
∅ ⊢ v : τ ′ ≤̃ τ , or e ′ 7→∗ CastError.

Proof. Direct consequence of Theorems 6 and 7. □

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 41. Publication date: September 2017.

	Abstract
	1 Introduction
	1.1 Overview
	1.2 Contributions
	1.3 Related Work

	2 Types
	2.1 Type Syntax
	2.2 Semantics of Types
	2.3 Operators on Types

	3 Gradually-Typed Language
	3.1 Language Syntax
	3.2 Typing

	4 Cast Language
	4.1 Syntax
	4.2 Typing
	4.3 Operational Semantics
	4.4 Soundness

	5 Compilation
	5.1 Compilation Rules
	5.2 Safety and Soundness

	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Gradual Types
	A.2 Cast Language
	A.3 Compilation

