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Abstract. The paper surveys the literature on high-level name-passing process
calculi, and their extensions with cryptographic primitives. The survey is by no
means exhaustive, for essentially two reasons. First, in trying to provide a coher-
ent presentation of different ideas and techniques, one inevitably ends up leaving
out the approaches that do not fit the intended roadmap. Secondly, the literature
on the subject has been growing at very high rate over the years. As a conse-
quence, we decided to concentrate on few papers that introduce the main ideas,
in the hope that discussing them in some detail will provide sufficient insight for
further reading.

Outline of the Paper

We start in Section 1 with a brief review of a polyadic version of Milner’s π-calculus.
Then we outline the foundational work by Pierce and Sangiorgi on typing systems for
the π-calculus. Section 3 covers the Join Calculus, and a discussion on its type systems.
The remaining sections cover security specific extensions of name-passing calculi. In
Section 4 we review an extension of the π-calculus with a new construct for group
creation, and study the impact of the new primitive in enforcing secrecy. In Section 5 we
discuss the security π-calculus, a typed version of the asynchronous π-calculus, which
applies type based techniques provide security resource access control and information
flow security guarantees. Section 6 gives a brief outline of a value passing extension
of CCS, known as CryptoSPA, with cryptographic primitives. Finally, Section 7 covers
the spi-calculus, and its typing system(s) for secrecy. Each section includes pointers to
further important work in the literature relevant to each of the topics.

1 The Pi Calculus

The π-calculus is a way of describing and analyzing systems consisting of agents which
interact among each other, and whose configuration is continually changing. The π-
calculus emerged as the canonical model of concurrent computation, in much the same
way as the λ-calculus has established itself as the canonical model of functional com-
putation.
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The λ-calculus emphasizes the view of computation as the process of taking ar-
guments and yielding results. In the λ-calculus everything is a function, and compu-
tation is, essentially, the result of function application. Concurrent computation can-
not be forced into this functional metaphor of computation without severe distortions:
if anything, functional computation is a special case of concurrent computation, and
one should reasonably expect to find the functional model represented within a general
enough model of concurrency.

In the π-calculus, every term denotes a process – a computational activity running in
parallel with other processes and possibly containing several independent subprocesses.
Computation arises as a result of process interaction, which in turns is based on com-
munication on named channels. Naming is, in fact, the pervasive notion of the calculus,
for various reasons. Naming presupposes independence: one naturally assumes that the
namer and the named are independent (concurrent) entities. Further, using a name, or
address, is a prerequisite to the act of communicating, and of locating and modifying
data.

Based on these observations, the π-calculus seeks ways to treat data-access and
communication as the same thing: in doing so, it presupposes that naming of channels is
primitive, while naming of agents is not. As we shall see, departing from this view, and
extending the concept of naming to agents and locations is what led to the development
of models of mobility on top of the π-calculus. As of now, however, we start looking at
the π-calculus in itself.

1.1 Syntax and Operational Semantics

There are in fact several versions of the π-calculus. Here, we will concentrate on a very
basic one, although polyadic: the differences with other versions are mostly orthogonal
to our concerns. The syntax is given in Table 1.

We assume an infinite set of names to be used for values and communication chan-
nels, and an infinite set of variables. We let a,b − p,q range over names and x − z
range over variables. In addition, we often reserve u and v to denote names or vari-
ables indistinguishably, whenever the distinction between the two notions may safely
be disregarded.

We use a number of notation conventions: x̃ : T̃ stands for x1 : T1, . . . ,xk : Tk, and
we omit trailing dead processes, writing u〈N〉 for u〈N〉.0 and u(x̃ : T̃ ) for u(x̃ : T̃ ).0.
The empty tuple plays the role of synchronization messages. The input prefix and the
restriction operator are binders: the notations fn(P) and fv(P) indicate, respectively,
the set of free names and free variables of the process P: these notions are defined as
usual. We assume identity for α-convertible terms throughout, and we often omit type
annotations on the two binders whenever irrelevant to the context in question.

The syntactic form 0 denotes the inert process, which does nothing. u(x : T )P is
a process that waits to read a value on the channel u: having received a value, say
M, it behaves as P with every free occurrence of x substituted by M. Dually, u〈M〉.P
is a process that sends a value M on channel u and then behaves as P. The syntax
suggests that output, as input, is synchronous, hence blocking: before continuing as P
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Table 1 Pi calculus (typed) syntax

Expressions M,N ::= bv basic value
 a, . . . , p name
 x, . . . ,z variable
 (M1, . . . ,Mk) tuple, k � 0

Processes P,Q,R ::= 0 stop
 u〈N〉.P output
 u(x̃ : T̃ ).P input
 (νa : T )P restriction
 P | P composition
 !P replication

the process the output u〈M〉 must be consumed by another process running in parallel1.
The restriction form (νa : T )P declares a new, fresh name a local to P. P | Q denotes
the parallel composition of two subprocesses P and Q. Finally, !P stands for an infinite
number of (parallel) copies of P.

The operational semantics of the π-calculus is defined in terms of two relations: a struc-
tural equivalence relation on process terms that allows the rearrangement of parallel
compositions, replications and restrictions so that the participants in a communication
can be brought into immediate proximity; and a reduction relation that describes the act
of communication itself.

Structural Congruence is defined as the least congruence relation that is closed un-
der the following rules:

1. P | Q ≡ Q | P, P | (Q | R) ≡ (P | Q) | R, P | 0 ≡ P
2. (νa)0 ≡ 0, (νa)(νb)P ≡ (νb)(νa)P
3. (νa)(P | Q) ≡ P | (νa)Q if a �∈ fn(P)
4. !P ≡!P | P

The one-step reduction relation P −→ Q is the least relation closed under rules in
Table 2.

The notation P{x1 := M1, . . .xk := Mk} indicates the simultaneous substitution of Mi

for each free occurrence of the variable xi in P, for i∈ [1..k]. We assume that substitution
maps variables to names (or else unstructured values). In other words, the substitution
{x1 := M1, . . .xk := Mk} is only defined when each of the Mi is either a name or a basic
value. In all other cases it is undefined.

The rule (COMM) is the core of reduction relation, as it defines the effect of syn-
chronization between two processes on a channel. The rules (STRUCT) complete the
definition. Notice that reduction is possible under a restriction, but not under either

1 There exists an asynchronous variant of the calculus in which output is non-blocking. We
will discuss it briefly below, and return on it in later sections, when discussing some of the
derivative calculi.
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Table 2 Reduction Relation
(COMMUNICATION)

n(x1 : T1, . . . ,xk : Tk)P | n〈M1, . . . ,Mk〉.Q −→ P{x1 := M1, . . . ,xk := Mk} | Q

(STRUCTURAL RULES)

P −→ P′

P | Q −→ P′ | Q
P −→ P′

(νa)P −→ (νa)P′
P ≡ P′ P′ −→ Q′ Q′ ≡ Q

P −→ Q

of the two input and output prefix forms. It is also instructive to comment on the last
structural rule for reduction, that connects the relations of reduction and structural con-
gruence, and specifically on the interplay between the reduction rule (COMM) and the
structural rule (νa)(P | Q) ≡ P | (νa)Q if a �∈ fn(P), known as the rule of scope extru-
sion. If we read the equivalence from left to right there is nothing surprising: since the
name a does not occur free in P, restricting a on this process is vacuous, and we may
safely move the restriction to Q without changing (at least intuitively) the meaning of
the term. When used from right to left, instead, the equivalence enables the communi-
cation of private names. Consider the term c(x).P | (νa)c〈a〉.Q. In their current form,
the two parallel processes may not communicate. However, we may use the congruence
rules to rearrange the term as in (νa)(c(x).P | c〈a〉.Q), and then use (COMM) to reduce
it to P{x := a} | Q. By effect of the reduction, the name a, which was private to Q, has
now been communicated to P. Interestingly, the name a may very well be the name of
a channel, which implies that the reduction has the effect of establishing a new com-
munication link between the two processes P and Q. Also note that the new link is now
private to P and Q, and will remain so as long as the two processes do not communicate
it to third parties.

This simple example shows that the combination of scope extrusion and communi-
cation provides a very powerful mechanism for:

– dynamically changing the topological structure of a system of processes, by creat-
ing new, fresh, communication links.

– establishing private, hence secure communication links among the principals of the
system.

The ability to represent dynamically changing system topologies is the distinctive fea-
ture of the π-calculus with respect to previous CCS-like calculi for concurrency. The
possibility of establishing private channels, in turn, makes the π-calculus a good foun-
dation for studying formal models of security protocols. We briefly illustrate this po-
tential of the π-calculus with a simplified version of the protocol known as the Wide
Mouthed Frog protocol. In this version, we have two principals A and B (the outfamous
Alice and Bob), willing to exchange secret data M, and a server S, that mediates their
communication:

Message 1: A → S cAB on cAS

Message 2: S → B cAB on cBS

Message 3: A → B M on cAB



A Survey of Name-Passing Calculi and Crypto-Primitives 95

Initially, each one of A and B shares a channel with S. A sends to S a secret channel that
it wishes to use for communicate with B; S sends this channel to B and then A and B
may communicate. The π-calculus formulation of the protocol is just as direct, but now
formal:

A � (νcAB)cAS〈cAB〉.cAB〈M〉
S � cAS(x).cBS〈x〉
B � cBS(x).x(y).P{y}

The notation P{y} is used here simply to emphasize that P will do something with the
message it receives on the input channel x. The example shows how a secret channel
may be established for communication, and relies critically on scope extrusion: the
scoping rules guarantee that the context in which the protocol is executed (i.e. any
process running in parallel with A, B and S) will not be able to access the secret channel
cAB, unless of course any of the principals involved in the protocol gives it away.

This use of private channels for secrecy is suggestive and effective in its simplicity.
On the other hand, a problem with the π-calculus formulation of the protocol arises
when we consider its implementation in a distributed environment. In that case, it is not
realistic to rely only on the scope rules to ensure secrecy of names, as one also needs to
prevent the context from having free access public channels over which private names
are communicated. In our example, the name cAB is secret, but to guarantee that secrecy
is preserved through the protocol we should also envisage a mechanism for prevent-
ing the context from reading the name cAB while it is communicated over the public
channels cAS and cBS. Unfortunately, the π-calculus does not allow one to express the
cryptographic operations that would typically be used for that purpose. This observa-
tion motivated the design of the cryptographic extension of the π-calculus known as the
spi calculus [5, 10].

We conclude the description of the untyped π-calculus with a more complex exam-
ple that illustrates the reduction semantics and the computational flavor of the calculus.

Example 1 (Memory Cells). A memory cell can abstractly be thought of as an object
with private store s holding the cell value, and two methods get and put for reading and
writing the contents of the cell. In the π-calculus, this can be represented as a process
consisting of three parallel subprocesses like the ones displayed below:

cell(n) ::= (ν s)(s〈n〉
| !get(y).s(x).(s〈x〉 | y〈x〉)
| ! put(y,v).s(x).(s〈v〉 | y〈〉))

cell(n) declares the private name s representing the physical location holding the value
n, and provides the two handlers for serving the “get” and “put” requests on its con-
tents. Both the handlers are implemented as replicated processes, to make it possible
to serve multiple requests. Each request is served by first spawning a fresh copy of the
corresponding handler by means of the congruence rule !P ≡ P | !P.

The intuition is as follows. To read the cell contents, a user sends a “get” request
by transmitting, over the channel get, the name of a channel where it waits for the
result of the request. Upon receiving the channel name, the “get” handler inside the
cell consumes the current cell value, and then reinstates it while also copying it to the
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channel it received from the user. The protocol for serving a “put” request is similar.
The cell’s “put” handler waits for a for value v: once v is received, the handler consumes
the current cell value and writes v on the private channel s. There is a further subtlety,
however, in that the “put” handler inside the cell also expects an “ack” channel from
the user, which it uses to signal the completion of the protocol to the user. This may be
required by a user that, say, increments the cell value and then reads the new value to
print it: before reading the value, the user may use the ack channel to make sure it prints
the new cell value, the one resulting from the increment.

Here, we illustrate the reduction semantics with a simpler (and less realistic) user:

user(v) ::= (νack)(put〈ack,v〉.ack().(ν ret)get〈ret〉.ret(x).print〈x〉)
The user first writes a new value and then reads the cell contents to print the returned
value. Now consider the system cell(0) | user(v). An initial phase of structural rear-
rangements brings the system in the form (νs)(νack)(ν ret)(. . . )cell | (. . . )user. Then
the system (. . . )cell | (. . . )user evolves as follows: we omit the application of congru-
ence rules and, at each reduction step, we only display the subterms that are relevant to
the reduction in question:

(s〈0〉 | (put(y,v).s(x). . . . | . . . ))cell | (put〈ack,1〉. . . . )user

−→ (s〈0〉 | s(x).(s〈1〉 | ack〈〉) | . . . ))cell | (ack(). . . . )user

−→ (s〈1〉 | ack〈〉 | . . . )cell | (ack().ret(x). . . . )user

−→ (s〈1〉 | (get(y).s(x). . . . ))cell | (get〈ret〉. . . . )user

−→ (s〈1〉 | (s(x).(s〈x〉 | ret〈x〉) . . . ))cell | ret(x).print〈x〉
−→ (s〈1〉 | ret〈1〉 . . .)cell | ret(x).print〈x〉
−→ (s〈1〉 | . . . )cell | print〈1〉 	


1.2 Further Reading

Starting with the original presentation [46], there is by now an extensive literature on
the π-calculus, also in the form of introductory [45], and advanced [54]. Most versions
of the π-calculus, including the one we have outlined here, are first-order in that they
allow only names to be transmitted over channels. Higher-order versions of the calculus
have been extensively studied by Sangiorgi [54].

2 Typing and Subtyping for the Pi Calculus

We have so far ignored the typing annotations occurring in the input and restriction
binders. Now we take them more seriously, and look at the rôle of types in the calculus.
There are in fact several reasons why types are useful for process calculi in general, and
for the π-calculus in particular.
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– The theory of the pure (untyped) π-calculus is often insufficient to prove some “ex-
pected” properties of processes. These properties arise typically from the program-
mer using names according to some intended principle or logical discipline which,
however, does not appear anywhere in the terms of the pure π-calculus, and there-
fore cannot be used in proofs. Types bring the intended structure back into light,
and therefore enhance formal reasoning on process terms: for instance, typed be-
havioral equivalences are easier to prove, based on the fact that only typed contexts
need to be considered.

– types may be employed to ensure that process interaction happens only in type-
consistent ways, and hence to enable static detection of run-time type errors. To
exemplify, consider the following two terms:

a〈b,c〉.P | a(x).Q a〈true〉.P | a(x).x(y).Q

Both terms are, at least intuitively, ill-formed. The first reduces to the non-sensical
process 〈b,c〉(x).Q, while the second to the ill-formed term true(y).Q A simple
arity check would be enough to rule out the first term as ill-formed. This, however,
is not true of the second term.

– types can be useful for resource control. In the π-calculus, resources are channels,
and the way that resources can be protected from unintended use is by hiding their
names by means of the restriction operator. However, this is often too coarse a
policy to enable effective resources control. In the untyped calculus, resource pro-
tection is lost when the resource name is transmitted, as no assumption can be made
on how the recipient of the name will use the resource. Types may come to the res-
cue, as they can be employed to express and enforce a restrictive use of channels
by associating them with read and/or write capabilities.

The study of type systems for process calculi originated from ideas by Milner [42, 43],
based on the observation that channels used in system of processes naturally obey a
discipline in the values they carry, that reflects their intended use. For instance, in the
cell example above, the ret channel is used to communicate integers, while the get
channel is used to communicate another channel (in fact, the ret channel). In Milner’s
original formulation, the cell example could be described by the following sorting:

ret : Si Si �→ int

get : Sg Sg �→ (Si)
ack : Sa Sa �→ ()
put : Sp Sp �→ (Sa,())

The key idea, in types systems for the π-calculus, is that sorts, or types, are assigned
only to channels, whereas processes are either well typed under a particular set of as-
sumptions for their bound and free names and variables, or they are not. As we shall see,
a different approach is possible, based on assigning more informative types to processes
to describe various forms of process behavior. For the time being, however, we look at
typing systems where the rôle of types is essentially that of describing (and prescribing)
the intended use of channels.
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The foundational work on type system by Pierce and Sangiorgi [47] was inspired by
Milner’s initial idea, which they elaborate in two dimensions. First they replace match-
ing of types “by-name” with a more direct notion of structural matching, a technical
modification that enables a substantively more concise and elegant presentation. Sec-
ondly, and more importantly, they employ types in a prescriptive manner to control and
restrict access to channels. Their technique is based on associating channels with ca-
pabilities, and on introducing a notion of subtyping to gain additional control over the
use processes can make of channels. The rest of this section gives an overview of their
work. The reader is referred to [47] for full details.

2.1 Types

The structure of types is described by the following productions.

Types S,T ::= B types of basic values
 (T1, . . . ,Tk) tuple, k � 0
 r(T ) input channel
 w(T ) output channel
 rw(T ) input/output channel

The type of a channel not only describes the type T of the values it carries, but also
the kind of access the channel offers to its users. In the untyped calculus every channel
is available for input and output: types help distinguishing, and restricting, the use of
channels by associating them with access capabilities, providing users with the right to
read from and/or write to a channel. The distinction between the two forms of access
is reminiscent of a corresponding distinction that is made for the reference types in
some functional programming languages. Reference types, that is, the types of mutable
cells, are modeled with two different types: one for use of cells as “sources” of values,
from which values can be read, and the other for cells as “sinks” where values can
be placed. The same intuition applies to channels: channels of type r(T ) may only be
used as sources (i.e. for input), channels of type w(T ) as sinks (i.e. for output), whereas
channels of type rw(T ) are input-output channels behaving both as sources and sinks.

To exemplify, r(int) is a read-only channel carrying values of type int. Since chan-
nels themselves are values, one can define a typed channel c : rw(r(int)), conferring
c the capability of sending and receiving values which in turn are read-only channels
carrying integers.

2.2 Typing Rules

The typing rules are given in Table 3. They derive judgments in two forms: Γ � M : T
stating that term M has type T , and Γ � P which simply says the process P is well-
typed in context, or type environment Γ. A type environment Γ contains a set of type
assumptions for the free names and variables occurring in P: equivalently, one may
think of Γ as a finite map from names and variables to types.
The rules (BASE) and (TUPLE) should be self-explained. The (NAME) rule depends
on the subtype relation S � T which we discuss below: if the name (or variable) u is
assumed to have type S in Γ, then any occurrence of that name in a process may also be
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Table 3 Typing Rules for the Pi Calculus

Typing of Terms

(BASE)

Γ � bv : B

(NAME)

Γ(u) = S S � T

Γ � u : T

(TUPLE)

Γ � Mi : Ti i ∈ [1..k]

Γ � (M1, . . . ,Mk) : (T1, . . . ,Tk)

Typing of Processes

(INPUT)

Γ � u : r(T̃ ) Γ, x̃ : T̃ � P x̃∩Dom(Γ) = ∅

Γ � u(x̃ : T̃ ).P

(OUTPUT)

Γ � u : w(T ) Γ � M : T Γ � P

Γ � u〈M〉.P

(DEAD)

Γ � 0

(PAR)
Γ � P Γ � Q

Γ � P | Q

(REPL)
Γ � P

Γ � !P

(RESTR)

Γ,a : T � P a �∈ Dom(Γ)

Γ � (νa : T )P

Table 4 Core Subtype rules for channel types

(SUB INPUT)
S � T

r(S) � r(T )

(SUB OUTPUT)
T � S

w(S) � w(T )

(SUB IO/I)

rw(T ) � r(T )

(SUB IO/O)

rw(T ) � w(T )

typed at T provided that T is a super-type of S. The (INPUT) and (OUTPUT) rules ensure
that channels are used consistently with their types. In the (INPUT) rule, the first premise
requires that the channel from which input is requested provide a read capability and
that the type of the input variables of the channel be consistent with the channel type.
In addition, in order for the process u(x̃ : T̃ ).P to be well typed, the continuation P must
also be well typed under the additional assumptions that the input variables x̃ are of
the declared types. The rule (OUTPUT) has a similar reading. The remaining rules are
easily explained: (PAR) and (REPL) are purely structural, (DEAD) states that the inert
process is well typed, and (RESTR) is standard.

2.3 Subtyping

The subtype relation is central to the use of the type system to enforce access control
over channels. The core subtyping rules are defined in Table 4. The subtype relation
is the least reflexive and transitive relation that is closed under these rules, and a rule
that extends the subtype relation homomorphically to tuples: (S1, . . . ,Sk) � (T1, . . . ,Tk)
if Si � Ti for all i ∈ [1..k].
The two rules (SUB INPUT) and (SUB OUTPUT) are readily understood by analogy
between channel types and reference types. Alternatively, one may think of a channel
as a function: in its role as a source the channel returns a value, in its role as a sink it
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receives argument. Now, the two rules reflect the subtype relation for function types:
covariant in their return type and contra-variant in their input. The rules (SUB IO/I)
and (SUB IO/O) enable access control: any channel (which in the untyped calculus is
always available for both input and output) may be associated with a more restrictive
type (read-only or write-only) to protect it from misuse in certain situations. To illustrate
the power of subtyping for resource access control, consider the following example
from [47].

Example 2 (Access to a Printer). Suppose we have a system with a printer P and two
clients C1 and C2. The printer provides a request channel p carrying values of some type
T representing data to be printed on behalf of the clients. The system can be represented
by the π-calculus process (ν p : rw(T ))(P | C1 | C2).

If we take, say, C1 � p〈 j1〉.p〈 j2〉. . . . , one would expect that the jobs j1, j2, . . . are
received and processed, in that order, by the printer P. This is not necessarily the case,
however, as C2 might be not be willing to comply with the rules of the protocol. For
instance, it competes with P to “steal” the jobs sent by C1 and throws them away:
C2 � ! p( j : T ).0.

One can prevent this kind of misbehavior by constraining the capabilities offered to
C1 and C2 on the channel p: in the end, the clients should only write on p, whereas the
printer should only read from it. We may therefore extend the system with an initializa-
tion phase that enforces this intended behavior on all the participants in the protocol.
The initialization phase uses two channels, a and b, to communicate the name p to the
printer and to the two clients, restricting the respective capabilities on p.

(ν p : rw(T )) (a〈p〉.b〈p〉 | a(x : r(T )).P | b(y : w(T )).(C1 | C2))

Notice that now p is a read-only channel within P and a write-only channel within C1

and C2. Assuming appropriate definitions for the processes P, C1 and C2, the system
type checks, under the assumption a,b : rw(rw(T )), as the subtype relation ensures that
p : rw(T ) may legally be substituted for any x : r(T ) or y : w(T ).

2.4 Properties of the Type System

The type system satisfies the standard properties one expects: subject reduction and type
safety. In functional languages, subject reduction guarantees that types are preserved
during the computation. The result for the π-calculus is similar, and ensures that well-
typedness is preserved by all the non-deterministic reductions of a process.

Theorem 1 (Subject Reduction). If Γ � P and P −→ Q, then Γ � Q.

The proof of this result requires two auxiliary results. The first is the so-called subject-
congruence theorem, stating that well-typedness is preserved by the relation of struc-
tural congruence.

Theorem 2 (Subject Congruence). If Γ � P and P ≡ Q, then Γ � Q. Dually, if Γ � P
and Q ≡ P, then Γ � Q.

The second is the π-calculus version of the familiar substitution lemma from type sys-
tem for the λ-calculus.
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Theorem 3 (Substitution). If Γ � u : T and Γ,x : T � P, then Γ � P{x := u}.

Type safety is a more subtle issue. In functional calculi, proving type safety amounts to
proving the so-called absence of stuck states, i.e. to show that the evaluation of well-
typed terms either does not terminate, or returns a value, for a suitable notion of value.
In the π-calculus, there is no notion of value, as computation is entirely based on in-
teraction between processes, that do not return values. A notion of “stuck state” may
nevertheless be formulated, and taken as the basic common denominator to different
notions of type safety.

Theorem 4 (Basic Type Safety). Assume Γ�P, and P −→ Q. If Q contains a subterm

c(x1 : T1, . . . ,xn : Tn).Q1 | c〈M1, . . . ,Mk〉.Q2

then all of the following hold true: c is a name or variable (i.e. not a constant of basic
type), k = n and each of the Mi is a non-structured value.

The theorem says essentially that process interaction happens in type-consistent ways,
and never generates undefined substitutions. In addition, one may wish to prove other
properties for reduction, and consequently richer notions of type safety. For instance, for
the type system we have presented in the previous section, it can be proved that reduc-
tion of well-typed processes preserves guarantees that access to channels by processes
is always consistent with the capabilities conferred to the channels by their types. We
will discuss type-safety more formally in some of the calculi presented in later sections.
Presently, we content ourselves with this informal formulation, and refer the interested
reader to [47] for details on this richer notion of type safety.

2.5 Further Reading

The study of type systems for the π-calculus is currently very active, and has produced
a large body of literature. Besides the work by Pierce and Sangiorgi we have reviewed
in this section, and those we will discuss later on, an interesting pointer is to the work
of Igarashi and Kobayashi [37] where a generic framework is proposed in which to
understand several previous systems.

3 The Join Calculus

The Join calculus [29, 30] is a variant of the asynchronous π-calculus [12, 36] which
combines restriction, reception, and replication in one construct, the join receptor: J �P.
For example the definition

def apply〈f,x〉�f〈x〉 (1)

defines a new name apply that receives two arguments and apply the first to the second.
More precisely it receives a channel name that it bounds to f and a name that it bounds
to x and sends the latter over the former. This is more formally shown by the following
reduction:

def apply〈f,x〉�f〈x〉 in apply〈g,y〉 −→ def apply〈f,x〉�f〈x〉 in g〈y〉
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Table 5 The Join calculus

Processes P,Q ::= x〈Ṽ 〉 Asynchronous message on x

def D in P Definition of D in P

P | Q Parallel Composition

0 Empty Process

Join patterns J,J′ ::= x〈ỹ〉 Asynchronous reception on x

J | J′ Joining messages

Definition D,E ::= J �P Elementary clause

D∧E Simultaneous definition

Values V,V ′ ::= x̃ Names

Table 6 Received, defined and free variables

dv(J �P) = dv(J) dv(D∧E) = dv(D)∪dv(E)

dv(T ) = /0 dv(J | J′) = dv(J)∪dv(J′)
dv(x〈ṽ〉) = {x}

rv(x〈ṽ〉) = {u | u ∈ ṽ} rv(J | J′) = rv(J)� rv(J′)

fv(J �P) = dv(J)∪ (fv(P)− rv(J)) fv(D∧E) = fv(D)∪ fv(E)

fv(ε) = /0
fv(x〈ṽ〉) = {x}∪{u ∈ ṽ}
fv(def D in P) = (fv(P)∪ fv(D))−dv(D)

fv(P | Q) = fv(P)∪ fv(Q)

fv(0) = /0

The syntax of the calculus is given in Table 5, where we assume names x,y, . . . to be
drafted from an infinite set N .

The only binding mechanism is the join pattern: the formal parameters which are re-
ceived are bound in the guarded process. The received variables, rv(J), are the names to
which the messages sent are bound; the defined variables in a join pattern or a definition,
dv(J) and dv(D), are the names which are bound by the definition. The free variables,
fv(P) and fv(D), are all the names which are not bound. Received, defined and free
variables can be easily defined as expected by structural induction (see Table 6).

It is important to notice that there is no linearity condition on the channel names in
a composed join pattern: however, elementary join patterns are required to be linear, i.e.
received variables are supposed to be pairwise distinct. A name is said to be fresh in a
process when it is not free in it. In the following discussions a consistent use of names
is assumed.

The operational semantics of the Join calculus is given using the chemical paradigm
(structural rules � plus reduction →) in terms of the so called Reflexive Chemical Ab-
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Table 7 The RCHAM

(str-join) |= P | Q � |= P,Q

(str-def) |= def D in P � Dσdv |= Pσdv

(red) . . .∧ J �P∧ . . . |= Jσrv → . . .∧ J �P∧ . . . |= Pσrv

Side conditions: in (str-def) σdv instantiates the names in dv(D) to distinct fresh names;
in (red) σrv substitutes the received variables rv(J) with the values actually received

stract Machine (RCHAM) [29, 14] (see Table 7). States of the RCHAM are expression
of the form D |= P, where P are the running processes and D are the (chemical) reac-
tions.

Note that join patterns can be the parallel composition of different receptions, and
that reduction takes place only when all the receptions synchronize. So for example the
following receptor

def ready〈printer〉 | print〈file〉�printer〈file〉 in P

reduces only when in P two (unbound) outputs on ready and print occur in parallel
as for

def ready〈printer〉 | print〈file〉�printer〈file〉 in ready〈gutenberg〉
| print〈myths.ps〉 | Q

which reduces to

def ready〈printer〉 |print〈file〉�printer〈file〉 in gutenberg〈myths.ps〉 |Q

The same behavior could be obtained by composing this definition with the defini-
tion (1):

def apply〈f,x〉�f〈x〉 ∧ ready〈p〉 | print〈 f 〉�apply〈p, f 〉

3.1 Typing

Let us again consider the definition of the expression (1). If we use 〈T 〉 to denote the
type of channels transporting values of type T , then apply has type 〈〈T 〉,T 〉 for every
type T . In words apply is a channel that transports pairs formed by a channel and a
value that can be sent over that channel.

Note the polymorphic nature of the type of apply. This can be formally expressed
by generalizing the type of apply into the following type schema: ∀α.〈〈α〉,α〉. We
saw before that join calculus provides synchronization between join patterns. Thus for
instance a variant of apply that receives f and x from different sources can be defined
as follows

def fun〈f〉 | arg〈x〉�f〈x〉
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Table 8 Typing rules for the Join Calculus

(INST)
x : ∀α̃.T ∈ A

A � x : T{α̃ := T̃ ′}

(PAR)
A � P A � Q

A � P | Q

(MESSAGE)

A � x : 〈T1, . . . ,Tn〉 A � vi : Ti (i = 1..n)

A � x〈v1, . . . ,vn〉

(DEF)

A,B � D :: B A,Gen(B,A) � P

A � def D in P

(JOIN)

A,yi j : T i=1..n, j=1..mi
i j � P

A � x1〈y j=1..m1
1 j 〉 | . . . | xn〈y j=1..mn

n j 〉�P :: xi : 〈Ti1, . . .Timi〉i=1..n

(AND)
A � D1 :: B1 A � D2 :: B2

(B1
Dom(B2)

= B2
Dom(B1)

)
A � D1 ∧D2 :: B1,B2

According to what we said before fun and arg can be respectively typed as 〈〈α〉〉
and 〈α〉. Observe, however, that fun and arg are correlated in their types as they must
share the same type variable α. This forbids to generalize their types separately: if
we assigned them the types ∀α.〈〈α〉〉 and ∀α.〈α〉, then the correlation of the types of
the two names defined in the same join pattern would be lost. In [14] this problem is
handled by the definition of the generalization rule that forbids the generalization of
type variables that appear free in the type of more than one co-defined name.

The type system of [14] is defined as follows:

Types T ::= α  〈T, . . . ,T 〉
Schemas σ ::= T  ∀α.σ

Type Envs B ::= ∅  B,x : T

Schema Envs A ::= ∅  A,x : σ

The type system includes three kinds of typing judgments:

A � u:T the name u has type T in A
A � P the process P is well typed in A
A � D :: B the definition D is well-typed in A with types B for its defined types

which are deduced by the typing rules in Table 8.
In that table, Gen(B,A) is the generalization of the type environment B of the form

(xi : Ti)i=1..n with respect to the schema environment A: let fv(A) be the set
∪(s:σ)∈Avars(σ) with vars(σ) is the set of variables occurring in σ; let B \ x be the
environment B without the binding for x; then Gen(B,A) is (xi : ∀(fv(Ti)− fv(A,(B \
xi))).Ti)i=1..n.
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With the exception of (DEF) all the rules are straightforward, insofar as they are al-
most directly inspired by the typing rules for polymorphic (poliadic) λ-calculus. (INST)
assigns to a variable x any type that is an instance of the type schema associated to the x
in A; (PAR) is straightforward; (MESSAGE) checks that the types of the actual parame-
ters match the type of the channel the parameters are sent over; (JOIN) checks that the
guarded process P is typable under the assumption that the types of the formal param-
eters of the join patterns match those of the corresponding channels, and associates to
the definition the type environment of its declared names; (AND) associates to the com-
position of two definitions the composition of the type environments of their declared
names, provided that the two definitions do not declare a common name. Finally (DEF)
is the most technical rule: first it checks the typing of the definition D under the type
environment produced by D. This allows recursive definitions; second it checks the well
typing of P under the generalization of the types of the new definition with respect to A.
In particular the generalization takes into account the problem of sharing we hinted in
the beginning of the section. Therefore for every constraint x:T ∈ B the generalization
does not generalize all the free type variables of T but, instead, only those free vari-
ables that are not shared with a previous definition or with a parameter of the actual join
pattern.

3.2 Properties of the Type System

Soundness. The soundness of the type system is obtained by proving subject reduction
and basic type safety (corresponding to Theorem 4 for π-calculus.)

Theorem 5 (Subject Reduction). If A � P and P −→ Q, then A � Q.

Definition 1. A process of the form def D∧ J � in Q | x〈ṽ〉 is wrong if J contains a
message x〈ỹ〉 where ỹ and ṽ have different arities.

Theorem 6 (Basic Type Safety). If A � P then P is not wrong.

The composition of the previous two theorems ensures that well typed processes never
go wrong.

Type Inference. Finally, there exists an algorithm that for every typable process returns
the most general schema environment under which the process can be typed, while it
fails if it is applied to a process that is not typable.

3.3 Further Reading

In [7] Abadi, Fournet, and Gonthier define the sjoin-calculus, that extends the join cal-
culus with constructs for encryption and decryption and with names that can be used
as keys, nonces, or other tags. This extension is very reminiscent of the the way the
spi-calculus (see section 7) extends the π-calculus: as a matter of fact, the name sjoin
was chosen in analogy with spi. The authors also show how to translate sjoin into a
lower-level language that includes cryptographic primitives mapping communication
on secure channels into encrypted communication on public channels. A correctness
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theorem for the translation ensures that one can reason about programs in sjoin with-
out mentioning the cryptographic protocols used to implement them in the lower-level
implementation.

In [17] Conchon and Pottier advocate that the the type system of [14], that forbids
the generalization of any type variable that is shared between two jointly defined names
(such as fun and arg), is overly restrictive when one wants to use types in a descriptive –
rather then prescriptive – way. To that end they switch from the system of [14] in which
the generalization is performed on syntactic criteria, to a richer type system based on
constraints and where the generalization is more “semantic” (polymorphic types are
interpreted as particular sets of monomorphic types) and fairly natural. However, rather
surprisingly, the new generalization criterion hinders type inference as it results very
difficult (perhaps impossible) to infer a most general type. As a result they propose a
more restrictive (and syntactic) criterion that, while it allows type inference, it is closer
to the original system of [14].

In his PhD. thesis [15] Conchon extends the type system of JOIN(X) with informa-
tion-flow annotations that ensure a noninterference property based on bisimilarity
equivalences. The new systems thus obtained can detect, for instance, information flow
caused by contentions on distributed resources, which are not detected, in a satisfactory
way, when using testing equivalences. The achievement is however limited by the fact
that equivalences, rather than congruences, are considered.

A more in depth study of bisimulation for the join calculus can be found in [11].
In all these variants, join remains a concurrent calculus. In [31] the authors define

the Distributed Join Calculus that extends join calculus essential with locations, mi-
gration, and failure. The new calculus allows one to express mobile agents roaming
on the net, that is, that autonomously move from some node to a different node where
they resume their current execution. Distributed join is also the core of the distributed
language jocaml[16].

4 The Pi Calculus with Groups

In Section 1 (and we will see it also in Section 7) we discussed the importance of scope
extrusion for secrecy. However, inattentive use of scope extrusion may cause secrets to
be leaked. Consider a process P that wants to create a private name x. In the pi-calculus
this can be done by letting P evolve into a configuration (νx)P′, where the channel x is
intended to remain private to P′. This privacy policy is going to be violated if the system
then evolves into a situation such as the following, where p is a public channel known
to an hostile process (opponent) running in parallel with P.

p(y).O | (νx)(p〈x〉 |P′) (2)

In this situation, the name x is about to be sent by P over the public channel p and
received by the opponent. In order for this communication to happen, the rules of the
pi-calculus, described in Section 1, require first an enlargement of the scope of x. After
extrusion we have:

(νx)(p(y).O | p〈x〉 | P′) (3)

Now, x can be communicated over p, and the opponent acquires the secret.
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The private name x has been leaked to the opponent by a combination of two mech-
anisms: the output instruction p〈x〉 and the extrusion of (νx). It seems that we need
to restrict either communication or extrusion. Since names are dynamic data in the pi-
calculus, it is not easy to say that a situation such as p〈x〉 (sending x on a channel known
to the opponent) should not arise, because p may be dynamically obtained from some
other channel, and may not occur at all in the code of P.

The other possibility is to prevent extrusion, which is a necessary step when leaking
names outside their initial scope. However, extrusion is a fundamental mechanism in the
pi-calculus: blocking it completely would also block innocent communications over p.

A natural question is whether one could somehow declare x to be private, and have
this assertion statically checked so that the privacy policy of x cannot be violated. To this
end, in [13] authors add an operation of group creation to the typed pi-calculus, where
a group is a type for channels. Group creation is a natural extension of the sort-based
type systems developed for the pi-calculus (see Section 1). However, group creation
has an interesting and subtle connection with secrecy. Creation of fresh groups has the
effect of statically preventing certain communications, and can block the accidental or
malicious leakage of secrets.

Intuitively, no channel belonging to a fresh group can be received by processes
outside the initial scope of the group, even if those processes are untyped. Crucially,
groups are not values, and cannot be communicated; otherwise, this secrecy property
would fail.

Starting from the typed pi-calculus, we can classify channels into different groups
(usually called sorts). We could have a group G for our private channels and write
(νx:G)P to declare x to be of sort G. However, if groups are global (as usually happens
with sorts in standard pi-calculus type systems), they do not offer any protection be-
cause an opponent could very well mention G in an input instruction, and leakage can
thus be made to typecheck:

p(y : G).O | (νx:G)(p〈x〉 | P′) (4)

In order to guarantee secrecy, the group G itself should be secret, so that no opponent
can input names of group G, and that no part of the process P can output G information
on public channels.

In general we want the ability to create fresh groups on demand, and then to create
fresh elements of those groups. To this end, we extend the pi-calculus with an operator,
(νG)P, to dynamically create a new group G in a scope P. Although group creation is
dynamic, the group information can be tracked statically to ensure that names of differ-
ent groups are not confused. Moreover, dynamic group creation can be very useful: we
can dynamically spawn subsystems that have their own pool of shared resources that
cannot interfere with other subsystems.

Consider the following process, where G[ ] is the type of a channel of group G:

(ν p:U) (p(y:T ).O | (νG)(νx:G[ ])p〈x〉) (5)

Here an attempt is made again to send the channel x over the public channel p. For-
tunately, this process cannot be typed: the type T would have to mention G, in order
to receive a channel of group G, but this is impossible because G is not known in the
global scope where p has been declared.
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The construct (νG) has extrusion properties similar to (νx), which are needed to
permit legal communications over channels unrelated to G channels, but these extrusion
rules prevent G from being confused with any groups mentioned in T .

Untyped Opponents. Let us now consider the case where the opponent process is un-
typed or, equivalently, not well-typed. This is intended to cover the situation where an
opponent can execute any instruction without being restricted by static checks such as
type checking or bytecode verification. For example, the opponent could be running
on a separate, untrusted, machine. Let consider again the previous process, where we
remove typing information from the code of the opponent, since an opponent does not
necessarily respect the typing rules. The opponent now attempts to read any message
transmitted over the public channel, no matter what its type is.

(ν p:U)(p(y).O | (νG)(νx:G[ ])p〈x〉) (6)

The untyped opponent will not acquire secret information by cheating on the type of
the public channel. The fact that the process P is well typed is sufficient to ensure
secrecy, even in the presence of untyped opponents. This is because, in order for P to
leak information over a public channel p, the output operation p〈x〉 must be well typed.
The name x can be communicated only on channels whose type mentions G. So the
output p〈x〉 cannot be well typed, because then the type U of p would have to mention
the group G, but U is not in the scope of G.

We have thus established, informally, that a process creating a fresh group G can
never communicate channels of group G to an opponent outside the initial scope of
G, either because a (well typed) opponent cannot name G to receive the message, or,
in any case, because a well typed process cannot use public channels to communicate
G information to an (untyped) opponent. Thus, channels of group G are forever secret
outside the initial scope of (νG). So, secrecy is reduced in a certain sense to scoping
and typing restrictions. As we have seen, the scope of channels can be extruded too far,
perhaps inadvertently, and cause leakage, while the scope of groups offers protection
against accidental or malicious leakage, even though it can be extruded as well.

4.1 Syntax and Operational Semantics

We start showing the syntax of an asynchronous, polyadic, typed pi-calculus with
groups and group creation. Types specify, for each channel, its group and the type of
the values that can be exchanged on that channel.

Types T ::= G[T1, . . . ,Tn] polyadic channel in group G

As usual, in a restriction (νx:T )P the name x is bound in P, and in an input x(ỹ :
T̃ ).P, the names y1, . . . ,yk are bound in P. In a group creation (νG)P, the group G
is bound with scope P. Let fn(P) be the set of free names in a process P, and let
fg(P), fg(T ) be the sets of groups free in a process P and a type T , respectively.

The operational semantics of the calculus is similar to that of the typed pi-calculus
described in Section 1. Group creation is handled by the following new rules of struc-
tural equivalence and reduction:
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Table 9 Typed pi-calculus with Groups

Expressions M,N ::= a, . . . , p name
 x, . . . ,z variable

Processes P,Q,R ::= 0 stop
 u〈M̃〉.P polyadic output
 u(x̃:T̃ ).P polyadic input
 (νG)P group creation
 (νa:T )P restriction
 P | P composition
 !P replication

(Struct GRes GRes) (νG1)(νG2)P ≡ (νG2)(νG1)P
(Struct GRes Res) (νG)(νx:T )P ≡ (νx:T )(νG)P if G /∈ fg(T )
(Struct GRes Par) (νG)(P | Q) ≡ P | (νG)P if G /∈ fg(P)

(Red GRes) (νG)P −→ (νG)Q if P −→ Q

Note that rule (Struct Gres Res) is crucial: it implements a sort of “barrier” between
processes knowing a group name and processes that do not know it.

4.2 The Type System

Environments declare names and groups in scope during type-checking; we define en-
vironments, Γ, by Γ ::= /0 | Γ,G | Γ,x:T . We define four typing judgments: first, � Γ
means that Γ is well formed; second Γ � T means that T is well formed in Γ; third,
Γ � x : T means that x : T is in Γ, and that Γ is well formed; and, fourth, Γ � P means
that P is well formed in the environment Γ. Typing rules are collected in Table 10.

Properties of the Type System. A consequence of our typing discipline is the ability to
preserve secrets. In particular, the subject reduction property, together with the proper
application of extrusion rules, has the effect of preventing certain communications that
would leak secrets. For example, consider the process (4) at the beginning of this sec-
tion:

(ν p:U)(p(y:T ).O | (νG)(νx:G[ ])p〈x〉)
In order to communicate the name x (the secret) on the public channel p, we would
need to reduce the initial process to the following configuration:

(ν p:U)(νG)(νx:G[ ])(p(y:T ).O | p〈x〉)

If subject reduction holds then this reduced term has to be well-typed, which is true
only if p : H[T ] for some H, and T = G[ ]. However, in order to get to the point of
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Table 10 Typing rules for the pi-calculus with groups

(ENV EMPTY)

� /0

(ENV u)

Γ � T u /∈ dom(Γ)

� Γ,u : T

(ENV GROUP)

� Γ G /∈ dom(Γ)

� Γ,G

(TYPE CHAN)

G ∈ dom(Γ) Γ � T1 . . .Γ � Tn

Γ � G[T1, . . . ,Tn]

(PROJECT)

� Γ′,x : T,Γ′′

Γ′,x : T,Γ′′ � x : T

(GRES)
Γ,G � P

Γ � (νG)P

(INPUT)

Γ � M : G[T1, . . . ,Tn] Γ,x1 : T1, . . . ,xn : Tn � P

Γ � M(x1 : T1, . . . ,xn : Tn)P

(RES)
Γ,n : T � P

Γ � (νn : T )P

(DEAD)
� Γ

Γ � 0

(OUTPUT)

Γ � M : G[T1, . . . ,Tn] Γ � N1 : T1 . . .Γ � Nn : Tn

Γ � M〈N1, . . . ,Nn〉

(PAR)
Γ � P Γ � Q

Γ � P | Q

(REPL)
Γ � P

Γ �!P

bringing the input operation of the opponent next to the output operation, we must have
extruded the (νG) and the (νx:G[ ]) binders outward. The rule (Struct Gres Res), used to
extrude (νG) past p(y:T ).O, requires that G /∈ fg(T ). This contradicts the requirement
that T = G[ ].

Proposition 1 (Subject Congruence). If Γ � P and P ≡ Q, then Γ � Q.

Proposition 2 (Subject Reduction). If Γ � P and P −→ Q, then Γ � Q.

The formalization of secrecy is inspired by Abadi’s definition [2]: a name is kept secret
from an opponent if after no series of interactions is the name transmitted to the oppo-
nent. We model the external opponent simply by the finite set of names S known to it.
A complete formalization of this notion of security can be found in [13], here we only
overview the main theorem and its proof. The following theorem expresses the idea
that in the process (νG)(νx:G[T1, . . . ,Tn])P, the name x of the new group G is known
only within P (the scope of G) and hence is kept secret from any opponent able to com-
municate with the process (whether or not the opponent respects our type system). Let
erase(P) be the process obtained from P by erasing type annotations and new-group
creations. Let S be a set of names, we say that a process P preserves the secrecy of x
from S if P will never communicate the name x to an opponent initially knowing the
names in S.

Theorem 7 (Secrecy). Suppose that Γ � (νG)(νx:T )P where G ∈ fg(T ). Let S be the
names occurring in dom(Γ). Then the erasure (νx)erase(P) of (νG)(νx:T )P preserves
the secrecy of the restricted name x from S.
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The proof of the secrecy theorem (see [13]) is based on an auxiliary type system
that partitions channels into untrusted channels , with type Un and trusted ones, with
type Ch[T1, . . . ,Tn], where each Ti is either a trusted or untrusted type. The type system
insists that names are bound to variables with the same trust level (that is, the same
type), and that no trusted name is ever transmitted on an untrusted channel. Hence an
opponent knowing only untrusted channel names will never receive any trusted name.

In particular, for any group G, we can translate group-based types into the auxiliary
type system as follows: any type that does not contain G free becomes Un, while a type
H[T1, . . . ,Tn] that contains G free is mapped onto Ch[〈〈T1 〉〉G, . . . , 〈〈Tn 〉〉G]. This transla-
tion is proved to preserve typability. This implies that an opponent knowing only names
whose type does not contain G free, will never be able to learn any name whose type
contains G free. This is the key step in proving the secrecy theorem.

Finally, note that the typing rules constrain only the principals that want to protect
their secrets from attackers. On the contrary, there are no restrictions on the code the
attackers may run; we have in fact that any untrusted opponent may be type-checked as
follows.

Lemma 1. For all P, if fn(P) = {x1, . . . ,xn} then x1 : Un, . . . ,xn : Un � P.

This is a distinctive property of the approach we discussed in this section, since it makes
the type system suitable for reasoning about processes containing both trusted and un-
trusted subprocesses.

5 The Security Pi Calculus

The security π-calculus is an extension of the π calculus defined by Hennessy and Riely
[33] to study properties of resource access and information flow control in systems with
multilevel security. Before discussing the security π-calculus, we first give a very brief
overview of the underlying models of multilevel security.

5.1 Multilevel Security

Traditional models of security are centered around notions of subjects and objects, with
the former performing accesses on the latter by read and write (as well as append,
execute, . . . , etc. in certain models) operations. Multilevel security presupposes a lattice
of security levels, and every subject and object in the system is assigned a level in
this lattice. Based on these levels, access to objects by subjects are classified as read-up
(resp. read-down) when a subject attempts to read an object of higher (resp. lower) level,
and similarly for write accesses. Relying on this classification, security policies are
defined to control access to objects by subjects and, more generally flow of information
among the subjects and objects of the system.

An important class of security policies are the so-called Mandatory Access Control
(MAC) policies, among which notable examples are defense security and business se-
curity. Defense security aims at protecting confidentiality of data by preventing flow of
information from high, privileged, subjects to low, users. This is accomplished by for-
bidding read-up’s and write-down’s to objects: low-level users may not read confiden-
tial information held in high-level documents, and high-level principals may not write
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Table 11 Syntax: The Security pi calculus

Expressions M,N ::= . . . as in Table 1

Processes P,Q,R ::= 0 stop
 u〈N〉 asynchronous output
 u(x̃ : T̃ ).P input
 (νa : T )P restriction
 P | P composition
 !P replication
 [P]σ process at clearance σ

information on low-level objects that may be available to low-level users. Business se-
curity, on the other hand, centers around integrity, and a weaker form of confidentiality,
and provides guarantees that low-level users have no direct access to secret high-level
data, either in read or write mode.

Enforcing confidentiality and integrity often requires further constraints to prevent
flow of sensitive information to non-authorized subjects arising from subtle and hidden
ways of transmitting information, viz. covert channels: these may be established in
several ways, via system-wide side effects on shared system resources. The prototypical
example of covert channel is realized by means of the “file system full” exception.
Suppose that a process fills the file system, and then deletes a 1-bit file: further attempts
by that process to write that file will inform it of any two (high-level) users exchanging
1-bit information via the file system.

5.2 Syntax of the Security Pi-Calculus

The security π-calculus is based on the asynchronous variant of the π calculus. The
choice of asynchronous output is motivated by security reasons, as synchronous output
is more prone to covert channels and implicit flow of information. We will return to this
point later: as of now, we proceed with our discussion on the asynchronous π-calculus
and its extension with security.

There are different ways that the asynchronous π-calculus can be defined: for in-
stance, one may define it by relying on the same syntax given in Table 1, and by extend-
ing the relation of structural congruence with the new rule: a〈M〉.P ≡ a〈M〉.0 | P. This
rule effectively leads to an asynchronous version of the output operation, as it allows
the process P to reduce, hence evolve, independently of the presence of an input process
consuming the value M sent over the channel a.

Here, however, we will adhere to the more standard practice and use a different
syntax in which output on a channel is defined as a process rather than a prefix. The
syntax of the security π-calculus results from the syntax of the π-calculus from this
change and from introducing a new construct for processes.
As anticipated, the output construct is now a process rather than a prefix: this is all that
is needed to account for asynchrony. The new syntactic form [P]σ denotes a process
P running at security level σ; it has no real computational meaning, as the notion of
reduction is not affected by this construct. It is, however, relevant to the definition of
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the instrumented semantics that we will introduce to capture a notion of run-time error
resulting from security violations.

In the instrumented semantics, we view processes as playing the rôle of subjects,
while channels are naturally associated with the rôle of objects that processes access
in read and write mode. Security levels are associated with channels by enriching the
structure of channel types: besides associating input-output capabilities with each name,
channel types also include a security level.

The structure of the types is defined in terms of a lattice SL of security levels. We let
Greek letters like δ,σ,ρ, . . . range over the elements of this lattice: the top and bottom
elements are denoted by � and ⊥ as usual. To enhance flexibility, the structure of types
allows different security levels to be associated with the input and output capabilities
for a channel. Thus, if S and T are types, channels types may be structured as shown in
the following to examples:

– {w⊥(S), r�(T )}: the type of channels where low processes can write (values of type
S), and only high processes can read (values of type T ). This typing is appropriate
for a mailbox, where everybody should be allowed to write but only the owner
should be granted permission to read.

– {w�(S), r⊥(S)}: the type of channels where anybody can read, but only high pro-
cesses can write. This typing is typical of an information channel, where privileged
users write information for everyone to read.

We give a formal definition of types in Section 5.5. Before that, we define the opera-
tional semantics and formalize a notion of security error

5.3 Reduction Semantics

The operational semantics is given, as for the π-calculus, in terms of the two relations of
structural congruence and reduction. Structural congruence is defined by the following
extension of the corresponding relation for the π-calculus:

Table 12 Structural congruence

π-Calculus Rules for Structural Equivalence.
1. P | Q ≡ Q | P, P | (Q | R) ≡ (P | Q) | R, P | 0 ≡ P
2. (νa)0 ≡ 0, (νa)(νb)P ≡ (νb)(νa)P
3. (νa)(P | Q) ≡ P | (νa)Q if a �∈ fn(P)
4. !P ≡!P | P

Security π-Calculus Specific Rules.

5. [P | Q]σ ≡ [P]σ | [Q]σ
6. [(νx : T )P]σ ≡ (νx : T )[P]σ
7. [[P]ρ]σ ≡ [P]σ	ρ
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In addition, as for the π-calculus, the definition includes the structural rules that make ≡
a congruence. The rules 5 and 6 are not surprising. In rule 7, the notation ρ	σ indicates
the greatest lower bound between ρ and σ in the lattice of security levels. Based on this
relation, the reduction relation is defined as follows:

Table 13 Reduction Relation

(COMM) a〈M̃〉 | a(x̃ : T̃ )P −→ P{x1 := M1, . . . ,xk := Mk}
(COMMρ) [a〈M̃〉]σ | [a(x̃ : T̃ ).P]ρ −→ [P{x1 := M1, . . . ,xk := Mk}]ρ

(STRUCT)

P −→ P′

P | Q −→ P′ | Q
P −→ P′

[P]σ −→ [P′]σ
P −→ P′

(νa : T )P −→ (νa : T )P′

P ≡ P′ P′ −→ Q Q′ ≡ Q
P −→ Q

The rule (COMM) is the asynchronous variant of the reduction rule for communications
from the π-calculus. The rule (COMMρ) is the corresponding rule for processes with a
clearance: as we noted, the presence of the security level does not affect the computa-
tional behavior of processes. On the other hand, it is the basis for the formalization of
run-time security error.

5.4 Security as Resource Access Control

Security violations occur against a given security policy, which is formalized in the
calculus in terms of (i) a mapping from resources (i.e. names and values) to their types,
and of (ii) an auxiliary reduction relation that underlines the import of the policy by
defining what it means to violate it. As a first example, given a mapping Γ, one may
enforce a policy for resource access control by stating that processes at clearance σ
should only have access to channels and values at security level up to (and including)
σ. This can be formalized by the following additional reductions:

Table 14 Security Violation

(E-INPUT) [n(x̃ : T̃ ).P]ρ
Γ−→ err if rσ(T̃ ) ∈ Γ(n) =⇒ σ �� ρ

(E-OUTPUT) [n〈M〉]ρ Γ−→ err if wσ(T ) ∈ Γ(n) =⇒ σ �� ρ

(E-OUTVAL) [n〈M〉]ρ Γ−→ err if M : Bσ and σ �� ρ

(E-STRUCT)
P

Γ−→ err

P | Q
Γ−→ err

P
Γ−→ err

[P]σ
Γ−→ err

P
Γ−→ err

(νa : A)P Γ−→ err
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The rule (E-INPUT) states that a process with clearance ρ can not read from channels
that are not qualified by the security policy Γ, or that have security level higher than ρ.
The rule (E-OUTPUT) defines dual conditions for errors resulting from an attempt to
write on restricted channels. The rule (E-OUTVAL) states that a process with clearance
ρ may only communicate a value along a channel if that value is not restricted from
σ-level processes. In all three cases, the security violation is signalled by a reduction
to the distinguished process term err. The remaining rules are purely structural, and
propagate errors from a process to its enclosing terms.

We give two examples that illustrate the import of different security policies on the
reduction semantics.

Example 3 (Resource Access Violations). Consider the process

P � [c〈a〉]� | [c(x).x〈1〉]⊥.

consisting of a high-level and a low-level processes communicating over a channel c,
for which we define the security policy Γ as follows: Γ(a) = A, Γ(c) = C. First, assume
that the two types A and C are defined as follows:

A = {w�(int), r⊥(int)} and C = {w⊥(A), r⊥(A)}
By one reduction step, P reduces to the process [a〈1〉]⊥, and the latter reduces to err as
a result of a low-level process attempting to write on the high-level channel a. While
the violation shows up after one reduction step, it originates earlier, from the fact that
the value a of “high” level type A is written to channel c : C with “low” write capability.
Upgrading the write capability on C does not.

Consider then defining the types A and C differently, giving C high-level write ca-
pability:

A = {w�(int), r⊥(int)} and C = {w�(A), r⊥(A)}
Again, the reduction of P to [a〈1〉]⊥ causes a security violation (i.e. a reduction to err)
because the low-level process [a〈1〉]⊥ does not have the right to write on the channel
a for which the write capability is “high”. Here the problem originates from the high
value a being written to a channel c : C with “low” read capability.

The examples give a flavor of the inherent complexity of statically enforcing a security
policy. Most of this complexity is determined by “indirect” flow of information arising
as a result of processes dynamically acquiring new capabilities. In our case, the intuitive
and direct measures represented by the “no read-up, no write-up” slogan are not enough
to guarantee the desired effects of the access control policy. Further constraints must be
imposed to prevent unauthorized access: the purpose of the type system we discuss next
is to provide provably sufficient conditions for absence of security violations during
reduction.

5.5 Types and Subtypes

The formal definition of types is somewhat complex, as it includes well-formedness
rules ensuring that types are formed according to certain consistency conditions that
provide the desired security guarantees. We start defining sets of pre-capabilities and
pre-types.
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Pre-Capabilities

cap ::= rσ(T ) σ-level input channel carrying values of type T
 wσ(T ) σ-level output channel carrying values of type T

Pre-Types

S,T ::= Bσ base type of level σ
 {cap1, . . . ,capk} channel type, k � 0
 (T1, . . . ,Tk) tuple type, k � 0

Next, we introduce the consistency conditions that single out the legal set of types.
The consistency conditions are formulated in terms of ordering relations over pre-
capabilities and pre-types induced by the ordering on security levels. Both the subtype
relations are denoted by the symbol �, and are the least reflexive and transitive relations
that are closed under the rules below.

Table 15 Subtyping

(SUB OUTPUT)
T � S σ � ρ

wσ(S) � wρ(T )

(SUB INPUT)
S � T σ � ρ

rσ(S) � rρ(T )

(SUB BASE)
σ � ρ

Bσ � Bρ

(SUB TYPE)

(∀ j ∈ J)(∃i ∈ I)capi � cap′j

{capi}i∈I � {cap′j} j∈J

(SUB TUPLE)

Si � Ti i ∈ [1..k]

(S1, . . . ,Sk) � (T1, . . . ,Tk)

The two relations are mutually recursive, following the mutually inductive definition
of pre-types and pre-capabilities. The rules (SUB INPUT) and (SUB OUTPUT) are the
direct generalization of the corresponding rules in Table 4. The remaining rules define
the subtype relation over basic, channel and tuple pre-types, respectively. Note that the
resulting subtype relation on pre-types generalizes the subtype relation by Pierce and
Sangiorgi we discussed in Section 2.

Now the set of types (as opposed to the previously introduced pre-types) is defined
by a kinding system that identifies the legal pre-types at each security level. Formally,
for each level ρ, the set Typeρ is the least set closed under the following rules:

Table 16 Type Formation

(T-BASE)
σ � ρ

Bσ ∈ Typeρ

(T-TUPLE)
Ti ∈ Typeρ

(T1, . . . ,Tk) ∈ Typeρ

(T-RD)
T ∈ Typeσ σ � ρ

{rσ(T )} ∈ Typeρ

(T-WR)
T ∈ Typeσ σ � ρ

{wσ(T )} ∈ Typeρ

(T-WRRD)

S ∈ Typeσ T ∈ Typeσ′ σ,σ′ � ρ S � T

{wσ(S), rσ′(T )} ∈ Typeρ
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There are a number of interesting consequences of the definition that are worth pointing
out. First note that if σ � ρ then RTypeσ ⊆ RTypeρ. This follows by a straightforward
inductive reasoning on the generation of types at each kind. The second thing to note is
the compatibility requirements between the read and write capabilities in the assump-
tions of the rule (T-WRRD). The condition σ,σ′ � ρ contributes to the property that
RTypeσ ⊆ RTypeρ for every σ � ρ. The assumption S � T , in turn, is a standard con-
dition required for soundness of channel communication: any value that is written on a
channel can be read from that channel at a super-type of the value’s true type. Interest-
ingly, however, the combination of this condition with the security constraints imposed
by the (T-WRRD) and the other rules has also security implications.

To see them, we first state the following proposition, which can be proved by induc-
tion on the derivation of S ∈ Typeσ.

Proposition 3. If S ∈ Typeσ, and S � T , then there exists ρ with T ∈ Typeρ and σ � ρ.

We illustrate the security implication we just mentioned with and example. Consider
the type T = {w�(S), r⊥(S′)}, and a channel a : T . A priory, high-level processes (with
clearance �) may write to this channel, while low-level processes, (with clearance ⊥)
may read from it. But then, it would seem, the channel may be used to leak sensitive
information, for low-level processes may read values written by high-level processes.
In particular, a high-level process could write on a the name of a high-level channel:
low processes could then read that name and gain access to the channel, thus resulting
in a violation of the security policy induced by our instrumented semantics.

A closer look at the type formation and subtyping rules shows that this cannot hap-
pen. To see why, assume that the type T is legal, that is T ∈ Typeρ for some security
level ρ. The hypotheses of the (T-WRRD) rule imply that �� ρ, hence ρ = �; further-
more, the two types S and S′ must be such that S ∈ Typeσ with σ ��, and S′ ∈ Typeσ′
with σ′ � ⊥ and S � S′. From these conditions, by the above proposition, it follows that
σ � σ′, and this, together with σ′ � ⊥, implies that σ = ⊥. In other words, the forma-
tion rules require that S ∈ Type⊥, which implies that only low values (and channels)
can be written to any channel of type T . But then, even though high-level processes can
write on channels of type T , they may only write low-level values: thus only low-level
information may flow from high to low processes.

In their present form, the type formation rules limit types to contain at most one
read and one write capabilities: this clearly results in a loss of expressive power, but
there is no fundamental difficulty in extending the formalization to handle types in the
general form.

5.6 Typing Rules

The typing rules, given in Table 17, derive judgments in two forms: the usual form
Γ � M : T stating that term M has type T , and the form Γ �σ P which says that process
P is well-typed in the context Γ, at security level σ (the rules for parallel composition
and replication are standard, and omitted).
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Table 17 Typing Rules for the Security π-calculus

(NAME)

Γ(u) � A

Γ � u : A

(RESTR)

Γ,a : T �σ P T ∈ Typeσ a �∈ Dom(Γ)

Γ �σ (νa : T )P

(PROC)

Γ �σ	ρ P

Γ �σ [P]ρ

(INPUT)

Γ, x̃ : T̃ �σ P Γ � u : rσ(T̃ ) x̃∩Dom(Γ) = ∅

Γ �σ u(x̃ : T̃ ).P

(OUTPUT)

Γ � u : wσ(T ) Γ � M : T

Γ �σ u〈M〉

The first three rules should be self-explanatory, but note, in the (RESTR) rule, that only
names at level (at most) σ may legally be introduced by well-typed processes running
at clearance σ. In the (INPUT) rule, the premises guarantee that the channel is used
consistently with its associated capabilities and security level. For the latter, note that
u offers a read capability at the same level σ at which the input process is currently
running. From the definition of subtyping, and the rule (NAME), it follows that Γ(u)= T
for a type T that includes a read capability at level ρ � σ: this guarantees that a process
with clearance σ may read from any channel with security level up-to σ, as desired.
The same reasoning applies to the (OUPUT) rule. The constraints imposed by the typing
rules, together with the constraints imposed on the type formation rules provide static
guarantees of type safety, that is absence of run-time violations for every well-typed
process. Type safety is formalized as follows.

Theorem 8 (Type Safety for Resource Access). Γ �σ P implies [P]σ �Γ−→ err

In other words, if a process P is well-typed at clearance σ, then neither P nor any of its
derivatives will attempt a non-authorized access to a value or a channel restricted from
level σ. That P is free of error reductions follows directly from the above theorem:
that it is also true of the derivatives of P follows by the fact that well-typedness at any
clearance level is preserved by reduction as stated by the following theorem.

Theorem 9 (Subject Reduction). If Γ �σ P and P −→ Q, then Γ �σ Q

To exemplify the impact of the type system in enforcing our policy of resource access
control, consider the process

P � (νa : A)(νc : C)[c〈a〉]� | [c(x).x〈1〉]⊥.

In Example 3 we discussed two definitions for the types A and C: in both cases, the
process is ill-typed independently of the clearance (� or ⊥) at which we may type it. In
fact, ill-typedness is a consequence of the type C being ill-formed, as A ∈ Type� may
not be read from channels of type C with ⊥-level read capability.

We give more examples illustrating the rôle of types for security in the next section,
where we discuss a variation of the type system that provides guarantees for the “no
read-up, no write-down” constraints distinctive of the defense policy of MAC security.
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5.7 MAC Policies: Defense Security

Few changes are required to type formation rules to account for this case of MAC secu-
rity: the typing rules, instead, are unchanged. To understand and motivate the changes,
we start with a simple examples.

Example 4 (Defense Security). Consider again the process P from example 3:

P � [c〈l〉]� | [c(x).x〈1〉]⊥.

where Γ(c) = C and Γ(l) = L, and the two types C and L are defined as follows.

C = {w⊥(L), r⊥(L)} and L = {w⊥(int), r⊥(int)}.

With the current type system, P is well typed in Γ, as the channel c has “low” type and
offers read and write capabilities: hence both processes may legally access c. The same
is true of the type assignment l : L, and c : C with L as above, and C defined now as
C = {w�(L), r⊥(L)}. Indeed, it is not difficult to see that there is no violation of our
resource access policy, as there is no P error reduction for P or any of its derivatives.

In both the above cases, the term P would be rejected as “unsafe” under defense se-
curity, as in both cases a high-level process ends-up writing a low-level object, hence
establishing a high-to-low flow of information. It is, however, easy to identify the source
of the problems, and change the type system to enforce the new constraints.

In the first case, the problem is a direct violation of the “no write-down” constraint,
which results from the current definition of subtyping. The judgment Γ �� c〈l〉 is deriv-
able by an application of the (OUTPUT) from the premise Γ � c : w�(L), as Γ(c) �
w�(L). In particular, the subtype relation holds because so does w⊥(L) � w�(L): to
prevent the write-down, it is thus enough to rule out the latter relation.

In the second case, instead, the problem results from the channel c offering a write
capability to processes running at high clearance, and read capability to low processes.
As a result, a low process can “read up” information written by high-level processes on
the same channel. To prevent such situations, it is enough to refine the type formation
rules by requiring that a read capability on a channel type not be lower than the write
capability (if any).

The new set of types may thus be defined as follows:

Definition 2 (Types for defense security). For any security level ρ, let Typeρ be the
least set of types that is closed under the subtype and kind rules of Section 5.5, where

– rule (SUB OUTPUT) is replaced by:
T � S

wσ(S) � wσ(T )

– rule (T-WRRD) is replaced by:
S ∈ Typeσ T ∈ Typeσ′ σ � σ′ � ρ S � T

{wσ(S), rσ′(T )} ∈ Typeρ

Given the new definition of types, and the typing rules of Table 17, it is possible to show
that well-typed processes do not cause any defense security violation. Of course, this
requires a new definition of error reductions, to reflect the desired notion of violation
under defense security.
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5.8 Information Flow Security

Having outlined a solution to defense security, we conclude our discussion on the secu-
rity π-calculus with a few observations on information-flow security.

As we already mentioned, information flow security aims at protecting confiden-
tiality and integrity of information by preventing ‘implicit’ flow of information via
covert channels. Examples of covert channels may naturally formalized in the security
π-calculus.

As a first example, consider the system:

[h(x).if x = 0 then hl〈0〉 else hl〈1〉]� | [hl(z).Q]⊥

where one has hl : HL and h : H, and the two types in question are defined as follows:

HL = {w�(int), r⊥(int)}, H = {w�(int), r�(int)}.

We have already noticed the presence of information flow in a similar process in Ex-
ample 4, resulting from a low process reading on a channel that is written by a high
process. Here the case of information flow is more interesting, however, as the low pro-
cess gains additional information on the value x transmitted over the high-channel h.
Indeed, the example is not problematic, as the definition of types for defense security
rules out this system as insecure. Consider however, the new system:

[h(x) if x = 0 then [l〈0〉]⊥ else [l〈1〉]⊥]� | [l(z).Q]⊥

where now h : H, l : L and the two types are defined as follows:

H = {w�(int), r�(int)}, L = {w⊥(int), r⊥(int)}
This system is well-typed, even with the type system of Section 5.7, as the high-level
process downgrades itself prior to writing on the low-level channel l. Still, the system
exhibits the same high-to-low flow of information as before.

As a final example, it is instructive to look at the impact of synchronous communi-
cation over information flow. Assuming synchronous communication the following has
the same problems as the previous one. Consider

[l1〈〉.Q1 | l2〈〉.Q2]⊥ | [if x = 0 then l1() else l2()]�

Assuming L = {w⊥(), r⊥()}, and l1, l2 : L, the system is well-typed, and yet there is an
implicit flow of information arising purely from synchronization: information on the
value of x may be assumed by both the continuations Q1 and Q2 of the low process.

5.9 Further Reading

The work on information-flow security for the π-calculus is well developed in [34]
and subsequent work by Hennessy2. A related approach is discussed by Honda and
Vasconcelos in [35].

2 (see http://www.cogs.susx.ac.uk/users/matthewh/research.html).
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Information flow analysis based on non-interference originated with the seminal
idea of Goguen and Meseguer [32]. In process calculi, the first formalizations of non-
interference were proposed in [51, 24, 52], based on suitable trace-based notions of be-
havioral process equivalence for CCS-like calculi.

Information flow analyses based on typing techniques were first discussed in the pi-
oneering work D. and P. Dennings [19], in which a type system detecting direct and in-
direct flows among program variables in imperative languages was devised. This initial
idea was refined and formalized some twenty years later in work on type systems pro-
viding guarantees of non-interference in multi-threaded programming languages both
in nondeterministic [56, 55] and probabilistic settings [53].

Type systems for secure information flow and non-interference in process have also
been applied to enforce secrecy of cryptographic protocols. The most notable applica-
tions of typing techniques for analysis of security protocols have been developed for
Abadi and Gordon’s spi calculus [5, 10], that we discuss in the next section.

6 The CryptoSPA Calculus

In this section we report from [27] the Cryptographic Security Process Algebra (Cryp-
toSPA for short). It is basically a variant of value-passing CCS [41], where the processes
are provided with some primitives for manipulating messages. In particular, processes
can perform message encryption and decryption, and also construct complex messages
by composing together simpler ones.

6.1 Syntax of the Calculus

CryptoSPA syntax is based on the following elements:

– A set I = {a,b, . . .} of input channels, a set O = {ā, b̄, . . .} of output ones;
– A set M of basic messages and a set K of encryption keys with a function ·−1 : K →

K such that (k−1)−1 = k. The set M of all messages is defined as the least set such
that M ∪K ∈ M and ∀m ∈ M , ∀k ∈ K we have that (m,m′) and {m}k also belong
to M ;

– A set C of public channels; these channels represent the insecure network where
the enemy can intercept and fake messages;

– A family U of sets of messages and a function Msg(c) : I ∪O −→ U which maps
every channel c into the set of possible messages that can be sent and received along
such a channel. Msg is such that Msg(c) = Msg(c̄).

– A set Act = {c(m) | c ∈ I,m ∈ Msg(c)} ∪ {c〈m〉 | c ∈ O,m ∈ Msg(c)} ∪ {τ} of
actions (τ is the internal, invisible action), ranged over by a; we also have a function
chan(a) which returns c if a is either c(m) or c〈m〉, and the special channel void
when a = τ; we assume that void is never used within a restriction operator (see
below).

– A set Const of constants, ranged over by A.

The syntax of CryptoSPA agents is defined as follows:

E ::= 0 c(x).E c〈e〉.E τ.E E + E E ‖E E \L E[ f ]

A(m1, . . . ,mn) [e = e′]E;E [〈e1 . . .er〉 �rule x]E;E
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where x is a variable, m1, . . . ,mn are messages, e,e1, . . . ,er are messages (possibly
containing variables) and L is a set of input channels. Both the operators c(x).E and
[〈e1 . . .er〉 �rule x]E;E ′ bind the variable x in E . It is also necessary to define constants
as follows: A(x1, . . . ,xn) � E where E is a CryptoSPA agent which may contain no free
variables except x1, . . . ,xn, which must be distinct.

Besides the standard value-passing CCS operators, we have an additional one that
has been introduced in order to model message handling and cryptography. Informally,
the [〈m1 . . .mr〉 �rule x]E1;E2 process tries to deduce an information z from the tuple of
messages 〈m1 . . .mr〉 through one application of rule �rule; if it succeeds then it behaves
like E1[z/x], otherwise it behaves like E2; for example, given a rule �dec for decryption,
process [〈{m}k,k−1〉 �dec x]E1;E2 decrypts message {m}k through key k−1 and behaves
like E1[m/x] while [〈{m}k,k′〉 �dec x]E1;E2 (with k′ �= k−1) tries to decrypt the same
message with the wrong inverse key k′ and (since it is not permitted by �dec) it behaves
like E2.

We call E the set of all the CryptoSPA terms, and we define sort(E) to be the set of
all the channels syntactically occurring in the term E .

6.2 The Operational Semantics of CryptoSPA

In order to model message handling and cryptography, in Table 18 we define an infer-
ence system which formalizes the way messages may be manipulated by processes.

Table 18 Inference System for message manipulation

Let m,m′ ∈ M and k,k−1 ∈ K.

m & m’
(m,m’)

(�pair)
(m,m’)

m
(� f st )

(m,m’)
m’

(�snd)

m & k
{m}k

(�enc)
{m}k & k−1

m
(�dec)

It is indeed quite similar to those used by many authors (see, e.g., [38, 39]). In par-
ticular it can combine two messages obtaining a pair (rule �pair); it can extract one mes-
sage from a pair (rules � f st and �snd); it can encrypt a message m with a key k obtaining
{m}k and finally decrypt a message of the form {m}k only if it has the corresponding
(inverse) key k−1 (rules �enc and �dec). We denote with D(φ) the set of messages that
can be deduced by applying the inference rules on the messages in φ. Note that we are
assuming encryption as completely reliable. Indeed we do not allow any kind of cryp-
tographic attack, e.g., the guessing of secret keys. This permits to observe the attacks
that can be carried out even if cryptography is completely reliable.

The formal behavior of a CryptoSPA term is described by means of the labelled
transition system < E ,Act,{ a−→}a∈A >, where

a−→a∈A is the least relation between
CryptoSPA terms induced by axioms and inference rules of Table 19.
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Table 19 Operational semantics

(input) m ∈ Msg(c)

c(x).E
c(m)−→ E[m/x]

(out put) m ∈ Msg(c)

c〈m〉.E c〈m〉−→ E
(internal)

τ.E τ−→ E

(‖1)
E

a−→ E ′
E ‖E1

a−→ E ′ ‖E1
(‖2)

E
c(m)−→ E ′ E1

c〈m〉−→ E ′
1

E ‖E1
τ−→ E ′ ‖E ′

1

(+1) E
a−→ E ′

E +E1
a−→ E ′ ([ f ]) E

a−→ E ′

E[ f ]
f (a)−→ E ′[ f ]

(\L)E
a−→ E ′ chan(a) �∈ L

E\L
a−→ E ′\L

(=1)
m �= m′ E2

a−→ E ′
2

[m = m′]E1;E2
a−→ E ′

2
(=2)

m = m′ E1
a−→ E ′

1

[m = m′]E1;E2
a−→ E ′

1

(de f )E[m1/x1, . . . ,mn/xn]
a−→ E ′ A(x1, . . . ,xn) � E

A(m1, . . . ,mn)
a−→ E ′

(D1)
〈m1 . . .mr〉 �rule m E1[m/x] a−→ E ′

1

[〈m1 . . .mr〉 �rule x]E1;E2
a−→ E ′

1
(D2)

� ∃m : 〈m1 . . .mr〉 �rule m E2
a−→ E ′

2

[〈m1 . . .mr〉 �rule x]E1;E2
a−→ E ′

2

Plus symmetric rules for +1, ‖1 and ‖2are omitted

Example. We present a very simple example of a protocol where A sends a message
mA to B encrypted with a key kAB shared between A and B3. We define it as P �
A(mA,kAB)‖B(kAB) where A(m,k) � c〈{m}k〉4 and B(k) � c(y).[〈y,k〉 �dec z]out〈z〉.
Moreover, k−1

AB = kAB (symmetric encryption) and Msg(c) = {{m}k | m ∈ M,k ∈ K}.
We want to analyze the execution of P with no intrusions, we thus consider P \ {c},
since the restriction guarantees that c can be used only inside P. We obtain a system
which can only execute action out〈mA〉 that represents the correct transmission of mA

from A to B. In particular, the only possible execution is the one where A sends to B
message {mA}kAB and then out〈mA〉 is executed:

P\ {c} τ−→ (0 ‖ [〈{mA}kAB ,kAB〉 �dec z]out〈z〉)\ {c} out〈mA〉−→ (0‖0)\ {c}

The calculus of CryptoSPA has been successfully applied to the automatic specifi-
cation and the verification of security protocols, see [20, 26, 27, 21, 25, 23, 48–50, 22].

3 For the sake of readability, we omit the termination 0 at the end of every agent specifications,
e.g., we write a in place of a.0. We also write [m = m′]E in place of [m = m′]E;0 and analo-
gously for [〈m1 . . .mr〉 �rule x]E;0.

4 Note that this process could be also written as A(m,k) � [〈m,k〉 �enc x]c〈x〉.
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7 The Spi-Calculus

The spi calculus is an extension of the pi calculus with cryptographic primitives that
has been introduced by Abadi and Gordon in [5, 10], The spi calculus is designed
for describing and analyzing security protocols, such as those for authentication and
for electronic commerce. These protocols rely on cryptography and on communica-
tion channels with properties like authenticity and privacy. Accordingly, cryptographic
operations and communication through channels, are the main ingredients of the spi
calculus.

As we discussed in Section 1, some abstract security protocol can be expressed in
the pi calculus, thanks to its simple but powerful primitives for channels. Moreover,
the scoping rules of the pi calculus guarantee that the environment of a protocol (the
attacker) cannot access a channel that is not explicitly given; scoping is thus the basis
of security. However, as we pointed out, when considering a distributed environment, it
is not realistic to rely only on the scope rules, we also have to prevent the context from
having free access to public channels over which private names are communicated. In
a distributed environment such a channel protection relies on the use of cryptography.
With shared-key cryptography, secrecy can be achieved by communication on public
channels under secret keys.

The spi calculus is thus an extension of the pi calculus that consider cryptographic
issues in more detail. Its features can be summarized as follows:

– it permits an explicit representation of the use of cryptography in protocols, while
it does not seem easy to represent encryption and decryption within the pi calculus;

– it relies on the powerful scoping constructs of the pi calculus;
– within the spi calculus, the environment can be defined as an arbitrary spi calculus

process instead of giving an explicit model;
– security properties, both integrity and secrecy, can be represented as equivalences

and analyzed by means of static techniques.

7.1 Syntax and Semantics

The syntax of the spi calculus extends a particular version of the pi calculus with con-
structs for encrypting and decrypting messages (see Table 20) . In standard pi calculus
names are the only terms. For convenience, the syntax of spi calculus also contains
constructs for paring and numbers, namely (M,N),0 and succ(M). Furthermore, the
term {M1, . . . ,Mk}N represents the ciphertext obtained by encrypting M1, . . . ,Mk under
the key N using a shared-key cryptosystem such as DES. The key is an arbitrary term;
typically, names are used as keys because in the spi calculus names are unguessable
capabilities.
Intuitively, the new constructs of spi calculus have the following meanings: a match
[M is N]P behaves as P provided that terms M and N are the same, otherwise it is stuck.
A pair splitting process let (x,y) = M in P, where x and y are bound in P, behaves as
P{x := N,y := L} if the term M is the pair (N,L). An integer case process case M o f 0 :
P succ(x) : Q, where x is bound in Q, behaves as P if term M is 0, as Q{x := N} if M
is succ(N). Finally the process case L o f {x1, . . . ,xk}N in P, where x1, . . . ,xk are bound
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Table 20 Spi calculus syntax

Expressions L,M,N ::= bv basic value
 a, . . . , p name
 x, . . . ,z variable
 (M,N) pair
 0 zero
 succ(M) successor
 {M1, . . . ,Mk}N shared-key encryption (k ≥ 0)

Processes P,Q,R ::= 0 stop
 u〈N1, . . . ,Nk〉.P output (k ≥ 0)
 u(x1, . . . ,xk).P input (k ≥ 0)
 (νa)P restriction
 P | P composition
 !P replication
 [M is N]P match
 let (x,y) = M in P pair splitting
 case M o f 0 : P succ(x) : Q integer case
 case L o f {x1, . . . ,xk}N in P shared-key decryption (k ≥ 0)

in P, attempts to decrypt the term L with the key N; if L is a ciphertext of the form
{M1, . . . ,Mk}N , then the process behaves as P{x1 := M1, . . . ,xk := Mk}, and otherwise
the process is stuck.

Implicit in the definition of the spi calculus syntax are some standard but significant
assumptions about cryptography: (i) the only way to decrypt an encrypted packet is to
know the corresponding key; (ii) an encrypted packet does not reveal the key that was
used to encrypt it; (iii) there is sufficient redundancy in messages so that the decryption
algorithm can detect whether a ciphertext was encrypted with the expected key.

Operational Semantics. The operational semantics of spi calculus can be defined in
terms of a structural congruence and a reduction relation, extending the corresponding
relations defined in Section 1 for the π calculus. In particular, structural congruence is
defined as the least congruence relation closed under rules 1.-4. of Section 1.1 plus the
following rules:

(Red Repl) !P ≡ P | !P
(Red Match) [M is M]P ≡ P
(Red Let) let (x,y) = (M,N) in P ≡ P{x := M,y := N}
(Red Zero) case 0 o f 0 : P succ(x) : Q ≡ P
(Red Succ) case succ(M) o f 0 : P succ(x) : Q ≡ Q{x := M}
(Red Decrypt) case {M̃}N o f {x̃}N in P ≡ P{x̃ := M̃}

The reduction relation is then the least relation closed under the following rules: In or-
der to develop proof techniques for the spi calculus, we define an auxiliary, equivalent,
operational semantics based on a commitment relation, in the style of Milner [44]. The



126 Michele Bugliesi et al.

Table 21 Reduction Relation

(COMM) n(x1, . . . ,xk).P | n〈M1, . . . ,Mk〉.Q −→ P{x1 := M1, . . . ,xk := Mk} | Q

(STRUCT)
P −→ P′

P | Q −→ P′ | Q
P −→ P′

(νn)P −→ (νn)P′
P ≡ P′ P′ −→ Q′ Q′ ≡ Q

P −→ Q

definition of commitment depends on two new syntactic forms: abstractions and con-
cretions. An abstraction is a term of the form (x̃)P, where x1, . . . ,xk are bound variables,
and P is a process. A concretion is a term of the form (ν m̃)〈M̃〉P where M1, . . . ,Mk are
expressions, P is a process, and the names m1, . . .ml are bound in M1, . . . ,Mk and P.
Finally an agent is an abstraction, a process or a concretion. We use the metavariables
A and B to stand for arbitrary agents, C for concretions, and F for abstractions.
Restriction and parallel composition for abstractions and concretions are defined as fol-
lows:

(νm)(x̃)P = (x̃)(νm)P
Q | (x̃)P = (x̃)(Q | P) with {x̃}∩ fv(Q) = /0
(νm)(ν ñ)〈M̃〉P = (νm, ñ)〈M̃〉P with m /∈ {ñ}
Q | (ν ñ)〈M̃〉P = (ν ñ)〈M̃〉Q | P with {ñ}∩ fn(Q) = /0

If F is the abstraction (x1, . . . ,xk)P and C is the concretion (νn1, . . . ,nl)〈M1, . . . ,Mk〉Q,
and if {n1, . . . ,nl}∩ fn(P) = /0, we define the process F@C and C@F as follows:

F@C � (νn1) . . . (νnl)(P{x1 := M1, . . . ,xk := Mk} | Q)
C@F � (νn1) . . . (νnl)(Q | P{x1 := M1, . . . ,xk := Mk})

Let the reduction relation > be the least relation on closed processes that satisfies the
following axioms:

(Red Repl) !P > P | !P
(Red Match) [M is M]P > P
(Red Let) let (x,y) = (M,N) in P > P{x := M,y := N}
(Red Zero) case 0 o f 0 : P succ(x) : Q > P
(Red Succ) case succ(M) o f 0 : P succ(x) : Q > Q{x := M}
(Red Decrypt) case {M̃}N o f {x̃}N in P > P{x̃ := M̃}

A barb β is a name m (representing input) or a co-name m (representing output). An
action is a barb or a distinguished silent action τ. The commitment relation is written
P

α−→ A where P is a closed process, α is an action and A is a closed agent. The
commitment relation is defined by rules in Table 22.

The following proposition asserts that the two operational semantics for spi cal-
culus, the one based on reduction relation, and the other one based on commitment
relation, are equivalent.

Proposition 4. P −→ Q if and only if P
τ−→ ≡ Q.
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Table 22 Commitment Relation

(COMM OUT)

m〈M̃〉.P m−→ (ν)〈M̃〉P

(COMM IN)

m(x̃).P m−→ (x̃)P

(COMM INTER 1)

P
m−→ F Q

m−→ C

P | Q
τ−→ F@C

(COMM INTER 2)

P
m−→ C Q

m−→ F

P | Q
τ−→ C@F

(COMM PAR 1)

P
α−→ A

P | Q
α−→ A | Q

(COMM PAR 2)

Q
α−→ A

P | Q
α−→ P | A

(COMM RES)

P
α−→ A α /∈ {m,m}

(νm)P α−→ (νm)A

(COMM RED)

P > Q Q
α−→ A

P
α−→ A

Testing Equivalence. Testing equivalence is useful to compare process behaviors and
to define security properties such as secrecy and authentication.

Let a test be a pair (Q,β) consisting of a closed process Q and a barb β. We say that
P passes a test (Q,β) if and only if

(P | Q) τ−→ Q1 . . .
τ−→ Qn

β−→ A

for some n ≥ 0, some processes Q1, . . . ,Qn and some agent A. We obtain a testing
preorder � and a testing equivalence � on closed processes:

P � P′ � for any test (Q,β), if P passes (Q,β) then P′ passes (Q,β)
P � P′ � P � P′ and P′ � P

The idea of testing equivalence comes from the work of De Nicola and Hennessy [18].
A test neatly formalizes the idea of a generic experiment or observation that another
process (such as an attacker) might perform on a process. Thus testing equivalence
concisely captures the concept of equivalence in an arbitrary environment. Furthermore,
testing equivalence is a congruence; more precisely, if P � Q then P and Q may be used
interchangeably in any context, that is C [P] � C [Q] for any closed context C .

7.2 Secrecy by Typing in the Spi Calculus

In this section we describe rules that Abadi proposed in [1] for achieving secrecy prop-
erties in security protocols expressed in the spi calculus. The rules have the form of
typing rules; they guarantee that, if a protocol typechecks, then it does not leak its se-
cret inputs. Before starting the formalization of the type system, we recall from [1]
some informal security principle we adopt in the following.

First, our rules should constrain only the principals that want to protect their secrets
form the attacker. That is since in some situations we may assume that the attacker
cannot guess certain keys, but we cannot expect to restrict the code that the attacker
runs.
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We then consider only three classes of data: Public data, which can be communicated
to anyone, Secret data, which should not be leaked, Any data, that is, arbitrary data. We
refer to Secret, Public and Any as levels or types. We then assume that

The result of encrypting data with a public key has the same classification as
the data, while the result of encrypting data with a secret key may be made
public.

Only public data can be sent on public channels, while all kinds of data may be
sent on secret channels.

Because a piece of data of level Any could be of level Secret, it should not be leaked.
On the other hand, a piece of data of level Any could be of level Public, so it cannot be
used as a secret. Thus

if all we know about a piece of data is that it has level Any, then we should
protect it as if it had level Secret, but we can exploit it only if it had level
Public.

In our rules we adopt a standard format for all messages on secret channels or under
secret keys. Each message on a secret channel has three components, the first of which
has level Secret, the second Any, and the third Public, plus a confounder component.
This schema implements the following principle:

Upon receipt of a message, it should be easy to decide which part of the con-
tents are sensitive information, if any. This decision is least error-prone when
it does not depend on implicit context.

For the use of confounders, note that if each encrypted message of a protocol includes a
freshly generated confounder in a standard position, then the protocol will not generate
the same ciphertext more than once.

Types and Typing Rules. The syntax of types corresponds to the three classes of data:

Types S,T ::= Public | Secret | Any

There is also a subtyping relation between types: T <: S holds if T equals S or if S is Any.
The typing system contains three forms of judgments: � E stating that the environment
E is well formed, E � M : T stating that the term M is of level T in E , and E � P stating
that the process P typechecks in E .

An environment is a list of distinct names and variables with associated levels.
In addition, each name n has an associated term of the form {M1, . . . ,Mk,n}N . This
association means that the name n may be used as a confounder only in the term
{M1, . . . ,Mk,n}N . We write x : T for variable x with level T , and n : T :: {M1, . . . ,
Mk,n}N . The rules for environments are in Table 23.

The hypotheses of rule (ENV NAME) imply that if a variable x occurs in {M1, . . . ,
Mk,n}N , then it is declared in E . This means that we cannot instantiate the variable x
in several ways, obtaining several different terms with the same confounder, and thus
defeating the purpose of confounders.
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Table 23 Environment Formation

(ENV /0)

� /0

(ENV VAR)

� E x /∈ dom(E)

� E,x : T

(ENV NAME)

� E n /∈ dom(E) E � Mi : Ti i = 1..k E � N : S

� E,n : T :: {M1, . . . ,Mk,n}N

Table 24 Typing Rules for Terms

(SUBSUM)
E � M : T T <: S

E � M : S

(VARIABLE)
� E x : T ∈ E

E � x : T

(NAME)

� E n : T :: {M1, . . . ,Mk,n}N in E

E � n : T

(ZERO)
� E

E � 0 : Public

(SUCC)
E � M : T

E � succ(M) : T

(PAIR)
E � M : T E � N : T

E � (M,N) : T
(ENCRYPT Secret )

E � M1 : Secret E � M2 : Any E � M3 : Public
E � N : Secret n : T :: {M1,M2,M3,n}N in E

E � {M1,M2,M3,n}N : Public

(ENCRYPT Public ) with T =Public if k = 0
E � Mi : T i = 1..k E � N : Public

E � {M1, . . . ,Mk,n}N : T

Rules (ZERO) and (SUCC) say that 0 is of level Public and that adding one preserves
the level of a piece of data. Therefore, these classifications mean that the typing system
works even against an attacker that may generate any number, starting from 0 and suc-
cessively incrementing it. The rule (ENCRYPT Public ) says that k pieces of data of the
same level T can be encrypted under a key of level Public, with a resulting ciphertext
of level T . The rule (ENCRYPT Secret ) imposes more restrictions for encryption under
keys of level Secret, because the resulting ciphertext is of level Public. These restrictions
enforce a particular format for the contents and the use of a confounder: the ciphertext
must contain a first component of level Secret, a second one of level Any, a third one of
level Public, and an appropriate confounder as final component. Note that there is no
rule for encryption for the case where N is a term of level Any.

Finally, typing rules for processes are collected in Table 25.
The first four rules handle input and output processes. Rule (OUTPUT Public ) says

that terms of level Public may be sent on a channel of level Public. Rule (OUTPUT

Secret ) says that terms of all levels may be sent on a channel of level Secret, pro-
vided this is done according to the correct format of a secret message. The two rules
for input match these rules for output. Note that if M is a term of level Any and it is
not known whether it is of level Public or Secret, then M cannot be used as a channel.
The rule (PAIR SPLIT) breaks a term of level Public or Secret into two components,
each assumed to be of the same level of the original term. The case where the origi-
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Table 25 Typing rules for processes

(OUTPUT Public )
E � M : Public E � Mi : Public i = 1..k E � P

E � M〈M1, . . . ,Mk〉.P

(DEAD)
� E

E � 0

(PAR)
E � P E � Q

E � P | Q

(OUTPUT Secret )

E � M : Secret E � P

E � M1 : Secret E � M2 : Any E � M3 : Public

E � M〈M1,M2,M3〉.P

(REPL)
E � P

E �!P

(NEW)
E,n : T :: L � P

E � (νn)P

(INPUT Secret )
E � M : Secret E,x1 : Secret,x2 : Any,x3 : Public � P

E � M(x1,x2,x3).P

(INPUT Public )
E � M : Public E,xi : Public � P i = 1..k

E � M(x1, . . . ,xk).P

(PAIR SPLIT) T ∈ {Public,Secret}
E � M : T E,x : T,y : T � P

E � let (x,y) = M in P

(INTEGER) T ∈ {Public,Secret}
E � M : T E � P E,x : T � Q

E � case M o f 0 : P succ(x) : Q

(MATCH) T,S ∈ {Public,Secret}
E � M : T E � N : S E � P

E � [M is N]P

(DECRYPT Public ) T ∈ {Public,Secret}
E � L : T E � N : Public E,xi : T � P i = 1..k

E � case L o f {x1, . . . ,xk}N in P

(DECRYPT Secret ) T ∈ {Public,Secret}
E � L : T E � N : Secret E,x1 : Secret,x2 : Any,x3 : Public,x4 : Any � P

E � case L o f {x1,x2,x3,x4}N in P

nal term is known only to be of level Any is disallowed; if it were allowed, this rule
would permit leaking whether the term is in fact a pair. The same holds true for rules
(MATCH),(INTEGER) and (DECRYPT). Rule (DECRYPT Secret ) gives the level Any
to the confounder in the message being decrypted, for lack of more accurate static in-
formation but with no significant loss. Finally, note that there is no rule for decryption
with a key of level Any.

Properties of the Type System. The main property of the previous type system is that if
a process P typechecks, then it does not leak the values of parameters of level Any.

The secrecy property of well typed processes is formalized in the following theorem,
where the notion of leaking is expressed via testing equivalence.
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Theorem 10 (Secrecy). If only variables of level Any and only names of level Public
are in the domain of the environment E, if σ and σ′ are two substitutions of values for the
variables in E, and if P typechecks, i.e. E � P, then Pσ and Pσ′ are testing equivalent,
i.e. Pσ � Pσ′.

The conclusion of theorem 10 means that an observer cannot distinguish Pσ and
Pσ′, so it cannot detect the difference in the values for the variables. Despite their
secrecy, none of these variables is declared with level Secret ; however, the process
P may produce terms of level Secret during its execution using the restriction opera-
tor (e.g. it may construct fresh encryption keys). For instance, P may be the process
(νK)(νm)(νn)c〈{m,x,0,n}K〉 where x is of level Any and c is of level Public, and
where we can assign the type Secret to the bound names K,m,n. Theorem 10 implies
that P does not leak the value x, in the sense that P{x := M} and P{x := N} are testing
equivalent for all closed terms M and N. Thus, the typing system is meant to protect
parameters of level Any relying on dynamically generated names of level Secret.

7.3 An Example with Key Establishment

We argued that the spi calculus enables more detailed descriptions of security protocols
than the pi calculus. While the pi calculus enables the representation of channels, the
spi calculus also enables the representation of channel implementations in terms of
cryptography.

As in the pi calculus, scoping is the basis of security in spi calculus. In particular,
restriction can be used to model the creation of fresh, unguessable cryptographic keys.
Restriction can also be used to model the creation of fresh nonces of the sort used in
challenge-response exchanges.

In this section we refine the example shown in Section 1, where we presented an
abstract and simplified version of the Wide Mouthed Frog protocol. The following ex-
ample is the cryptographic version of that of Section 1. In this protocol, the principals
A and B share keys KAS and KSB respectively with a server S. When A and B want to
communicate securely, A creates a new key KAB, sends it to the server under KAS, and
the server forwards it to B under KSB. Since all communication is protected by encryp-
tion, communication can take place through public channels, which we write cAS,cSB

and cAB as in Section 1. In addition to the keys and the payload M, the protocol mes-
sages include the names of principals and confounders. Informally, a simplified version
of this protocol is:

Message 1: A → S {KAB,∗,(A,B),CA}KAS on cAS

Message 2: S → B {KAB,∗,(A,B),CS}KSB on cSB

Message 3: A → B {∗,M,∗,C′
A}KAB on cAB

The channels cAS,cBS,cAB are public. The keys KAS,KSB are secret keys for communi-
cation with the server, while KAB is the new secret key for communication from A to B.
CA,C′

A,CS are confounders, and ∗ is an arbitrary message of appropriate level. In Mes-
sage 1, A provides the key KAB to S, which passes it on to B in Message 2. In Message
1 and Message 2, the pair (A,B) conveys the names of the users of the key. In Message
3, A uses KAB for sending M.
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In the spi calculus, we can express this message sequence as follows, where we
assume that B, after receiving the message M from A, outputs an arbitrary message on
a public cannel d:

A(M) � (νKAB)(νCA)cAS〈{KAB,∗,(a,b),CA}KAS〉.(νC′
A)cAB〈{∗,M,∗,C′

A}KAB〉
S � cAS(x).case x o f {xkey,x1,x2,xcn f }KAS in (νCS)cSB〈{xkey,x1,x2,CS}KSB〉
B � cBS(x).case x o f{xkey,x1,x2,ycn f }KSB in

cAB(z).case z o f{z1,zcipher,z2,zc f n}xkey in d〈∗〉}
Inst(M) � (νKAS)(νKSB)(A(M) | S | B)

Now, assuming that M is a term of type Any, and cAS,cBS,cAB,d are channels of type
Public, it is easy to prove that the process Inst(M) is well typed. As a consequence of
the theorem 10, we have that the protocol above does not reveal the message M from A.
In particular, we have Inst(M′) � Inst(M′′) for arbitrary terms M′,M′′.

Notice that also in this version of the Wide Mouthed Frog protocol, the use of scope
extrusion is essential: A generates the key KAB and sends it out of scope to B via S.
In the example discussed so far, channel establishment and data communication happen
only once. More sophisticated examples may be written to represent many protocol
sessions between many principals. However, as the intricacy of the examples increases,
so does the opportunity for errors. Note that many of the mistakes in authentication
protocols arise from confusion between sessions. See [6] for further examples.

7.4 Secrecy Types for Asymmetric Communication

Although so far we have discussed only shared-key cryptography, other kinds of cryp-
tography are also easy to treat within the spi calculus. Many security protocols use
asymmetric communication primitives, namely communication channels with only one
fixed end-point (the receiver) and particularly public-key encryption. Compared to
shared-key encryption, these primitives present special difficulties, partly because they
rely on pairs of related capabilities (e.g. “public” and “private” keys) with different level
of secrecy and scopes.

In this section, we show a variant of spi calculus that focus on asymmetric commu-
nication primitives, especially public-key encryption. This process calculus has been
proposed by Abadi and Blanchet in [3], where authors also show a type system in which
types convey secrecy properties and such that well typed programs keep their secrets.

We consider a polyadic, asynchronous, variant of spi calculus that includes channels
with only one fixed end-point (the receiver) and public-key encryption. Channels with
fixed receivers can be used for transmitting secrets if the adversary cannot listen on
those channels. On the other hand, the capability for sending on those channels may
be published. Such channels may therefore convey not only secrets but also public data
from the adversary. The type system will handle both cases.

In addition, in a public-key encryption scheme, the capabilities of encryption and
decryption are separate, and can be handled separately. Typically, the capability for
decryption (the “private” key) remains with one principal, while the capability for en-
cryption (the “public” key) may be published. Our process calculus and type system
treat public-key encryption and communication on channels with fixed receivers analo-
gously.
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Table 26 Syntax of the process calculus

Expressions L,M,N ::= a, . . . , p,k name
 x, . . . ,z variable
 {M1, . . . ,Mk}N encryption (k ≥ 0)

Processes P,Q,R ::= 0 stop
 M〈N1, . . . ,Nk〉 output (k ≥ 0)
 a(x1, . . . ,xk).P input (k ≥ 0)
 (νa)P restriction
 P | P composition
 !P replication
 case M o f {x1, . . . ,xn}k : P else Q decryption (n ≥ 0)
 i f M = N thenP else Q conditional

The syntax of the process calculus is shown in Table 26. In order to deal with asym-
metric communication, Abadi and Blanchet in [3] propose to follow the same approach
of the local pi calculus [40].

In the local pi calculus, input is possible only on channels that are syntactically rep-
resented by names (and not variables). Output is possible on channels represented by
names or variables. Thus, the input capability for a channel a remains within the scope
of the restriction (νa)P where a is created, while the output capability can be trans-
mitted outside. Further, this approach is extended to public-key encryption, as follows.
Decryption is possible only with keys that are syntactically represented by names (and
not variables). Encryption is possible with keys that are represented by names or vari-
ables. Thus we have a model where the encryption capability may be public while the
decryption capability remains private, in the scope where it is generated.

Thus, when a name a refers to a channel, it represents both end-points of the chan-
nels, that is the capabilities for output and input on the channel. A variable can confer
only the former capability, even if its run-time value is a. Similarly, a name k will not
represent a single encryption or decryption key, but rather the pair of an encryption
key and the corresponding decryption key. A variable can confer only the capability of
encrypting, even if its value is k at run-time.

As an example, consider the following process:

(νk)(a〈k〉 | b(x).case x o f {y}k : c〈y〉)

This process relies on three public channels, a,b,c. It generates a fresh key pair k; out-
puts the corresponding encryption key on a; and receives messages on b, filtering for
one encrypted under k, of which it outputs the plaintext on c.

The operational semantics of the calculus can be defined in a standard way using a
reduction relation and a structural congruence relation, see [3] for details.
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Secrecy by Typing. In the following we show a type system such that well typed pro-
cesses are proven to keep their secrets. In particular, we use a concept of secrecy similar
to that we discussed for the spi calculus and in Section 4 for the pi calculus. We say that
a process preserves the secrecy of a piece of data M if the process never publishes M, or
anything that would permit the computation of M, even in interaction with an attacker.
Moreover, we think of an attacker as any process Q of the calculus, represented by the
sets of its initial capabilities (i.e. the set of names on which it is able to output, input,
encrypt, and decrypt).

The types of our type system are defined by the following grammar:

Types ::= Public | Secret | CPublic[T1, . . . ,Tn] | CSecret[T1, . . . ,Tn]
| KPublic[T1, . . . ,Tn] | KSecret[T1, . . . ,Tn]

Let L range over {Public,Secret}, we will write CL[T1, . . . ,Tn]. We have a subtyping re-
lation that is the least reflexive relation such that CL[T1, . . . ,Tn]≤ L and KL[T1, . . . ,Tn]≤
L. Note that we do not have Secret ≤ Public or vice versa.

Public (resp. Secret ) is the type of public (resp. secret) data. CSecret[T1, . . . ,Tn] is
the type of a channel on which the opponent cannot send messages, and which car-
ries n-tuples with components of types Ti. Similarly, KSecret[T1, . . . ,Tn] is the type of
an encryption key that the adversary does not have, and which is used to encrypt n-
tuples with components of types Ti. CPublic[T1, . . . ,Tn] is the type of a channel on which
the opponent may send messages. The channel may be intended to carry n-tuples with
components of types Ti, but the adversary may send any data it has (that is, any public
data) along that channel. Similarly, KPublic[T1, . . . ,Tn] is the type of an encryption key
that the opponent may have. This key is intended for encrypting n-tuples with compo-
nents of types Ti, but the adversary may encrypt any data it has (that is, any public data)
under this key.

We do not show the typing rules for this process calculus (see [3]), we only discuss
the rationale of the type system.

– Any public data can be sent on a channel of type CPublic[T1, . . . ,Tn] or Public. This
use of the channel may not seem to conform to its declared type. However, it is
unavoidable, since we expect that an attacker can use the channel; moreover, it
does not cause harm from the point of view of secrecy.

– Since channels of type CSecret[T1, . . . ,Tn] may not be known by an attacker, we can
guarantee that only tuples with types T1, . . . ,Tn can be sent on such a channel.

– When typing the process a(x1,..,xn).P where a is a channel of type CPublic[T1,..,Tn],
two cases arise. In the first case input values are of type Public; in the second case
input values have the expected types T1, . . . ,Tn. In order to typecheck the process
a(x1, . . . ,xn).P, the type system thus checks that the process P executed after the
input is well typed in both cases.

– When reading from a channel a of type CSecret[T1, . . . ,Tn], the input values must be
of the expected types T1, . . . ,Tn since the channel a cannot be known to the attacker.
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– Rules for encryption are similar to those for output. Any public data can be en-
crypted under a public encryption key, and data of types T1, . . . ,Tn can be encrypted
under a key of type KL[T1, . . . ,Tn]. Dually, rules for decryption are similar to those
for input.

– Ciphertexts are always of type Public.

This type system reflects a binary view of secrecy, according to which the world is
divided into system and attacker, and a secret is something that the attacker does not
have. When we wish to express that a piece of data is a secret for a given set of princi-
pals, we define the system to include only the processes that represent those principals.
Note that the mechanism of group creation we discussed in Section 4, directly supports
a rich view of secrecy that does not simply divide the world in two parts. Even if that
approach does not treat cryptography, we think that the type system with group creation
can be extended to deal also with cryptographic primitives.

Properties of the Type System. We start with a lemma that says that every process is
well-typed, at least in a fairly trivial way that makes its free names public. This lemma is
important because it means that any process that represents an opponent is well-typed.
It is a formal counterpart to the informal idea that the type system cannot constrain the
adversary.

Lemma 2. Let P be an untyped process. If fn(P) ⊆ {a1, . . . ,an}, fv(P) ⊆ {x1, . . . ,xm},
and Ti ≤Public for all i = 1 . . .m, then a1 : Public, . . . ,an : Public,x1 : T1, . . . ,xm : Tm �P.

We end with an informal statement of the secrecy theorem, see [3] for a complete for-
malization.

Theorem 11 (Secrecy). Let P be a well-typed, closed process. Then P preserves the
secrecy of names of type Secret against adversaries that can input, output, encrypt,
and decrypt on names declared Public, and output and encrypt on names declared
CPublic[. . .] and KPublic[. . .].

As an example, we can obtain a:Public,s:Secret � (νk)a〈{s}k,k〉 by letting k : KPublic

[Secret]. Then the theorem above implies that the process (νk)a〈{s}k,k〉 preserves the
secrecy of s form any opponent that can input, output, encrypt, and decrypt on a. In
other words, if Q is a closed process and fn(Q) ⊆ {a}, then Q | (νk)a〈{s}k,k〉 does not
output s on a. Thus, assuming that Q does not have s in advance, Q cannot guess s or
compute it from the message on a.

7.5 Further Reading

In [6], a final section shows how we could add to the syntax of pure spi calculus cryp-
tographic operations such as hashing, public-key encryption and digital signature.

A more general approach is that of [4], where authors introduce and study the so
called applied pi calculus, a uniform extension of the pi calculus that is parameterized
on a finite set of function symbols. Such functions can be instantiated as data structures
(e.g. pairs) but also as cryptographic functions as hashing, (a)symmetric encryption,
probabilistic encryption, message authentication codes (MACs). The main advantage
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of applied pi calculus is that its semantics and proof techniques represent a common
framework to reason about very different security protocols.

Beside secrecy, other security properties can be studied in the context of spi cal-
culus. As an example, see [6] for a formalization of authenticity property with testing
equivalence.

Finally, in [8, 7, 9] authors study the security properties of the join calculus (a vari-
ant of pi calculus with an emphasis on distributed programming [28]) enriched with
cryptography.
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calculus of mobile agents. In 7th International Conference on Concurrency Theory (CON-
CUR’96), pages 406–421, Pisa, Italy, August 26-29 1996. Springer-Verlag. LNCS 1119.

31. Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A
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