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Abstract. We describe a general model for embedding object-orierdrstoucts

into calculi of mobile agents. The model results from extegé@gents with meth-
ods and primitives for message passing. We then study aanicestof the model
based on Cardelli and Gordon’s Mobile Ambients. We definepa tgystem for

the resulting calculus, give a subject reduction theoremd, discuss the role of
the type system for static detection of run-time type eresrd for more program
verification purposes.

1 Introduction

Calculi of mobile agents are receiving increasing interest in the progragianguage
community as advances in computer communications and hardware enhance the de-
velopment of large-scale distributed programming. Independentlyeofi¢tv trends in
communication technology, object-oriented programming has establittedas the
de-facto standard for a principled design of complex software systems.

Drawing on our earlier preliminary work on the subject [2], in this peye develop
a general model for integrating object-oriented constructs into calcuiiaifile agents.
The resulting framework can be looked at in different ways:as aconcurrent object
calculus where objects have explicit names, in the style of (j9], as adistributed
object calculus where objects are stored at different named locatiorig;iprmore
ambitiously, as a model for distributed computation, where conveatidient-server
technology based on (remote) exchange of message between agents, and madisile agen
coexist.

The model results from extending the structurenafed agents with method def-
initions and primitives for dealing with message passing and self déans. The ex-
tension has rather interesting payoffs, as it leads to a principled appatitturing
agents. In particular, introducing methods and message passing asvesmiather
than encoding them on top of the underlying calculus of agents leads to @ndigpre-
cise notion of agent interface and type. Furthermore, it opens the way smgethe
advances in type system of object-oriented programming and static analysis

After giving an outline of the general model, we illustrate these asgmcidis-
cussing an instance of that model, named WAwhich is based on the calculus of
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Mobile Ambients (henceforth MA) of [3, 5]. We illustrate the calculus with a number of
rather variated examples: specifically, we show that it is possible to enpoditives
like method overriding distinctive of object calculi; we also show trtious forms
of process communication can be encoded (here, and throughout the papeg, tive us
terms “encode” and “encoding” in somewhat loose sense: we should in factiose “s
late” and “simulation” as we don't claim these encodings to be “atomic” —ie= bf
interferences— in all possible contexts.).

Then we study the type theory of our calculus. The motivation fongldhat is
twofold: (i) a sound type system can statically detect run-time type errors such as the
classical “message not understood” errors distinctive of object-oridategiages and
calculi; (47) an expressive type system eases the definition of program equivalences and
their proof (see for example [13]). The present paper gives an in-depthiicabthe
former aspect, and only hints at the latter (see Section 6), leaving a ddta#dchent
for future work.

Several proposals of formalisms for foundational study of concuaigject-oriented
programming can be found in the literature (e.g., [9,12, 15, 1&,181]): however,
to our knowledge, no previous work directly embeds methods into cal€utiobile
agents.

2 Outline of the model

The definition of the model is given parametrically on the underlying ¢ascaf pro-
cesses and agents so that it can be adapted to formalisms such as Mobile Afbhients
Safe Ambients [13], or the Seal Calculus [17]. The minimal requiremerdassume for
the underlying calculus of mobile agents is the existence of thevioitp constructs:

0 denoting the inactive procesB, | (), denoting the parallel composition of two pro-
cessesP and (@, a[P], denoting the process (or agent) namerlinning the process

P, (vx)P, that restricts the nameto P, and finallyA. P, that performs the action de-
scribed by the expressiohand then continues d2. Clearly, the actions will eventually
include primitives for moving agents over the locations of the iigted system, but
we may disregard those primitives at this stage. What instead is centhed toodel is

the naming mechanism for processes. Named processes are abstractions oébtsth ag
and locations: furthermore, since naming allows nesting, locations majrbctured
hierarchically [3]. As a consequence, hamed processes model both the nodes of th
distributed system and the agents over that system.

2.1 Syntax

The generic model of mobile objects results from generalizing the steicf named
agents to include method definitions, a:[d/ ; P], whereP is a process and/ a set
(rather, a list) of method definitions. The syntax of agents is defingdéproductions
in Figure 1.

Notation. In the following we useP, @), R to range over processes, M, N to range
over (possibly empty) method sequences, and lower case letters to rangeogdcg



Methods
M = m(Z,)>¢(z)P method Processes . o
O M,M method sequence Pu=0 Inactivity
O e empty sequence O P|P parallel composition
) O o[M; P] ambject or sealject
Expressions O (vz)P restriction
A o= a,b,...,z‘,g_{... names 0 AP action
O a send m(A) message
0 AA path
g e empty path

Fig. 1. Syntax of Agents

names, preferring when possihieb, . .. for agent names, and, y, ... for (method)
parameters. Method names, denotedbgndn range over a disjoint alphabet and have
a different status: they are fixed labels that may not be restricted, abstrsbstituted,
nor passed as values (they are similar to field labels in record-based calcil@mi/
trailing or isolated0 processes and empty method sequences, using ; |, a[P],
anda[] to abbreviated.0, a[M ; 0], a[e ; P], andale ; 0] respectively.

We sometimes write[(m; (7, ) > <(2i) P;)icn1..n) ; P] @s a shorthand for the agent
almq (Zx, ) >s(z1)Pr, ... ,mu(Zk, ) > s(z,) Py ; P). Similarly we write#,, as a short-
hand forz,, . .., x,, and omit the subscript when there is no riskof ambiguity. Finally,
P{Z, := ¢,} denotes the term resulting from substituting every free occurrengg of
by y; in P; equivalent notations that we also use 8€r,,_1 := §n_1,%n := yn} and
P{j’nflymn = ljnflyyn}-

Methods. A method definition has the form.(Z,,) > <(z) P, where themn is the name

of the method#,, the list of its formal parameters, ar¢:) P its body. As in the Object
Calculi of [1], thes-bound variable is the “internal” name of the host agent: the scope
of the ¢-binder is the method bod¥. Since agents are named, explicit names could
be used to invoke methods from any agent, including sibling methods the same
agent: however, as we shall see, thte binding semantics associated wigHf ensures

a smooth and elegant integration of method invocation and agent mpobii syntax

of methods is abbreviated ta(Z,,) > P whenz does not occur free i, or when the
presence of the binder is irrelevant to the context in question.

Expressions. The definition and associated behavior of expressions is what distin-
guishes different calculi for mobility. For example the expressitiag perform mo-
bility in the Seal Calculus use channels synchronization, and act on agahtar¢h
passive with respect to mobility. In Mobile Ambients, instead, riglegxpressions are
exercised by the moving agents themselves, without intervention bgutmeunding
environment (Safe Ambients add a synchronization mechanism to Mobilaekns).
Since we want our extension to be independent of the underlyingtpw@sifor mobil-

ity, at the present stage we define expressions to be agaws, messages sends, or
pathsthat define composite expressions. Message sends are denatedxbym(ln),
whereq is the name of an agent, and 4,,) invokes then method found iru with ar-
guments4,,. Unlike [1], the format of a message send requires that the recipient be



the name of an agent rather than the agent (the object, in [1]) itself. The semantics of
message sends is discussed in detail in Section 2.3.

2.2 Structural Congruence

Structural congruence for agents is defined in terms of a relation of equieat@rer
method sequences, given in Figure 2. The intention is to allow methibessio be
reordered without affecting the behavior of the enclosing agent. Defisifor methods

(L,M),N = L,(M,N) (Eq Meth Assoc)
n#m= M m(z)>Pin(y)> Q= M,n(y)>Q,m(z)> P (Eq Meth Comm)
M, m(z)> P,m(z)> Q,M = M,m(z)>Q (Eq Meth Over)
M =M (Eq Meth Refl)
M=N=N=M (Eq Meth Symm)
L=MM=N=L=N (Eq Meth Trans)

Fig. 2. Equivalence for Methods

with different name and/or arity maybe freely permuted; instead, if thesaethod has
multiple definitions, then the rightmost definition overridestbmaining ones. Similar
notions of equivalence between method suites can be found in the liteoatoigects:
in fact, our definition is directly inspired by the bookkeeping relafitnoduced in [8].
The relation structural congruence of processes is defined as the smallesterurgg

(vz)0=0 (Struct Res Dead)

x #y= (ve)(vy)P = (vy)(ve)P (Struct Res Res)

z & n(P)= (vz)(P|Q)=P| (vz)Q (Struct Res Par)
(A.A).P=AA.P (Struct Path Assoc)

z g (M) U {a} = (vz)a[M ; P] = o[M ; (vz)P] (Struct Res Agent)
eP=P (Struct Empty Path)

M = N =a[M; P]=a[N; P] (Struct Cong Agent Meth)

Fig. 3. Structural Congruence for Agents

on processes that forms a commutative monoid with prodaet! unit0, and is closed
under the rules in Figure 3. These rules are parametric in the defimtiorpressions
and free names, which vary depending on the specific calculus at issue (for'MA
expressions are given in Section 3, while free names are defined by a startsion
of the definition in [3]).

The first block of clauses are standard (they are the rules oftt@culus). The
rule (Struct Path Assoc) is a structural equivalence rule for the Anlialculus, while
the rule (Struct Res Agent) modifies the rule for agents in the AmlaiedtSeal calculi
to account for the presence of methods. The last rule establishes agerieuzawup
to reordering of method suites. In addition, we identify processe®uprtaming of
bound variables{vp) P = (vq) P{p := q} if ¢ ¢ fn(P). The behavior of agents is now
defined in terms of a reduction relation which obeys the structural ralésgure 4,
plus specific rules for each of the construct in the calculus.



(Red Struct) P=P,P0Q Q=Q = POQ

(Red Amb) POQ = aM;PI0OaM;Q]
(Red Res) POQ = (wz)PO (vo)Q
(Red Par) PO0Q = P|ROQ|R

Fig. 4. Structural Rules for Reduction

2.3 Messages and method invocation

The semantics of method invocation is based on the ideafegubstitution distinctive

of the Object Calculi of [1]: since agents are named, what gets substitutdioefsel f
variable is thename of the agent rather than the agent itself. Several choices can then
be made as t¢i) where the method invocation should occur, & as to where the
body of the invoked method should be executed. Below, we discussasgilpe modes

for invocation and, within each mode we illustrate two possible locatiwhere the
invoked process can be activated.

Remote Invocation. This mode arises in a situation where the sender and the receiver
of the message are siblings and the message is sent by the process endloised w
the sender. Remote invocation is consistent with the “subjective” mdaeobility, in
which the moves of an object are regulated from within the object, by it$ralting
process: similarly, the object delegates to its controlling procesaliligy to commu-
nicate with its siblings.

Once the message is sent, the selected method can be activate either on thersender o
on the receiver. There is a close analogy between these two possibilitiesy@oom-
mon protocols in distributed systems. Activating the method irstreer corresponds
to the protocol known asode on demand.

(Code on Demand)
a[M ; b send m(A).P] | b{N,m(Z) > <(2)Q ; R
O a[M;Q{z:=b,&#:= A} | P]| b|N,m(¥) > <(2)Q; R]
Having requested a service, the sender takes the load of executing the codiegp
process: this is a common practice for modern distributed systemspanifisally, for
the Web. Upon receiving a request, a server spawns a new process (eva.applet)
authorizing the client to execute it: the process is activated on the cl@mts not
overburden the server with computations loads pertaining to its clients
The alternative is to activate the method body on the receiver side, thmigkimg

aremote procedure call (or more precisely aemote method invocation).

(Remote Procedure Call)
a[M; P | bsend m(A).P'] | b[M', m(Z)><(2)Q; R
O a[M;P|P|b[M m(@)v>c(2)Q; Q{z:=b,7:= A} | R]
This alternative is just as reasonable. There is, however, a technical argianfearor
of our first solution: activating the method body within the receivakes it difficult
to give a uniform reduction for messages to siblings and messages.tGonsider the
following example:

a[M ; b send my.P] | b[my > ¢(2)z send mo, ma > Q) ; ]
If the method body is activated on the sender, the configuration redueg¥toP | )],



as expected, in two steps. If instead, the bodyngfis activated on the receiver, then
one reduction leads to the configuration

a[M ; P] | bm; > ¢(2)z send ma, ma > Q) ; b send ms).

At this stage is no sibling objeétto which the message, may be sent. Although the
problem may easily be remedied using special syntax (and reduction) for letabch
calls, our first solution is formally simpler and more elegant.

Local Invocation In this mode, the message is sent from an agent to one of its children:
the invocation idocal in that it does not extrude the scope of the sender. This mode is
consistent with the “objective” model of mobility, in which the movdsn object are
regulated by the enclosing environment: similarly, the environnegniests the services
provided by its enclosed objects.

The activation of the selected method may take place either at the same level as the
invocation, or in the receiver. In the first case, the reduction is

-,

bsend m(A).P | b[M;m(Z) ><(2)Q; R] B
O P|Q{z:=0,Z:= A} | b[M;m(Z)>s(2)Q; R]

Having requested a service to a child, the environment takes the loa@aitemng the
corresponding process. As for the case of remote invocation, the mietialyccould be
activated within the receiver, but again the definition of reduction woatde uniform
for messages to children and messageslfo

This concludes the discussion on the general model. In the next sedidlustrate an
instance of the model, based on Mobile Ambients [3, 5].

3 MAt+T

As we anticipated, our mobile objects combine the functionalities dbiambients
and objects. We will use the terms object and ambient interchangeably tarefpents
in MATT: the context will prevent any source of confusion between our agents and
agents from MA.

Processes and methods are defined as in Figure 1, while the (now compléds) syn
of expressions is given by the productions below:

A=z Oasendm(A) Oe O AA

O ina O outa O opena

Thein andout expressions provide objects with the same mobility capabilities as
ambients, whileopen allows an object to break through the boundary of its enclosed
objects and incorporate their body. As anticipated, the calculus doesabadiénany
construct or resource for synchronization: objects only communicateessages, and
message sends are synchronous. As we shall illustrate, differentédpnscess com-
munication can be encoded in terms of the existing constructs.



3.1 Reduction Semantics

The definition of structural congruence and structural reduction areitedetirectly
from the general model. In Figure 5, we give the reduction rulesdititie of ambients
in MA+T,

(in) a[M;in b.P | Q][ B[N: R] O b[N; R|a[M;P|Q]]

(out) a[M;b[N;out a.P|Q]|R] O b[N; P|Q]|a[M;R]

(open:) open a.P|alQ] O P|Q

(openz)  b[M ;open a.P|a[N;Q]|R] O b[M,N;P|Q|R] for N # ¢

(send) a[M ; P | b send m(A).R] | b[N, m(%) > <«(2)Q; S]
O a[M; P|Q{z & :=b, A} | R] | b[N, m(Z) > <(2)Q; 9]

Fig. 5. Reduction Rules for Ambients

The reduction rul¢send) implements the remote mode for code-on-demand model we
discussed in the previous section. The reduction rules fotthendout actions are
defined exactly as in the Ambient Calculus. The actian:. P instructs the ambient
surroundingin a.P to enter a sibling ambient named If no sibling named: exists,

the operation blocks. The actient a.P instructs the ambient surroundiagt a.P to

exit its parent ambient named if the parent is not named the operation blocks until

a time when such a parent exists.

The reduction fobpen depends on whether the method suite of the opened ambient
is empty or not. If it is empty, the reduction is exactly the same as énAimbient
Calculus:open a dissolves the boundary of an ambient namddcated at the same
level asopen, unleashing the process enclosediirif insteada contains a nonempty
method suiteppen a may only be reduced within an enclosing ambient and its effect
is twofold: besides unleashing the process containad &s in the previous case, it
also merges the method suites of the opening and opened ambients. In lesthfoas
ambient named exists,open a blocks. As we show below, this behavior of open allows
an elegant encoding of the operations of method update available in obgdi.cal

4 Examples

Parent-Child Messages. Having chosen the remote mode for method invocation, it is
often useful for an ambient to be able to send messages to its parent oldterchive
denote the two forms of communication as follows:

a* send m(A).P sendm(A) to childa

a' send m(A).P sendm(A4) to parenta
Both these invocation modes can be derived with the existing constRarent-to-child
invocation can be defined as follows:

a send m(A).P 2 (vp, q)(pla send m(A).g[out p]] | open g.open p.P)

-,

wherep, ¢ ¢ fn(A) U fn(P). Then, it is easy to verify that:



atsendm(A).P | alm(2)><(2)Q; R] O* P| Q{27 :=a,A} | a[m(%)><(2)Q; R]
Child-to-parent invocation can be defined similarly, as follows:

a' send m(A4).P 2 (vp, q)(open g.open p | plout a.a send m(A).in a.qout p.P]))

wherep, ¢ ¢ fn(A) Ufn(P) . Thena[M, m (&) > <(2)Q ; a' send m(A).P | R] reduces
after some steps t@p, ¢)(a[ M, m(Z)><(2)Q ; Q{z, 7 := a, A} | P | R]) as expected.

Replication. The behavior of replication in concurrent calculi is typically defined by a
structural equivalence rule establishing thHat=!P | P. With ambients, we can encode
a similar construct relying upon the implicit form of recursion indgrarin the reduction

of method invocation. The coding is as follows:

p 2 (vp)(p[bang > ¢(2)z* send bang | P; ] | p* send bang)

wherep ¢ fn(P). Using the derived reduction rule for downward method invocatian, fo
everyP, ! P reduces in one (encoded) stepto | P as desired. Similarly we can encode

guarded replicatioh4. P —where replication is performed only after the consumption
of A— as follows:

(vp)(A.p* send bang | p[bang > (z)A.z* send bang | P;])

Method update. Following the standard definition of method override [1, 8] method
updates for ambients can be formulated, informally, as follows: givenatinbient
a[M;m(Z) > P; Q] we wish to replace the current definitidh of m (%) by the new
definition P’ to form the ambien&[A; m(Z) > P’ ; Q).

Updates can be coded using a distinguished ambient as “updater”. The updater car-
ries the new method body and enters the updatable ambjemhile the updatable
ambient is coded as an ambient whose controlling process opens the updatal-th
lowing updates on its own methods. The coding is defined precisely balegive two
different versions: in the first we have a form of concurrent updaterevhpdates are
processes; in the second, updates are “sequential” and coded as expressions.

Updates as processes. Update processes are denotedbyn (%) > < (s) P, read “them
method at: gets definitionP ”. We define their behavior as follows: let first

a-m(@)>c(s)P 2 uPD[m(Z) > <(s)P; in al.
Then define an updatable ambient as follows
a*[M; P] £ a[M ;(open UPD) | P).
Now, if we form the composition-m(Z)>s(z)P' | a*[M ; m(Z)> P ; @], the reduction
for open enforces the expected behavior:
a-m(Z)> P |a*[M;m(Z)>P;Q] O* a*[M;m(Z)> P ; Q]
Multiple updates for the same method may occur in parallel, in which caserétei

ative order is established nondeterministically. The coding works aedl with “self
inflicted” updates: for example, the configuration

at send m.P | a*[m v ¢(2)z - n(Z) > Q',n(¥) > Q; R)



reduces to
P | a*[mv(2)z - n(@) > Q' .n(@) > Q' ; R]
as expected. With an appropriate use of restrictions it is possibletdblist update

permissions: for example, the ambi¢ntiPD)a[M ; P | lopen UPD] allows only self-
inflicted updates.

Updates as expressions. Sequential updates are defined similarly to update processes.
In this case(a - m(%) > ¢(s) P).Q first updatesn ata and then continues &3. This
behavior can be accounted for by instrumenting the encoding we just lledevith a
“locking” mechanism that block® until the update is completed. An example of how
this locking can be implemented is described below:

(a-m() > s(2)P).Q = (vp)(UPDIM(§) b s(2)P; in ap;out a.Q]] | open p)
wherep ¢ fn(P | Q). Then we have:
(a-m(Z)>P).Q|a*[M,m(Z)>P;R] O* Q|a*[M,m(Z)>P';R]

Process communication The next example shows that synchronous and asynchronous
communication primitives between processes can be encoded. We first give an encod
ing of synchronous communication. A similar model of (asynchronohahnel-based
communication is presented in [5] and it is based on the more primitiva bf local
and anonymous communication defined for the Ambient Calculus: here, instead, we
rely on the ability, distinctive of our ambients, to exchange valuesden methods.

A channeln is modeled by a (parallel composition of) an updatable ambigahd
two locksn?, andn®. The ambient: contains a methoohsy: a process willing to read
from n installs itself as the body of this method, whereas a process willingite on
n invokesmsg passing along the argument of the communication.

(chn) % n*[msg(z) > 0] | n'[]
n(A4).Q Z open n°.n* send msg(A).(n'[] | Q)
n(x).P = openni.n-msy(x) >c(z)P.n°[] (z € In(P))

The communication protocol is as follows: A proces§4).Q) writing A on n first
attempts to grab the output loek, then sends the messageg(A) to n, and finally
continues ag) releasing the input lock?’. At the start of the protocol there are no
output locks: hence the process writing orblocks. A process (z).P reading from
n first grabs the input lock’ provided by the channel, then installs itself as the body
of the msg method inn, and finally releases the output lock. Now the writing process
resumes its computation: it sends the message thus unled3hamgl then releases the
input lock and continues a3.

Asynchronous communications are obtained directly from the codingealtgva
slight variation of the definition of (A).Q. We simply need a different parenthesizing:

A .
n(A).Q = (openn®n*send msg(A4).(n'[])) | Q
Based on the this technique, we can encode the synchronous (and sirtfikidgyn-

chronous)r-calculus in ways similar to what is done in [6]. Each nam@ the 7-
calculus becomes a triple of names in our calculus: the naai¢ghe ambient dedicated



to the communication, and the namésandn? of the two locks. Therefore, communi-
cation of ar-calculus name becomes the communication of a triple of ambient names.

[(wn)P] £ (vn,n',n*)(n'[] | n*[msg(e, 2, 2%) > O] | [P]) n',n® ¢ fn([P])
[n{s)-Q] < openn.n* send msg(y. y',y°).(n'[]| Q)
[n(z).P] 2 open n'.n - msy(z, z', z°) > ¢(z) P.n°[]
[P1Q] = [P1]1Q]
['rPj 2 (vn)(nlbang > (z)z* send bang | [ P] ;]| n* send bang) n & ([ P])

Fig. 6. Encoding of the synchronous-calculus

The initialization of themsg method in the ambient that encodes the chanmeluld
be safely omitted, without affecting the operational properties of emgodiowever,
as given, the definition scales smoothly to the case of a typed encodéesgrping
well-typing.

5 Typesand Type Systems

The typing of ambients inherits ideas from existing type systemblfibile Ambients:
however, as we anticipated, the presence of methods enables a more str(eared
informative) characterization of their enclosing ambient’s interfaces. Thdymtions
defining the set of types are given below:

Signatures Y= m#)v2,Y | €
Ambients o/ = Amb[X]

Capabilities € ::= Cap|Y]

Processes & = Proc[Y]

Values W= o | C

Signatures convey information about the interface of an ambient, lygitte ambi-
ent’'s method names, input type as well as the type of the method botiemftlitive
reading of ambient, capability and process types is as follows: theAypje] is the
type of ambients with methods declaredin the typeCap[X] is the type of capa-
bilities® whose enclosing ambient (if any) has a signature which contains at least the
methods included ir¥; the typeProc[X] is the type of processes whose enclosing
ambient (if there is any) contains at least all the methods declar&d in

The essential novelty over previous type systems for Mobile Ambight, 13] is
that we use method signatures as tags for ambient and capability typek:ins{éad,
ambient (and capability) types expose the type of values that can be exclemged
result of local process communication. This difference reflects the diffemnmuni-
cation primitives in the two calculi: specifically, communication is accosigd via
message sends in our calculus, whereas it relies on explicit input/quimitives in
MA.

! Capability is the term used in [5] to refer to "actions”: capabilitiesndae transmitted over
channels, and transmitting a capability corresponds taitethecapability of performing the
corresponding action. The same intuition justifies the dsheoterm in MA™ .,



5.1 TypeSystem

The typed syntax of the calculus is defined by the following produstion

Methods M :=m(z:W)>s(z: )P | M, M | e
Processes P :=0|P|P|a[M;P]| (va: )P | A.P
Expressions A ::=x |asendm(A) |ina|outa|opena| A.A|e

The type system derives three kinds of judgments (whkdenotes generic expressions
and processesY’ + o (well-formed type environment) + E : T (typing), and
I' -1y < T, (subtyping). The typing and subtyping rules presented in Figuaes7
discussed below.

Method signatures, associated with ambient types, are traced by theCtpesf
capabilities, to allow an adequate typing of messages and mobility: spegyifiballule
(oPEN establishes that opening an ambientAmb[ Y] is legal under the condition that
the signature of the opening ambient is equal to (in fact, contains, tfiMepresence
of subtyping) the signature of the ambient being opened. This ¢ond# necessary,
as subject reduction would otherwise fail: as a consequence, opening an amayjent
only update existing methods of the opening ambient, and the updastepmeserve the
types of the original methods.

Signatures are not traced when typing expressions involving movesssages: for
the latter, see rule{ESSAGBH), the capability type has the same signature as the process
type of the body of the invoked method. Of course, in order for th@ession to type
check the message argument and the method parameters must have the shme type

The typing of processes is standard (cf. [6, 13]), with the only exoef the rule
(AmB) which defines the types of ambients. Ambients are typed similarly tectdjn
the object calculi of [1]: each method is typed under the assumptiong:ithidie self
parameter has the same type of the enclosing ambient;grttiat method parameters
have the declared type. The conditibre LAST(I) (whereLAST(I) denotes the set
{i € I |Vj > i,m; # m;}) ensures that only the rightmost definition of a method is
considered when typing an ambiérfinally, no constraint is imposed on the signature
X', associated with the process type in the conclusion of the rule, as gnattisie is
(a subset of) the signature of the ambient enclosirfd any). As for the subtyping
relation, non-trivial subtyping is defined for capability and procegesy specifically,

a capability (resp. process) tygap[X] (resp.Proc|[X]) is a subtype of any capabil-
ity (resp. process) type whose associated signature (set theoreticaitg)nso”. The
resulting notion of subtyping corresponds to the contravariaotyging inwidth dis-
tinctive of variant types. The covariant width subtyping typical ofeab and record

2 The other typed versions Ambients [6, 4, 13] allow restoieti on varibles of type? (rather
than juste?), but we do not see the purpose of such a generalization.

% In fact, since capability and ambient types can be subtyibedype of the arguments can be
subtypes of the type of the formal parameters.

4 Technically speaking, we need this restriction to ensueestibject reduction property since
without it a well-typed term could be structurally equivai€and, therefore, reduction equiv-
alent) to an ill-typed one.



Type environments

(ENV-EMPTY) (ENV-NAME)
I'to z ¢ Dom(I')

gFo Lx:Wko
Expressions
(NAME/VAR) (PATH)
I'to I'+ A, :Cap[¥] I'F A,:Cap[y]
I'tz:I'(z) I' A1 A, : Cap[X]
(OPEN) (iINouT)
I'ta: Amb[Y)] I'a:Amb[Y] (A’ € {ina,outa})
I' + open a : Cap[X] I+ A" cap[Y']
(MESSAGE
Fta:Amb[Y] T'HA % (m(#)v>Proc[¥'] e X)
I'+a send m(A’) : Cap[Y']
Processes
(PRER (PAR)
I' A:Cap[X] I'F P :ProclX] I' P:Proc[¥] I'F Q@ :Proc[X]
I'+ AP : Proc[X] I'P|Q :Proc[X]
(RESTR (DEAD)
I''z : o/ b P : Proc[Y] I'to
I'+ (vx : &)P : Proc[X] I'0: Proc[X]

(AmB) (X = (mi(#5) > Proc[Xi))ier o/ = Amb[X] i € LAST(I))
''tA:o I,z:d,x;:W;F P;:Proc[¥;] '+ P :Proc[X]

'+ A[(mi(z; : #i)>s(z: )P;)ier; P : Proc[X']

Subsumption Subtyping
(suBy9) (SuBcap) (SuBPROQ
TvE:w W<y rcxy rcy
r-g:w' Cap[¥] < Cap[X'] Proc[X¥] < Proc[X’]

Fig. 7. Typing and Subtyping Rules




types must be disallowed over ambient types to ensure sound usesdafetheapa-
bility: intuitively, when opening an enclosed ambient, we nesttt knowledge of the
contents of that ambient, (specifically, of its method suite) so as to etisitrall the
overriding that takes place upon exercising the capability be traced igphe.t

As customary, the subtyping relation is endowed in the type systara subsump-
tion rule.

5.2 Subject Reduction and Type Soundness

We conclude the description of the type system with a subject redutimmem and a
discussion on type soundness. The, rather standard, proof is dfilyeduhere due to
the lack of space.

Lemmal (Substitution). If I;z: # + P : Proc[X]and I' - A:# ,then ' + P{z :=
A} : Proc[X'] with X' C X.

Proposition 1 (Subject Congruence).
LIfI'F P :Proc[X]and P = Q@ then '+ @Q : Proc[X].
2. I1f '+ P :Proc[Y]and ) = PthenI' - @ : Proc[X].

Theorem 1 (Subject Reduction). If I' - P : Proc[X] and POQ then " + @ :
Proc[X'] with £’ C X,

Besides being interesting as a meta-theoretical property of the type sstbjact re-
duction may be used to derive a soundness theorem ensuring the absemtéimfer
(type) errors for well-typed programs. As we anticipated, the errorsvish to detect
are those of the kind “message not understood” distinctive of objectiicalVith the
current definition of the reduction relation such errors do not arise, aamierstood
messages simply block: this is somewhat unrealistic, however, as thle sésend-
ing a message to an object (a server) which does not contain a corresporedirgim
should be (and indeed is, in real systems) reported as an error. We traghice a new
reduction to account for these situations:

-

a[M; P|bsendm(A).Q]|b[N; R] O a[M; P |ERR]|b[N ; R] (m ¢ N)

The intuitive reading of the reduction is that a not-understood agessauses a local
error —for the sender of that message— rather than a global error for thie sytem.
The reduction is meaningful also in the presence of multiple ambiettitsagual name,
as our type system (like those of [6, 4, 13]) ensures that ambierfihidtsame name
have also the same type. Hence, if a methoid absent from a given ambietit will
also be absent from all ambients nanbetf we takeERR to be a distinguished process,
with no type, it is easy to verify that no system containing an occurrenEeR€an be
typed in our type system. Absence of run-time errors may now be stalted/$:

Theorem 2. Let P be a well-typed MAT process. Then, there exist no context C[—]
suchthat P 0 * C[ERR].



6 Extensions

There are several desirable extensions toMAnd its type system. The most natu-
ral is the ability to treat method names as ordinary names. This would alf@wto
define private methods, and to give a formal account of dynamic messagbshBo
extensions can be accommodated for free in the untyped calculus. For dtevgp
sion, instead, things are more complex. It is possible (and relgtdzdy) to extend the
syntax and allow method names to be restricted. Instead, disallowing dnethmes
as values is more critical. The reason is that method names occur in the signaftu
ambient (capability and process) types: consequently, allowing methduts passed
would be possible but it would make our types (first-order) depengees (see [10]
for similar restrictions).

A further extension has to do with Safe Ambients. In [13] the autdessribe an
extension of the calculus of Mobile Ambients, called Safe Ambients, evhatering,
exiting and opening an ambient requires a corresponding co-action by thergrthat
undergoes the action. The use of co-actions allpws more fine-grained control on
when actions take place, aifid) the definition of a refined type system where types
can be used to essentially “serialize” the activities of the parallel processeasliingt
the moves of an ambient. As shown in [13], the combination of theserésatnakes
it possible to define a rich algebraic theory for the resulting calculbs. idea of co-
actions and of single-threaded types can be incorporated in the type systéraves
described in the previous sections rather smoothly: besides the cosaotiated to
mobility, we simply need a co-action for messages, and a modified reduat®ifor
message sends that requires the receiver thstming (i.e. to exercise the co-action
corresponding tosend ) in order to reduce the message. We leave this as subject of
future work.

Finally, it would be interesting to include linear types to ensuredlpabsence
of ambients with the same name: in fact, while the possibility of thri@g more
than one ambient that is willing to receive a given message provides dsahg of
nondeterminism, ensuring linearity of ambient names could be usefukt@pt what
[13] defines “grave interferences” and thus to prove interesting belayimrperties of
method invocation.

7 Conclusions

One of the main purposes, as well as of the challenges, for a foundatomellfsm for
distributed systems is to establish an adequate setting where forrés pfioehavioral
properties for processes and agents can be carried out.

Viewed from this perspective, the work on MA we have described should be un-
derstood as a first step to define a computation model for distributdid @igns, where
conventional technology —based on remote exchange of messages betweeitestatic s
and mobile agents coexist and can be integrated in a uniform way. Thigatippears
to be well motivated by the current —rather intense— debate on the rolebiity in
wide-area distributed applications; a debate in which even proponentesetbpers
of mobile agents offer that “we probably shouldn’t expect purely neobjplications
to replace other structuring techniques” [11].



More work is clearly needed to evaluate the adequacy of the calculus as a formal
tool for modeling realistic applications, to develop a reasonable adgetireory for the
calculus, and to study techniques of program static analysis other thag typ

All these aspects are current topic of research for the two calculi —Ambiedts an
Seals— we had in mind when developing the general model. The recent papers on
typed formulations of Ambients [6, 4, 13] provide rather interestimd useful insight
into how an algebraic theory for mobile objects could be defined as well@athiatdle
of types in proving behavioral properties.
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