
Typed Mobile Objects?
Michele Bugliesi1, Giuseppe Castagna2, and Silvia Crafa11 Dipartimento di Informatica, Università Ca’ Foscari di Venezia

E-mail:fmichele,silviag@dsi.unive.it, Web: http://www.dsi.unive.it/�fmichele,silviag2 C.N.R.S., Département d’Informatique,́Ecole Normale Supérieure, Paris
E-mail: Giuseppe.Castagna@ens.fr, Web: http://www.di.ens.fr/�castagna.

Abstract. We describe a general model for embedding object-oriented constructs
into calculi of mobile agents. The model results from extending agents with meth-
ods and primitives for message passing. We then study an instance of the model
based on Cardelli and Gordon’s Mobile Ambients. We define a type system for
the resulting calculus, give a subject reduction theorem, and discuss the rôle of
the type system for static detection of run-time type errorsand for more program
verification purposes.

In CONCUR 2000, Lecture Notes in Computer Science 1877:504-520, Springer, 2000.

1 Introduction

Calculi of mobile agents are receiving increasing interest in the programming language
community as advances in computer communications and hardware enhance the de-
velopment of large-scale distributed programming. Independently of the new trends in
communication technology, object-oriented programming has established itself as the
de-facto standard for a principled design of complex software systems.

Drawing on our earlier preliminary work on the subject [2], in this paper we develop
a general model for integrating object-oriented constructs into calculi ofmobile agents.
The resulting framework can be looked at in different ways:(i) as aconcurrent object
calculus where objects have explicit names, in the style of [9],(ii) as adistributed
object calculus where objects are stored at different named locations, or(iii), more
ambitiously, as a model for distributed computation, where conventional client-server
technology based on (remote) exchange of message between agents, and mobile agents
coexist.

The model results from extending the structure ofnamed agents with method def-
initions and primitives for dealing with message passing and self denotations. The ex-
tension has rather interesting payoffs, as it leads to a principled approach to structuring
agents. In particular, introducing methods and message passing as primitives, rather
than encoding them on top of the underlying calculus of agents leads to a richand pre-
cise notion of agent interface and type. Furthermore, it opens the way to reusing the
advances in type system of object-oriented programming and static analysis.

After giving an outline of the general model, we illustrate these aspectsby dis-
cussing an instance of that model, named MA++, which is based on the calculus of? Work partially supported by MURST Project 9901403824003 and by CNRS Program

Telecommunications: “Collaborative, distributed, and secure programming forInternet”.

Mobile Ambients (henceforth MA) of [3, 5]. We illustrate the calculus with a number of
rather variated examples: specifically, we show that it is possible to encodeprimitives
like method overriding distinctive of object calculi; we also show thatvarious forms
of process communication can be encoded (here, and throughout the paper, we use the
terms “encode” and “encoding” in somewhat loose sense: we should in fact use “simu-
late” and “simulation” as we don’t claim these encodings to be “atomic” —i.e. free of
interferences— in all possible contexts.).

Then we study the type theory of our calculus. The motivation for doing that is
twofold: (i) a sound type system can statically detect run-time type errors such as the
classical “message not understood” errors distinctive of object-orientedlanguages and
calculi;(ii) an expressive type system eases the definition of program equivalences and
their proof (see for example [13]). The present paper gives an in-depth account of the
former aspect, and only hints at the latter (see Section 6), leaving a detailedtreatment
for future work.

Several proposals of formalisms for foundational study of concurrentobject-oriented
programming can be found in the literature (e.g., [9, 12, 15, 16, 18,7, 14]): however,
to our knowledge, no previous work directly embeds methods into calculiof mobile
agents.

2 Outline of the model

The definition of the model is given parametrically on the underlying calculus of pro-
cesses and agents so that it can be adapted to formalisms such as Mobile Ambients[5],
Safe Ambients [13], or the Seal Calculus [17]. The minimal requirement we assume for
the underlying calculus of mobile agents is the existence of the following constructs:0 denoting the inactive process,P j Q, denoting the parallel composition of two pro-
cessesP andQ, a[P], denoting the process (or agent) nameda running the processP , (�x)P , that restricts the namex to P , and finallyA:P , that performs the action de-
scribed by the expressionA and then continues asP . Clearly, the actions will eventually
include primitives for moving agents over the locations of the distributed system, but
we may disregard those primitives at this stage. What instead is central tothe model is
the naming mechanism for processes. Named processes are abstractions of both agents
and locations: furthermore, since naming allows nesting, locations may be structured
hierarchically [3]. As a consequence, named processes model both the nodes of the
distributed system and the agents over that system.

2.1 Syntax

The generic model of mobile objects results from generalizing the structure of named
agents to include method definitions, as ina[M ; P], whereP is a process andM a set
(rather, a list) of method definitions. The syntax of agents is defined bythe productions
in Figure 1.

Notation. In the following we useP;Q;R to range over processes,L;M;N to range
over (possibly empty) method sequences, and lower case letters to range over generic

MethodsM ::= m(~xn) . &(z)P method
 M;M method sequence
 " empty sequence

ExpressionsA ::= a; b; : : : ; x; y : : : names
 a sendm(~A) message
 A:A path
 " empty path

ProcessesP ::= 0 inactivity
 P j P parallel composition
 a[M ; P] ambject or sealject
 (�x)P restriction
 A:P action

Fig. 1. Syntax of Agents

names, preferring when possiblea; b; : : : for agent names, andx; y; : : : for (method)
parameters. Method names, denoted bym andn range over a disjoint alphabet and have
a different status: they are fixed labels that may not be restricted, abstracted, substituted,
nor passed as values (they are similar to field labels in record-based calculi). We omit
trailing or isolated0 processes and empty method sequences, usingA, a[M ;], a[P],
anda[] to abbreviateA:0, a[M ; 0], a[" ; P], anda[" ; 0] respectively.

We sometimes writea[(mi(~xki) . &(zi)Pi)i2[1::n] ; P] as a shorthand for the agenta[m1(~xk1) . &(z1)P1; : : : ;mn(~xkn) . &(zn)Pn ; P]. Similarly we write~xn as a short-
hand forx1; : : : ; xn and omit the subscriptn when there is no riskof ambiguity. Finally,Pf~xn := ~yng denotes the term resulting from substituting every free occurrence ofxi
by yi in P ; equivalent notations that we also use arePf~xn�1 := ~yn�1; xn := yng andPf~xn�1; xn := ~yn�1; yng.

Methods. A method definition has the formm(~xn) . &(z)P , where them is the name
of the method,~xn the list of its formal parameters, and&(z)P its body. As in the Object
Calculi of [1], the&-bound variablez is the “internal” name of the host agent: the scope
of the &-binder is the method bodyP . Since agents are named, explicit names could
be used to invoke methods from any agent, including sibling methods from the same
agent: however, as we shall see, thelate binding semantics associated withself ensures
a smooth and elegant integration of method invocation and agent mobility. The syntax
of methods is abbreviated tom(~xn) . P whenz does not occur free inP , or when the
presence of the binder is irrelevant to the context in question.

Expressions. The definition and associated behavior of expressions is what distin-
guishes different calculi for mobility. For example the expressionsthat perform mo-
bility in the Seal Calculus use channels synchronization, and act on agents that are
passive with respect to mobility. In Mobile Ambients, instead, mobility expressions are
exercised by the moving agents themselves, without intervention by thesurrounding
environment (Safe Ambients add a synchronization mechanism to Mobile Ambients).
Since we want our extension to be independent of the underlying primitives for mobil-
ity, at the present stage we define expressions to be agentnames, messages sends, or
paths that define composite expressions. Message sends are denoted bya sendm(~An),
wherea is the name of an agent, andm(~An) invokes them method found ina with ar-
guments~An. Unlike [1], the format of a message send requires that the recipient be

thename of an agent rather than the agent (the object, in [1]) itself. The semantics of
message sends is discussed in detail in Section 2.3.

2.2 Structural Congruence

Structural congruence for agents is defined in terms of a relation of equivalence over
method sequences, given in Figure 2. The intention is to allow method suites to be
reordered without affecting the behavior of the enclosing agent. Definitions for methods(L;M); N � L; (M;N) (Eq Meth Assoc)n 6= m)M;m(x) . P ;n(y) . Q�M;n(y) . Q;m(x) . P (Eq Meth Comm)M;m(x) . P;m(x) . Q;M �M;m(x) . Q (Eq Meth Over)M �M (Eq Meth Refl)M � N) N �M (Eq Meth Symm)L�M;M � N) L� N (Eq Meth Trans)

Fig. 2. Equivalence for Methods

with different name and/or arity maybe freely permuted; instead, if the same method has
multiple definitions, then the rightmost definition overrides theremaining ones. Similar
notions of equivalence between method suites can be found in the literatureon objects:
in fact, our definition is directly inspired by the bookkeeping relationintroduced in [8].
The relation structural congruence of processes is defined as the smallest congruence(�x)0 � 0 (Struct Res Dead)x 6= y) (�x)(�y)P � (�y)(�x)P (Struct Res Res)x 62 fn(P)) (�x)(P j Q) � P j (�x)Q (Struct Res Par)(A:A0):P � A:A0:P (Struct Path Assoc)x 62 fn(M) [fag) (�x)a[M ; P] � a[M ; (�x)P] (Struct Res Agent)":P � P (Struct Empty Path)M � N) a[M ; P] � a[N ; P] (Struct Cong Agent Meth)

Fig. 3. Structural Congruence for Agents

on processes that forms a commutative monoid with productj and unit0, and is closed
under the rules in Figure 3. These rules are parametric in the definitionof expressions
and free names, which vary depending on the specific calculus at issue (for MA++,
expressions are given in Section 3, while free names are defined by a standardextension
of the definition in [3]).

The first block of clauses are standard (they are the rules of the�-calculus). The
rule (Struct Path Assoc) is a structural equivalence rule for the Ambient Calculus, while
the rule (Struct Res Agent) modifies the rule for agents in the Ambientand Seal calculi
to account for the presence of methods. The last rule establishes agent equivalence up
to reordering of method suites. In addition, we identify processes up to renaming of
bound variables:(�p)P = (�q)Pfp := qg if q 62 fn(P). The behavior of agents is now
defined in terms of a reduction relation which obeys the structural rules in Figure 4,
plus specific rules for each of the construct in the calculus.

(Red Struct) P 0 � P; P ➞ Q; Q � Q0) P 0 ➞ Q0
(Red Amb) P ➞ Q) a[M ; P] ➞ a[M ; Q]
(Red Res) P ➞ Q) (�x)P ➞ (�x)Q
(Red Par) P ➞ Q) P j R ➞ Q j R

Fig. 4. Structural Rules for Reduction

2.3 Messages and method invocation

The semantics of method invocation is based on the idea ofself-substitution distinctive
of the Object Calculi of [1]: since agents are named, what gets substituted for theself
variable is thename of the agent rather than the agent itself. Several choices can then
be made as to(i) where the method invocation should occur, and(ii) as to where the
body of the invoked method should be executed. Below, we discuss two possible modes
for invocation and, within each mode we illustrate two possible locations where the
invoked process can be activated.

Remote Invocation. This mode arises in a situation where the sender and the receiver
of the message are siblings and the message is sent by the process enclosed within
the sender. Remote invocation is consistent with the “subjective” model of mobility, in
which the moves of an object are regulated from within the object, by its controlling
process: similarly, the object delegates to its controlling process theability to commu-
nicate with its siblings.

Once the message is sent, the selected method can be activate either on the sender or
on the receiver. There is a close analogy between these two possibilities, and two com-
mon protocols in distributed systems. Activating the method in thesender corresponds
to the protocol known ascode on demand.

(Code on Demand)a[M ; b sendm(~A):P] j b[N;m(~x) . &(z)Q ; R]
➞ a[M ; Qfz := b; ~x := ~Ag j P] j b[N;m(~x) . &(z)Q ; R]

Having requested a service, the sender takes the load of executing the corresponding
process: this is a common practice for modern distributed systems, and specifically, for
the Web. Upon receiving a request, a server spawns a new process (e.g., a Java applet)
authorizing the client to execute it: the process is activated on the client side to not
overburden the server with computations loads pertaining to its clients.

The alternative is to activate the method body on the receiver side, thus mimicking
a remote procedure call (or more precisely aremote method invocation).

(Remote Procedure Call)a[M ; P j b sendm(~A):P 0] j b[M 0;m(~x) . &(z)Q ; R]
➞ a[M ; P j P 0] j b[M 0;m(~x) . &(z)Q ; Qfz := b; ~x := ~Ag j R]

This alternative is just as reasonable. There is, however, a technical argument in favor
of our first solution: activating the method body within the receiver makes it difficult
to give a uniform reduction for messages to siblings and messages toself. Consider the
following example:a[M ; b sendm1:P] j b[m1 . &(z)z sendm2;m2 . Q ;]
If the method body is activated on the sender, the configuration reduces toa[M ; P jQ],

as expected, in two steps. If instead, the body ofm1 is activated on the receiver, then
one reduction leads to the configurationa[M ; P] j b[m1 . &(z)z sendm2;m2 . Q ; b sendm2]:
At this stage is no sibling objectb to which the messagem2 may be sent. Although the
problem may easily be remedied using special syntax (and reduction) for local method
calls, our first solution is formally simpler and more elegant.

Local Invocation In this mode, the message is sent from an agent to one of its children:
the invocation islocal in that it does not extrude the scope of the sender. This mode is
consistent with the “objective” model of mobility, in which the moves of an object are
regulated by the enclosing environment: similarly, the environment requests the services
provided by its enclosed objects.

The activation of the selected method may take place either at the same level as the
invocation, or in the receiver. In the first case, the reduction isb sendm(~A):P j b[M ;m(~x) . &(z)Q ; R]

➞ P j Qfz := b; ~x := ~Ag j b[M ;m(~x) . &(z)Q ; R]
Having requested a service to a child, the environment takes the load of executing the
corresponding process. As for the case of remote invocation, the methodbody could be
activated within the receiver, but again the definition of reduction would not be uniform
for messages to children and messages toself.

This concludes the discussion on the general model. In the next section we illustrate an
instance of the model, based on Mobile Ambients [3, 5].

3 MA++
As we anticipated, our mobile objects combine the functionalities of Mobile Ambients
and objects. We will use the terms object and ambient interchangeably to refer to agents
in MA++: the context will prevent any source of confusion between our agents and
agents from MA.

Processes and methods are defined as in Figure 1, while the (now complete) syntax
of expressions is given by the productions below:A ::= x  a sendm(~A)  "  A:A

 in a  out a  open a
Thein andout expressions provide objects with the same mobility capabilities as
ambients, whileopen allows an object to break through the boundary of its enclosed
objects and incorporate their body. As anticipated, the calculus does not include any
construct or resource for synchronization: objects only communicate viamessages, and
message sends are synchronous. As we shall illustrate, different formsof process com-
munication can be encoded in terms of the existing constructs.

3.1 Reduction Semantics

The definition of structural congruence and structural reduction are inherited directly
from the general model. In Figure 5, we give the reduction rules distinctive of ambients
in MA++.

(in) a[M ; in b:P j Q] j b[N ; R] ➞ b[N ; R j a[M ; P j Q]]
(out) a[M ; b[N ; out a:P j Q] j R] ➞ b[N ; P j Q] j a[M ; R]
(open1) open a:P j a[Q] ➞ P j Q
(open2) b[M ; open a:P j a[N ; Q] j R] ➞ b[M;N ; P j Q j R] for N 6= "
(send) a[M ; P j b sendm(~A):R] j b[N;m(~x) . &(z)Q ; S]

➞ a[M ; P j Qfz; ~x := b; ~Ag j R] j b[N;m(~x) . &(z)Q ; S]
Fig. 5. Reduction Rules for Ambients

The reduction rule(send) implements the remote mode for code-on-demand model we
discussed in the previous section. The reduction rules for thein andout actions are
defined exactly as in the Ambient Calculus. The actionin a:P instructs the ambient
surroundingin a:P to enter a sibling ambient nameda. If no sibling nameda exists,
the operation blocks. The actionout a:P instructs the ambient surroundingout a:P to
exit its parent ambient nameda: if the parent is not nameda, the operation blocks until
a time when such a parent exists.

The reduction foropen depends on whether the method suite of the opened ambient
is empty or not. If it is empty, the reduction is exactly the same as in the Ambient
Calculus:open a dissolves the boundary of an ambient nameda located at the same
level asopen, unleashing the process enclosed ina. If insteada contains a nonempty
method suite,open a may only be reduced within an enclosing ambient and its effect
is twofold: besides unleashing the process contained ina, as in the previous case, it
also merges the method suites of the opening and opened ambients. In both cases, if no
ambient nameda exists,open a blocks. As we show below, this behavior of open allows
an elegant encoding of the operations of method update available in object calculi.

4 Examples

Parent-Child Messages. Having chosen the remote mode for method invocation, it is
often useful for an ambient to be able to send messages to its parent or its children. We
denote the two forms of communication as follows:a# sendm(~A):P sendm(~A) to childaa" sendm(~A):P sendm(~A) to parenta
Both these invocation modes can be derived with the existing constructs. Parent-to-child
invocation can be defined as follows:a# sendm(~A):P 4= (�p; q)(p[a sendm(~A):q[out p]] j open q:open p:P)
wherep; q 62 fn(~A) [fn(P). Then, it is easy to verify that:

a#sendm(~A):P j a[m(~x).&(z)Q; R] ➞� P j Qfz;~x := a; ~Ag j a[m(~x).&(z)Q; R]
Child-to-parent invocation can be defined similarly, as follows:a"sendm(~A):P 4= (�p; q)(open q:open p j p[out a:a sendm(~A):in a:q[out p:P]])
wherep; q 62 fn(~A)[fn(P) . Thena[M;m(~x) . &(z)Q ; a" sendm(~A):P j R] reduces
after some steps to(�p; q)(a[M;m(~x). &(z)Q ;Qfz; ~x := a; ~Ag j P j R]) as expected.

Replication. The behavior of replication in concurrent calculi is typically defined by a
structural equivalence rule establishing that!P �!P j P . With ambients, we can encode
a similar construct relying upon the implicit form of recursion inherent in the reduction
of method invocation. The coding is as follows:!P 4= (�p)(p[bang . &(z)z# send bang j P ;] j p# send bang)
wherep 62 fn(P). Using the derived reduction rule for downward method invocation, for
everyP , !P reduces in one (encoded) step toP j !P as desired. Similarly we can encode
guarded replication!A:P —where replication is performed only after the consumption
of A— as follows:(�p)(A:p# send bang j p[bang . &(z)A:z# send bang j P ;])
Method update. Following the standard definition of method override [1, 8] method
updates for ambients can be formulated, informally, as follows: given the ambienta[M ;m(~x) . P ; Q] we wish to replace the current definitionP of m(~x) by the new
definitionP 0 to form the ambienta[M ;m(~x) . P 0 ; Q].

Updates can be coded using a distinguished ambient as “updater”. The updater car-
ries the new method body and enters the updatable ambienta, while the updatable
ambient is coded as an ambient whose controlling process opens the updater thus al-
lowing updates on its own methods. The coding is defined precisely below.We give two
different versions: in the first we have a form of concurrent update, where updates are
processes; in the second, updates are “sequential” and coded as expressions.

Updates as processes: Update processes are denoted byx �m(~y) . &(s)P , read “them
method atx gets definitionP ”. We define their behavior as follows: let firsta �m(~x) . &(s)P 4= UPD[m(~x) . &(s)P ; in a]:
Then define an updatable ambient as followsa?[M ; P] 4= a[M ; !(open UPD) j P]:
Now, if we form the compositiona �m(~x).&(z)P 0 j a?[M ;m(~x).P ;Q], the reduction
for open enforces the expected behavior:a �m(~x) . P 0 j a?[M ; m(~x) . P ; Q] ➞� a?[M ; m(~x) . P 0 ; Q]
Multiple updates for the same method may occur in parallel, in which case their rel-
ative order is established nondeterministically. The coding works wellalso with “self
inflicted” updates: for example, the configurationa# sendm:P j a?[m . &(z)z � n(~x) . Q0; n(~x) . Q ; R]

reduces to P j a?[m . &(z)z � n(~x) . Q0; n(~x) . Q0 ; R]
as expected. With an appropriate use of restrictions it is possible to establish update
permissions: for example, the ambient(�UPD)a[M ; P j !open UPD] allows only self-
inflicted updates.

Updates as expressions: Sequential updates are defined similarly to update processes.
In this case,(a �m(~x) . &(s)P):Q first updatesm at a and then continues asQ. This
behavior can be accounted for by instrumenting the encoding we just described with a
“locking” mechanism that blocksQ until the update is completed. An example of how
this locking can be implemented is described below:(a �m(~y) . &(z)P):Q 4= (�p)(UPD[m(~y) . &(z)P ; in a:p[; out a:Q]] j open p)
wherep 62 fn(P j Q). Then we have:(a �m(~x) . P 0):Q j a?[M;m(~x) . P ; R] ➞� Q j a?[M;m(~x) . P 0 ; R]
Process communication The next example shows that synchronous and asynchronous
communication primitives between processes can be encoded. We first give an encod-
ing of synchronous communication. A similar model of (asynchronous)channel-based
communication is presented in [5] and it is based on the more primitive form of local
andanonymous communication defined for the Ambient Calculus: here, instead, we
rely on the ability, distinctive of our ambients, to exchange values between methods.

A channeln is modeled by a (parallel composition of) an updatable ambientn, and
two locksni, andno. The ambientn contains a methodmsg: a process willing to read
from n installs itself as the body of this method, whereas a process willing towrite onn invokesmsg passing along the argument of the communication.(ch n) 4= n?[msg(x) . 0] j ni[]nhAi:Q 4= open no:n# send msg(A):(ni[] j Q)n(x):P 4= open ni:n � msg(x) . &(z)P:no[] (z 62 fn(P))
The communication protocol is as follows: A processnhAi:Q writing A on n first
attempts to grab the output lockno, then sends the messagemsg(A) to n, and finally
continues asQ releasing the input lockni. At the start of the protocol there are no
output locks: hence the process writing onn blocks. A processn(x):P reading fromn first grabs the input lockni provided by the channel, then installs itself as the body
of themsg method inn, and finally releases the output lock. Now the writing process
resumes its computation: it sends the message thus unleashingP , and then releases the
input lock and continues asQ.

Asynchronous communications are obtained directly from the coding above, by a
slight variation of the definition ofnhAi:Q. We simply need a different parenthesizing:nhAi:Q 4= (open no:n# send msg(A):(ni[])) j Q
Based on the this technique, we can encode the synchronous (and similarly,the asyn-
chronous)�-calculus in ways similar to what is done in [6]. Each namen in the �-
calculus becomes a triple of names in our calculus: the namen of the ambient dedicated

to the communication, and the namesni andno of the two locks. Therefore, communi-
cation of a�-calculus name becomes the communication of a triple of ambient names.[[(�n)P]] 4= (�n; ni; no)(ni[] j n?[msg(x; xi; xo) . 0] j [[P]]) ni; no 62 fn([[P]])[[nhyi:Q]] 4= open no:n# send msg(y; yi; yo):(ni[] j Q)[[n(x):P]] 4= open ni:n � msg(x; xi; xo) . &(z)P:no[][[P j Q]] 4= [[P]] j [[Q]][[!P]] 4= (�n)(n[bang . &(z)z# send bang j [[P]] ;] j n# send bang) n 62 fn([[P]])

Fig. 6. Encoding of the synchronous�-calculus

The initialization of themsg method in the ambient that encodes the channeln could
be safely omitted, without affecting the operational properties of encoding. However,
as given, the definition scales smoothly to the case of a typed encoding, preserving
well-typing.

5 Types and Type Systems

The typing of ambients inherits ideas from existing type systems for Mobile Ambients:
however, as we anticipated, the presence of methods enables a more structured(and
informative) characterization of their enclosing ambient’s interfaces. The productions
defining the set of types are given below:

Signatures � ::= m(W) .P ; � j "
Ambients A ::= Amb[�]
Capabilities C ::= Cap[�]
Processes P ::= Proc[�]
Values W ::= A j C

Signatures convey information about the interface of an ambient, by listing the ambi-
ent’s method names, input type as well as the type of the method bodies. The intuitive
reading of ambient, capability and process types is as follows: the typeAmb[�] is the
type of ambients with methods declared in�; the typeCap[�] is the type of capa-
bilities1 whose enclosing ambient (if any) has a signature which contains at least the
methods included in�; the typeProc[�] is the type of processes whose enclosing
ambient (if there is any) contains at least all the methods declared in�.

The essential novelty over previous type systems for Mobile Ambients [6, 4, 13] is
that we use method signatures as tags for ambient and capability types: in [6], instead,
ambient (and capability) types expose the type of values that can be exchangedas a
result of local process communication. This difference reflects the differentcommuni-
cation primitives in the two calculi: specifically, communication is accomplished via
message sends in our calculus, whereas it relies on explicit input/outputprimitives in
MA.

1 Capability is the term used in [5] to refer to ”actions”: capabilities can be transmitted over
channels, and transmitting a capability corresponds to trasmit thecapability of performing the
corresponding action. The same intuition justifies the use of the term in MA++.

5.1 Type System

The typed syntax of the calculus is defined by the following productions2 :

Methods M ::= m(x:W) . &(z:A)P jM;M j "
Processes P ::= 0 j P jP j a[M ; P] j (�x:A)P j A:P
Expressions A ::= x j a sendm(~A) j in a j out a j open a j A:A j "

The type system derives three kinds of judgments (whereE denotes generic expressions
and processes):� ` � (well-formed type environment),� ` E : T (typing), and� ` T1 � T2 (subtyping). The typing and subtyping rules presented in Figure 7are
discussed below.

Method signatures, associated with ambient types, are traced by the typesCap, of
capabilities, to allow an adequate typing of messages and mobility: specifically, the rule
(OPEN) establishes that opening an ambienta : Amb[�] is legal under the condition that
the signature of the opening ambient is equal to (in fact, contains, giventhe presence
of subtyping) the signature of the ambient being opened. This condition is necessary,
as subject reduction would otherwise fail: as a consequence, opening an ambientmay
only update existing methods of the opening ambient, and the update must preserve the
types of the original methods.

Signatures are not traced when typing expressions involving moves or messages: for
the latter, see rule (MESSAGE), the capability type has the same signature as the process
type of the body of the invoked method. Of course, in order for the expression to type
check the message argument and the method parameters must have the same type3.

The typing of processes is standard (cf. [6, 13]), with the only exception of the rule
(AMB) which defines the types of ambients. Ambients are typed similarly to objects in
the object calculi of [1]: each method is typed under the assumptions that(i) the self
parameter has the same type of the enclosing ambient, and(ii) that method parameters
have the declared type. The conditioni 2 LAST(I) (whereLAST(I) denotes the setfi 2 I j 8j > i;mj 6= mig) ensures that only the rightmost definition of a method is
considered when typing an ambient4. Finally, no constraint is imposed on the signature�0, associated with the process type in the conclusion of the rule, as that signature is
(a subset of) the signature of the ambient enclosinga (if any). As for the subtyping
relation, non-trivial subtyping is defined for capability and process types: specifically,
a capability (resp. process) typeCap[�] (resp.Proc[�]) is a subtype of any capabil-
ity (resp. process) type whose associated signature (set theoretically) contains�. The
resulting notion of subtyping corresponds to the contravariant subtyping in width dis-
tinctive of variant types. The covariant width subtyping typical of object and record

2 The other typed versions Ambients [6, 4, 13] allow restrictions on varibles of typeW (rather
than justA), but we do not see the purpose of such a generalization.

3 In fact, since capability and ambient types can be subtyped,the type of the arguments can be
subtypes of the type of the formal parameters.

4 Technically speaking, we need this restriction to ensure the subject reduction property since
without it a well-typed term could be structurally equivalent (and, therefore, reduction equiv-
alent) to an ill-typed one.

Type environments

(ENV-EMPTY)? ` � (ENV-NAME)� ` � x 62 Dom(�)�; x : W ` �
Expressions

(NAME /VAR)� ` �� ` x : � (x) (PATH)� ` A1 : Cap[�] � ` A2 : Cap[�]� ` A1:A2 : Cap[�]
(OPEN)� ` a : Amb[�]� ` open a : Cap[�] (INOUT)� ` a : Amb[�] (A0 2 fin a; out ag)� ` A0 : Cap[�0]

(MESSAGE)� ` a : Amb[�] � ` A0 : W (m(W) . Proc[�0] 2 �)� ` a sendm(A0) : Cap[�0]
Processes

(PREF)� ` A : Cap[�] � ` P : Proc[�]� ` A:P : Proc[�] (PAR)� ` P : Proc[�] � ` Q : Proc[�]� ` P j Q : Proc[�]
(RESTR)�; x : A ` P : Proc[�]� ` (�x : A)P : Proc[�] (DEAD)� ` �� ` 0 : Proc[�]

(AMB) (� = (mi(Wi) . Proc[�i])i2I A = Amb[�] i 2 LAST(I))� ` A : A �; z : A ; xi : Wi ` Pi : Proc[�i] � ` P : Proc[�]� ` A[(mi(xi : Wi) . &(z : A)Pi)i2I ; P] : Proc[�0]
Subsumption Subtyping

(SUBS)� ` E : W W � W 0� ` E : W 0 (SUBCAP)� � �0Cap[�] � Cap[�0] (SUBPROC)� � �0Proc[�] � Proc[�0]
Fig. 7. Typing and Subtyping Rules

types must be disallowed over ambient types to ensure sound uses of theopen capa-
bility: intuitively, when opening an enclosed ambient, we needexact knowledge of the
contents of that ambient, (specifically, of its method suite) so as to ensurethat all the
overriding that takes place upon exercising the capability be traced in the types.

As customary, the subtyping relation is endowed in the type system via a subsump-
tion rule.

5.2 Subject Reduction and Type Soundness

We conclude the description of the type system with a subject reductiontheorem and a
discussion on type soundness. The, rather standard, proof is only outlined here due to
the lack of space.

Lemma 1 (Substitution). If �; x:W ` P : Proc[�] and � ` A:W , then � ` Pfx :=Ag : Proc[�0] with �0 � �.

Proposition 1 (Subject Congruence).
1. If � ` P : Proc[�] and P � Q then � ` Q : Proc[�].
2. If � ` P : Proc[�] and Q � P then � ` Q : Proc[�].
Theorem 1 (Subject Reduction). If � ` P : Proc[�] and P➞Q then � ` Q :Proc[�0] with �0 � �.

Besides being interesting as a meta-theoretical property of the type system, subject re-
duction may be used to derive a soundness theorem ensuring the absence of run-time
(type) errors for well-typed programs. As we anticipated, the errors wewish to detect
are those of the kind “message not understood” distinctive of object calculi. With the
current definition of the reduction relation such errors do not arise, as not-understood
messages simply block: this is somewhat unrealistic, however, as the result of send-
ing a message to an object (a server) which does not contain a corresponding method
should be (and indeed is, in real systems) reported as an error. We thus introduce a new
reduction to account for these situations:a[M ; P j b sendm(~A):Q] j b[N ; R] ➞ a[M ; P j ERR] j b[N ; R] (m 62 N)
The intuitive reading of the reduction is that a not-understood message causes a local
error —for the sender of that message— rather than a global error for the entire system.
The reduction is meaningful also in the presence of multiple ambients with equal name,
as our type system (like those of [6, 4, 13]) ensures that ambients with the same name
have also the same type. Hence, if a methodm is absent from a given ambientb, it will
also be absent from all ambients namedb. If we takeERR to be a distinguished process,
with no type, it is easy to verify that no system containing an occurrence ofERR can be
typed in our type system. Absence of run-time errors may now be stated follows:

Theorem 2. Let P be a well-typed MA++ process. Then, there exist no context C[�]
such that P ➞� C[ERR].

6 Extensions

There are several desirable extensions to MA++ and its type system. The most natu-
ral is the ability to treat method names as ordinary names. This would allowone to
define private methods, and to give a formal account of dynamic messages. Both the
extensions can be accommodated for free in the untyped calculus. For the typed ver-
sion, instead, things are more complex. It is possible (and relatively easy) to extend the
syntax and allow method names to be restricted. Instead, disallowing method names
as values is more critical. The reason is that method names occur in the signatures of
ambient (capability and process) types: consequently, allowing methods tobe passed
would be possible but it would make our types (first-order) dependent types (see [10]
for similar restrictions).

A further extension has to do with Safe Ambients. In [13] the authorsdescribe an
extension of the calculus of Mobile Ambients, called Safe Ambients, where entering,
exiting and opening an ambient requires a corresponding co-action by the ambient that
undergoes the action. The use of co-actions allows(i) a more fine-grained control on
when actions take place, and(ii) the definition of a refined type system where types
can be used to essentially “serialize” the activities of the parallel processes controlling
the moves of an ambient. As shown in [13], the combination of these features makes
it possible to define a rich algebraic theory for the resulting calculus.The idea of co-
actions and of single-threaded types can be incorporated in the type system we have
described in the previous sections rather smoothly: besides the co-actions related to
mobility, we simply need a co-action for messages, and a modified reductionrule for
message sends that requires the receiver to belistening (i.e. to exercise the co-action
corresponding tosend) in order to reduce the message. We leave this as subject of
future work.

Finally, it would be interesting to include linear types to ensure (local) absence
of ambients with the same name: in fact, while the possibility of therebeing more
than one ambient that is willing to receive a given message provides usefulforms of
nondeterminism, ensuring linearity of ambient names could be useful to prevent what
[13] defines “grave interferences” and thus to prove interesting behavioral properties of
method invocation.

7 Conclusions

One of the main purposes, as well as of the challenges, for a foundational formalism for
distributed systems is to establish an adequate setting where formal proofs of behavioral
properties for processes and agents can be carried out.

Viewed from this perspective, the work on MA++we have described should be un-
derstood as a first step to define a computation model for distributed applications, where
conventional technology —based on remote exchange of messages between static sites—
and mobile agents coexist and can be integrated in a uniform way. This attempt appears
to be well motivated by the current —rather intense— debate on the role of mobility in
wide-area distributed applications; a debate in which even proponents anddevelopers
of mobile agents offer that “we probably shouldn’t expect purely mobile applications
to replace other structuring techniques” [11].

More work is clearly needed to evaluate the adequacy of the calculus as a formal
tool for modeling realistic applications, to develop a reasonable algebraic theory for the
calculus, and to study techniques of program static analysis other than typing.

All these aspects are current topic of research for the two calculi —Ambients and
Seals— we had in mind when developing the general model. The recent papers on
typed formulations of Ambients [6, 4, 13] provide rather interesting and useful insight
into how an algebraic theory for mobile objects could be defined as well as into the rôle
of types in proving behavioral properties.

References

1. M. Abadi and L. Cardelli.A Theory of Objects. Springer, 1996.
2. M. Bugliesi and G. Castagna. Mobile objects. InFOOL’7 Proc. of the 7th Int. Workshop on

Foundations of Object Oriented Languages. 2000. Electronic Proceedings.
3. L. Cardelli. Abstractions for mobile computations. InSecure Internet Programming, number

1603 in LNCS, pages 51–94. Springer, 1999.
4. L. Cardelli, G. Ghelli, and A. Gordon. Mobility types for mobile ambients. InProceedings

of ICALP’99, number 1644 in LNCS, pages 230–239. Springer, 1999.
5. L. Cardelli and A. Gordon. Mobile ambients. InPOPL’98. ACM Press, 1998.
6. L. Cardelli and A. Gordon. Types for mobile ambients. InProceedings of POPL’99, pages

79–92. ACM Press, 1999.
7. P Di Blasio and K. Fisher. A calculus for concurrent objects. InCONCUR’96, number 1119

in LNCS, pages 655–670. Springer, 1996.
8. K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects and Method Spe-

cialization.Nordic Journal of Computing, 1(1):3–37, 1994.
9. A. Gordon and P. D Hankin. A concurrent object calculus: reduction and typing.In Proceed-

ings HLCL’98, Elsevier ENTC, 1998. Also Technical Report 457, University of Cambridge
Computer Laboratory, February 1999.

10. Ms Hennessy and J. Riely. Resource access control in systems of mobile agents (extended
abstract). InProc. of 3rd International Workshop on High-Level Concurrent Languages
(HLCL’98). 1998.

11. D. Johansen. Trend wars.IEEE Concurrency, 7(3), Sept 1999.
12. J. Kleist and Sangiorgi D. Imperative objects and mobileprocesses. Unpublished manuscript.
13. F. Levi and D. Sangiorgi. Controlling interference in ambients. InPOPL’2000, pages 352–

364. ACM Press, 2000.
14. U Nestmann, H. Huttel, J. Kleist, and M. Merro. Aliasing models for object migration. In

Proceedings of Euro-Par’99, number 1685 in LNCS, pages 1353–1368. Springer, 1999.
15. B.C. Pierce and D.N. Turner. Concurrent objects in a process calculus. In Takayasu Ito and

Akinori Yonezawa, editors,Theory and Practice of Parallel Programming, Sendai, Japan
(Nov. 1994), number 907 in LNCS, pages 187–215. Springer-Verlag, April1995.

16. V.T. Vasconcelos. Typed concurrent objects. In M. Tokoro and R. Pareschi, editors,ECOOP
’94, number 821 in LNCS, pages 100–117. Springer, 1994.

17. J. Vitek and G. Castagna. Seal: A framework for secure mobile computations. InInternet
Programming Languages, number 1686 in LNCS. Springer, 1999.

18. D.J Walker. Objects in the� calculus.Information and Computation, 116(2):253–271, 1995.

