
Ludics nets, a game model of concurrent interaction

Claudia Faggian
Universitá di Padova, Italy

Francois Maurel
PPS, Paris 7, France

Abstract

We propose L-nets as a game model of concurrent inter-
action. L-nets, which correspond to strategies (in Games
Semantics) or designs (in Ludics), are graphs rather than
trees; the interactions (plays) result into partial orders.

1 Introduction

Game Semantics has been a successful approach to
model sequential computation. Its strength is to capture
the dynamical aspects of computation. Typically, the pos-
sible interactions (plays) between a program and its envi-
ronment are represented as linearly ordered sequences of
moves, forming a tree. More recent work has been directed
to extend this approach, either to describe a more concur-
rent form of interaction ([1, 9]) or to liberalize the notion of
game in order to play on graph structures ([10, 12]).

Ludics [8] has been proposed by Girard as an abstract
setting for proof-theory, founded on interaction. Ludics is
a game model which presents remarkable structural proper-
ties. In particular, it comes equipped with a built-in notion
of observational equivalence, in the sense that two agents
reacting the same way to any test are actually equal. The
central role of addresses (names) and the interactive meth-
ods open a bridge with concurrency theory. At front of
this, the original theory imposes constraints which induces
a strict sequentiality. It is a very natural step to seek a more
asynchronous or “concurrent” notion of interaction.

The work we present1 stems from both of these direc-
tions. We introduce abstract structures corresponding to
proofs/programs: L-nets. L-nets correspond to what is
called design in Ludics, and strategy in Game Semantics.
Standard strategies and designs are trees, and interactions
are linear sequences of moves. L-nets are graphs, stating
a controlled amount of dependency between actions, and
the interactions are partial orders, allowing for parallelism.
If tree strategies can be seen as abstract sequent calculus

1Research partially supported by Cooperation project CNR-CNRS
Italy-France 2004-2005 (Interaction et complexité, project No 16251).

derivations, L-nets are abstract proof-nets, in multiplica-
tive additive linear logic (MALL). While the multiplicative
structure deals with parallelism, the additive structure ac-
counts for a proof-theoretical counterpart of non determin-
ism.

Sections 3 and 4 are concerned simply with Game Se-
mantics: we introduce parallel strategies, the L-nets, de-
scribe composition, and show that it is associative.In Sec-
tion 5 we study observational equivalence on L-nets. In
Section 6 we move to types, and develop the high-level ar-
chitecture of Ludics on L-nets.

Several intuitions underly our work, and they will rep-
resent directions for further development: proof-nets (as in
[6, 7]), Winskel’s event structures [13]), multi-focalization
(focusing proof-nets) as raised by Andreoli in the dis-
tributed construction of proof-nets ([2]).

The intuition provided by proof-nets has actually been a
strong guide, and we are going to use it all along the paper,
even though the formal development of the proof-nets syn-
tax we have in mind will be postponed to future work (see
[3] for a first account in this direction). Our approach de-
parts from the standard ones to proof-nets in the way it deals
with sequentiality and with the additives. To handle these
aspects, we rather exploit and take forward ideas proposed
by Girard in [8].

Additives and slices. To understand our approach to the
additives, it is important to understand the notion of slice.
Let us (informally) introduce it.

A
�

-rule must be thought of as the “superposition” of
two unary

�
rules,

���������
. Given a sequent calculus

derivation, if for any
�

-rule we select one of the premises,
we obtain a derivation where all

�
-rules are unary. This is

called a slice ([6]). We write the two components of a rule
which introduces � ��	

as
�� ��	�� ��
 and
�� ��	���	
 , and write
� ��	

also as ��
�� ��	�� ��
 �
�� ��	���	
�� .
It has been an idea of Linear Logic since long that slices

are the perfect syntax for additive proof-nets: a MALL
proof should be seen as the superposition of all its slices.
How to “superimpose” the slices is the difficult point. Nor-
malization of designs in [8] works exactly in this way: by
slices. The same approach is followed by [11] for po-

larized proof-nets. In both cases, sequentiality (given by
boxes in polarized proof-nets) offers enough “synchroniza-
tion points” to be able to recompose slices after normaliza-
tion.

A major achievement of this paper is to show that even
relaxing sequentiality enough to take away boxes, it is still
possible to work by slices. Here we do this in an abstract
setting, but we expect to be able to have the same result for
typed proof-nets, that is MALL proof nets.

Parallelism and non-determinism. It is well known that
multiplicative (MLL) proof-nets allow for parallelism. Why
do we insist on additives? The underlying insight, which
is also not new, is that additives are the proof-theoretical
counterpart of non-determinism. A

�
rule allows us to su-

perimpose different proofs, that is (read bottom-up) differ-
ent possible continuations for the process, different possible
ways to evolve in the future. Each slice represents a possi-
ble branching in the evolution of the process.

Note. In this paper we had to cut the proofs, which are
provided in the full version.

2 An overview: strategies and interaction

The role of a strategy in Game Semantics is to tell the
player how to respond to a counter-player move. The dia-
logue between the two players (let us call them P and O)
will produce an interaction (a play).

Figure 1 presents a very simplified example of two tree
strategies (we forget any detail about pointers). A specific
move is played by (belongs to) only one of the players,
so there are P-moves and O-moves. The active (positive)
move of P are those that P plays, while its passive (nega-
tive) moves are those played by O, and to which P has to
respond. In the picture, for each player strategy we distin-
guish the actives (positive) moves, i.e. those which belong
to that player, with circles.

Let us look at the strategies (1). According to the P-
player strategy, it will start with

	��
, then respond with � � to

Opponent move
	��

, and with
�

(termination) to Opponent
move

	��
. Let us make it interact with the O-player strategy.

The interaction goes as follows: O answer to
	��

is
	��

, P
answer to

	 �
is � � , O answer to � � is � � , and so on.

Our algorithm to calculate the interaction is simple. (i.)
Start from P-player initial move, (ii.) Check counter-player
answer to that move, that is, go to the corresponding oppo-
site action, and take the following move. (iii.) Repeat step
(ii.) until terminating on

�
.

Figure 2 illustrates the idea of strategy we are going to
develop.

Tree strategies (1):

P-player: O-player:

�	�
��

� �
�

�	

�	�
�

� �
�

� �
��

�

...

� �

Interaction (1):	�� 	�� � � � � 	���������	�� �

Tree strategies (2):

P-player: O-player:

� �
�

� �

��

�	

�	�
�

� �
�

� �...

�

�

� �

Interaction (2):

� � � � 	���������	�� 	�� 	�� �
Figure 1. Tree strategies

Strategies :

���
���

���
...

���
� �
� �

� �
� �

���
����

� �
� �

Player: Opponent:

Interaction :

	��� �
� �

	�� 	��
�

...	��

Figure 2. Graph strategies

The strategies are graphs and the interaction (which we
are going to describe in a later section) is now a partial or-
der. The way to calculate it is similar to the previous one,
but (1.) there are several threads running in parallel, (2.) on
certain moves we need to synchronize.

Observe as both tree strategies respect all precedence
constraints described by the graph strategy. Both interac-
tions (1) and (2) are linear extensions of the partial order
which describe the interaction between the graph strategies
(however, (1) and (2) schedule the actions in two different
ways).

3 Statics: strategies (L-nets)

Moves: addresses and actions. An address � is a se-
quence of indices, which are just natural numbers. An ac-
tion is either the special symbol

�
(called daimon) or a pair�!
"� ��#
 given by an address � and a finite set

#
of indices.

In the following, the letters
� � � ��	 �%$ ��& vary on actions.

We say that ' is a sub-address of � if � is a prefix of
' (written �)(*'); �,+ is an immediate sub-address of � .
We say that an action
"� ��#
 generates the addresses �,+ , for
all +.- #

, and write �)(� 	
if the action � generates the

address of
	

(
	

is justified by �). We will write �/(
for the

transitive closure of this relation.
A polarized action is given by an action

�
together with

a polarity, positive (
���

) or negative (
���

). The action
�

is
defined to be positive. When clear from the context, or not
relevant, we omit the explicit indication of the polarity. In
all our pictures, the positive actions will be circled. When
not ambiguous, we write just � for the action
"� ��#
 .
Pre L-nets. L-nets have an internal structure, described
by a directed acyclic graph (d.a.g.) on polarized actions,
and an interface, providing the names on which the L-net
can communicate with the rest of the world.

An interface is a pair of disjoint sets
� ���

of addresses
(names), which we write as a sequent

��� �
. We call

�
the positive (or outer) names, and

�
the negative (or inner)

names.
�

is either empty or a singleton. We think of the
inner names as passive, or receiving, and of the outer names
as active or sending.

Directed graphs and notations. In all our pictures, the edges
are oriented downward. We consider any directed acyclic
graph (d.a.g.) up to its transitive closure. An edge from �
to

	
is transitive if there is an oriented path from � to

	
not

using that edge. We draw explicitly only edges which are
not transitive, denoted �
	 	

(� immediately precedes
	
).

We use �	 for 	�	 � � � 	 .
Let us consider a d.a.g.
 . A node

�
of
 is called

minimal (maximal) if there is no node � such that ��	 �
(
� 	 �). Given a node

�
, we denote by � ����� (the view of

�
)

the sub-graph induced by restriction of
 on � � ��� � ��� � ��� �	� � (we omit to indicate
 whenever possible).
It is standard to associate a strict partial order with a

d.a.g., where we have an edge from � to
	

whenever ��� 	
.

Every strict partial order is a d.a.g., and (the transitive clo-
sure of) a d.a.g. is a strict partial order.

Definition 3.1 (Pre L-net) A pre L-net is given by:
� An interface

��� �
.

� A set � of nodes which are labeled by polarized ac-
tions. For any action �
 ' ���
 , ' is sub-address of
a name in the interface. If ' belongs to the positive
(resp. negative) names of the interface, then � is posi-
tive (resp. negative). If the action � is generated by an
action

�
, then � and

�
have opposite polarity.

� A structure on � of directed acyclic bipartite graph (if� 	 ���
, the two actions have opposite polarity) such

that:

i. Parents (justification). For any action �
 ' ���
 ,
either ' belongs to the interface, or it has been
generated by a preceding action

$
. If

$
is positive,

and
$ � 	 � � , then

$ (� � (� is justified by
$
).

ii. Unicity (linearity). Given an action
�

, in � ���
each address only appears once.

iii. Sibling. Negative actions with the same prede-
cessor are all distinct.

iv. Positivity. If � is maximal w.r.t. �	 , then it is
positive.

Chronicles (views). We call chronicle (view) a structure (of
directed acyclic bipartite graph) with a unique maximal ac-
tion (the apex), and satisfying conditions (i) and (ii) above.
Any action

�
in a pre L-net � defines a chronicle, which is

� ��� . Conversely, a pre L-net can be described as a set of
views (as standard for innocent strategies).

Fact 3.2 (Views as partial orders) In a chronicle (or
view), any action occurs at most once. The directed acyclic
graph therefore defines a partial order on its actions:� � ���

iff
� �	 ���

. We identify a chronicle with its actions
equipped with the partial order � . The same applies to
slices, which we define next.

Slices. A subgraph of � which is closed under view
(� ����! � ����") and satisfies (iv) is a slice of � if each
address only appears once.

Comments. Here we think of a view (a chronicle) as a
“desequentialization” of a standard innocent strategy view.
The intuition is that some order information is irrelevant2.
Observe that the address codes the justifier. The extra struc-
ture (the set of indices) will manage the additive structure.

Condition (i) says that the relation �	 respects the prefix
order: ' (�#�$ '%�	&# . Notice that if we read positive
as Player, and negative as Opponent, the condition on neg-
ative actions corresponds to the usual condition on views
for innocent strategies. This condition subsumes both justi-
fication and innocence. Observe also that, as

�
has no sub-

addresses, such an action is always maximal. Condition (iii)
implies that if two sibling negative actions have the same
address, they must have different sets of indices.

By construction, a pre L-net is well founded. Observe
that if the interface is � � � , an action is minimal and neg-
ative iff it has address � (hence all minimal negative actions
have the same address).

Bipoles and sequential links. To understand an L-net, it
is useful to decompose it into conceptual units. The positive
actions induce a partition of the d.a.g., as follows. A bipole
is what we obtain when restricting a pre L-net either (i) to
a positive action and the set of actions which immediately
follow it, or (ii) to the negative actions which are minimal
(degenerated case). Definition 3.1 implies that the bipole in
case (i) is a depth-one tree, where the root is positive and
generates the negative actions (the two relations (� and 	
coincide).

2Similar generalizations on views were propounded by Martin Hyland.

We call sequential link an oriented edge � � 	 	 �
, go-

ing from a positive action to a negative one. A pre L-net
can be seen as built from bipoles, connected together using
sequential links.

L-nets. In an action there is more than just an address and
a polarity. The extra information (the set of indices) allows
us to manage the additive structure of L-nets.

To complete the definition of L-nets, we still need (i)
a correctness criterium on graphs, to guarantee a good
behaviour when normalizing (as it is standard in the
theory of proof-nets) and (ii) a notion allowing us to deal
with multiple copies of a same action, a situation which
is induced by the additive structure. Before giving the
definition of L-net, let us try to understand the additive
structure.

Let us partition a bipole according to the addresses. A
rule is a maximal set ��
"� �����
 � of actions which have the
same address, and belong to the same bipole. A rule is
positive or negative according to the polarity of its actions.
When a rule is not a singleton, we call it an additive rule
(think of each action as an additive component). Observe
that if a rule is not a singleton, it must be negative. An ad-
ditive pair is a pair
 � � �
 � �
"� ��� �
 � of negative actions on
the same address, and belonging to the same bipole.

To each address in a bipole corresponds a formula occur-
rence. If we look at the bipole in the picture below, we have
two rules: � � �
 '�� � �
�� and � � �
 '�� ��� �
 �
 '�� � � � �
 � .
The actions
 '�� � � �
 and
 '�� ��� � �
 form an additive pair. We
can think of ' as the address of a formula �
	
�� ��

 , and
think of '�� as � and '�� as � ��
 .

� ��� � � � �����
� � � � � � ��� � � ��� � � � � � ��� � �

It is immediate that we have a slice iff there are no additive
pairs.

Let us consider a pre L-net. An edge is an entering edge
of the action � if it has � as target. If � is a negative rule and� an entering edge of an action �/-�� , we call � a switching
edge of � . A correction path on a pre L-net is a path which
uses at most one switching edge for each negative rule.

Definition 3.3 (L-net) An L-net is a pre L-net � such that

� Acyclicity. In a slice, no correction path is cyclic.

� Additives. Given two positive actions
� �

"� ��� �
 � � �
 � ���/�
 on the same address, there is an
additive pair
 # �%#
 � �
 # � �
 � such that

� � �	
 # ��#
 � ,
and

� � �	
 # ���
 � .

The additive condition is about the actions which are du-
plicated by effect of the additive structure. Figure 3 aims at

suggesting the correspondence between what we call addi-
tives in our setting and the

�
-rule. Think of
 '! ��#
 �
 '! � �

as the two unary components of a
�

-rule:
� �

and
���

, de-
composing � � � respectively into � and � . Now think of� � � � �

as two decompositions of occurrences of the same
formula

belonging to the context of both � and � . In the

graph, we have a sequential link from each occurrence of

to the additive component on which it depends.

����� � � ���
��� � � " �
��#�� $
 �

� � � � � �
��#�� $ � �

% &('*)
&+',) � &
-

&(',) �)
- .0/ 1�2 .43 1�2.4/6573 182.:9;/6573 1�2

Figure 3.

L-nets as sets of chronicles. An L-net can be seen as a
set of chronicles: the set of all the chronicles defined by
its actions. This allows us to write < ->= and =@? � for
< � = � � respectively a chronicle, a slice and an L-net. In
the following, we will largely rely on the presentation of L-
nets as sets of chronicles. This will allow us to treat easily
the superposition of slices as the union of the two sets of
chronicles.

3.1 The intuitions behind

The d.a.g. A node should be thought of as a cluster of op-
erations which can be performed at the same time. An edge
states a dependency, an enabling relation, or a precedence
among actions. In particular, an edge imposes sequentiality.
The idea underlying L-nets (as well as other approaches) is
to not completely determine the order in which the actions
should be performed, while still being able to express prece-
dence constraints. For example, certain tasks may have to
be performed before other tasks.

Consider a configuration such the one appearing on the
l.h.s. of Figure 4. The actions A and B can be performed
in parallel, or scheduled in any order, as long as they are
performed before C is performed. The action C acts as a
point of synchronization (this will be made precise when
looking at the dynamics, that is normalization).

D

E

FG
G:H F H

I

Figure 4.

Game-semantical intuition.
L-nets vs. designs and innocent strategies. Designs, as in
[8], can be described as a special case of L-nets, those which

are trees, branching only on positive nodes: a negative ac-
tion is followed by a single positive action.

An innocent strategy can be presented either as a set of
plays, or as a set of views, as this is enough to describe all
interactions. In [5] we have shown that designs are sorts of
innocent strategies (on the universal arena), with the view
presentation. The key correspondence is in fact chronicle =
view.
Views/chronicles. In the same sense as L-nets general-
ize designs, they are a generalization of innocent strategies
(we still need to investigate the extent of this). Here we
think of a view/chronicle as a “desequentialization” of a
view/chronicle in the usual sense of innocent strategies or
Ludics.

Given a chronicle < , it is always possible to add sequen-
tiality to make it a linear order. A total order which extends <
will define a complete scheduling of the tasks, in such a way
that each action is performed only after all of its constraints
are satisfied. The graph is Figure 4 is actually a chroni-
cle (view), which could be sequentialized into a chronicle
(view) in the original sense either as � � A � A � B � B � C or as
� � B � B � A � A � C .

Proof-theoretical intuition.
Addresses and actions. The notions of address and action
have been introduced in [8]. In Ludics proofs do not manip-
ulate formulas but their addresses. An address is a name,
given as a sequence of natural numbers. If we give to an oc-
currence of formula address � , its immediate subformulas
will receive address �,+ � � � etc.

An action should be thought of as a cluster of opera-
tions which can be performed at the same time. This intu-
ition has a precise proof-theoretical meaning in the calculus
which underlies Ludics, i.e. second order multiplicative-
additive Linear Logic. Multiplicative and additive connec-
tives of LL separate into two families: positives (��� � � �)
and negatives (

I ��� ��� ���
). A cluster of operations of the

same polarity can be decomposed in a single step, and can
be written as a single connective, which is called a synthetic
connective. A formula is positive (negative) if its outer-most
connective is positive (negative).

Think of an action as a tree of connectives with the
same polarity, decomposed at once The accompanying set
of indices make explicit the relative subaddress of the sub-
formulas which are created in the decomposition.
Bipoles. Notice as in Figure 4 we have four bipoles. Our
bipoles correspond (in an untyped setting) to Andreoli’s no-
tion of bipole. Think of a bipole as a step in the decompo-
sition of a focusing proof.
Termination (

�
). The symbol

�
can be seen as a marking

for termination. A nice interpretation, due to Curien, is to
read it as an “error” case, (a “recoverable” error) which, if
reached, makes the program quit.

Proof-nets. The role of sequential links is played in proof-
nets by boxes and axioms (a box is a sort of axiom). Notice
that sequential links are more flexible than boxes: they do
not need to be nested. A close relative of sequential links in
the theory of proof-nets are the so-called jumps. We think
of a synchronization point as an axiom (possibly a general-
ized one, as those associated to boxes). If we gives types
(formulas) to addresses, the example of Figure 4 could be
written as the proof-net appearing on the r.h.s. of the pic-
ture.

The most interesting consequence of the use of sequen-
tial links rather than boxes is the additive structure. Let
us consider again the example in Figure 3, which now we
slightly expand adding one more decomposition. Again, we
use a typed image to clarify the situation. Think of � just
as a generic negative connective. It helps to think of

as
 � �
 �

. C is in the context of both premisses of � � � , but
is decomposed in two different ways. The parent formula
�
 is shared from both slices. On �
 (on
"� � �� ��
) we
have what (with proof-nets terminology) is called an addi-
tive contraction.

�
	�� ��

� � 	��

� � 	�� ��

� � 	��

� � 	�� ��

������� ���� 	�� ��

� �� �����! "��# � �����! $�%#

.4/ 182 .03 1�2.0/6573 1�2.:9;/ 573 1�2.:9;/6573 1'&:2
We take more space to illustrate these ideas in [3].

4 Dynamics: composition (normalization)

In this section we define normalization of L-nets, that is
to say composition. We proceed in two steps: we first define
normalization on slices, and then normalization on general
L-nets. Normalization on slices is as straightforward as nor-
malization on MLL (multiplicative linear logic) proof-nets
(as slices are sort of purely multiplicative proof-nets). This
is the core of L-net normalization.

Normalization of L-nets is indeed reduced to slice nor-
malization. As illustrated in Figure 6, we: (i) decompose
each L-net in its slices, (ii) normalize the slices, and (iii)
put them together (superimpose), where the superposition
of the slices is simply the union of their chronicles. We will
comment Figure 6 in Section 4.2.

We can compose two L-nets � � � � � which have com-
patible interfaces, that is when a positive (outer) name '
in the interface of � � coincides with the negative (inner)
name in the interface of � � , as for example in

��� � � ' and
' �)(

. The shared name ' is called a cut.
A cut-net is a finite set * ��� � ��� � � �,+ � of L-nets such

that: (i) each address occurs at most in two interfaces, once
as a positive name and once as a negative name; (ii) the

graph whose vertices are the interfaces and whose edges are
the cuts is connected and acyclic.

We call an address internal if it is a sub-address of a cut,
visible otherwise. The definition extends to actions. The
interface of the cut-net is the interface induced by the visi-
ble addresses of the interfaces (

� � � � (
in our example).

A cut-net whose interface is the empty sequent (there are
no visible actions) is said a closed cut-net. Two “comple-
mentary” interfaces which put together produce an empty
interface are called opposite (

� � and � � are opposite in-
terfaces).

A slice of a cut-net * is a cut-net ? * , such that
is a cut-net of slices. Given a cut-net * ��� � ��� � � � + � we
call slice of * a set � � ��� � � + � where � is a slice of � � .

Let [[*]] denote the normal form of * . We will have
that [[*]]

 � [[]]
�
for all slices ? * .

4.1 Normalization of slices

In this section we exploit Fact 3.2. Normalization on
slices follows the standard paradigm of parallel composition
plus hiding of internal communication. There are several
possible ways to present it:

– by rewriting rules in the style of MLL proof-nets;
– by means of an abstract machine;
– as merging of orders (keeping in mind Fact 3.2).

Here we are going to present normalization by means of
an abstract machine (which is an adaptation of our LAM
machine [4]). The interaction among the L-nets forming a
cut-net is described by a wave (we think of this as a multi-
token) traveling on the cut-net. The wave moves upwards
on visible actions, while on internal actions it moves from
the positive action

���
to the corresponding negative action� �

. The order in which the nodes are reached during the in-
teraction establishes a new partial order, the one underlying
the normal form.

Our procedure is reminiscent of event structures, or Petri
nets. Let us denote by

��� � $
 �
 the set � ��� � ��� 	 � � of
nodes which immediately precede

�
(the preconditions of�

). The key point is that we can reach an action only
�

if
we have reached all action in

��� � $
 �
 : one action is en-
abled (accessed) by the enabling of all actions in

��� � $
 �
 .
Because of the structure of L-nets, moving from positive to
negative is “asynchronous”, while reaching a positive action�

needs a synchronization among all the negatives nodes in��� � $
 �
 .
Let * be a cut-net of slices.

�
* is the partial order asso-

ciated to the graph (V,E) on the (non polarized) actions of
* obtained as follows:

� If
�

is a visible action of * (positive or negative) and��� � $
 �
 ?�� then
� -�� and

��� 	 � -
	 � for all��� - ��� � $
 �
 . Observe that if
�

is initial, then
� -�� .

� If
���

is an internal action of * ,
��� � $
 �
 ?�� and� � - * , then

� -
� , and
��� 	 � -�	 � for all

��� -��� � $
 ���
 .
The graph (V,E) describes a d.a.g.. If * is closed, we call
the partial order

�
* a play. If * �� ��� � , we indicate

�
*

with � �� ���
.

The normal form � * � of * is obtained by hiding (i) the
internal actions and (ii) any negative action which is max-
imal (the actions in (i) correspond to internal communica-
tion, while the actions in (ii) are garbage, left from failed
communication).

Proposition 4.1 � * � is an L-net.

The only delicate condition to check is the acyclicity of
the correction paths. To do this we reformulate normaliza-
tion as graph rewriting, in the style of proof-nets normal-
ization.The argument is then rather standard: if there is a
cycle after a rewriting step, we find a cycle in the graph be-
fore performing that step. Figure 5 sketches the rewriting
technique.

� ��� � ��� � ��� � ���
+

�� ...

... +...

� ��� � ���

...� �

� ��� � ���
+ +...� �� �

�

Figure 5. Proof-nets style rewriting

Normalization as merging. A slice of a cut-net is bal-
anced when any internal action

�
appears in also with

opposite polarity. We can reformulate the process of nor-
malization we described as

Proposition 4.2 Let * be balanced. We merge the partial
orders corresponding to each slice by identifying each pair
of internal actions of opposite polarity. The induced rela-
tion on the actions of * is a partial order, which we indicate
with � �! . � * � consists of the visible actions of * �

with the
order induced by � � .

Properties of normalization.

Lemma 4.3 Let � ? be slices. � ��� ?"� � .
Lemma 4.4 Let be a slice of a cut-net and � � $#

.
Then (i)

#
is a slice, and (ii) there exists a balanced slice

 � ? , s.t. � � �
.

The following proposition is easily obtained using con-
fluence of the proof-net style graph rewriting.

GG:H ������

GG:H ������

���

MLL normalization

slicing

[[� �]] [[� �]]

�
�	��
�D���
 H��

D H ���

[[� �]] � [[� �]] �

superposing

� � � �
D���
 H��
D H ��� D H ���
G:H G:H

G
�

D���
 H��
D H ���
G:H

G
�

�
������D���
 H��

D H ���

�
������D���
 H��

D H ��� D H ���

....

Figure 6. L-nets normalization

Proposition 4.5 (Associativity) Normalization of slices is
associative. Let � ��� ���

be slices. � � � ��� � ��� � � � ��� ��� �
� � � � � ��� � �

4.2 Normalization of L-nets

Definition 4.6 (Normalization) Let * be a cut-net. We de-
fine [[*]] = � � � , for all slices ? * .

As [[]]
 � � , from now on we use only the notation [[]].

The key result is the following one, which allow us to re-
duce all properties of [[]] to properties on slices.

Proposition 4.7 Let
? [[*]] s.t.

#
is a slice. There exists

a slice ? * s.t. [[]]

#

.

By exploiting Proposition 4.7 we obtain

Proposition 4.8 If * is a cut net, [[*]] is an L-net.

Proposition 4.9 Normalization is associative: let
��� ��

be L-nets. [[[[
���

]]
�!

]]

[[
��� ��

]]

[[
�

[[
� ��

]]]]

Proof of 4.7 (sketch). Let

[[�]] � [[�]], for �
and � balanced. If � �� � is not a slice of * , it con-
tains at least one additive pair, and any such a pair must
be on cut addresses (otherwise it would be in

#
). We

build a contradiction by using the fact that if we take a pair

"� �%# �
 � �
 � �%# �
 � , the opposite actions
"� ��# �
 � belong to
 � � � . Hence by the additive condition on L-nets (re-
member that � � � ? *), there exists an additive pair" � � " � , such that
"� ��# �
 �$# " ���
 � �%#��
 �%# " � .

Example. In Figure 6 we give an example of L-net nor-
malization. The L-net on the l.h.s. of the cut has the same
form of that in Section 3.1. The actions
"� ��#
 �
 � � �

form an additive pair. Think of them as the two compo-
nents of a

�
-rule, and of A as an additive contraction. We

separate the two slices, and normalize them. Normalization
is just MLL proof-net rewriting. Finally we superimpose
the slices. We find that only the minimum necessary is du-
plicated: the parts which are above
"� �%#
 and
"� � �
); the
right-most part of the L-net is shared. Observe that now
the additive contraction is on #!� . The behaviour of addi-
tive normalization seems to us extremely interesting, as it
maximizes (in a sense to be better understood) the sharing.

5 Observational equivalence

The question of when two terms are the same from the
point of view of the observer (or of the environment) is a
fundamental question in the study of calculi for either se-
quential or concurrent computation.

The approach to such a question (and the stress on it)
is one feature distinguishing Ludics from Game Semantics.
Ludics comes equipped with a built-in notion of observa-
tional equivalence: if we cannot distinguish two agents by
the way they interact with the other agents, they must actu-
ally be (syntactically) equal. Hence there is no need to im-
pose an equivalence relation. This property, called separa-
tion, is a fundamental requirement for Ludics as an interac-
tive theory, but actually has a long-standing tradition, going
back to Böhm theorem for the & -calculus. We can see sepa-
ration as a game-semantical analogue of the Böhm theorem.
Separation shows in some sense that there is no redundancy
in the syntax (or in the model), and gives a feedback of the
quality of the syntax w.r.t. the operational semantics.

In this section we will study a separation property for
L-nets.

Orthogonality. We define a notion of orthogonality. The
idea is to evaluate an L-net inside a closed cut-net. This
idea is similar to that of contextual observational semantics,
where we evaluate a piece of program M in C[M], where C
ranges over full program contexts.

The normal form of a closed cut-net is either the empty
graph, or a set of nodes all labeled by

�
. We call �('�) the

L-net which consists of the single action
�
. Given two L-

nets � ��*
on opposite interface, they are orthogonal, written

� �+*
, if �('�) ? [[� ��*

]].
For any slice , we can define its “canonical opponent”,.-/-

 , that is an L-net which is orthogonal to and uses

all of its actions. Let be a slice. We obtain
,.-/-

 in

two steps. (i) (V,E) is the graph where V is given by the
actions of which are different from

�
, taken with oppo-

site polarity, and E is the 	 structure induced by the parent

order. (ii) For any negative action
�

which is maximal w.r.t.
	 , we add an action

�
and the edge

� 	 �
. Observe that,.-/-

 it is just a prefix tree (i.e. the address counter-part

of a formula tree), completed with actions
�

Proposition 5.1 (i) For any slice � ,
,.-/-

 is a slice (on

the opposite interface). Given a chronicle < , ,.-/-
 <
 has at
most one occurrence of

�
. (ii) � ,.-/-

 .

Garbage collection. Let us consider a configuration as
the one on the left-hand side of the picture below. When

� �

� �

�
�

� �

�

�

normalizing, before reaching � , we have already reached�
. If we are ultimately interested only in orthogonality, we

cannot do better than reaching a
�
; the presence of � does

not add any contribution to this. Let us define a rewriting
rule that we will call “garbage collection”.

The GC rewriting rule is: if � � ��� ��� � $
 �
 for an
occurrence of

�
, then � is erased as well as any

�
, s.t. � �	 �

.
The rewriting system defined by the GC rule is terminat-

ing and confluent. We denote by

 �
 the L-net obtained
by repeated application of this rule.

It is immediate that garbage collection respects the fol-
lowing equations:

 �
7? � ;

 �

 �
 ;
� � ? � ���$

 � �
�?

 � �
 . The third point says
that GC is not monotonous w.r.t. ? , which is easy to un-
derstand as the larger is the net, the more we can have of

�
inducing the GC.

Example: � � � , � � � �
, � � ?�� � �

 � �

� � while

 � �
 �
.

Lemma 5.2
* � � iff

* �

 �
 .
Definition 5.3 (Pure L-nets) An L-net � is pure if

 �
 � .

Separation.

Proposition 5.4 (Separation) Let � � � � be pure L-nets.
There exists an L-net

*
which is orthogonal to one and not

to the other.

Proof of 5.4 (sketch). Define the size of a chronicle as
the number of its actions which are not

�
. Let < be a

minimal chronicle which belongs to one of the two L-
nets � � � � and no to the other. Assume < - � . We
know that [[� � ,.-/-
 <
]] � � ') , and we want to show that���-�� � � ,.-/-
 <
 � for any slice

� ? � � . We prove that

composing
�

with
,.-/-
 <
 , (i) we cannot trigger “by mis-

take” an occurrence of
�

which was present in
�

, and (ii) if� - ,.-
-
 <
 , we cannot reach it using less actions than those
in < .
Observational equivalence. Let

���
be L-nets.

#
	 �
iff
#�� � �

. We have that
#
	

 #
 , #�	 � $

 #

 �
 .
6 Ludics on Graphs

Ludics has been introduced in [8] as a modular construc-
tion.

� At the low level there is the definition of the untyped
computational structures (called designs) and their dy-
namics (normalization). Normalization allows for the
definition of orthogonality.

� The computational objects satisfy certain remarkable
properties, called analytical theorems, in particular as-
sociativity of normalization, and separation. Analyti-
cal theorems are the interface with the rest of the con-
struction.

� At the high-level there is the interactive definition of
types (set of proof/programs equal to their biorthogo-
nal). The analytical theorems make types satisfy in-
ternal completeness: any design in a composed type
can be decomposed into a design in each of the com-
ponent of the type (for example any � -��@	�� can
be decomposed into � � -�� and � � -��).

The high-level architecture of Ludics is independent
from the low-level structures, as long as they satisfy the an-
alytical theorems.

What we do in this Section is to change the low level
“module” of Ludics (computational structures and dynam-
ics) with a more asynchronous one. The structures we use
satisfy the analytical theorems, which allows us to preserve
the high-level architecture of Ludics (types) with its remark-
able results, in particular internal completeness.

Remark 6.1 We actually build the high-level structures of
Ludics on a weaker form of the analytical theorems (we
show that stability is not needed as long as we have a
weaker property). For this reason, we actually have to
reprove some of the results in [8]. However, our weaker
proofs apply to the original version of Ludics.

6.1 The low-level architecture

We can build GC into normalization; this way we are
able to deal only with pure L-nets (

 �
 �).

Definition 6.2 (GC-normalization) [[*]] �

 [[*]].

If � ��*
are L-nets, we have that

 [[

 �
 ��*]]

 [[� ��*

]]. From this we obtain:

Proposition 6.3 (Associativity) Let
��� ��

be pure nets.
[[[[
���

]] � ��]] � [[
�!� �!

]] � [[
�

[[
� �!

]] �]] �
Because of GC, GC-Normalization is not monotonous

w.r.t. inclusion. Moreover, it is not stable (at least when�
appears in the L-nets.), where by stability we mean the

following property: let � ��� � � ? � then [[
� � � ��� � �]]

[[� � � �]]
�

[[� � � �]]. However, [[]] � is monotonous w.r.t. ?
in the closed case, the one on which the whole high-level
architecture of Ludics is build. Even though [8] uses stabil-
ity to define incarnation and establishing internal complete-
ness, the weaker property stated in Lemma 6.4 is actually
just enough.

Lemma 6.4 If * � ? * are closed cut-nets, then [[* �]] � ?
[[*]] � . As a consequence, if � � ? � and

* � � � , then* � � (
�

w.r.t. [[]] �).
Let us summarize the situation with a table:

[[]] [[]] �
Stability w.r.t. ? NO NO
Monotonicity w.r.t. ? � NO
Monotonicity w.r.t. ? (closed) � �
Separation NO �
Associativity � �

Associativity, separation and the property in Lemma 6.4
which enjoys [[]] � is all we need for rebuild the high-level
architecture of Ludics.

6.2 The high-level architecture

From now on, we consider only pure nets and GC-
normalization. Orthogonality is always meant w.r.t. [[]] � .
Given a set S of L-nets, its orthogonal � � is the set of all
L-nets

*
, such that

* � � �
for all � - � .

A behaviour (or interactive type) is a set � of L-nets
of a given interface, which is equal to its biorthogonal. A
behaviour is positive or negative, according to its interface.

A typical interactive construction of Ludics is incarna-
tion. If an L-net � -�� and � ? * �

then
* -�� but none

of the new actions in
*

is really used. W.r.t.any interaction,
� and

*
are equivalent in � , and � is naturally equipped

with an equivalence relation. We can distinguish one L-net� � � 	 in each class, so that �
	 *

iff
� � � 	 � * � 	

.
Incarnation. Given an L-net � in a behaviour � �

its
incarnation

� � � 	 is the part of � that can be interactively
reached via normalization with L-nets in � � . Incarnation
can be defined as the union of all the minimal � � s.t. � � ?
� and � � -
� . By Lemma 6.4,

� � � 	 belongs to � .

Remark 6.5 In [8] stability implies that there exists a
smallest design, which is not true in our more general set-
ting.

An L-net � is called incarnated or material when � � � � .
The incarnation

� � � of � is defined as the set of its material
L-nets. The property we need for the internal completeness
is the following:

Proposition 6.6
� � � � � � .

Proof. One inclusion is obvious as
� � � ?�� . We show

that
� � � � ?�� � . Take

� - � � � � . For any � -
� �
� � � � � 	 and since

� � � 	 ?�� ,
� � � by Lemma 6.4.

6.3 Internal completeness

Let us sketch the constructions on behaviours (types)
which allow us to obtain new behaviours (compounded
types). The main property of these constructions is inter-
nal completeness: the set � of L-nets produced by the con-
struction is equal to its biorthogonal (� � � �). Since
the biorthogonal does not introduce new objects, we have a
complete description of all L-nets in the behaviour. Typi-
cally, if � � � are disjoint behaviours, we define

� � � ���
� � � , which turns out equal to
 � ���
 � � .

� � 	 ��� � # 	 � � # - � ��� - � � , which turns out
equal to � # 	 � � # -�� ��� - � � � � .

Because of internal completeness, if � - � 	 � we know
we can decompose it as � � 	 � � , with � � -
� and
� � - � . Any behaviour formed by using the connectives
can be decomposed in its initial components. Again, [8]
uses stability to prove this result, but it is rather straightfor-
ward to show that the same result can actually be proved
only using monotonicity w.r.t. inclusion, and we only need
it in the closed case (the property stated in Lemma 6.4).

7 Discussion and further work.

Towards concurrency. Restricted to slices, our setting pro-
vides as much parallelism as MLL proof-nets. What do we
gain then? On one side, additive superposition. On the other
side, we recover MLL proof-nets, but with all novelties in-
troduced by Ludics: names (addresses) rather than formu-
las, and a calculus built on the equivalence relation (rather
than the opposite). It will now be important to relate L-
nets both to process calculus terms and to true concurrency
models.
Innocent strategies. This paper is also a proposal for
strategies in game semantical terms, namely for strategies
in which sequentiality is relaxed. Our strategies are pre-
sented as sets of views rather than sets of plays; it is well

known that both presentations are possible. We expect to
be able to further develop this line, to define games. We
are interested in better understanding if and in which sense
L-nets are (de-sequentialized) innocent strategies. It will be
important to relate our work to the work by Mellies [12].
Acyclicity. In a preliminary version (short presentation at
LICS 04) we had a stronger acyclicity condition, forbidding
cycles across slices. Such a condition insures sequentiabil-
ity but kills interesting designs. The acyclicity condition
here is minimalist.

Our choice is to accept all computational objects which
behave well w.r.t. composition, even though they are “in-
trinsically” parallel. They are not “logical,” but why should
we restrict our interest only to sequentializable objects?
Relating trees and graphs. How tree and graph strategies
should relate? An L-net is a set of partially ordered views
(p.o. views); each partial order specifies some constraints.
We think of its sequentialization as a tree-strategy where
each view is a linear extension of a p.o. view.

As said above, here we do not force sequentiability. Tak-
ing inspiration from the Gustave function, it is easy to pro-
duce additive L-nets which are “intrinsically parallel” (all
chronicle can be individually sequentialized, but they are
not “coherent” all together). In recent work with Pierre-
Louis Curien [3], we study a finer acyclicity condition.
Such finer condition guarantees that L-nets are sequential-
izable, while allowing an interesting proof-net behaviour.
We are then able to apply proof-net techniques to strategies,
and establish a correspondence between our graph and tree
strategies similar to that relating proof-nets and sequent cal-
culus.
Syntax. We are interested in developing the proof-nets syn-
tax underlying L-nets, and relating it with the existing ones.
[3] takes us one step further in this direction.

We postpone the study of results on completeness until
the development of such a syntax. The closer the syntax is
to the semantics, the more natural is completeness...

L-nets provide a setting in which several degrees of se-
quentiality can live; sequentiality is regulated by the se-
quential links. With minimal sequentiality, we have just
prefix trees (which we have seen to play a key role in testing
observational equivalence). To recover (an abstract counter-
part of) MALL proof-nets, we need just enough sequential-
ity to recover axioms and additive superposition. At the
other extreme, all sequentiality can be made explicit, and
we have designs “à la locus solum.” All this needs further
investigation.

Our objective would be to have the same possibility of
graduating sequentiality inside the concrete (typed) proof-
nets world. On the fully sequentialized side, designs corre-
spond both to sequent calculus derivations and to Laurent’s
polarized proof-nets for MALL ��� . On the liberal side we
expect to have a syntax for (focusing?) MALL proof-nets.

Separation. In a parallel setting, separation is a challenging
issue. The solution for separation we present here is not yet
totally satisfactory. Our approach reduces any possibility
for distinguishing among graphs to orthogonality, and we
have a rather radical notion of equivalence. A finer way to
separate, would be to separate on the normal form. We be-
lieve it is possible to refine separation by refining the notion
of termination. Maybe providing errors with labels.

Acknowledgments. The structure of partial orders un-
derlying our work has been strongly inspired by a re-
formulation of Games as an abstract category of partial
orders and merging put forward by Martin Hyland in
a talk at the meeting Rencontres Franco-Américaines de
Mathématiques (AMS-SMF) in July 2001. Martin Hyland
suggested that the LAM machine ([4]) could provide a con-
crete way to realize the merging.

Many thanks to Pierre-Louis Curien for his precious re-
marks.

References

[1] S. Abramsky and P.-A. Mellies. Concurrent games and full
completeness. In Proceedings LICS 99. IEEE Computer So-
ciety Press, 1999.

[2] J.-M. Andreoli. Focussing proof-net construction as a mid-
dleware paradigm. In Proceedings of Conference on Auto-
mated Deduction (CADE), 2002.

[3] P.-L. Curien and C. Faggian. L-nets, strategies and proof-
nets. Submitted, available at www.math.unipd.it/claudia.

[4] C. Faggian. Travelling on designs: ludics dynamics. In CSL
02, volume 2471 of LNCS. Springer Verlag, 2002.

[5] C. Faggian and M. Hyland. Designs, disputes and strategies.
In CSL 02, volume 2471 of LNCS. Springer Verlag, 2002.

[6] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[7] J.-Y. Girard. Proof-nets: the parallel syntax for proof-theory.
In Ursini and Agliano, editors, Logic and Algebra. Marcel
Dekker, New York, 1996.

[8] J.-Y. Girard. Locus solum. Mathematical Structures in Com-
puter Science, 11:301–506, 2001.

[9] R. Harmer and G. McCusker. A fully abstract game se-
mantics for finite nondeterminism. In Proceedings LICS 99.
IEEE Computer Society Press, 1999.

[10] M. Hyland and A. Schalk. Games on graphs and sequentially
realizable functionals. In Proceedings LICS 02, pages 257–
264. IEEE Computer Society Press, 2002.

[11] O. Laurent and L. Tortora-de Falco. Slicing polarized addi-
tive normalization. In T. Ehrhard, J.-Y. Girard, P. Ruet, and
P. Scott, editors, Linear Logic in Computer Science, volume
316 of LMSLNS. Cambridge University Press, Nov. 2004.

[12] P.-A. Mellies. Asynchronous games 2 : The true concur-
rency of innocence. In CONCUR 04, volume 3170 of LNCS.
Springer Verlag, 2004.

[13] M. Nielsen, G. Plotkin, and G. Winskel. Event structures
and domains 1. Theoretical Computer Science, 13:85–108,
1981.

