Concurrent programming

Concurrency:

simultaneous process sharing ressources
= mutual exclusion
= synchronisation

with Objective Caml

Three modules

e Thread: to create, run and stop process involved in
concurrent applications

e Mutex: to create, lock and release critical sections

e Condition: to create, wait and send synchronisation
signals

Additonnal module

e ThreadUnix: non blocking Unix [/O

104

Threads

“multiple threads of control (also called lightweight
processes) that execute concurrently in the same
memory space’

Creation: val create : (’a -> ’b) -> ’a > t
Thread.create f x
1. creates a new thread to excecute (f x) concurrently

with the other threads of the program.
Note: “the program” itself is a thread.

2. returns the handle (Thread.t) of the created thread.
3. terminates when (£ x) returns (or fails)

4. the result ofOCtext(f x) (or its failure) is discarded
and not directly accessible to the parent thread (the
one who created)

Suspend: val delay : float -> unit
Thread.delay d

1. suspends the execution of the calling thread for d sec-
onds.

105

Threads

Let’s play with

File pingpong.ml

let ping t =
for i=0 to 10 do
print_string "ping";
flush stdout;
Thread.delay t
done ;;
let pong t =
for i=0 to 10 do
print_string "PONG";
flush stdout;
Thread.delay t
done ;;

print_endline"ping-pong go:";
Thread.create ping 0.1;
Thread.create pong 0.05;
Thread.delay 3.0;
print_newline()

Threads are not in the standard library

ocamlc -thread -custom -o pingpong \
unix.cma threads.cma pingpong.ml \
-cclib -lunix -cclib -lthreads

106

Let’s play with threads

Run ping-pong game:

[unix-prompt] ./pingpong

ping-pong go:
pingPONGPONGpingPONGPONGpingPONGPONGpingPONGPONG
pingPONGpingPONGPONGpingpingpingpingping
[unix-prompt]

Delays:

e in ping ot pong, allow alternation

e in main expression, leave time for threads to execute

Changing delay parameters

Thread.create ping 0.01;
Thread.create pong 0.05;

changes the ditribution

[unix-prompt] ./pingpong

ping-pong go:
pingPONGpingpingpingPONGpingpingpingPONGpingping
pingPONGpingPONGPONGPONGPONGPONGPONGPONG
[unix-prompt]

107

Mutual exclusion

Critical section:

A piece of code that must not be interrupted
= locks

Module Mutex:

val create : unit > t
Return a new mutex.

val lock : t => unit
Lock the given mutex. Only one thread can have
the mutex locked at any time. A thread that at-
tempts to lock a mutex already locked by another
thread will suspend until the other thread unlocks
the mutex.

val unlock : t => unit

Unlock the given mutex. Other threads suspended
trying to lock the mutex will restart.

108

Let’s play with

Stamming players

let m = Mutex.create () ;;

let £ s =

for i=0 to 5 do
Mutex.lock m; (* begin critical section *)
print_string s;
Thread.delay 0.1;
print_string s;
flush stdout;
Mutex.unlock m; (*x end critical section *)
Thread.delay (Random.float 0.3)

done ;;

print_endline"ping-pong go:";
Thread.create f "ping";
Thread.create f "PONG";
Thread.delay 3.0;
print_newline()

Delays:

e between printing should allow the other thread to play
but it will not, because of mutex

e randomized to introduce some perturbation in alter-
nation

109

Stamming play

Let’s run

ping-pong go:
pingpingPONGPONGpingpingPONGPONGPONGPONGpingping
PONGPONGpingpingPONGPONGPONGPONGpingpingpingping

Note that ping and PONG are always displayed twice

Changing loop’s body by adding one more display

Mutex.lock m; (* begin critical section *)
print_string s;

Thread.delay 0.1;

print_string s;

print_string s;

flush stdout;

Mutex.unlock m; (* end critical section *)

will give laternation of three consecutive ping and PONG

ping-pong go:

pingpingpingPONGPONGPONGpingpingpingPONGPONGPONG
PONGPONGPONGpingpingpingPONGPONGPONGpingpingping
PONGPONGPONGPONGPONGPONGpingpingpingpingpingping

110

Synchronization

Waiting for a given condition

Alternation on a boolean flag

e ping plays when flag is true and set it to false

e pong plays when flag is false and set it to true

Wait and signal: module Condition

val create : unit -=> t
Return a new condition variable.

val wait : t => Mutex.t => unit

wait c m atomically unlocks the mutex m and sus-
pends the calling process on the condition variable
c. The process will restart after the condition vari-
able c has been signalled. The mutex m is locked
again before wait returns.

val signal : t => unit

signal c restarts one of the processes waiting on
the condition variable c.

111

Using conditions

Fair and safe alternation

let m = Mutex.create () ;;
let ¢ = Condition.create () ;;
let b = ref true ;;

let f (wait, s) =

for 1i=0 to 10 do
while wait () do Condition.wait ¢ m done;
print_string s; flush stdout;
b := not !b;
Condition.signal c;
Mutex.unlock m;

done ;;

print_endline"ping-pong go:";

Thread.create f ((fun () -> not !b), "ping");
Thread.create £ ((fun () -> !'b), "PONG");
Thread.delay 1.0;

print_newline ()

Note: the mutex ¢ i1s used both

e to protect the signal variable c

e to protect the modification of the flag b

112

Using conditions (continued)

Unfair but sate alternation

ping will play twice more than pong

Use an integer flag instead of a boolean

e ping plays when flag is more than zero, set substract
1 from the flag and do it one more
e pong plays when the flag is null and set it to 2

Partial code

113

[..]
let n = ref 2 ;;
let ping) =
for i=1 to 10 do
while !'n = 0 do Condition.wait ¢ m done;
print_string "ping"; flush stdout;
n := In-1;
Condition.signal c; Mutex.unlock m
done ;;
let pong () =
for i=1 to 5 do
while 'n > O do Condition.wait ¢ m done;
print_string "PONG"; flush stdout;
n := 2;
Condition.signal c¢; Mutex.unlock m
done ;;

[..]

114

