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Abstra
t. CCS 
an be 
onsidered as a most natural extension of �nite

state automata in whi
h intera
tion is made possible thanks to parallel


omposition. We propose here a similar extension for top-down tree au-

tomata. We introdu
e a parallel 
omposition whi
h is parameterized by a

graph at the verti
es of whi
h subpro
esses are lo
ated. Communi
ation

is allowed only between subpro
esses related by an edge in this graph.

We de�ne an observational equivalen
e based on barbs as well as weak

bisimilarity equivalen
e and prove an adequa
y theorem relating these

two notions.

Introdu
tion

There is no need to insist on the importan
e of tree automata [CDG

+
07℄ in

modern theoreti
al and applied 
omputer s
ien
e: they are pervasive in logi
,

veri�
ation, rewriting, stru
tured do
uments handling, 
onstraint solving et
.

Tree automata are similar to usual �nite word automata with the di�eren
e that

they re
ognize trees instead of words (sequen
es of letters). Let Σ be a ranked

signature (Σn is the set of fun
tion symbols of arity n). A Σ-tree is just a term

written with the signature Σ. A top-down tree automaton has a �nite number of

states and transitions labeled by elements of Σ: a transition labeled by f ∈ Σn

has a sour
e and a sequen
e of n targets whi
h all are states of the automaton.

A word automaton 
an be seen as a tree automaton over a signature Σ su
h

that Σn is empty for all n > 1 and Σ0 has a unique distinguished element ∗.
The de�nition of tree re
ognition by a top-down tree automaton A is quite

simple: a tree f(t1, . . . , tn) is re
ognized by A at state X means that A has

an f -labeled transition whose sour
e is X and target is (X1, . . . , Xn) and ti
is re
ognized by A at state Xi for ea
h i = 1, . . . , n. There is also a notion of

bottom-up tree automata, that we do not 
onsider in this work; these two notions

are equivalent in terms of the re
ognized languages, as long as one 
onsiders non-

deterministi
 automata.

Automata feature a dualist vision of 
omputation with an essential di
hotomy

between programs (automata) and data (words, trees), very mu
h in the spirit
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of Turing ma
hines (based on the ma
hine/tape di
hotomy). The pro
ess al-

gebra CCS, introdu
ed in the early 1980's by Milner [Mil80℄, en
ompasses this

restri
tion, extending �nite automata with intera
tive 
apabilities. In this frame-

work, �nite automata (labeled with letters a, b, . . . ) 
an typi
ally intera
t with

other automata (labeled with dual letters a, b, . . . ), as soon as they are 
ombined
through a new binary operation: parallel 
omposition. But mu
h more general

intera
tion s
enarii are of 
ourse possible in CCS. This fundamental invention led

to very fruitful new lines of resear
h in the theory of 
on
urrent pro
esses and to

the introdu
tion of new pro
ess algebra, among whi
h the π-
al
ulus [MPW92℄

is not the less remarkable, with many spe
ta
ular appli
ations to 
ryptography,

bioinformati
s et
.

In this paper, we propose a similar �intera
tive 
losure� of tree automata, a

new version of CCS whi
h extends tree automata just as ordinary CCS extends

word automata.

The natural idea is of 
ourse to add a parallel 
omposition operation on pro-


esses, but this requires some 
are. Indeed when a pre�xed pro
ess f ·(P1, . . . , Pn)
� after a pre�x f ∈ Σn, it is natural to have n subpro
esses, and not only one,

as explained in [CQJ08℄ � intera
ts with a dually pre�xed one f · (Q1, . . . , Qn),
we should remove the pre�xes (just as in CCS) and then authorize intera
tion

between the subpro
ess Pi with all pro
esses whi
h 
ould 
ommuni
ate with its

father f · (P1, . . . , Pn) as well as with Qi, but not with the Qj 's for j 6= i; nei-
ther should the Pi's be allowed to 
ommuni
ate with ea
h other in the resulting

pro
ess. The same should hold of 
ourse for the Qi's.

One major motivation for this 
hoi
e of design is that top-down tree re
og-

nition of tree automata should be implementable in our new CCS for trees, just

as usual word re
ognition of automata is implementable in ordinary CCS. But

for this purpose we have to preserve 
arefully the distin
tion between the vari-

ous sons of tree nodes, thus preventing sons whi
h are not at similar positions

to intera
t. Indeed, with this de�nition, we are able to prove the intera
tive

re
ognition Theorem 1.

This led us to the idea that general parallel 
omposition should be a graph, at

the verti
es of whi
h subpro
esses (whi
h are guarded sums) should be lo
ated;

the edges of this graph spe
ify whi
h intera
tions are allowed. In Se
tion 1, we

introdu
e the syntax of this new pro
ess 
al
ulus CCTS, restri
ting ourselves to

a fragment where all sums are guarded; indeed, the 
orresponding fragment of

CCS is known to be sensible and well behaved.

In Se
tion 2, we introdu
e an operational semanti
s for CCTS by de�ning a

single rewriting rule. This rule generalizes the a/a redu
tion of CCS to the 
ase

where a 
an be an n-ary fun
tion symbol and implements the idea of restri
ted


ommuni
ation 
apabilities explained above.

In order to de�ne an operational equivalen
e on pro
esses, we adapt the


on
ept of weak barbed 
ongruen
e [MS92,SW01℄ whi
h is a natural way of saying

that two pro
esses behave in the same way, in all possible 
ontexts. As usual,

this notion is quite di�
ult to handle and we introdu
e therefore a notion of

weak bisimilarity in Se
tion 3 and prove that two weakly bisimilar pro
esses are
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weakly barbed 
ongruent in Se
tion 4. For this, we de�ne a labeled transition

system on pro
esses, and the de�nition of its transitions involves 
ru
ially the

lo
ations (graph verti
es). The notion of bisimulation itself has to take these

lo
ations 
arefully into a

ount.

In Se
tion 2, we also argue that our version of CCS is a 
onservative exten-

sion of both tree automata and ordinary CCS: by this we mean that it admits

restri
tions whi
h 
oin
ide with these two formalisms. Moreover, we show that

tree re
ognition 
an be expressed simply in terms of intera
tion, using only the

rewriting semanti
s. Though quite simple, this result uses in an essential way

the restri
ted 
ommuni
ation 
apabilities of CCTS.

These results suggest that CCTS is a sound and interesting extension of CCS.

The most novel feature is that subpro
esses are lo
ated at the verti
es of a graph

whose edges indi
ate whi
h 
ommuni
ations are possible, and the topology of this

graph evolves during redu
tion. When no edge relates two pro
esses, they 
an

evolve independently, in a truly 
on
urrent way, whereas the presen
e of an edge

means that the 
orresponding pro
esses will possibly syn
hronize in the future.

Another interesting property of this approa
h is the importan
e of lo
ations

whi
h suggests 
onne
tions with the work of Castellani [Cas01℄, though lo
ations

are used in a di�erent way: in this latter work, 
ommuni
ation is possible when

the involved pro
esses are lo
ated at the same pla
e.

This paper extends non trivially [CQJ08℄, where parallel 
omposition however

was not dealt with. Finding the right way of formalizing this operation and of

de�ning the relevant notions of bisimulation have been a di�
ult task. Beyond

the intera
tive 
losure of tree automata obtained by this new formalism, we also

believe that CCTS provides a new 
ompositional framework for the study of true


on
urren
y. Indeed, the n pro
esses forked by an n-ary labeled pre�x behave in

a truly 
on
urrent way, and su
h a truly 
on
urrent situation 
annot be obtained

in ordinary CCS (
on
urren
y is modelized by interleaving).

One of our further works will deal with possible 
onne
tions between CCTS

and other pro
ess algebras, and in parti
ular with the possibility of en
oding

CCTS within the π-
al
ulus.

1 Syntax of pro
esses

We use letters P ,Q, . . . to denote ve
tors (P1, . . . , Pn), (Q1, . . . , Qn) et
. Let

Loc be a 
ountable set whose elements are 
alled lo
ations denoted with letters

p, q . . . with or without subs
ripts or supers
ripts.

1.1 Graphs

Let E and F be disjoint sets and let p ∈ E. We set E [F/p] = (E \ {p}) ∪ F . In
other words, E [F/p] is the set obtained from E by substituting the element p
with the set F .

By a graph we mean a pair G = (|G|,⌢G), where |G| is a �nite subset of

Loc and ⌢G is a symmetri
 and antire�exive relation on |G|. Let G and H be

graphs with |G| ∩ |H | = ∅ and let p ∈ |G|. We de�ne a graph G [H/p] as follows:
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� |G [H/p]| = |G| [|H |/p]

� and, given q, r ∈ |G [H/p]|, we say that q ⌢G[H/p] r if q ⌢G r or q ⌢H r or

q ⌢G p and r ∈ |H | or r ⌢G p and q ∈ |H |.

1.2 Pro
esses

We assume to be given a 
ountable set of pro
esses variables V , denoted with

letters X,Y, . . . with or without subs
ripts or supers
ripts.

LetΣ = (Σn)n∈N be a signature. With any symbol f ∈ Σn, we asso
iate a 
o-

symbol f̄ distin
t from all the elements of Σn and we set Σ̄n = Σn∪{f̄ | f ∈ Σn}.
In that way, we de�ne an extended signature Σ̄ = (Σ̄n)n∈N. For f ∈ Σn, we set

¯̄f = f .

We de�ne the set of CCTS pro
esses by indu
tion.

� If X ∈ V then X is a pro
ess.

� If X ∈ V and P is a pro
ess, then µX · P is a pro
ess in whi
h X is bound.

� If f ∈ Σ̄n and P1, . . . , Pn are pro
esses, then f · (P1, . . . , Pn) is a pro
ess.

� If G is a �nite Loc-graph (that is |G| ⊆ Loc is �nite) and Φ is a fun
tion

from |G| to pro
esses, then G〈Φ〉 is a pro
ess, to be understood as the par-

allel 
omposition of the pro
esses Φ(p) for p ∈ |G|, with 
ommuni
ation


apabilities spe
i�ed by G. The pro
esses Φ(p) are 
alled the 
omponents of

G〈Φ〉.

� 0 is a pro
ess and if P and Q are pro
esses, then P +Q is a pro
ess.

� If P is a pro
ess and I is a �nite subset of Σ, then P \ I is a pro
ess.

The notion of free and bound variable does not deserve further 
omments, µ
being of 
ourse a binder.

1.3 α-
onversions of lo
ations.

Two pro
esses P and P ′
su
h that there exists a bije
tion ϕ : |P | → |P ′| whi
h

is a graph isomorphism (that is p ⌢P q ⇔ ϕ(p) ⌢P ′ ϕ(q)) and P ′(ϕ(p)) = P (p)
for all p ∈ |P | are said to be externally α-equivalent. General α-equivalen
e is

de�ned by extending this relation to sub-pro
essses in the obvious way.

When we 
onsider several pro
esses P1, . . . , Pn at the same time, we always

assume that the webs |P1|, . . . , |Pn| are pairwise disjoint.

1.4 Substitution.

If R and P are pro
esses and X ∈ V , then the pro
ess R [P/X ] is de�ned in the

obvious way, substituting ea
h o

urren
e of X in R with P . Of 
ourse, one has
as usual to perform α-
onversion when needed during this pro
ess.
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1.5 Canoni
al pro
esses

We de�ne now the notion of 
anoni
al pro
ess : it is a pro
ess where all sums are

guarded. More pre
isely, we de�ne by mutual indu
tion three 
lasses of obje
ts:

� 
anoni
al pro
esses,

� 
anoni
al guarded sum

� and re
ursive 
anoni
al guarded sum.

These are parti
ular pro
esses on whi
h we'll fo
uss our attention in the sequel.

� If X ∈ V then X is a 
anoni
al pro
ess.

� If G is a �nite Loc-graph and Φ is a fun
tion from |G| to re
ursive 
anoni
al

guarded sums, then G〈Φ〉 is a 
anoni
al pro
ess.

� If P is a 
anoni
al pro
ess and I is a �nite subset of Σ, then P \ I is a


anoni
al pro
ess.

� A 
anoni
al guarded sum is either 0 or a pro
ess of the shape f ·(P1, . . . , Pn)+
S where f ∈ Σ̄n, S is a 
anoni
al guarded sum and P1, . . . , Pn are 
anoni
al

pro
esses.

� A re
ursive 
anoni
al guarded sum is either a 
anoni
al guarded sum or a

pro
ess of shape µX · S where S is a re
ursive 
anoni
al guarded sum.

For instan
e, the pro
esses G〈Φ〉+H〈Ψ〉 and µX ·X are not 
anoni
al.

Lemma 1. Let R and P be 
anoni
al pro
esses. Then R [P/X ] is a 
anoni
al

pro
ess. If R is a re
ursive 
anoni
al guarded sum, then so is R [P/X ]. If R is a


anoni
al guarded sum, then so is R [P/X ].

Proof. Easy indu
tion on R. 2

With any re
ursive 
anoni
al guarded sum S, we asso
iate a 
anoni
al guarded
sum cs(S) as follows:

cs(S) =

{
S if S is a 
anoni
al guarded sum

cs(T [S/X ]) if S = µX · T .

Using Lemma 1, one sees easily that this fun
tion is well de�ned and total.

All the pro
esses we 
onsider in this paper are 
anoni
al. By Lemma 1, pro-


esses are 
losed by substitution.

We denote with Proc the set of all 
anoni
al pro
esses. If P = G〈Φ〉 is a


anoni
al pro
ess, we use |P | = |G|. Also, for p ∈ |P |, we often write P (p)
instead of Φ(p), and we denote as ⌢P the graph relation of G.

The empty pro
ess (the only P su
h that |P | = ∅) is denoted as ε.
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1.6 More notations

Given two graphs G and H with disjoint webs, and a subset D of |G| × |H |
we de�ne a graph K = G ⊕D H by |K| = |G| ∪ |H | and, given p, q ∈ |K|, we
stipulate that p ⌢K q if p ⌢G q or p ⌢H q or (p, q) ∈ D or (q, p) ∈ D. If D = ∅
then we set G⊕H = G⊕D H .

Given pro
esses P = G〈Φ〉 and Q = H〈Ψ〉 and a relation D ⊆ |P | × |Q|,
one de�nes the pro
ess P ⊕D Q as (G ⊕D H)〈Φ ∪ Ψ〉. When D is empty we

simply denote this sum as P ⊕Q, and more generally, we denote as ⊕P the sum

P1 ⊕ · · · ⊕ Pn of the pro
esses P = (P1, . . . , Pn) (remember that we impli
itly

assume that the sets |Pi| are pairwise disjoint). When D = |P |× |Q|, the pro
ess
P ⊕D Q will be denoted as P | Q and 
alled the full parallel 
omposition of P
and Q. It 
orresponds to the standard parallel 
omposition of pro
ess algebras,

where all pro
esses 
an freely intera
t with ea
h other.

With the same notations as above, if p ∈ |G|, we denote as P [Q/p] the pro
ess
G [H/p] 〈Φ′〉 where Φ′(p′) = Φ(p′) if p′ /∈ |H | and Φ′(p′) = Ψ(p′) if p′ ∈ |H |.

2 Operational semanti
s

2.1 Internal redu
tion

Let P and P ′
be pro
esses. We say that P redu
es to P ′

if there are p, q ∈ |P |
su
h that p ⌢P q, cs(P (p)) = f ·(P1, . . . , Pn)+S, cs(P (q)) = f ·(Q1, . . . , Qn)+T
and P ′

is de�ned as follows

3

: |P ′| = (|P | \ {p, q}) ∪
⋃n

i=1 |Pi| ∪
⋃n

i=1 |Qi| and
⌢P ′

is the least symmetri
 relation on |P ′| su
h that, for any, p′, q′ ∈ |P ′|, one
has p′ ⌢P ′ q′ in one of the following 
ases:

1. p′ ⌢Pi
q′ or p′ ⌢Qi

q′ for some i = 1, . . . , n
2. p′ ∈ |Pi| and q′ ∈ |Qi| for some i = 1, . . . , n (the same i for both)

3. {p′, q′} 6⊆
⋃n

i=1 |Pi| ∪
⋃n

i=1 |Qi| and λ1(p
′) ⌢P λ1(q

′)

where λ1 : |P ′| → |P | is the residual fun
tion de�ned by

λ1(p
′) =





p if p′ ∈
⋃n

i=1 |Pi|

q if p′ ∈
⋃n

i=1 |Qi|

p′ otherwise.

Observe that λ1 is not a surje
tion when n = 0.
We �nish the de�nition of P ′

by saying that P ′(p′) = Pi(p
′) if p′ ∈ |Pi|,

P ′(p′) = Qi(p
′) if p′ ∈ |Qi| (for i = 1, . . . , n) and P ′(p′) = P (p′) if p′ /∈

⋃n
i=1 |Pi|∪⋃n

i=1 |Qi|.
This 
ru
ial de�nition 
learly deserves some explainations. The pro
ess P to

be redu
ed has two subpro
esses lo
ated at p and q, with dual pre�xes: f · P
and f ·Q. The fa
t that p and q are 
onne
ted in P (p ⌢P q) means that these

3

We heavily use the impli
it hypothesis that, when several pro
esses P1, . . . , Pn are


onsidered at the same time, the sets |Pi| are pairwise disjoint.
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pro
esses 
an intera
t. This intera
tion 
onsists in suppressing both pre�xes and

in repla
ing the verti
e p of the graph G of P by the graph G1⊕· · ·⊕Gn (where

Gi is the graph of Pi) and the verti
e q by the graph H1 ⊕ · · · ⊕Hn (where Hi

is the graph of Qi) within the graph G of P . The 
onne
tion between p and q
in P is inherited by the verti
es of Gi and Hi in P ′

, but a pro
ess lo
ated on

Gi (one of the 
omponents of Pi) 
annot 
ommuni
ate with a pro
ess lo
ated

on Hj with j 6= i. The 
onne
tions between p and other verti
es of P , distin
t
from q, are also inherited by the verti
es of all Gi's and similarly for the Hi's.

We denote with → the internal redu
tion relation and with →∗
its re�exive

and transitive 
losure.

Example 1. Let a ∈ Σ0 and f ∈ Σ2. Consider the pro
ess P = a | a | f · (a, a) |
f · (a, a) (we write simply �a� instead of a · ()). In other words, the graph of P is

a 
omplete graph with 4 verti
es, say 1, 2, 3, 4, and we have P (1) = a, P (2) = a,
P (3) = f · (a, a) and P (4) = f · (a, a). Sin
e 3 and 4 are 
onne
ted in that graph

and the 
orresponding pre�xes f and f are dual, we 
an redu
e P to a pro
ess

P ′
su
h that |P ′| = {1, 2, 5, 6, 7, 8} (remember that we work up to α-equivalen
e,

so the names of lo
ations are irrelevant) with P ′(1) = a, P ′(2) = a, P ′(5) = a,
P ′(6) = a, P ′(7) = a, and P ′(8) = a, and the edges of P ′

are all {i, j} with

i ∈ {1, 2} and j 6= i, {5, 7} and {6, 8}. So, in P ′
, the intera
tion of a lo
ated at 5

with a lo
ated at 8 is not possible, but of 
ourse a lo
ated at 5 
an intera
t with

a lo
ated at 2. Performing that redu
tion, we get P ′′
with |P ′′| = {1, 6, 7, 8} and

the edges of P ′′
are all {1, j} with j 6= 1 and {6, 8}, with P ′′(1) = a, P ′′(6) = a,

P ′′(7) = a and P ′′(8) = a. In P ′′
, the only possible redu
tions are between a

lo
ated at 1 and a lo
ated at 6 or 8. Both lead to the pro
ess a ⊕ a where no

redu
tion is possible.

2.2 Top-down tree automata as a parti
ular 
ase

A top-down tree automaton is a pair A = (Q, T ) where Q is a �nite subset of V ,
whose elements are 
alled states, and T is a �nite set of triples (X, f, (X1, . . . , Xn))
where f ∈ Σn and X1, . . . , Xn ∈ Q and whose elements are 
alled transitions.

The language re
ognized by A at state X ∈ Q, denoted as L(A,X), is the least set
of Σ-trees su
h that f(t1, . . . , tn) ∈ L(A,X) as soon as there are X1, . . . , Xn ∈ Q
su
h that (X, f, (X1, . . . , Xn)) ∈ T and ti ∈ L(A,Xi) for i = 1, . . . , n.

We asso
iate a pro
ess 〈A〉X with any pair (A,X) where A = (Q, T ) is a

tree automaton and X ∈ Q. More generally we de�ne 〈A〉XX where X is a �nite

subset of V (intuitively, X is the set of already de�ned pro
esses), and then we

set 〈A〉X = 〈A〉∅X .

� If X /∈ X , then 〈A〉XX = µX · S where S is the sum of all pre�xed pro
esses

f · (〈A〉
X∪{X}
X1

, . . . , 〈A〉
X∪{X}
Xn

) where (X, f, (X1, . . . , Xn)) ∈ T ,
� and if X ∈ X , then 〈A〉XX = X .

This indu
tive de�nition is well founded be
ause the parameter X in
reases

stri
tly at ea
h indu
tive step, and remains in
luded in Q. Moreover, the invari-

ant that all the free variables of 〈A〉XX belong to X is preserved by the indu
tive

step, and hen
e 〈A〉X is 
losed.
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Lemma 2. With the notations above, cs(〈A〉Y ) is the sum of all pre�xed pro-


esses f · (〈A〉Y1
, . . . , 〈A〉Yn

) where (Y, f, (Y1, . . . , Yn)) ∈ T .

Proof. More generally, cs(〈A〉
{X1,...,Xp}
X

[
〈A〉X1

/X1, . . . , 〈A〉Xp
/Xp

]
) is equal to

the sum above, for any subset {X1, . . . , Xp} of Q (with the Xi's pairwise dis-

tin
t). The proof is a simple indu
tion on q− p, where q is the 
ardinality of Q.

2

We represent dually any Σ-tree t = f(t1, . . . , tn) as a pro
ess t by setting

t = f · (t1, . . . , tn). The following results expresses that our pro
ess algebra, to-

gether with its internal redu
tion, is a 
onservative extension of tree automata by

showing that tree re
ognition boils down to a (very) parti
ular 
ase of intera
tion

between pro
esses.

Theorem 1. Let A = (Q, T ) be a tree automaton, let X ∈ Q and let t be a

Σ-tree. Then t ∈ L(A,X) i� (〈A〉X | t) →∗ ε.

Proof. This is straightforward, on
e observed that, if t = f(t1, . . . , tn) and if

(X, f, (X1, . . . , Xn)) ∈ T , one has 〈A〉X | t → (〈A〉X1
| t1) ⊕ · · · ⊕ (〈A〉Xn

| tn),
thanks to Lemma 2. Observe then that (〈A〉X1

| t1)⊕ · · · ⊕ (〈A〉Xn
| tn) redu
es

to ε i� ea
h pro
ess 〈A〉Xi
| ti redu
es to ε sin
e these pro
esses 
annot intera
t

with ea
h other. If T has no element of the shape (X, f, (X1, . . . , Xn)), then the

pro
ess 〈A〉X | t does not redu
e. 2

2.3 CCS for words as a parti
ular 
ase

We assume here that Σn = ∅ for all n > 1 and that Σ0 = {∗}. Then a Σ-tree

is the same thing as a Σ1-word, written a1 . . . ap∗. We restri
t our attention

to pro
esses in whi
h all the graphs parameterizing parallel 
ompositions are


omplete, so that any pro
ess is of the shape S1 | · · · | Sp where ea
h Si is a

re
ursive 
anoni
al guarded sum µX · (a1 · P1 + · · · + am · Pm): this restri
tion
of our pro
ess algebra 
oin
ides with guarded CCS. Observe also that, if P is a

pro
ess in this restri
ted setting (arities ≤ 1 and all parallel 
ompositions are


omplete graphs), and if P → P ′
, then P ′

belongs to the same restri
tion and

the redu
tion P → P ′
is a standard τ -redu
tion of CCS. In that way we see that

our pro
ess algebra is also a 
onservative extension of ordinary guarded CCS.

There is a slight, inno
uous, variation in this way of representing ordinary

CCS within CCTS. It 
onsists in taking Σn = ∅ for n 6= 1 and Σ1 as word

alphabet. Then one 
an use ε (the empty pro
ess) instead of the ∗ symbol of

arity 0. For simpli
ity, it is this 
oding that we'll use in Se
tion 5. The drawba
k

of this representation is that it does not s
ale down to automata 
onsidered as

parti
ular pro
esses as explained in Se
tion 2.2.

2.4 Weak barbed bisimilarity

Let f ∈ Σ̄ and let P be a pro
ess. We say that f is a barb of P , and write P ↓f ,
if there exists p ∈ |P | su
h that cs(P (p)) is of shape f · (P1, . . . , Pn) + S.
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A relation B ⊆ Proc
2
is a weak barbed bisimulation if it is symmetri
 and

satis�es the following 
onditions. For any P,Q ∈ Proc su
h that P B Q,

� for any P ′ ∈ Proc, if P →∗ P ′
, then there existsQ′ ∈ Proc su
h thatQ →∗ Q′

and P ′ B Q′
(one says that B is a weak redu
tion bisimulation);

� for any P ′ ∈ Proc and any f ∈ Σ̄, if P →∗ P ′
and P ′ ↓f , then there exists

Q′ ∈ Proc su
h that Q →∗ Q′
and Q′ ↓f (one says that B is weak barb

preserving ; observe that one does not require that P ′ B Q′
).

The diagonal relation {(P, P ) | P ∈ Proc} is a weak barbed bisimulation, and

if B and B′
are weak barbed bisimulations, then so are B′ ◦ B and B ∪ B′

. We

say that P,Q ∈ Proc are weakly barbed bisimilar if there exists a weak barbed

bisimulation B su
h that P B Q. Notation: P
•
≈ Q.

Lemma 3. Weak barbed bisimilarity is an equivalen
e relation.

Proof. Straightforward, using the above 
losure properties of weak barbed bisim-

ulations. 2

2.5 Weak barbed 
ongruen
e

Let Y be a variable; a Y -
ontext is a pro
ess R whi
h 
ontains exa
tly one free

o

urren
e of Y , whi
h does not o

ur in a subpro
ess of R of the shape µX ·R′

(in other words, Y must really o

ur only on
e in R). If R and S are Y -
ontexts,

so is R [S/Y ].
A relation R ⊆ Proc

2
is a 
ongruen
e if it is re�exive and su
h that, for any

Y -
ontext R, one has P R Q ⇒ R [P/Y ] R R [Q/Y ].

Proposition 1. For any re�exive relation R ⊆ Proc
2
, there exists a largest


ongruen
e R 
ontained in R. This relation is 
hara
terized by: P R Q i� for

any Y -
ontext R one has R [P/Y ] R R [Q/Y ]. If R is an equivalen
e relation,

so is R.

Proof. The �rst statement results from the fa
t that 
ongruen
es are 
losed

under arbitrary unions and that R 
ontains the identity relation whi
h is a


ongruen
e. As to the se
ond statement, let E be the relation de�ned by P E Q
i� for any Y -
ontext R one has R [P/Y ] R R [Q/Y ]. Then E is a 
ongruen
e

whi
h is 
ontained in R (sin
e we 
an take R = Y ) and hen
e E ⊆ R. Conversely,

assume that P R Q and let R be a Y -
ontext. Sin
e R is a 
ongruen
e, we have

R [P/Y ] R R [Q/Y ] and hen
e R [P/Y ] R R [Q/Y ] sin
e R ⊆ R by de�nition

of R and hen
e P E Q. The last statement results from the se
ond one sin
e E
is an equivalen
e relation when R is an equivalen
e relation. 2

The largest 
ongruen
e 
ontained in

•
≈ is denoted as

∼= and is 
alled weak

barbed 
ongruen
e: it is our main notion of operational equivalen
e on pro
esses.

It is an equivalen
e relation by the proposition above and by Lemma 3. Moreover,

we have

P ∼= Q i� for any Y -
ontext R, we have R [P/Y ]
•
≈ R [Q/Y ] .
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3 Lo
alized transition systems of pro
esses

Just as in ordinary CCS, it is very di�
ult to prove that two pro
esses are weak

barbed 
ongruent, be
ause of the universal quanti�
ation on 
ontexts used in the

de�nition of this equivalen
e relation. In order to prove weak barbed 
ongruen
e

of pro
esses, one needs therefore more 
onvenient tools.

The most 
anoni
al of these tools is weak bisimilarity, an equivalen
e relation

whi
h expresses that two pro
esses manifest the same 
ommuni
ation 
apabilities

along their internal redu
tions. This equivalen
e relation is de�ned as the union

of all weak bisimulations.

The main feature of weak bisimilarity is that it is a 
ongruen
e: this fa
t is

the main ingredient in the proof that two weakly bisimilar pro
esses are weakly

barbed 
ongruent. To prove this result, one needs to asso
iate with ea
h weak

bisimulation R a new weak bisimulation R′

alled its parallel extension. In or-

dinary CCS, the de�nition is as follows: one says that U R′ V if U = P | S and

V = Q | S with P R Q and S is a pro
ess. The main step is of 
ourse to show

that R′
is a weak bisimulation.

In CCTS however, we 
annot simply speak of �the parallel 
omposition� U
of P and S, we have to spe
ify a relation C ⊆ |P | × |S|, and then we 
an

set U = P ⊕C S. Similarly we have to say that V = Q ⊕D S for some relation

D ⊆ |Q|×|S|, and that P R Q. Not surprisingly, we shall see that these relations
C and D must ful�ll some requirement.

Moreover our bisimulations 
annot be simple relations between pro
esses, be-


ause, when two pro
esses P = G〈Φ〉 and Q = H〈Ψ〉 are bisimilar, we have to say

whi
h subpro
esse Φ(p) of P should be in bisimulation with whi
h subpro
esses

Ψ(q) of Q.

For instan
e, if P = f · (P1, P2) and Q = f · (Q1, Q2) (with |P | = |Q| = {1})
are related by a bisimulation R, then (after performing the a
tion f on both

sides), the pro
esses P1⊕ P2 and Q1⊕Q2 (with |P1 ⊕ P2| = |Q1 ⊕ Q2| = {1, 2},
and Pi and Qi lo
ated at i for i = 1, 2) should be related by R. But this


annot be a
hieved by saying that P1 R Q2 for instan
e: if P1 manifests some


ommuni
ation 
apability a, we should insist that the same 
apability a be

manifested by Q1.

A 
onvenient way to enfor
e this dis
ipline is to say that a bisimulation is

a set of triples (P,E,Q) where P and Q are pro
esses and E ⊆ |P | × |Q|. In
the example above, we start with (P, {(1, 1)}, Q) ∈ R (where 1 is the lo
ation

of f · (P1, P2) in P and similarly for Q), and then, after having performed the

a
tion f on both sides, we arrive to (P1 ⊕ Q1, {(1, 1), (2, 2)}, P2 ⊕ Q2) ∈ R.

Let us 
ome ba
k to the 
on
ept of parallel extension of a bisimulation R.

The bisimulation R is a set of triples (P,E,Q) as explained above. We shall say

that (U, F, V ) ∈ R′
when we 
an �nd a pro
ess S and two relations C ⊆ |P |×|S|

and D ⊆ |Q| × |S| with U = P ⊕C S and V = Q⊕D S. We require moreover the

existen
e of a relation E su
h that (P,E,Q) ∈ R and F = E ∪ Id|S| (in other

words, (u, v) ∈ F if (u, v) ∈ E, or u = v ∈ |S|), and we also require C and D to

be �equivalent up to E�, meaning that, when (p, q) ∈ E, we have (p, s) ∈ C i�
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(q, s) ∈ D, whi
h seems to be the 
orre
t assumption in the proof that R′
is a

bisimulation.

Bisimulations are usually de�ned in terms of a transition system, a very gen-

eral and �exible 
on
ept whi
h is essential in the study of 
on
urren
y. Due to

our more 
omplex de�nition of bisimulations involving triples (P,E,Q) instead
of pairs (P,Q), it is not 
lear anymore how to use transition systems in our

framework; at least should we generalize them so as to take lo
alization of sub-

pro
esses into a

ount. An abstra
t notion of lo
alized transition system might

be of general interest, but we prefer to fo
us here on CCTS and to de�ne one

parti
ular lo
alized transition system of pro
esses. Its states are pro
esses. As

usual in CCS-like formalisms, there are τ -transitions between pro
esses P
τ

−→
ρ

P ′


orresponding to one internal redu
tion.

The additional information ρ is a fun
tion |P ′| → |P | whi
h allows to tra
e

the �lo
ative history� of the redu
tion. Labeled transition have shape P
p:f ·(L)
−→
λ1

P ′

where p ∈ |P |, L = (L1, . . . , Ln) with Li ⊆ |P ′| and λ1 : |P ′| → |P | are again
informations whi
h allow to keep tra
k of the lo
ative history of the redu
tion.

These additional informations about lo
ations are su�
ient to de�ne an adequate

notion of bisimulation.

3.1 Lo
alized transitions

We de�ne now this lo
alized transition system

4

.

Let P and P ′
be pro
esses. We write P

p:f ·(L)
−→
λ1

P ′
if p ∈ |P |, cs(P (p)) =

f · (P1, . . . , Pn) + S with P ′ = P [⊕P /p], L1 = |P1|,. . . , Ln = |Pn| and λ1 :
|P ′| → |P | is the residual fun
tion de�ned by λ1(p

′) = p if p′ ∈
⋃n

i=1 Li and

λ1(p
′) = p′ otherwise5.

We write P
τ

−→
λ1

P ′
if P → P ′

in the sense of 2.1 and, with the notations

of that se
tion, λ1 : |P ′| → |P | is the residual fun
tion de�ned by λ1(p
′) = p if

p′ ∈
⋃

i |Pi|, λ1(p
′) = q if p′ ∈

⋃
i |Qi|, and λ1(p

′) = p′ otherwise.

We de�ne the re�exive-transitive 
losure

τ∗
−→
λ

as follows. We say that P
τ∗
−→
λ

P ′

if there are n ≥ 1, pro
esses P1, . . . , Pn and fun
tions λ1, . . . , λn−1 su
h that

P = P1, Pn = P ′
and Pi

τ
−→
λi

Pi+1 for i = 1, . . . , n− 1, and λ = λ1 ◦ · · · ◦ λn−1.

We write P
p:f ·(L)
=⇒

λ,λ1,λ′

P ′
if there are pro
esses P1 and P ′

1 su
h that P
τ∗
−→
λ

P1
p:f ·(L)
−→
λ1

P ′
1

τ∗
−→
λ′

P ′
.

4

Again, we don't try to provide a general de�nition of this 
on
ept; this 
ould be the

obje
t of further work

5

There are redundan
ies in these notations, for instan
e λ1 is 
ompletely determined

by the data p, L. This redundan
y will be useful in the sequel.
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3.2 Lo
alized weak bisimilarity

We introdu
e now our notion of weak bisimilarity whi
h will be shown to imply

weak barbed 
ongruen
e of pro
esses. The de�nition is 
oalgebrai
 and is based

on a 
on
ept of bisimulation whi
h, due to the importan
e of the graph stru
ture

in the operational semanti
s of CCTS, strongly uses lo
ations.

A lo
alized relation (on pro
esses) is a set R ⊆ Proc× P(Loc2) × Proc su
h

that, if (P,E,Q) ∈ R then E ⊆ |P | × |Q|. Su
h a relation R is symmetri
 if

(P,E,Q) ∈ R ⇒ (Q, tE,P ) ∈ R where

tE = {(q, p) | (p, q) ∈ E}.
A (lo
alized) weak bisimulation is a symmetri
 lo
alized relation su
h that

� if (P,E,Q) ∈ R and P
τ

−→
λ1

P ′
then Q

τ∗
−→
ρ

Q′
with (P ′, E′, Q′) ∈ R for some

E′ ⊆ |P ′|× |Q′| su
h that, if (p′, q′) ∈ E′
then (λ1(p

′), ρ(q′)) ∈ E (this latter


ondition will be 
alled 
ondition on residuals)

� if (P,E,Q) ∈ R and P
p:f ·(L)
−→
λ1

P ′
then Q

q:f ·(M)
=⇒

ρ,ρ1,ρ′

Q′
with (p, ρ(q)) ∈ E and

(P ′, E′, Q′) ∈ R for some E′ ⊆ |P ′| × |Q′| su
h that if (p′, q′) ∈ E′
then

(λ1(p
′), ρρ1ρ

′(q′)) ∈ E, and, moreover, if n ≥ 2, then either (p′, ρ′(q′)) ∈⋃n
i=1(Li×Mi) or p

′ /∈
⋃n

i=1 Li and ρ′(q′) /∈
⋃n

i=1 Mi (this 
ondition is 
alled


ondition on residuals).

This latter di
hotomy, a

ording to whether n = 1 or n ≥ 2 (where n is the

arity of f) is essential in order to obtain three e�e
ts whi
h seem impossible to


on
iliate otherwise:

� weak bisimilarity must be transitive

� it must imply weak barbed 
ongruen
e

� and it should be an extension of the standard weak bisimilarity of CCS

(
onsidering CCS as a subsystem of CCTS as explained in Se
tion 2.3).

Lemma 4. Let R be a weak bisimulation. If (P,E,Q) ∈ R and P
τ∗
−→
λ

P ′
, then

Q
τ∗
−→
ρ

Q′
with (P ′, E′, Q′) ∈ R for some E′ ⊆ |P ′|×|Q′| su
h that if (p′, q′) ∈ E′

then (λ′(p′), ρ′(q′)) ∈ E.

Proof. Simple indu
tion on the length of the sequen
e of redu
tions P
τ∗
−→
λ

P ′
.

2

Lemma 5. If P
τ∗
−→
λ

P1, P1
p:f ·(L)
=⇒

λ1,λ2,λ′

1

P ′
1 and P ′

1
τ∗
−→
λ′

P ′
then P

p:f ·(L)
=⇒

λλ1,λ2,λ′

1
λ′

P ′
.

Proof. Results immediately from the de�nitions. 2

Now we provide a 
hara
terization of weak bisimulation whi
h is more sym-

metri
 than the de�nition above of these relations.

Lemma 6. A symmetri
 lo
alized relation R ⊆ Proc×P(Loc2)×Proc is a weak

bisimulation i� the following properties hold.
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� If (P,E,Q) ∈ R and P
p:f ·(L)
=⇒

λ,λ1,λ′

P ′
, then Q

q:f ·(M)
=⇒

ρ,ρ1,ρ′

Q′
with (λ(p), ρ(q)) ∈ E

and (P ′, E′, Q′) ∈ R for some E′ ⊆ |P ′| × |Q′| su
h that if (p′, q′) ∈ E′
then

(λλ1λ
′(p′), ρρ1ρ

′(q′)) ∈ E) and, moreover, if n ≥ 2, either (λ′(p′), ρ′(q′)) ∈⋃n
i=1(Li ×Mi) or λ′(p′) /∈

⋃n
i=1 Li and ρ′(q′) /∈

⋃n
i=1 Mi.

� If (P,E,Q) ∈ R and P
τ∗
−→
λ

P ′
, then Q

τ∗
−→
ρ

Q′
with (P ′, E′, Q′) ∈ R for

some E′ ⊆ |P ′| × |Q′| su
h that if (p′, q′) ∈ E′
then (λ(p′), ρ(q′)) ∈ E.

Proof. The stated property are obviously su�
ient, we prove that the �rst one is

ne
essary (ne
essity of the se
ond one is Lemma 4). Assume that (P,E,Q) ∈ R

and P
p:f ·(L)
=⇒

λ,λ1,λ′

P ′
, that is P

τ∗
−→
λ

P1
p:f ·(L)
−→
λ1

P ′
1

τ∗
−→
λ′

P ′
. By Lemma 4 one has Q

τ∗
−→
ρ

Q1 with (P1, E1, Q1) ∈ R where E1 is su
h that (p1, q1) ∈ E1 ⇒ (λ(p1), ρ(q1)) ∈
E.

Sin
e P1
p:f ·(L)
−→
λ1

P ′
1 and (P1, E1, Q1) ∈ R, one has Q1

q:f ·(M)
=⇒

ρ1,ρ2,ρ′

1

Q′
1 with

(p, ρ1(q)) ∈ E1 and (P ′
1, E

′
1, Q

′
1) ∈ R where E′

1 is su
h that if (p′1, q
′
1) ∈ E′

1 then

(λ1(p
′
1), ρ1ρ2ρ

′
1(q

′
1)) ∈ E1 and, if n ≥ 2, then either (p′1, ρ

′
1(q

′
1)) ∈

⋃n
i=1(Li×Mi),

or p′1 /∈
⋃n

i=1 Li and ρ′1(q
′
1) /∈

⋃n
i=1 Mi. Sin
e P ′

1
τ∗
−→
λ′

P ′
and (P ′

1, E
′
1, Q

′
1) ∈ R,

we 
an apply Lemma 4 again whi
h shows that Q′
1

τ∗
−→
ρ′

Q′
with (P ′, E′, Q′) ∈ R

where E′
is su
h that (p′, q′) ∈ E′ ⇒ (λ′(p′), ρ′(q′)) ∈ E′

1. By Lemma 5, we have

Q
q:f ·(M)
=⇒

ρρ1,ρ2,ρ′

1
ρ′

Q′
and remember that (P ′, E′, Q′) ∈ R. We have (p, ρ1(q)) ∈ E1

and hen
e (λ(p), ρρ1(q)) ∈ E by de�nition of E1. Last, the 
ondition on residuals

obviously holds. 2

Lemma 7. Let I be the lo
alized relation de�ned by: (P,E,Q) ∈ I if P = Q
and E = Id|P |. Then I is a weak bisimulation.

Proof. Straightforward. 2

If R and R′
are weak bisimulations, so is R ∪ R′

: this results immediately

from the de�nition. We say that P and Q are weakly bisimilar (notation P ≈
Q) if there exists a weak bisimulation R and a set E ⊆ |P | × |Q| su
h that

(P,E,Q) ∈ R.

Let R and S be lo
alized relations. We de�ne a lo
alized relation S ◦ R as

follows: (P,H,R) ∈ S ◦ R if H ⊆ |P | × |R| and there exist Q, E and F su
h

that (P,E,Q) ∈ R, (Q,F,R) ∈ S and F ◦ E ⊆ H .

Lemma 8. If R and S are weak bisimulations, then so is S ◦ R.

Proof. First, observe that S ◦ R is symmetri
.

We use the 
hara
terization of weak bisimulations given by Lemma 6. Let

(P,H,R) ∈ S ◦ R. Let Q, E and F be su
h that (P,E,Q) ∈ R, (Q,F,R) ∈ S
and F ◦ E ⊆ H .
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� Assume �rst that P
p:f ·(L)
=⇒

λ,λ1,λ′

P ′
. Then we have Q

q:f ·(M)
=⇒

ρ,ρ1,ρ′

Q′
with (λ(p), ρ(q)) ∈

E and (P ′, E′, Q′) ∈ R with E′
su
h that if (p′, q′) ∈ E′

then (λλ1λ
′(p′), ρρ1ρ

′(q′)) ∈
E and, if n ≥ 2 then (λ′(p′), ρ′(q′)) ∈

⋃
i(Li×Mi) or λ

′(p′) /∈
⋃

i Li and ρ′(q′) /∈
⋃

i Mi. Therefore we have R
r:f ·(N)
=⇒

σ,σ1,σ′

R′
with (ρ(q), σ(r)) ∈ F and (Q′, F ′, R′) ∈ S

with F ′
su
h that if (q′, r′) ∈ F ′

then (ρρ1ρ
′(q′), σσ1σ

′(r′)) ∈ F ) and, if n ≥ 2
then (ρ′(q′), σ′(r′)) ∈

⋃
i(Mi ×Ni) or ρ

′(q′) /∈
⋃

iMi and σ′(r′) /∈
⋃

iNi. So we

have (λ(p), σ(r)) ∈ F ◦ E ⊆ H . Let

H ′ = {(p′, r′) ∈ |P ′| × |R′| | (λλ1λ
′(p′), σσ1σ

′(r′)) ∈ H and if n ≥ 2 then

(λ′(p′), σ′(r′)) ∈
n⋃

i=1

(Li ×Ni) or λ
′(p′) /∈

n⋃

i=1

Li and σ′(r′) /∈
n⋃

i=1

Ni}

By de�nition of H ′
, the triple (P ′, H ′, R′) satis�es the 
onditions on resid-

uals, and we are left with proving that F ′ ◦ E′ ⊆ H ′
whi
h will show that

(P ′, H ′, R′) ∈ S ◦ R. Let (p′, r′) ∈ F ′ ◦ E′
, there exists q′ su
h that (p′, q′) ∈ E′

and (q′, r′) ∈ F ′
.

We know that (λλ1λ
′(p′), ρρ1ρ

′(q′)) ∈ E and (ρρ1ρ
′(q′), σσ1σ

′(r)) ∈ F and

therefore (λλ1λ
′(p′), σσ1σ

′(r)) ∈ F ◦ E ⊆ H . So assume now that n ≥ 2. We

must prove that if λ′(p′) ∈
⋃

i=1n Li or σ
′(r′) ∈

⋃n
i=1 Ni then (λ′(p′), σ′(r′)) ∈

Li × Ni for some i. Without loss of generality, we 
an assume that λ′(p′) ∈⋃
i=1n Li (be
ause the situation is symmetri
). Then by the 
ondition on residu-

als for E′
we know that (λ′(p′), ρ′(q′)) ∈ Lj×Mj for some j ∈ {1, . . . , n}, be
ause

n ≥ 2. Therefore (ρ′(q′), σ′(r′)) ∈ Mi×Ni by the 
onditions on residuals satis�ed

by F ′
. It follows that (λ′(p′), σ′(r′)) ∈ Li ×Ni as required.

� Assume now that P
τ∗
−→
λ

P ′
. Sin
e (P,E,Q) ∈ R we have Q

τ∗
−→
ρ

Q′
and there

exists E′
su
h that (P ′, E′, Q′) ∈ R and, if (p′, q′) ∈ E′

, then (λ(p′), ρ(q′)) ∈

E. Sin
e (Q,F,R) ∈ S, we have R
τ∗
−→
σ

R′
and there exists F ′

su
h that

(Q′, F ′, R′) ∈ S and for any (q′, r′) ∈ F ′
, one has (ρ(q′), σ(r′)) ∈ F . We have

(P ′, F ′ ◦ E′, Q′) ∈ S ◦ R and it is obvious that F ′ ◦ E′
satis�es the 
ondition

on residuals. 2

We say that two pro
esses P and Q are weakly bisimilar, and write P ≈ Q,
if there exists a weak bisimulation R and a relation E ⊆ |P | × |Q| su
h that

(P,E,Q) ∈ R.

Proposition 2. The relation ≈ is an equivalen
e relation on pro
esses.

Proof. Re�exivity results from Lemma 7, and symmetry from the symmetry

hypothesis on weak bisimulations. Transitivity is a straightforward 
onsequen
e

of Lemma 8. 2

Proposition 3. If P ≈ Q then P
•
≈ Q.
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Proof. Let R be a weak bisimulation. Let B be the binary relation on pro
esses

de�ned by: (P,Q) ∈ B if there exists E ⊆ |P | × |Q| su
h that (P,E,Q) ∈ R. We


ontend that B is a weak barbed bisimulation, and this will prove the proposition.

First observe that B is symmetri
 be
ause R is a symmetri
 lo
alized relation.

� Let (P,Q) ∈ B and assume �rst that P →∗ P ′
, that is P

τ∗
−→
λ

P ′
for some

residual fun
tion λ. Let E ⊆ |P |× |Q| be su
h that (P,E,Q) ∈ R. By Lemma 6,

one has Q
τ∗
−→
ρ

Q′
for some residual fun
tion ρ, and there exists E′ ⊆ |P ′| × |Q′|

su
h that (P ′, E′, Q′) ∈ R and therefore (P ′, Q′) ∈ B as required; this shows

that B is a weak redu
tion bisimulation.

� Assume now that (P,Q) ∈ B and that P →∗ P ′
with P ′ ↓f (with f ∈ Σ̄ of

arity n), meaning that P ′ p′:f ·(L)
−→
λ′

1

P ′′
for some p′ ∈ |P ′|, some sequen
e of sets of

lo
ations L and some residual fun
tion λ′
1.

Let E ⊆ |P | × |Q| be su
h that (P,E,Q) ∈ R. By Lemma 6, one has Q
τ∗
−→
ρ

Q′
for some residual fun
tion ρ, and there exists E′ ⊆ |P ′| × |Q′| su
h that

(P ′, E′, Q′) ∈ R. Sin
e R is a weak bisimulation we have therefore Q′ q′:f ·(M)
=⇒

ρ′,ρ1,ρ′′

Q′′

and hen
e Q′ →∗ Q′
1 with Q′

1 ↓f . This shows that B is weak barb preserving

sin
e Q →∗ Q′
1. 2

We want now to prove a mu
h stronger result, namely that weak bisimilarity

implies weak barbed 
ongruen
e (and not just weak barbed bisimilarity). This

boils down to proving that weak bisimilarity is a 
ongruen
e. Let us �rst give

an example whi
h illustrates this impli
ation.

Example 2. Let �rst Σ be su
h that Σ1 = {a, b} and Σi = ∅ if i 6= 1. Then it is

easy to see that a · ε | b · ε and a · b · ε + b · a · ε are weakly bisimilar just as in

usual CCS.

Let now Σ be su
h that Σ1 = {a}, Σ2 = {f, g} and Σi = ∅ for i > 2. Let
P = f · (g · (ε, ε), ε) + g · (f · (ε, ε), ε) and Q = f · (ε, ε) | g · (ε, ε). Then we


annot prove that P and Q are weakly bisimilar (be
ause, in the de�nition of

a lo
alized bisimulation, we are in the 
ase n > 1). And indeed, surprisingly, P
and Q are not weak barbed bisimilar. A
tually, let R = f · (ε, g · (a · ε, ε))). Then
Q | R →∗ a · ε and a · ε ↓a whereas there is no pro
ess M su
h that P | R →∗ M
with M ↓a. The best we 
an do is redu
e P | R to g · (ε, ε)⊕ g · (a · ε, ε).

4 Weak bisimilarity is a 
ongruen
e

As in the standard method used in ordinary CCS, the main step for proving that

weak bisimilarity is a 
ongruen
e 
onsists in extending a lo
alized relation R on

pro
esses into another lo
alized relation R′
whi
h is, intuitively, a 
ongruen
e

wrt. �parallel 
omposition�. Sin
e parallel 
omposition here is parametrized by

a relation, the de�nition is more involved than in ordinary CCS and strongly

involves lo
ations.



16

Adapted triples of relations. We say that a triple of relations (D,D′, E) with

D ⊆ A × B, D′ ⊆ A × B′
and E ⊆ B × B′

is adapted, if, for any (a, b, b′) ∈
A×B ×B′

, with (b, b′) ∈ E, one has (a, b) ∈ D i� (a, b′) ∈ D′
.

Parallel extension of a lo
alized relation. Let R be a lo
alized relation on pro-


esses. One de�nes a new lo
alized relation R′
by stipulating that (U, F, V ) ∈ R′

if there is a pro
ess S, and a triple (P,E,Q) ∈ R as well are two relations

C ⊆ |S| × |P | and D ⊆ |S| × |Q| su
h that U = S ⊕C P , V = S⊕D Q (these no-

tations are introdu
ed in Se
tion 1.6), the triple of relations (C,D,E) is adapted
and F is the relation Id|S| ∪E ⊆ |U | × |V |. This lo
alized relation will be 
alled

the parallel extension of R.

Intuitively, we express here that U is the parallel 
omposition of S and P ,
with 
onne
tions between the pro
esses of S and those of P spe
i�ed by C.
And similarly for V , de�ned as the parallel 
omposition of S and Q through the

relation D. The hypothesis that (C,D,E) should be adapted means that C and

D spe
ify the same 
onne
tions between pro
esses up to E.

Lemma 9. If R is symmetri
, then so is its parallel extension R′
.

Proof. Observe that (C,D,E) is adapted i� (D,C, tE) is adapted. 2

The next proposition is an essential tool for proving that weak bisimulation

is a 
ongruen
e.

Proposition 4. If R is a weak bisimulation, so is its parallel extension R′
.

Proof. Symmetry of R′
results from the symmetry of R and from Lemma 9.

Let (U, F, V ) ∈ R′
with U = S ⊕C P , V = S ⊕D Q, (P,E,Q) ∈ R, (C,D,E)

adapted and F = Id|S| ∪E.

Case of a τ-transition. Assume that U
τ

−→
λ

U ′
. We must show that V

τ∗
−→
ρ

V ′

with (U ′, F ′, V ′) ∈ R′
and (λ(u′), ρ(v′)) ∈ F for ea
h (u′, v′) ∈ F ′

(
ondition

on residuals). There are three 
ases as to the lo
ations of the two guarded sums

involved in that redu
tion.

� Assume �rst that they are lo
ated in S, in other words there are s, t ∈ |S|
with s ⌢S t, cs(S(s)) = f ·S + S̃ (S̃ is a guarded sum) and cs(S(t)) = f ·T + T̃

(T̃ is a guarded sum), and we have S
τ

−→
µ

S′
with

� |S′| = (|S| \ {s, t}) ∪
⋃

i |Si| ∪
⋃

i |Ti|
� and ⌢S′

is the least symmetri
 relation on |S′| su
h that s′ ⌢S′ t′ if s′ ⌢Si

t′, or s′ ⌢Ti
t′, or (s′, t′) ∈ |Si| × |Ti| for some i = {1, . . . , n}, or {s′, t′} 6⊆⋃n

i=1 |Si| ∪
⋃n

i=1 |Ti| and µ(s′) ⌢S µ(t′).

Remember that the residual fun
tion µ is given by µ(s′) = s if s′ ∈
⋃

i |Si|,
µ(s′) = t if s′ ∈

⋃
i |Ti| and µ(s′) = s′ otherwise. We have U ′ = S′ ⊕C′ P where

C′ = {(s′, p) ∈ |S′| × |P | | (µ(s′), p) ∈ C} and λ = µ ∪ Id|P |.
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Then we have similarly V = S ⊕D Q
τ

−→
ρ

V ′ = S′ ⊕D′ Q with ρ = µ ∪ Id|Q|,

and D′ = {(s′, q) ∈ |S′| × |Q| | (µ(s′), q) ∈ D}.
The triple (C′, D′, E) is adapted: let s′ ∈ |S′|, p ∈ |P | and q ∈ |Q| be su
h

that (p, q) ∈ E. If (s′, p) ∈ C′
then (µ(s′), p) ∈ C and hen
e (µ(s′), q) ∈ D

sin
e (C,D,E) is adapted, that is (s′, q) ∈ D′
, and similarly for the 
onverse

impli
ation.

Coming ba
k to the de�nition of R′
, we see that (U ′, F ′, V ′) ∈ R′

where

F ′ = Id|S′| ∪E. Moreover, the 
ondition on residuals is satis�ed, sin
e, given

(u′, v′) ∈ F ′
, we have either u′ = v′ ∈ |S′| and then λ(u′) = ρ(v′) ∈ |S| or

(u′, v′) ∈ E and (λ(u′), ρ(v′)) = (u′, v′) ∈ E. In both 
ases (λ(u′), ρ(v′)) ∈ F .

� Assume next that they are lo
ated in P , in other words there are p, r ∈ |P |
with cs(P (p)) = f ·P + P̃ (where P̃ is a guarded sum) and cs(P (r)) = f ·R+ R̃

(where R̃ is a guarded sum), and we have P
τ

−→
µ

P ′
with

� |P ′| = (|P | \ {p, r}) ∪
⋃

i |Pi| ∪
⋃

i |Ri|
� and⌢P ′

is the least symmetri
 relation on |P ′| su
h that p′ ⌢Pi
r′ or p′ ⌢Ri

r′ or (p′, r′) ∈ |Pi|×|Ri| for some i ∈ {1, . . . , n}, or {p′, r′} 6⊆
⋃

i |Pi|∪
⋃

i |Ri|
and µ(p′) ⌢P µ(r′).

We re
all that the residual fun
tion µ is given by µ(p′) = p if p′ ∈
⋃

i |Pi|,
µ(p′) = r if p′ ∈

⋃
i |Ri| and µ(p′) = p′ otherwise. With these notations, the

pro
ess U ′
is U ′ = S ⊕C′ P ′

where C′ = {(s, p′) ∈ |S| × |P ′| | (s, µ(p′)) ∈ C}
and the residual fun
tion λ is de�ned as λ = Id|S| ∪µ. Sin
e (P,E,Q) ∈ R and

P
τ∗
−→
µ

P ′
, one has Q

τ∗
−→
ν

Q′
with (P ′, E′, Q′) ∈ R where E′ ⊆ |P ′|×|Q′| satis�es

the 
ondition on residuals (p′, q′) ∈ E′ ⇒ (µ(p′), ν(q′)) ∈ E. Let D′ = {(s, q′) ∈

|S| × |Q′| | (s, ν(q′)) ∈ D}. Setting V ′ = S ⊕D′ Q′
, we have V

τ∗
−→
ρ

V ′
where

ρ = Id|S| ∪ν.
The triple (C′, D′, E′) is adapted: let (p′, q′) ∈ E′

and let s ∈ |S|. If (s, p′) ∈
C′
, we have (s, µ(p′)) ∈ C. Sin
e (µ(p′), ν(q′)) ∈ E (by de�nition of E′

), we have

(s, ν(q′)) ∈ D be
ause (C,D,E) is adapted. That is (s, q′) ∈ D′
. The 
onverse

impli
ation is proved similarly.

Let F ′ = Id|S| ∪E
′ ⊆ |U ′| × |V ′|, we have therefore (U ′, F ′, V ′) ∈ R′

(by

de�nition of R′
). Last we 
he
k the 
ondition on residuals. Let (u′, v′) ∈ F ′

,

then either u′ = v′ ∈ |S| and then λ(u′) = u′ = v′ = ρ(v′) or u′ ∈ |P ′|, v′ ∈ |Q′|
and (u′, v′) ∈ E′

and then (λ(u′), ρ(v′)) = (µ(u′), ν(v′)) ∈ E by the 
ondition on

residuals satis�ed by E.

� Assume last that one of the involved guarded sums is lo
ated in S and that

the other one is lo
ated in P , this is of 
ourse the most interesting 
ase in this

�rst part of the proof.

By de�nition of internal redu
tion (see Se
tion 2.1) we have s ∈ |S| and
p ∈ |P | with (s, p) ∈ C and with cs(S(s)) = f · S + S̃ and cs(P (p)) = f · P + P̃
with the usual notational 
onventions, and U ′ = S′⊕C′ P ′

where S′ = S [⊕S/s],
P ′ = P [⊕P/p], and C′ ⊆ |S′| × |P ′| is de�ned as follows: (s′, p′) ∈ C′

if

� (s′, p′) ∈ |Si| × |Pi| for some i,
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� or (s′, p′) /∈ (
⋃

i |Si|)× (
⋃

i |Pi|) and (λ(s′), λ(p′)) ∈ C,

where the residual map λ : |U ′| = |S′| ∪ |P ′| → |U | = |S| ∪ |P | is de�ned by

λ(u′) = u′
if u′ ∈ (|S′| \

⋃
i |Si|) ∪ (|P ′| \

⋃
i |Pi|), λ(s′) = s if s′ ∈

⋃
i |Si| and

λ(p′) = p if p′ ∈
⋃

i |Pi|.

We have P
p:f ·(L)
−→
λ

P ′
(where Li = |Pi| for ea
h i = 1, . . . , n) and hen
e, sin
e

we have assumed that (P,E,Q) ∈ R, we haveQ
q:f ·(M)
=⇒

ρ,ρ1,ρ′

Q′
with (p, ρ(q)) ∈ E and

(P ′, E′, Q′) ∈ R where E′
is su
h that if (p′, q′) ∈ E′

then (λ(p′), ρρ1ρ
′(q′)) ∈ E

and, if n ≥ 2, then (p′, ρ′(q′)) ∈ Li ×Mi for some i, or p′ /∈
⋃

i Li and ρ′(q′) /∈⋃
Mi.

We 
an de
ompose this transition as follows

Q
τ∗
−→
ρ

Q1
q:f ·(M)
−→
ρ1

Q′
1

τ∗
−→
ρ′

Q′ .

With these notations we have V
τ∗
−→
µ

V1 with V1 = S ⊕D1
Q1 where D1 =

{(s, q1) ∈ |S| × |Q1| | (s, ρ(q1)) ∈ D}, and µ = Id|S| ∪ρ.

We have q ∈ |Q1| with cs(Q1(q)) = f ·R+ R̃ and |Ri| = Mi for i = 1, . . . , n.
Moreover, sin
e (p, ρ(q)) ∈ E and (s, p) ∈ C, and sin
e (C,D,E) is adapted, we
have (s, ρ(q)) ∈ D, that is (s, q) ∈ D1. Therefore, sin
e cs(S(s)) = f · S + S̃, we

have V1
τ

−→
θ

V ′
1 = S′ ⊕D′

1
Q′

1 where D′
1 ⊆ |S′| × |Q′

1| is de�ned as follows: given

(s′, q′1) ∈ |S′| × |Q′
1|, we have (s

′, q′1) ∈ D′
1

� if s′ ∈ |Si| and q′1 ∈ |Ri| for some i = 1, . . . , n
� or s′ /∈

⋃
i |Si| or q′1 /∈

⋃
i |Ri| and (θ(s′), θ(q′1)) ∈ D1 (that is (θ(s

′), ρθ(q′1)) ∈
D),

and the residual fun
tion θ is de�ned by θ(v′1) = v′1 if v
′
1 ∈ (|S| \

⋃
i |Si|)∪ (|Q1| \⋃

i |Ri|), θ(s′) = s if s′ ∈
⋃

i |Si| and θ(q′1) = q if q′1 ∈
⋃

i |Ri|.
Observe that θ(q′1) = ρ1(q

′
1) for all q

′
1 ∈ |Q′

1|.

Sin
e Q′
1

τ∗
−→
ρ′

Q′
, we have V ′

1 = S′ ⊕D′

1
Q′

1
τ∗
−→
µ′

V ′ = S′ ⊕D′ Q′
where

µ′ = Id|S′| ∪ρ
′
and D′ = {(s′, q′) ∈ |S′| × |Q′| | (s′, ρ′(q′)) ∈ D′

1}. So we have

V
τ∗
−→
µθµ′

V ′
. Let F ′ ⊆ |U ′|×|V ′| be de�ned by F ′ = Id|S′| ∪E

′
. It is 
lear then that

(u′, v′) ∈ F ′ ⇒ (λ(u′), µθµ′(v′)) ∈ F be
ause (p′, q′) ∈ E′ ⇒ (λ(p′), ρρ1ρ
′(q′)) ∈

E and θ and ρ1 
oin
ide on |Q′
1|.

To �nish, we must prove that (U ′, F ′, V ′) ∈ R′
and to this end it su�
es to

show that the triple of relations (C′, D′, E′) is adapted. So let s′ ∈ |S′|, p′ ∈ |P ′|
and q′ ∈ |Q′| with (p′, q′) ∈ E′

(so that in parti
ular (λ(p′), ρθρ′(q′)) ∈ E).
Assume �rst that (s′, p′) ∈ C′

and let us show that (s′, q′) ∈ D′
, that is

(s′, ρ′(q′)) ∈ D′
1. Coming ba
k to the de�nition of C′

, we 
an redu
e our analysis

to three 
ases.

� First 
ase: (s′, p′) ∈ |Si| × |Pi| for some i. We distinguish two 
ases as to the

value of n (the arity of f). Assume �rst that n ≥ 2. Sin
e p′ ∈ |Pi| = Li, we
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must have ρ′(q′) ∈ Mi = |Qi| be
ause (p′, q′) ∈ E′
and then (s′, ρ′(q′)) ∈ D′

1

as required. Assume now n = 1. If ρ′(q′) ∈ M1 we reason as above, so

assume that ρ′(q′) /∈ M1 =
⋃n

i=1 |Ri|. Coming ba
k to the de�nition of D′
1,

it su�
es to prove that (θ(s′), ρθρ′(q′)) = (s, ρρ′(q′)) ∈ D. Sin
e (p′, q′) ∈ E′

we have (λ(p′), ρθρ′(q′)) = (p, ρρ′(q′)) ∈ E. We also have (s, p) ∈ C, and
hen
e (s, ρρ′(q′)) ∈ D as required, sin
e (C,D,E) is adapted.

� Se
ond 
ase: s′ /∈
⋃

i |Si|. In order to prove (s′, q′) ∈ D′
, it su�
es to prove

that (θ(s′), ρθρ′(q′)) = (s′, ρθρ′(q′)) ∈ D. But we have (s′, p′) ∈ C′
and

s′ /∈
⋃

i |Si|, hen
e (λ(s′), λ(p′)) = (s′, λ(p′)) ∈ C. Sin
e (p′, q′) ∈ E′
, we

have (λ(p′), ρθρ′(q′)) ∈ E and hen
e (s′, ρθρ′(q′)) ∈ D sin
e (C,D,E) is

adapted.

� Third 
ase: s′ ∈
⋃

i |Si| and p′ /∈
⋃

i |Pi| so that we have (s, p′) ∈ C (by

de�nition of C′
and be
ause (s′, p′) ∈ C′

). Assume �rst that n ≥ 2. Sin
e
(p′, q′) ∈ E′

, we must have ρ′(q′) /∈
⋃n

i=1 Mi. To prove that (s
′, ρ′(q′)) ∈ D′

1,

it su�
es therefore to 
he
k that (θ(s′), ρθρ′(q′)) = (s, ρρ′(q′)) ∈ D. This

property holds be
ause (C,D,E) is adapted, (s, p′) ∈ C and (p′, ρρ′(q′)) ∈ E
be
ause (p′, q′) ∈ E′

. Assume now that n = 1. If ρ′(q′) /∈
⋃n

i=1 Mi = M1, we


an reason as above, so assume that ρ′(q′) ∈ M1. Then we have (s′, ρ′(q′)) ∈
|S1| ×M1 and hen
e (s′, ρ′(q′)) ∈ D′

1.

Let us prove now the 
onverse impli
ation, assuming that (s′, ρ′(q′)) ∈ D′
1;

we 
ontend that (s′, p′) ∈ C′
. Again, we 
onsider three 
ases.

� First 
ase: s′ ∈ |Si| and ρ′(q′) ∈ Mi = |Ri| for some i ∈ {1, . . . , n}. If
n ≥ 2 the fa
t that (p′, q′) ∈ E′

implies that p′ ∈ Li = |Pi| and hen
e

(s′, p′) ∈ C′
as required. Assume that n = 1 and p′ /∈ L1 =

⋃n
i=1 |Pi|, we

have (λ(s′), λ(p′)) = (s, p′) ∈ C be
ause (s, ρρ′(q′)) ∈ D � sin
e (s′, ρ′(q′)) ∈
D′

1, ρ
′(q′) /∈ M1 and (θ(s′), ρθρ′(q′)) = (s, ρρ′(q′)) �, (p, ρρ′(q′)) ∈ E and

(C,D,E) is adapted. Hen
e (s′, p′) ∈ C′
.

� Se
ond 
ase: s′ /∈
⋃

i |Si|. In view of the de�nition of C′
, it su�
es to prove

that (λ(s′), λ(p′)) = (s′, λ(p′)) ∈ C. Sin
e (s′, ρ′(q′)) ∈ D′
1 and s′ /∈

⋃
i |Si|,

we have (θ(s′), ρθρ′(q′)) = (s′, ρθρ′(q′)) ∈ D. And sin
e (p′, q′) ∈ E′
we have

(λ(p′), ρθρ′(q′)) ∈ E, and hen
e (s′, λ(p′)) ∈ C be
ause (C,D,E) is adapted.

� Third 
ase: s′ ∈ |Si| for some i ∈ {1, . . . , n} and ρ′(q′) /∈
⋃

iMi. If n ≥ 2,
we must have p′ /∈

⋃
i Li be
ause (p′, q′) ∈ E′

. Therefore, to 
he
k that

(s′, p′) ∈ C′
, it su�
es to prove that (λ(s′), λ(p′)) = (s, p′) ∈ C. We have

(s′, ρ′(q′)) ∈ D′
1 and hen
e (θ(s′), ρθρ′(q′)) = (s, ρρ′(q′)) ∈ D. Sin
e (p′, q′) ∈

E′
we have (λ(p′), ρθρ′(q′)) = (p′, ρρ′(q′)) ∈ E and hen
e (s, p′) ∈ C be
ause

(C,D,E) is adapted. Assume now that n = 1. If p′ ∈ L1 we have (s
′, p′) ∈ C′

sin
e (s′, p′) ∈ |S1| × |P1|. So assume that p′ /∈ L1. Sin
e then p′ /∈
⋃n

i=1 |Pi|,
it su�
es to prove that (λ(s′), λ(p′)) = (s, p′) ∈ C (by de�nition of C′

). We

have (p′, ρθρ′(q′)) = (p′, ρρ′(q′)) ∈ E be
ause (p′, q′) ∈ E′
and (s, ρθρ′(q′)) =

(s, ρρ′(q′)) ∈ D be
ause (s′, ρ′(q′)) ∈ D′
1 and ρ′(q′) /∈

⋃
i Mi. It follows that

(s, p′) ∈ C as required.

This ends the �rst part of the proof.
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Case of a labeled transition. We assume now that U
r:f ·(L)
−→
µ1

U ′
. Sin
e U = S⊕CP ,

we 
onsider two 
ases as to the lo
ation of r.

� If r ∈ |S| then we have cs(S(r)) = f ·S+S̃ and S
r:f ·(L)
−→
σ1

S′
where S′ = S [⊕S/r]

(so that Li = |Si| for ea
h i), and U ′ = S′⊕C′ P where C′ = {(s′, p) ∈ |S′|×|P | |
(σ1(s

′), p) ∈ C}. Let D′ = {(s′, q) ∈ |S′| × |Q| | (σ1(s
′), q) ∈ D}. We have

µ1 = σ1∪Id|P |. It is 
lear that (C
′, D′, E) is adapted, sin
e (C,D,E) is adapted.

Let V ′ = S′ ⊕D′ Q, we have just seen that (U ′, F ′, V ′) ∈ R′
where F ′ =

Id|S′| ∪E. We have (r, r) ∈ F , V
r:f ·(L)
−→
ν1

V ′
(with ν1 = σ1 ∪ Id|Q|) and, given

(u′, v′) ∈ F ′
, we have either (u′, v′) ∈

⋃
i(Li × Li) (and a
tually u′ = v′) or

u′ /∈
⋃

i Li, v
′ /∈

⋃
i Li and (u′, v′) ∈ F as easily 
he
ked. Therefore the 
ondition

on residuals is satis�ed.

� The last 
ase to 
onsider is when r = p ∈ |P | and then we have P (p) = f ·P+P̃

and P
p:f ·(L)
−→
λ1

P ′
. Then we have U ′ = S ⊕C′ P ′

where C′ = {(s, p′) ∈ |S| × |P ′| |

(s, λ1(p
′)) ∈ C}.

Sin
e (P,E,Q) ∈ R we have Q
q:f ·(M)
=⇒

ρ,ρ1,ρ′

Q′
with (p, ρ(q)) ∈ E and there

exists E′ ⊆ |P ′| × |Q′| su
h that (P ′, E′, Q′) ∈ R and, for any (p′, q′) ∈ E′
,

(λ1(p
′), ρρ1ρ

′(q′)) ∈ E and, if n ≥ 2, either (p′, ρ′(q′)) ∈
⋃n

i=1(Li × Mi), or
p′ /∈

⋃n
i=1 Li and ρ′(q′) /∈

⋃n
i=1 Mi.

Therefore we have V
q:f ·(M)
=⇒

ν,ν1,ν′

V ′
where V ′ = S ⊕D′ Q′

with D′ = {(s, q′) ∈

|S| × |Q′| | (s, ρρ1ρ
′(q′)) ∈ D}. Moreover ν = Id|S| ∪ρ, ν1 = Id|S| ∪ρ1 and

ν′ = Id|S| ∪ρ
′
.

Let F ′ ⊆ |U ′| × |V ′| be de�ned by F ′ = Id|S| ∪E
′
. Let (u′, v′) ∈ F ′

. If

u′ ∈ |S| or v′ ∈ |S|, we must have u′ = v′. If u′ /∈ |S| and v′ /∈ |S| then we

have (u′, v′) ∈ E′
and hen
e (µ1(u

′), νν1ν
′(v′)) = (λ1(u

′), ρρ1ρ
′(q′)) ∈ E and,

if n ≥ 2, either there exists i su
h that u′ ∈ Li and ν′(v′) = ρ′(v′) ∈ Mi, or

u′ /∈
⋃

i Li and ν′(v′) = ρ′(v′) /∈
⋃

iMi.

Moreover, the triple (C′, D′, E′) is adapted: let (p′, q′) ∈ E′
and s ∈ |S|.

We have (λ1(p
′), ρρ1ρ

′(q′)) ∈ E. We have (s, p′) ∈ C′
i� (s, λ1(p

′)) ∈ C i�

(s, ρρ1ρ
′(q′)) ∈ D i� (s, q′) ∈ D′

. 2

Now we are in position of proving that weak bisimilarity is a 
ongruen
e, a

result whi
h is interesting per se and will be essential for proving Theorem 3.

Theorem 2. The weak bisimilarity relation ≈ is a 
ongruen
e.

Proof. Let R be a weak bisimulation. Let R be a Y -
ontext. We de�ne a new

lo
alized relation denoted as R [R/Y ]:

� if R = Y then R [R/Y ] = R;

� if R 6= Y then we stipulate that (P ′, E′, Q′) ∈ R [R/Y ] if there exists

(P,E,Q) ∈ R and if E′ = Id|R|, P
′ = R [P/Y ] and Q′ = R [Q/Y ] (ob-

serve that |P ′| = |Q′| = |R| be
ause R 6= Y ).
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We de�ne a lo
alized relationR+
as the union of I (the set of all triples (U,E,U)

where U is any pro
ess and E = Id|U|), of the parallel extension R′
of R (see

Proposition 4) and of all the relations of the shape R [R/Y ] for all Y -
ontexts

R.
We prove that R+

is a weak bisimulation and the theorem will follow easily.

Let (U, F, V ) ∈ R+
and assume that we are in one of the two following

situations

� U
τ

−→
µ

U ′
(
alled 
ase (1) in the sequel)

� or U
p:f ·(L)
−→
µ1

U ′
(
alled 
ase (2) in the sequel).

We des
ribe expli
itely our obje
tives.

� In 
ase (1) we must show that V
τ∗
−→
ν

V ′
with (U ′, F ′, V ′) ∈ R+

for some

F ′ ⊆ |U ′| × |V ′| su
h that for any (u′, v′) ∈ F ′
, one has (µ(u′), ν(v′)) ∈ F .

� In 
ase (2) we must show that V
q:f ·(M)
=⇒

ν,ν1,ν′

V ′
with (p, ν(q))) ∈ F and (U ′, F ′, V ′) ∈

R+
, for some F ′ ⊆ |U ′| × |V ′| su
h that, for any (u′, v′) ∈ F ′

, one has

(µ1(u
′), νν1ν

′(v′)) ∈ F and, if n ≥ 2, then one has either (u′, ν′(v′)) ∈⋃n
i=1(Li ×Mi) or u

′ /∈
⋃

i Li and ν′(v′) /∈
⋃

i Mi.

The 
ase where (U, F, V ) ∈ I is trivial.

If (U, F, V ) ∈ R′
we apply dire
tly Proposition 4 in both 
ases.

Assume now that (U, F, V ) ∈ R [R/Y ] for some Y -
ontext R, so that U =
R [P/Y ], V = R [Q/Y ] with (P,E,Q) ∈ R and F = E if R = Y and F = Id|R|

otherwise. If R = Y we use dire
tly the fa
t that R is a weak bisimulation to

exhibit V ′
and F ′

satisfying the required 
onditions.

So we assume from now on that R 6= Y and therefore F = Id|R|.

By de�nition of a Y -
ontext, there is exa
tly one r ∈ |R| su
h that Y o

urs

free in R(r). Then R(r) 
an be written uniquely as R(r) = g · R + R̃ where

Y does not o

ur in R̃ and o

urs in exa
tly one of the pro
esses R1, . . . , Rn;

without loss of generality we 
an assume that R1 is a Y -
ontext and that Y does

not o

ur free in R2, . . . , Rn.

Assume �rst that R1 6= Y . In both 
ases (1) and (2), we have U ′ = R′ [P/Y ]

with R
τ

−→
µ

R′
(
ase (1)) or R

p:f ·(L)
−→
µ1

R′
(
ase (2)). Let V ′ = R′ [Q/Y ]. In 
ase

(1), we have V
τ

−→
µ

V ′
and in 
ase (2) we have V

q:f ·(L)
−→
µ1

V ′
, and sin
e R′ 6= Y

(by our hypothesis on R1), we have (U
′, Id|R′|, V

′) ∈ R+
be
ause (P,E,Q) ∈ R.

The 
ondition on residuals is obviously satis�ed in both 
ases.

Assume now that R1 = Y .

� Suppose �rst that we are in 
ase (1). There are two 
ases to 
onsider as to

the lo
ations s, t ∈ |U | of the sub-pro
esses involved in the transition U
τ

−→
µ

U ′
.

The 
ase where s 6= r and t 6= r is similar to the 
ase above where R1 6= Y . By
symmetry we are left with the 
ase where s = r (and hen
e t 6= r).
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So U(t) = R(t) = f · T + T̃ and the guarded sum R(r) has an unique

summand whi
h is involved in the transition U
τ

−→
µ

U ′
(
alled a
tive summand

in the sequel), and this summand is of the shape f · S.
If the a
tive summand is g·R6

(so that g = f) then U(r) = f ·(P,R2, . . . , Rn)+
S̃ and U ′


an be written U ′ = R′⊕C P for some pro
ess R′
whi
h 
an be de�ned

using only R, and C ⊆ |R′| × |P |. Expli
itly, R′
is de�ned as follows:

� |R′| = (|R| \ {r, t}) ∪
⋃n

i=2 |Ri| ∪
⋃n

i=1 |Ti|
� and ⌢R′

is the least symmetri
 relation on |R′| su
h that r′ ⌢R′ t′ if r′ ⌢Ri

t′ for some i = 2, . . . , n or r′ ⌢Ti
t′ for some i = 1, . . . , n, or (r′, t′) ∈

|Ri| × |Ti| for some i ∈ {2, . . . , n}, or r′ /∈
⋃n

i=2 |Ri| or t′ /∈
⋃n

i=1 |Ti| and
r′ ⌢R t and µ(r′) ⌢R µ(t′)

where the residual fun
tion µ : |U ′| → |U | is given by µ(r′) = r if r′ ∈ |P | ∪⋃n
i=2 |Ri|, µ(r

′) = t if r′ ∈
⋃n

i=1 |Ti| and µ(r′) = r′ when r′ belongs to none of

these two sets.

The relation C is de�ned as follows: given (r′, p) ∈ |R′|×|P |, one has (r′, p) ∈
C if r′ ∈ |T1|, or r′ /∈

⋃n
i=2 |Ri| ∪

⋃n
i=1 |Ti| and r′ ⌢R r.

Let V ′ = R′⊕DQ, where D ⊆ |R′|×|Q| is de�ned exa
tly like C (just repla
e

P by Q in the de�nition). Then (C,D,E) is adapted (be
ause the property for

(r′, p) ∈ |R′| × |P | of belonging or not to C depends only on r′, and does not

depend on p, and similarly for D). We 
an mimi
 that redu
tion on V , so that

V
τ

−→
ν

V ′
for the residual fun
tion ν whi
h is de�ned like µ (repla
ing P by Q).

We have (U ′, F ′, V ′) ∈ R′ ⊆ R+
where F ′ = Id|R′| ∪E. Given (u′, v′) ∈ F ′

, we

have µ(u′) = ν(v′), that is (µ(u′), ν(v′)) ∈ F so that the 
ondition on residuals

holds

7

.

Assume now that the a
tive summand is not g ·R. In that 
ase we also have

V
τ

−→
µ

U ′
(both P and Q vanish in the 
orresponding redu
tions), and we are

done be
ause (U ′, Id|U ′|, U
′) ∈ I ⊆ R+

.

� We suppose now that we are in 
ase (2). Assume �rst that p 6= r. In that 
ase

we have R
p:f ·(L)
−→
θ1

R′
and U ′ = R′ [P/Y ] and we also have V

p:f ·(L)
−→
θ1

V ′ = R′ [Q/Y ]

so (U ′, Id|R′|, V
′) ∈ R′ [R/Y ] ⊆ R+

, and the 
ondition on residuals is obvious.

Assume now that p = r. Then exa
tly one of the summands of the guarded

sum R(r) is the pre�xed pro
ess performing the a
tion f in the 
onsidered

transition on U (again, this summand is 
alled the a
tive summand in the sequel).

The 
ase where the a
tive summand is not g · (P,R2, . . . , Rn) is 
ompletely

similar to the previous one (P vanishes in the transition).

Assume that the a
tive summand is g · (P,R2, . . . , Rn) (so that g = f), then
U ′ = R′ ⊕C P where R′

is de�ned by

� |R′| = (|R| \ {r})∪
⋃n

i=2 |Ri| and ⌢R′
is the least symmetri
 relation on |R′|

su
h that r′ ⌢R′ t′ if r′ ⌢Ri
t′ for some i = 2, . . . , n or θ1(r

′) ⌢R θ1(t
′).

6

Remember that g ·R is the unique summand of R(r) whi
h 
ontains Y .

7

It is in this part of the proof that one understand the importan
e of adapted triples

of relations in the de�nition of the parallel extension of a weak bisimulation.
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� The relation C ⊆ |R′| × |P | is de�ned by (r′, q) ∈ C if r′ /∈
⋃n

i=2 |Ri| and
r′ ⌢R r (this does not depend on q).

Then we have V
p:f ·(M)
−→
ϕ1

V ′
(with M1 = |Q| and Mi = Li = |Ri| for i = 2, . . . , n)

with V ′ = R′⊕DQ whereD is de�ned like C (repla
ing P by Q in the de�nition).

Then we have (U ′, F ′, V ′) ∈ R′ ⊆ R+
where F ′ = Id|R′| ∪E sin
e (C,D,E) is

obviously adapted (as above). Moreover the 
ondition on residuals is obviously

satis�ed. This ends the proof of the fa
t that R+
is a weak bisimulation.

We 
an now prove that ≈ is a 
ongruen
e. Assume that P ≈ Q and let R
be a Y -
ontext. Let E ⊆ |P | × |Q| and let R be a weak bisimulation su
h that

(P,E,Q) ∈ R. Then we have (R [P/Y ] , Id|R|, R [Q/Y ]) ∈ R [R/Y ] ⊆ R+
and

hen
e R [P/Y ] ≈ R [Q/Y ] sin
e R+
is a weak bisimulation. 2

We 
an prove now the main theorem of the paper.

Theorem 3. Let P and Q be pro
esses. If P ≈ Q (P and Q are weakly bisimilar)

then P ∼= Q (P and Q are weakly barb 
ongruent).

Proof. Assume that P ≈ Q and let R be a Y -
ontext. We have R [P/Y ] ≈

R [Q/Y ] by Theorem 2 and hen
e R [P/Y ]
•
≈ R [Q/Y ] by Proposition 3. 2

5 Weak bisimilarity on CCS

We assume in this se
tion that Σn = ∅ if n 6= 1 (see the end of Se
tion 2.2). All

pro
esses P 
onsidered in this se
tion are CCS pro
esses built on Σ, meaning

that, in any subpro
ess of P whi
h is of shape G〈Φ〉, the graph G is a 
omplete

graph (for all p, q ∈ |G|, p ⌢G q).
We answer here a very natural question: when restri
ted to ordinary CCS,

does our weak lo
alized bisimilarity 
oin
ide with standard weak bisimilarity?

Let R be a lo
alised weak bisimulation. Let R0
be the following relation on

CCS pro
esses: P R0 Q if (P,E,Q) ∈ R for some E ⊆ |P | × |Q|. We prove that

R0
is a weak bisimulation on CCS pro
esses.

Lemma 10. Let R be a lo
alized weak bisimulation. Then R0
is weak bisimula-

tion on CCS pro
esses.

Proof. Let P and Q be CCS pro
esses su
h that P R0 Q. Let E ⊆ |P | × |Q| be
su
h that (P,E,Q) ∈ R.

Assume �rst that P
τ

−→ P ′
. Let p1, p2 ∈ |P | with cs(P (p1)) = a · P1 + S1

and cs(P (p2)) = a · P2 + S2 (the two sub-pro
esses involved in this redu
tion).

Then, by de�nition of the internal redu
tion in CCTS, P ′ = G〈Φ〉 where G is the


omplete graph on |G| = |P | \ {p1, p2} ∪ |P1| ∪ |P2| and Φ(r) = P (r) if r ∈ |P |,
Φ(r) = Pi(r) if r ∈ |Pi| for i = 1, 2. In other words P ′ = P [P1/p1, P2/p2]

Let λ1 : |P ′| → |P | be the 
orresponding residual map (λ1(r) = r if r ∈ |P |

and λ1(r) = pi if r ∈ |Pi|), we have P
τ

−→
λ1

P ′
and therefore there is a CCTS
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pro
ess Q′
su
h that (P ′, E′, Q′) ∈ R for some relation E′ ⊆ |P ′| × |Q′|, and a

fun
tion ρ : |Q′| → |Q| with Q
τ∗
−→
ρ

Q′
and (p′, q′) ∈ E′ ⇒ (λ1(p

′), ρ(q′)) ∈ E.

Therefore we have P ′ R0 Q′
as required.

Assume now that P
a

−→ P ′
. Let p ∈ |P | with cs(P (p)) = a · P1 + S1 and

P ′ = P [P1/p]. Then we have P
p:a·(L)
−→
λ1

P ′
where L = |P1| and λ1 : |P ′| → |P | is

given by λ1(r) = p if r ∈ |P1| and λ1(r) = r otherwise. Sin
e (P,E,Q) ∈ R, we

have Q
q:a·(M)
=⇒

ρ,ρ1,ρ′

Q′
with (p, ρ(q)) ∈ E, and there exists E′ ⊆ |P ′| × |Q′| su
h that

(P ′, E′, Q′) ∈ R, and (λ1(p
′), ρρ1ρ

′(q′)) ∈ E for ea
h (p′, q′) ∈ E′
. In parti
ular

P ′ R0 Q′
.

Sin
e R is a lo
alized bisimulation, the relationR0
is symmetri
 and is there-

fore a bisimulation on CCS pro
esses. 2

We need now to prove the 
onverse. Let U be a binary relation on CCS

pro
esses. Let Û be the set of all triples (P,E,Q) where P and Q are CCS

pro
esses su
h that P U Q and E = |P | × |Q|.

Lemma 11. If U is a bisimulation, then Û is a lo
alized bisimulation.

Proof. Let P and Q be CCS pro
esses and let E be su
h that (P,E,Q) ∈ Û , so
that E = |P | × |Q| and P U Q.

Assume �rst that P
τ

−→
λ1

P ′
so that P

τ
−→ P ′

(in CCS) and hen
e there exists

Q′
su
h that Q

τ∗
−→ Q′

and P ′ U Q′
. Then there is a fun
tion ρ : |Q′| → |Q| su
h

that Q
τ∗
−→
ρ

Q′
and we have (P ′, E′, Q′) ∈ Û . The 
ondition on residuals holds

obviously, by de�nition of E.
The 
ase of a labeled transition is 
ompletely similar and the 
ondition on

residuals holds again by de�nition of Û and be
ause we are in the 
ase where

n = 1 (all fun
tion symbols are of arity 1). 2

So we 
an 
on
lude that, when restri
ted to CCS pro
esses, our notion of

weak bisimilarity 
oin
ides with the usual one.

Proposition 5. Two CCS pro
esses are weakly bisimilar (in the usual CCS

sense) i� they are weakly bisimilar in the lo
alized sense.

Con
lusion

We have presented an extension of CCS whi
h deals with trees instead of words,

and various 
on
epts and tools asso
iated with this new pro
ess algebra. The

notion of barbed bisimilarity, as it is de�ned here, is a straightforward general-

ization of the 
orresponding notion for CCS and therefore is hardly questionable,

but we 
annot say the same of weak bisimilarity. It will be 
ru
ial to understand

if weak bisimilarity is equivalent to weak barbed 
ongruen
e here and, if not,

to look for a more liberal notion of weak bisimilarity in order to get su
h a full
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abstra
tion property. Another more 
on
eptual task will be to extend this ap-

proa
h to more expressive settings su
h as for instan
e the π-
al
ulus, and of


ourse to understand if CCTS 
an be en
oded in su
h settings.

This work also originated from the en
odings of the π-
al
ulus and of the solos

al
ulus in di�erential intera
tion nets by the �rst author and Laurent [EL10℄. In

these nets, whi
h are graphi
al obje
ts, parallel 
ompositions appear as 
omplete

graphs, and it is 
lear that more general graphs (a
tually, arbitrary graphs) 
ould

be en
oded as well in the very same formalism. A graphi
al approa
h to CCTS,

in the spirit of intera
tion nets, will be presented in a forth
oming paper.
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