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Abstract

It is known that the strongly stable functions which arise in the semantics of PCF can
be realized by sequential algorithms, which can be considered as deterministic strategies in
games associated to PCF types. Studying the connection between strongly stable functions and
sequential algorithms, two dual classes of hypercoherences naturally arise: the parallel and serial
hypercoherences. The objects belonging to the intersection of these two classes are in bijective
correspondence with the so-called “serial-parallel” graphs, that can essentially be considered as
games.

We show how to associate to any hypercoherence a parallel hypercoherence together with
a projection onto the given hypercoherence and present some properties of this construction.
Intuitively, it makes explicit the computational time of a hypercoherence.

Notice: This is a preliminary version of the paper [Ehr00] entitled “Parallel and serial hyperco-
herences”, published in Theoretical Computer Science, North Holland, volume 247, pages 39-81,
2000.

Introduction

In [Ehr99], we proved that the hypercoherence model of PCF is the extensional collapse of the
sequential algorithm model. J. van Qosten and J.R. Longley proved recently similar results [vO97,
Lon98] in a realizability setting where realizers are deterministic strategies encoded as partial
functions from the set of natural numbers to itself.

In all these works, a relation is established between a world of deterministic intensional realizers
(sequential algorithms, or strategies encoded as partial functions on natural numbers) and strong-
ly stable functions on hypercoherences: a realizer is related to a function if they “compute the
same thing” (this is expressed as a logical relation, or as a realizability predicate, the latter being
roughly speaking an untyped version of the former). It is shown that strongly stable functions ad-
mit an intensional realizer, which clearly means that all strongly stable functions are sequentially
computable, if “sequentially” means “deterministically”: for instance, all finite sequential algo-
rithms are definable in a language which is an extension of PCF by a “catch and throw” operator
(see [CCF94]), a perfectly deterministic primitive (in sharp contrast with the “parallel or” function
for instance).

A hypercoherence X is just a set | X| equipped with a set I'(X) of finite and non-empty subsets
of | X'| containing all singletons (it is a “reflexive” and “symmetric” unlabeled hypergraph, just like
coherence spaces are reflexive and symmetric unlabeled graphs). The elements of I'(X) are called
“coherent”, and they can have a complicated structure: coherent sets can contain incoherent sets,
which themselves can contain coherent sets..., and moreover, these sets overlap. We would like
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Figure 1: a Py

to understand better the computational meaning of this structure. Our intuition is that there is a
correspondence between the coherent sets of a hypercoherence and Player’s positions (that is, the
positions where the last move has been played by Player) of the corresponding game, and between
the incoherent sets and Opponent’s positions. From this viewpoint, the inclusion relation should
be considered as a kind of game-theoretic accessibility relation, a position u being accessible from
v if w C v. However, hypercoherences are not games, as in the strongly stable semantics, one
identifies strategies that perform the same elementary operations, but in a different order. It is a
much more “implicit” semantics than game semantics: the extensional collapse result mentioned
above means that any strongly stable function (in the PCF types hierarchy) can be scheduled into
some deterministic strategy, but the strongly stable function itself does not contain any explicit
description of such a strategy. In some sense, both game semantics and strongly stable semantics
deal with a fundamental notion of “computational time”, the former in an explicit way and the
latter in an implicit way. The extensional collapse result means precisely that, for a given PCF
type, all informations required for describing the possible temporal computational behaviors at
that type are present in the hypercoherence interpretation of that type. We would like to develop
a purely graphical (that is, in some sense, geometrical) theory of the process of making explicit
the temporal informations contained in the hypergraphical structure of a hypercoherence. Such a
theory, we hope, might shed some new light on the notion of computational time.

We consider that the results reported in the present paper indicate that such a theory might
be based on the notions of parallel and serial hypercoherences, and on a general way of converting
a hypercoherence into a parallel one, the rigid parallel unfolding.

Our main methodological a priori concerning games is to consider them as coherence spaces of
a very simple kind, corresponding to the standard notion of “serial-parallel graph!”. A finite graph
is serial-parallel if it contains? no “P,”. A Py is a graph which has four pairwise distinct vertices
ai,as, as,aq with an edge between a; and a; iff j =¢41ori=j or e = j + 1. This configuration
is pictured in figure 1 (in our graphical pictures, two points are related by a continuous line if they
are related in the graph, that is, if they are “coherent” in the coherence space terminology, and by
a dashed line if they are not related in the graph, that is, if they are “incoherent”).

The serial-parallel finite coherence spaces are the elements of the smallest class of coherence
spaces containing the one-vertex graphs and closed under the “&” and the “@” operations on coher-
ence spaces (which correspond respectively to serial and parallel composition of graphs). Moreover,
the decomposition of a serial-parallel graph in terms of these two operations (up to associativity
and commutativity of & and of @) is unique.

In the infinite case, things are more complicated, and a coherence space can perfectly well not
contain P, without being in a non-trivial way of the shape EF& F or E @ F. For instance, the

!By “graph”, we always mean reflexive and symmetric unlabeled graph, that is, coherence space.
?In that context, by “contain”, we always mean “contain as an induced subgraph”.



Figure 2: a serial-parallel graph and the corresponding tree

graph which has the natural numbers as vertices and where 7 is related to j (for ¢ < j) iff ¢ is even,
contains no Py, but cannot be decomposed.

Nevertheless, “serial-parallel” will basically mean for us “containing no P;”.

A (finite) serial-parallel coherence space can essentially be seen as a tree, vertices of the co-
herence space corresponding to leaves of the tree, and two vertices being related by an edge if the
longest common prefix of the two corresponding paths (starting at the root) in the tree is of even
length (this of course is conventional: observe that the complementary graph of a serial-parallel
graph is also serial-parallel). This tree describes the unique decomposition of the coherence space
in terms of the (multi-ary) & and & operations (see figure 2). The notion of serial-parallel graph
is standard in graph theory (see for instance [BBS99]).

In this paradigm, we can see a serial-parallel coherence space as a game (see [Cur94] for a
game-theoretic account of sequential algorithms), “Player’s positions” corresponding to &-nodes
and “Opponent’s positions” to &-nodes. Observe then that taking the orthogonal of the coherence
space corresponds exactly to exchanging Opponent and Player in the corresponding game, which is
the standard notion of duality in game models. The points of the coherence space are “extremal”
positions in the game, that is positions closing the game. Observe that they do not belong to
Player (&) or to Opponent (&), they are in some sense neutral (this corresponds to the fact that
in coherence spaces or hypercoherences, a singleton is both coherent and incoherent). This is
of course very different from the standard game-theoretic situation. A similar notion of neutral
extremal position appears in [Joy95].

Then a clique in the corresponding coherence space essentially corresponds to a deterministic
partial strategy for Player. Whence the idea of studying the connection between hypercoherences
and serial parallel graphs.

With this respect, a fundamental property of hypercoherences is that they allow to split the
notion of “serial-parallel graph” in two dual notions: “serial hypercoherences” and “parallel hy-
percoherences”. We shall say that a hypercoherence X = (| X|,['(X)) is parallel if, whenever two
elements of I'(X') have a non-empty intersection, their union belongs to I'(X), and that X is serial
if X+ is parallel.

There is a bijective correspondence between serial-parallel coherence spaces and hypercoherences
which are both parallel and serial.

These notions are presented in section 4, and in section 5, we make precise the connection
between serial-parallel coherence spaces and games, in the finite case.

The present paper describes a general “parallel unfolding” construction that associates to any
hypercoherence X a parallel hypercoherence X together with a linear map px : X o5 X (of



a special kind: its trace is a function). As far as we know, this pair ()?,pX) has no universal
property with respect to X. It has however a categorical “rigidity” property, presented in section 3,
that guarantees its uniqueness up to unique isomorphism. Our intuition here is that the implicit
character of time informations in hypercoherences leads to situations where a point of the web of a
hypercoherence is contained in coherent sets which are “incompatible” in the sense that their union
is not coherent (at such a point, the hypercoherence is not parallel). This intuition is developed on
a simple example in section 2. The parallel unfolding of X has thus to be understood as a process
of making computational time explicit. It basically consists in splitting each point where X is not
parallel in as many points as there are maximal sets of coherent subsets of | X
given point and are closed under union. So it looks like an “ultrafilter” construction, and the map
px - X — X is the operation which forgets this splitting of the elements of the web. This unfolding
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is presented in section 6. We also describe it in a more intuitive way in the particular case of
Lo d

finite and serial hypercoherences in section 7. We present some basic properties of this unfolding
construction:

e In section 8, we show that it does not cause an explosion of the cardinality of the webs of
hypercoherences, as soon as one deals with hypercoherences satisfying a “local finiteness” con-
dition which is preserved by all connectives of linear logic, and by the rigid parallel unfolding
itself.

e In section 9, we show that the rigid parallel unfolding satisfies many commutation properties
with respect to the connectives of linear logic: it has a good “logical social life”.

Last, in section 10, we show how the rigid parallel unfolding can be used for associating to any
formula of propositional linear logic a serial-parallel coherence space which is likely to be related to
the game-theoretic interpretation of the formula. We prove that the main isomorphisms of linear
logic are satisfied by this interpretation of formulae.

1 Preliminaries

If A is a set, we denote by # A its cardinality.
We first recall some basic definitions on coherence spaces and hypercoherences. For more
informations on these topics, we refer to [Gir95, Ehr93].

Definition 1 A coherence space is a symmetric and reflexive graph. More precisely, it is a pair
E = (|E|, ©g ) where |E| is a set (the web of E, its elements are called atomns or vertices) and
Cp is a symmetric and reflexive binary relation on |E|. Two elements of |E| which are related
by this relation are said to be coherent.

A clique of F is a subset z of |E| such that for all a,a’ € z, « Tf d'.

We denote by —~pg and call strict coherence relation of FE the relation obtained from Cfg
by removing the diagonal. Of course, a coherence space E can as well be defined by giving the
anti-reflexive relation —p .

If E' is a coherence space, a subspace of E is a coherence space F such that |F| C |E/|, and, for
all a,b € |F|,a Tpbiff a Tgb.

We recall how linear negation and the additive connectives & and & (Which are De Morgan
dual of each other) are defined. Let F, Fy and F; be coherence spaces.

o Linear negation. E+is defined by |E+| = |F| and @ Ty o' iff it does not hold that a ~g '



o With. Ey & F> is defined by |Ey & Eq| = ({1} X |E1|) U ({2} x |E4l), and (¢, a) Tg, ¢ B, (7,0)
ifi=7=aCgb.

o Plus. Fy @ Es is defined by |Ey & Fy| = ({1} X |E4|) U ({2} X |E2|), and (¢, a) TryeE, (4,0)

if :+ =j and a Tpg; b.

Definition 2 A hypercoherence is a symmetric and reflexive hypergraph. More precisely, it is a
pair X = (|X|,['(X)) where | X| is a set (the web of X, its elements are called atoms or vertices)
and I'(X) is a set of finite and non-empty subsets of | X'| which contains all singletons (the coherence
of X, its elements are called coherent sets or hyperedges).

A cligue of X is a subset z of | X| such that all finite and non-empty subsets of z lie in I'(X).

We denote by qD(X) the poset whose elements are the cliques of X ordered under inclusion®.

We denote by I'*(X) the set of all non-singleton elements of I'(X). A hypercoherence X can as
well be defined by giving its strict coherence I'*(X).

If X is a hypercoherence, a subspace of X is a hypercoherence Y such that |Y| is subset of | X,
and I'(Y) =T(X) N P(|Y]).

One says that X is finite if the set | X| is finite.

If w and U are two sets, we say that u is a section of U and write v < U if

VocudreUa€xz and VeeUda€Euacuzx.

Let us recall the interpretation of the connectives of linear logic in hypercoherences. Let X, Xy
and X5 be hypercoherences.

e Linear negation. X+ is defined by |X1| = |X| and v € D(X 1) if u ¢ T*(X).

o With. X1 & X3 is defined by | X & Xo| = ({1} x| X1)U({2} x| X3]), and ({1} xui)U({2} xusz) €
['(Xy & Xo) if
uy=0=u € T(Xy) and w3 =0 = u € '(Xy) .

Let us also spell out the n-ary version of this construction, as it plays a central role in the
paper. Let Xj,...,X,, be hypercoherences. The hypercoherence X; & ---& X,, has ({1} x
| X1])U---U ({n} x |X,|) as web, and a subset u = ({1} x uy) U---U ({n} X u,) of this web
belongs to I'(X; & - - - & X,,) iff w is finite and non-empty and, if u is contained in a unique
component of the disjoint sum of the | X;|’s, that is, if there exists ¢ € {1,...,n} such that
u; = () for all j # ¢, then w is coherent in that component, that is, u; € T'(X;). In particular,
if u; and u; are non-empty for two distinct indexes 7 and j, then u is always coherent. Last,
let us quote that, when z € qD(X; & -+ - & X,,) (so that z = ({1} X 29)U---U ({n} X z,,) with
z; C |Xi|), one has z; € qD(Xj;), and the map z — (z1,...,z,) establishes a bijective order-
preserving correspondence between qD(X; & -+ - & X,,) and qD(X;) x - - - x qD(X,,), endowed
with the product order.

o Plus. X1® X3 is defined by | Xy & X3 = ({1} x| X 1)U({2} x| Xq|), and ({1} xu1)U({2} Xuq) €
T(X) @ X) if
uy =0 and wu €T(Xy),

or
wp =0 and wuy € T(Xy) .

®The poset so defined belongs to the class of qualitative domains introduced by Girard in [Gir86]. Qualitative
domains can equivalently be considered as dl-domains where all prime elements are atomic.



It is the De Morgan dual of with. Using the same notations as in the description above of
the n-ary version of the with, u is coherent in Xy & ---&@ X, iff u is contained in a unique

component of the disjoint sum of the | X;|’s, and coherent in that component. That is: there
exists i € {1,...,n} such that u; = () for all § # i, and u; € T(X;).

e Tensor. X; ® X3 is defined by

X1 ® .Xgl = |X1| X |X2| and w € F()(l ®X2) if

mi(w) e I'(X;) for i=1,2.

e Par. It is the De Morgan dual of tensor. More explicitly, |X; % X3 = |Xy| x |X;| and
w € (X1 B X,) iff wis a finite and non-empty subset of | X; & X| satisfying

mi(w) e*(X;) for it=1 or i=2.

e Linear implication. X, —o X5 is defined by
)(1 —OX2 - XlJ' ?3) ‘XVQ .

In other words, a subset w of |X; —o X3| belongs to I'(X; — X3) iff w is finite, non-empty,
and satisfies

mi(w) € ['(Xy) = (m2(w) € I'(Xy) and (#ma(w) =1 = #mi(w) =1)) .

A linear strongly stable morphism (or simply linear morphism) from X; to X3 is a clique of
X1 — X3 (and so is a relation on | X;| X | X3|), and composition of morphisms is defined as
the composition of the corresponding relations. The identity morphism from X; to X; is the
diagonal subset of | X{|x|X{|. A linear morphism from X; to X3 can also be seen as a function
from qD(X1) to qD(X3) which commutes to the unions of arbitrary bounded families, maps
coherent families of cliques* to coherent families, and commutes to the intersections of these
families.

e Fzxclamation mark. We consider here the set version. There is also a multiset version. The
web of !X is the set of all finite cliques of X. A family U of finite cliques of X is in I'('X) if
it is finite and non-empty, and if

VuaU uel(X).

o (Question mark. It is the dual of exclamation mark. The web of 7X is the set of all finite
cliques of X*. A family U of finite cliques of X is in I'*(?X) if it is finite and non-empty,
and if

JualU wel™(X).
This entails that U is not a singleton, otherwise, U = {y} where y € qD(X*), and then all
finite sections of U belong to ['(X 1), as in that case all sections of U are subsets of y.

For more details on hypercoherences and the hypercoherent semantics of linear logic, we refer

to [Ehr93].

4 A family of cliques of a hypercoherence X is said to be coherent if it is finite and non-empty, and if all its finite

and non-empty sections belong to I'(X).



2 A motivating example

The goal of this section is to motivate the forthcoming definitions and constructions by a detailed
analysis of the graphical structure of the hypercoherence of sequential functions from Bool™ to
Bool, showing in particular that the corresponding game can be retrieved from this graphical
structure. It is also intended to be an illustration of the previous general definitions on hyperco-
herences.

Let n € N be different from 0. Let Bool be the hypercoherence of booleans, defined by
|Bool| = {t,f} and *(Bool) = . Let X = ('Bool™)" % Bool be the hypercoherence of sequential

nXx

functions from Bool” = Bool & Bool & . .. & Bool (the n-ary cartesian product of Bool) to Bool.
An element of | X | is a pair (z,b) where b € |Bool| and z is a (possibly empty) subset of {1,...,n} X
|Bool| satisfying (7, a1), (¢,a3) € = a3 = ay. We denote by z; or 7;(z) the set of all a such that
(7,a) € z, this set is either empty or is a singleton; it is the i-th projection of z.

A subset u of | X'| belongs to I'*(X) iff m3(u) € I'*(Bool) or w1 (u) ¢ I'('Bool™). But I'*(Bool) =
0,s0 ue I'(X) if mi(u) ¢ I'(!Bool™). This last condition in turn is equivalent to requiring that
there exists v < 7y (u) such that v ¢ I'(Bool™). But this holds iff there exists ¢ € {1,...,n} such
that (71 (u)) is equal to {{t}, {f}}.

Let (z,b) € | X|. There is a bijective correspondence between the C-maximal elements of I'*(X)
which contain (z,b) and the indexes ¢ such that z; # (. Indeed, let i € {1,...,n} be such that
z; # (. Then the set ugy = {(y,c) € | X[ | y; # 0} belongs to I'*(X) and contains (z, ). Moreover,
this set contains some element (z,d) € |X| where z is such that z; = () for all j # 4. From this, it
results that ug; is maximal among the elements of I'(X). Observe also that for the same reason,
the only element j € {1,...,n} such that y; # 0 for all (y,¢) € ugy is . Conversely, if u is an

element of I'*(X) such that (z,b) € u, we have seen that there must exist some 7 € {1,...,n} such
that y; # 0 for all (y,c) € u. In particular, z; # (). For such an index ¢, we clearly have u C u;.
So if w is maximal in I'(X), there exists a unique 7 € {1,...,n} such that u = u.

Let 7y € {1,...,n} be such that x;; # (. The set u,y is the disjoint union of two non-empty
subsets, namely

ity = 10y, ¢) € ugyy | yiy, = {t}} and wgpy = {(y,¢) € upyy [ yi, = {f}},

and neither of these two sets belongs to I'(X), by the above characterization of I'*(X'). Observe
also that w(;, ¢y and u;, £y are the two maximal subsets of w;,y which do not belong to ['(X). Indeed,
let w C u(;)y be such that u & u; ¢y and u € ug gy. Then, since u C uy;,y, one has y;, # () for all
(y,¢) € u. And since u Z wuy;, ¢y, one has y;, = {f} for some (y, ¢) € . Similarly, y{ = {t} for some
(y', ') € u. From this, it results that 7;, (71 (u)) = {{t}, {f}}, and hence u € I'*(X).

Of course, (z,b) belongs to exactly one of these two subsets of ;). Let us say for instance
that (z,b) € ug, gy (that is, z;, = {f}).

Again, there is a bijective correspondence between the maximal subsets of u; ry which contain
(z,b) and belong to I'(X) and the indexes ¢ € {1,...,n}\ {i1} such that @; # (). Let 3 be such an

index. The corresponding subset of u; ¢ is
Wirtiry = {(Y,€) € wiyny | vi, # 0}
This set again is the disjoint union of two non-empty subsets, namely

Uiitine) = (Y €) € Wirriy) | Yip = {t}}



and
Ui ting) = {(Y,€) € ugieiny | yi, = {f1}
Neither of these sets belong to I'(X), and (z,b) belongs to exactly one of them.

This process can be iterated until the enumeration 2y, i, ...,7; we are choosing exhausts the
set of all indexes i such that z; # (), in other terms, until & = #xz. For each such enumeration,
denoting by a; the unique boolean such that z;; = {a;}, we define a decreasing sequence of subsets
of | X |, which alternatively belong to I'*(X) and T'*(X 1), namely Uiy D Uiiyay) D Ulipayiy) O 0 D
Ufiyay..izay)- 1he maximal subset of u y which belongs to I'(X) and contains (z,b) is the
singleton {(z,b)}.

So we have a bijective correspondence between the sequences o = (i1, ..., %) which are enu-
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merations without repetitions of the indexes ¢ such that z; # () and the sequences |X| = vy D vy D
vy D -+ D vy satisfying:

e Forallie€ {0,...,k—1}, vgi41 is a maximal subset of vg; that belongs to I'*(X') and contains
(z,b).
e Forall i € {0,...,k — 1}, vy;42 is a maximal subset of vy;; that belongs to I'*(X?1) and

X

€ I*(X1) and that vog = {(z,t), (z,£)}.

contains (z,b). Observe also that vy =

With the notations above, we have vy = u;,), v2 = (i, 4,), and so on.

Let us call such a sequence (v;);=o,.. 2k a tower at (z,b). (We may have k = 0, it corresponds
to the case where z = ().)

Choosing a sequence o of indexes which is an enumeration of the indexes ¢ such that z; # () is
just associating to (z,b) an evaluation order, that is, in terms of game theory, a play. We shall say
that (z,b,0) is a play at (z,b).

Indeed, in the theory of sequential algorithms as it is developed in [Cur94], the game corre-
sponding to the type Bool™ — Bool can be presented as follows®.

e A move by Player is either (r,b) where b is a boolean, and r means that this move is played in
the right component of the — type constructor, or is (1,¢) where ¢ € {1,...,n}, and 1 means
that this move is played in the left component of the — type constructor.

e A move by Opponent is either (r,*) where % is the only initial move of the game Bool, or
(I, @) where a is a boolean.

e A play is a sequence of moves s = (mq,..., my) where mq = (r,*) and such that, for all
g=1,...,k—1, the moves m, and m,y; are not both played by Player or both played by
Opponent. Moreover, the following conditions must be satisfied by s:

— For ¢ = 2,...,k, if m; = (r,a), then necessarily « is a boolean, ¢ = k, and for all
r=2,...,k — 1, the move m, must be played in the left component of the — type
constructor.

— For ¢,r two distinct elements of {2,...,k}, if m, = (1,4) and m, = (1,7) for some
i,j € {1,...,n}, then i # 5.

5This presentation is obtained by simply spelling out the general definitions of the interpretation of the — and
! connective in [Cur94]. The particular shape of the type under consideration leads to simplifications, especially
concerning the moves in the left component of the — type constructor.

5This “no repetition” principle is characteristic of the interpretation of the ! connective in sequential algorithms.
From the strongly stable viewpoint, it corresponds to the fact that, in the semantics we consider here, the web of



If we say that a play s is complete if its last move is of the shape (r,b), where b is a boolean,
then it appears clearly that there is a bijective correspondence between the complete plays in the
game associated to the type Bool” — Bool in the theory of sequential algorithms, and the plays
(z,b,0) defined above.

When are two different plays (z,b,0) and (y, ¢, 7) compatible, in the sense that they can both
appear in a deterministic strategy, or sequential algorithm? FExactly when the longest common
prefix (i, ...,4,) of o and 7 is non-empty, and satisfies z;, = y;, for all j < ¢, and ;, # y;,. And
a sequential algorithm (or strategy) is essentially a set of plays which are pairwise compatible in
this sense.

If (v;) and (w;) are the towers associated to (z,b,0) and (y, ¢, 7), this compatibility condition
translates to:

there exists ¢ such that v; # w;, and the least such 7 is even. (1)

So there is a way of retrieving from the hypercoherence X the structure of the coherence space
F of sequential algorithms” from Bool™ to Bool: the web of this space consists of the set of
all possible (z,b, (v;)) where (z,b) € |X| and (v;) is a tower at (2,b) and its coherence relation
is given by (1). Furthermore, there is an obvious forgetful map 7 from |E| to |X| defined by
m(z,b, (v;)) = (2,b). One can check that this map is strongly stable (in the sense that its graph
is a clique of ' — X)), when E is considered as a hypercoherence as follows: U € I'*(E) if there
exists ¢ which is less than the length of all the towers of U and such that the v;’s are not all equal
(for (z,b, (v;)) € U), and the least such 7 is even. This can be simply rephrased as follows: U is

connected in E (considered as a graph).

Of course, the notion of tower is not very easy to handle, and it turns out fortunately that F
can be defined in another, much more general way from X. Observe first that in a tower (v;) at
(z,b) the v;’s of even rank (those which belong to I'*(X 1)) are completely determined by (z,b) and
by the previous v;’s of odd rank. The presence in general of several towers for a given (z,b) € | X|
is essentially due to the fact that the union of two coherent subsets of |X| which contain (z,b)
is not necessarily coherent, and indeed, one can check that the towers at (z,b) are in bijective
correspondence with the maximal subsets of I'(X) which are closed under finite unions and of
which all elements contain (z,b).

This latter observation will serve as a definition when we build the rigid parallel unfolding of a
hypercoherence.

3 Rigid objects

Before giving our general definitions and unfolding constructions on hypercoherences, we introduce
a general categorical concept of rigidity, which is strictly weaker than the usual categorical notion
of universality. The unfolding of hypercoherences will be characterized in terms of rigidity, and not
in terms of universality.

Definition 3 Let A be an object of a category C.

!X is the set of all finite cliques (sets of points of the web of X) of X, and not of all finite multi-cliques (multisets
of points of the web of X). In the games considered e.g. in the papers [AJM94, HO94, Nic94], repeated moves are
allowed in the interpretation of !.

"These sequential algorithms are not really standard: they are sequential algorithms on sequential data structures
(see [Cur94]) equipped with a notion of complete plays. This notion can be defined inductively on the construction
of spaces, and the sequential algorithms we consider are strategies consisting only of complete plays.



o Ais rigid® if Homg (A, A) = {Id4}.
o A is weakly terminal if Home (B, A) # () for all objects B of C.

Lemma 4 Let A and A’ be isomorphic objects in a category C. If A is rigid, then A’ is rigid too.

The proof is straightforward.

A terminal object is of course rigid. But a rigid weakly terminal object is not necessarily
terminal, as we shall see. Being a rigid weakly terminal object is apparently not a universal
property. However,

Proposition 5 Let I and I’ be two rigid weakly terminal objects in a category C. Then Home (I, 1)
has exactly one element, and this unique morphism from I to I' is an isomorphism.

The proof is straightforward.
We are interested in a particular situation. Let C be a category and let P be a class of objects
of C, which is closed under isomorphisms.

Definition 6 Let A be an object of C. A P-unfolding of A is a weakly terminal object of P/A. A
P-unfolding of A is rigid if it is rigid as an object of P/A.

So, a P-unfolding of A is an object P of P together with a morphism p : P — A such that
for any € P and any morphism f : @ — A, there exists a (not necessarily unique) morphism
f":@Q — P such that po f' = f. We shall say that f’is a lifting of f along p. A very similar lifting
condition played an essential role in [Ehr96].

Saying that (P, p) is a rigid P-unfolding of A means furthermore that Idp is the only morphism
g : P — P such that pog = p. By proposition 5, if (P’,p’) is another rigid P-unfolding of A,
there is exactly one morphism f: P — P’ such that p’o f = p, and f is an isomorphism. And if
P'e€Cand f: P — P is an isomorphism (so that actually P’ € P), then (P',po f) is also a rigid
P-unfolding of A, by lemma 4.

Lemma 7 Let A and A’ be objects of C, and let ¢ : A — A’ be an isomorphism. If (P, p) is a rigid
P-unfolding of A, then (P,@op) is a rigid P-unfolding of A’.

This is trivial. R
When it exists, we denote by (A, p4) the rigid P-unfolding of A. Observe that the operation
A — A has no reason to be functorial (by lack of universality).

We develop now a simple example of the abstract situation previously described. The interest of
this example is that it is similar to the construction we shall introduce in section 6 for hypergraphs.
Let Poset be the category of locally finite posets (partially ordered sets where each element
has a finite number of lower bounds) with a least element, and monotone functions.
Let Tree be the class of trees. A tree is a poset T having a least element and where, for all
t €T, the set
lt={seT|s<t}

is finite and totally ordered by the order of T.
Let V' be any object of Poset. We define a new poset 7 (V) as follows:

8 Actually, one should rather use a term like “strongly rigid” as the word “rigid” is classically used for objects
which have the identity as unique automorphism (and not endomorphism).

10



e An element of 7(V) is a pair (v,]) where v € V and [ is maximal among the subsets of | v
which are totally ordered (so v € I).

e We endow 7 (V) with the following order: (v,I) < (w,J) iff I C J (which implies v < w).

As V is locally finite, for all (v, I) € T(V), I is finite, and so 7 (V) € Tree.

The map 7y : 7(V) — V which maps (v, I) to v is monotone.

Moreover, let T' € Tree and let f: T — V be a monotone map. Let (¢;);c4 be an enumeration
without repetitions of 7' (assuming 7" to be denumerable for simplicity; A is either N, the set of
natural numbers, or an initial segment of it).

Assume furthermore this enumeration to be such that

L<tij=1<yg.

Such an enumeration exists by local finiteness of T as a poset.

We define a function ¢ : T — T(V) inductively: by induction on n, we define g on the set
{t1,...,tn}. Solet n € N and assume, as an inductive hypothesis, that, for each ¢ < n we have
been able to define I;, a maximal totally ordered subset of | f(¢;) such that f(|¢;), which is totally
ordered, is a subset of I; (the function g on {¢y,...,¢,} is given by ¢g(¢;) = (f(t:), I;)). Our inductive
hypothesis stipulates also that

Vi,7 € N i,jgnandtigt]‘ibglj. (2)

Our goal is to extend g to {t1,...,tn,tnt1}, that is, to define I,41, a maximal totally ordered
subset of | f(£n41), in such a way that condition (2) still holds for n + 1.

Let ¢ be the unique element of 7" which is maximal such that ¢ < ¢,41 (the predecessor of ¢,11).

By our assumption on the enumeration (¢;), we know that ¢t = ¢, for some m € N such that
m < n. Observe that I, U f(} tnt+1) = I U{f(tn+1)} is totally ordered. So define I,,4; as one of the
totally ordered maximal subset of | f(¢,+1) containing I, U{f(¢,+1)}. It is clear that condition (2)
still holds for n + 1.

The map ¢g : T'— T (V) which to t € T associates (f(t),I,) (where n is the unique index such
that ¢, = ¢) is monotone. And so (7(V),ny) is a Tree-unfolding of V.

Let us check that it is a rigid unfolding.

Let f:T(V)— T(V) be such that

myof=nmy. (3)

Let (v,I) € T(V). By (3), one has f(v,I) = (v,I') where I' is a maximal totally ordered subset
of Jv. Let w € I, and let J = I NJ|w. One has (w,J) € T(V) and (w,J) < (v,I)in T(V). So
f(w,J) < (v,I'), and hence w € I' since, by (3) again, f(w,J) is equal to (w, J') for some J' C | w.

Thus I C I, and since I is a maximal totally ordered subset of | v, one actually has I = I'. So
[ is the identity function.

Towards an application of this construction, observe that the category Poset is cartesian, the
cartesian product of two posets being endowed with the product order. If 7" and T’ are trees,
T(T xT') is a tree which is easily seen to be the “shuffle product” of the trees T and T". Using
the rigidity of this operation, one shows easily that it is associative. However, it is not a functorial
operation.

We shall define a similar unfolding for hypercoherences.
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4 Parallel and serial hypercoherences

We first introduce the class of parallel hypercoherences, and its dual class, the serial hypercoher-
ences. The hypercoherence (!Bool”)J‘ % Bool considered in section 2 is a typical example of serial
hypercoherence.

Definition 8 A hypercoherence X is parallelif for all u, v’ € T'(X), if unu’ # 0, then wUw' € T'(X).
A hypercoherence X is serial if its orthogonal X is parallel.

Observe that any subspace of a parallel (resp. serial) hypercoherence is parallel (resp. serial).
Let X be a parallel hypercoherence, and let A be a non-empty subset of |X|. Then the binary
relation ~ 4 defined on A by

a ~4 o' iff there exists w € I'(X) such that a,a’ € u C A

is an equivalence relation. Furthermore, if A is finite then the two following properties are equiva-
lent:

e ~ 4 has only one equivalence class
o AcI'(X).

If Ais a set, we denote by Pg (A) the set of all its finite and non-empty subsets.

Proposition 9 Let X be a hypercoherence. The two following conditions are equivalent.
i) X is serial.

i) For all u € T*(X), there exist uy,uy € Pi (|X|) such that uy Nug = 0, uy Uuy = u and,
for all v C w, if v intersects both uy and ug, then v € I'(X). We abbreviate this situation by
writing simply v = uy & us.

Proof: We first prove that (i) implies (ii). Let « € [*(X). Then the relation ~, (in X1, which
is parallel) is an equivalence relation which has more than one class. Let u; be one of these classes,
and let uyg = w \ ;. Then uy # 0. Let v C u be such that u; Nv # () for i = 1,2. Let a; € u; N v,
for i =1,2. As a1¢,a2 and as a1,ay € v C u, one has v ¢ ['(X ), that is v € [*(X).

Conversely, assume that (ii) holds. We must prove that X1 is parallel. Let u,u’ € ['(X1) be
such that wN ' # . Assume that u Uu' ¢ ['(X1), that is w U u' € I'*(X). Then we can find
w1, uy C uwU u', both non-empty, and such that

vUu =u & usy .

Then u cannot intersect both u; and wus, and similarly for u’. Without loss of generality, assume
that u C uy. As ' intersects u and hence intersects uy, we must have v’ C uy. Hence u U v’ C uy,
which is impossible since ug is not empty, and « U u’ is the disjoint union of u; and us. n

Let us be more precise about this decomposition of the coherent subsets of the web of a serial
hypercoherence.

Proposition 10 Let X be a serial hypercoherence. Let u € I'(X). Up to reindexing, there exists
a unique family uy, ..., u, of pairwise disjoint elements of T'(X1) such that u = uy U ---U uy,,
and such that, for all v C u, if vNwu; # O for at least two distinct values of i € {1,...,n}, then
vel(X).
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If one considers u, uy,...,u, as subspaces of X, then the bijection from u to ({1} x uy) U
.- U ({n} x u,) which maps a € u to (i,a), where i is the unique index such that a € u;, is an
isomorphisms between v and uy & -+ - & Unp.

Proof:  The existence of this decomposition has essentially been established in the proof of
proposition 9: for (u;)i=1,...,, we take an enumeration of the classes of the equivalence relation ~,
(in the parallel hypercoherence X1). We just check that u; € ['(X*1). Since the elements of u; are
pairwise ~,-equivalent, there exists a subset v of u such that u; C v € T'(X1). Now if v # u;, then
v meets u; for some j # i, and hence v € [*(X), contradiction. So u; = v € I'(X ') as announced.

Now, we check uniqueness. Let (v;);=1,..x be another decomposition of u satisfying the same
properties as (u;);=1,..,. Without loss of generality, assume that vy # u; for each i € {1,...,n}.
As vy € T(X1), v; meets at most one of the u;’s, and since v; is not empty and is included in
uyU- - -Uuy,, vy must meet one of the u;’s. Let 7 be the unique index such that vy meets u;. We must
have vy C u;, and this inclusion is strict by our hypothesis on vy. Since u; C v1U---Uuwvg, the set u;
must meet some set v; with j # 1, and we have a contradiction with the fact that u; € D(X1). =

Next, we study the intersection of these two classes of hypercoherences.

Definition 11 Let E be a coherence space. One defines a hypercoherence FE€ by setting |F°¢| = | F|,
and by taking for I'(E€) the set of all finite and non-empty connected subsets of |E| (considering F
as a graph). It is obvious that E€ is a parallel hypercoherence. If v C |F| and if a € u, we denote
by (a), the connected component of a in u (i.e. the set of all elements of u related to a by a path
contained in u).

If X is a hypercoherence, one defines a coherence space Xcon by

{a,b} € I'(X).

Definition 12 A coherence space F is serial-parallel if its web contains no tuple of four pairwise
distinct elements (ay, az, as, aq) such that, for all 4, j € {1,2,3,4} such that ¢ < j, ¢; g a; holds
iff j =4+ 1. (Such a tuple is called a “P,” in graph theory, see figure 1.)

biff

AXcoh| = |‘X| and «a X

coh

In a serial-parallel coherence space, connected sets have a very simple structure.

Lemma 138 Let E be a serial-parallel coherence space. A subset uw of |F| is connected iff for all
a,b € u, there exislts ¢ € u such that a« g ¢ and ¢ Cg b.

Proof: Consider a path between a and b in u, and if the length (number of edges) of this path is
strictly greater than 2, apply iteratively the hypothesis that the graph F contains no Pj. n

The terminology previously introduced for hypercoherences is justified by the following result.

Theorem 14 Let F be a serial-parallel coherence space. The hypercoherence F° is both serial and
parallel, and F = F.p.

Conversely, let X be a hypercoherence which is both serial and parallel. Then Xcon is a serial-
parallel coherence space, and X = Xcon°.

So that we can identify the notions of serial-parallel coherence space with the notion of serial and
parallel hypercoherence.

Proof: Let us prove the first statement. We already know that E° is parallel. We prove that this
hypercoherence is serial (see figure 3). Let u,v € T'(E°L) be such that u Nv # (. We show that
wUv € D(E). If one of the two sets « and v is a singleton, then we conclude immediately. So we
assume that u,v € T*(F°L), that is, we assume that u and v are not connected. Assume moreover
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Figure 3: main step of the proof of theorem 14

that w U v is connected, aiming at a contradiction. Let ¢ € uNwv. Let b € u\ (a),. By lemma 13,
there exists ¢ € uw U v such that a —~g ¢ and b —~g ¢. Since b ¢ (a),, we necessarily have that
¢ € (a)y \ u. Similarly, let b’ € v\ (a),. We can find ¢’ € (a), \ v such that a ~g ¢’ and @ ~g ¥'.
Since E is serial-parallel, (¢, a, ¢,b) cannot be a Py, and hence ¢ ~g ¢’. Now, (b, ¢, ,b’) cannot be
a Py, and hence b —~g b'. But now (a,c,b,b) is a Py in E, whence the contradiction.

The equation F = F°, is obvious. We prove now the second statement, showing first that
X = Xen®. The webs are clearly the same. Let u € I'(Xon). Since u is connected, one can find
an enumeration aq,...,a, of u such that a; ©x_, ai41 forall i = 1,...,n — 1 (of course, with
possibly some repetitions), that is {a;,a;+1} € I'(X). Using iteratively the fact that X is parallel,
one concludes immediately that u € I'(X). Conversely, let u € I*(X) (if u is a singleton, there is
nothing to prove). By proposition 9, we can find uq, ug C u, both non-empty, such that v = uy & us.
Then for all @y € uy and a3 € uy one hasay —~x_,, a2, hence uis connected in Xcon. Assume we have
a Py (a,b,¢,d)in Xon. Then uw = {a,b, ¢, d} belongs to I'(Xo,°) = I'(X), but u = {a, b, d}U{a, ¢, d}
and {a,b,d},{a,c,d} € T(X1) (both sets are non-connected), and {a,b,d} N {a,c,d} # §. This is

contradictory because X is parallel, and hence X, is serial-parallel. n

We conclude this section by stating a few preservation properties of logical connectives with
respect to parallel and serial hypercoherences.

Proposition 15 Let X and Y be hypercoherences. If X and Y are parallel, then so are X &Y,
XY, X®Y and'X, and X+ is serial. If X and Y are serial, then so are X &Y, XY, X B Y
and ?X, and X+ is parallel.

Proof: We just check the exponential case. Let U,V € I'('X) be such that UNV # (. Let
wAaUUV. Let u=wnNU and v = wnNJV. Then u < U and v <V, so u,v € T'(X). Let
¢ € UNV and let @ € 2 be such that ¢ € w. Then a € uNwv, hence uUv € I'(X) since X is parallel
and we conclude since v U v = w. .

5 Finite serial-parallel coherence spaces and games

There are various equivalent ways of presenting games. The most usual one consists in defining a
game as a set of Opponent/Player-polarized moves, together with a prefix-closed set of plays, which
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are Opponent/Player-alternating sequences of moves. This set of plays constitutes a tree for the
usual prefix ordering of sequences. We used this presentation in our informal discussion in section 2.
But a game can also be presented directly as a tree of Opponent/Player-polarized positions, this
choice has been done for example by Lamarche in [Lam92], and we prefer this presentation here.
In this approach, a move is a transition from a position (starting position) to one of its immediate
successors in the tree. A move is played by Player if the polarity of the starting position is Opponent,
and by Opponent if the polarity of the starting position is Player.

We can apply proposition 10 and theorem 14 for establishing the connection we mentioned in the
introduction between finite serial-parallel coherence spaces and finite games. In the non finite case,
things are slightly more complicated, but, for instance, the notion of local finiteness introduced in
section 8 can be used for extending this connection.

We start by an obvious observation on serial-parallel coherence spaces.

Lemma 16 Let E and F be serial-parallel coherence spaces. Then E& F and E @ F are serial-
parallel, and one has (E& F)° = EC& F© and (E® F)° = E@ F°.

To any finite serial-parallel coherence space E, we want to associate an ordered set of positions
Pg, which is a finite tree (see the definition of a tree in section 3), together with a labeling function
Ag : Pg — {O,P,N} which is alternating in the sense that, if s,¢ € Pg and s is the predecessor of
t, then Ag(s) # Ag(t), and such that, moreover, Ag(s) = N iff s is a maximal element of Py (final
positions are neutral). The elements of the poset Pz will be subsets of |F|, and the order relation
of Pr will be the reversed inclusion on these subsets. We define now (Pg, Ag) by induction on
e

For this purpose, we prefer to consider F as a serial and parallel hypercoherence (we identify E
with F°). Indeed, we know that the serial-parallel coherence spaces are in bijective correspondence
with the serial and parallel hypercoherences by theorem 14, and, by lemma 16, that the additive
connectives commute to this correspondence.

o If |[E| =0, then P = () and there is nothing more to say.
o If |[F] is a singleton {a}, then Pr = {{a}}, and Ag({a}) = N.

o If |[E| € I'*(F), then we know by proposition 10 that there exists a unique family of pairwise
disjoint subspaces Fy,...,F, (with n > 2 and #|E;| > 1 for ¢ = 1,...,n) of E such that
|E| = UL, |Ei|, |E;| € T(E;/%) and such that, up to the canonical bijection between |E| and
|Ey & -+ -& Ep|,one has E= E; & -+ - & E,. Weset P = {|E|}U{J._, Pg,. Observe that this

union is disjoint, as
— if s € Pg,, then s is a non-empty subset of |E;|, and the sets |E;| are pairwise disjoint,
— and as the inclusion |F;| C |F| is strict for each 1.

Last, we define Ag by Ag(s) = Ag,(s) if s € Pg, and Ag(|E[) = P.

e Symmetrically, if |E| € T*(E1), we find a unique family Fi,...,F, (with n > 2) of pairwise
disjoint non-empty subspaces of E such that |E| = U._, |Eil, |E;| € T(E°) and E = E1 &
-+~ @ F, (up to the canonical bijections between the web of these two spaces). Then we set
as before P = {|E|}UJ_, Pg, and we observe that this union is disjoint. Last, we define
AE by )\E(S) = AEi(S) if se PEi and )\E(|E|) =0.
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Observe that, for s € Pg, Ag(s) = N iff #s = 1, Ag(s) = P iff s € ['*(F), that is, iff #s > 2
and s is connected in F (if one considers again F as a serial-parallel coherence space). And observe
that Ag(s) = O iff s € T*(E1), that is, iff #s > 2 and s is connected in E* (again, considered
as a serial-parallel coherence space), that is, iff s is not connected® in F. Observe also that, due
to the uniqueness property stated by proposition 10, the game (Pg, Ag) is uniquely determined by
the serial-parallel space F.

Conversely, given a game (P, \) where P is a finite tree and A : P — {O,P,N} is a function,
we can define a hypercoherence SP(p ) by [SP(py)| = {s € P | A(s) = N} and, for S C [SP(p ],
S € I'"*(SP(p,) iff #5 > 2 and the glb of S in P (which exists, as P is a tree) is mapped to P by
A. Then it is easily checked that the hypercoherence SP(p ) is always serial and parallel, and that,
if the game (P, A) we start from is given by P = Pg and A = Ag for some finite serial and parallel
hypercoherence F, then SP(p ) is canonically isomorphic to E. It is in that sense that finite serial

and parallel hypercoherences can be considered as games!V.

6 Parallel unfolding of a hypercoherence

We show in this section that any hypercoherence admits a rigid unfolding (in the sense of defini-
tion 6) with respect to the class of parallel hypercoherences, in the category of hypercoherences
and strongly stable linear maps. This construction generalizes what has been done in a concrete
case in section 2.

So for any hypercoherence X, we shall show that there exists a parallel hypercoherence Y,
together with a linear strongly stable morphism p : Y —o X satisfying the conditions prescribed in
section 3. But it turns out that p will belong to a very particular class of morphisms, it will be a
“web morphism”.

Definition 17 Let X and Y be hypercoherences. A web morphism from X to Y is a morphism
f:X — Y which is a function from | X| to |Y|. (Remember that f, by definition of a morphism, is
a subset of | X| x |Y]; we just require this subset to be functional, in the usual set-theoretic sense.)
Equivalently, a web morphism from X to Y is a function f:|X|— |Y| satisfying

Vue I™(X) f(u) e "(Y) .
When f: X — Y is a web morphism, we write f : X — Y.

Let X and Y be hypercoherences, and let p : Y — X be a web morphism. Assume that Y is
parallel, and that (Y, p) is a rigid unfolding of X with respect to parallel hypercoherences, in the
category of hypercoherences and web morphisms. We show that (Y, p) is also a rigid unfolding of
X with respect to parallel hypercoherences, in the category of hypercoherences and arbitrary linear
morphisms.

Indeed, let Z be a parallel hypercoherence and let f : Z — X be a linear morphism. Let us
define a hypercoherence T as follows: |T'| C |Z] x |X]| is the trace of f and a subset w of |T| is in
['(7T') iff it is finite, non-empty and satisfies 7y (w) € I'(Z). Then it is clear that T is parallel and that

9This is another characterization of serial-parallel coherence spaces which derives from theorem 14: a coherence
space F is serial-parallel iff for each finite subset u of the web of E such that #u > 2, if u is connected in F, then
u is not connected in E*. The converse implication always holds, as easily checked (observe that u has at least two
connected components in EJ‘.). Observe by the way that the Py is the smallest coherence space E which is connected
both in E and in E*.

00Observe however that if we start from a game (P, A) and define E = SP(p,), and then P ' =Pgand X = \g, we
arrive to a game (P’, ') which in general is not isomorphic to (P, )).
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7o is a web morphism T — X, and so there exists a web morphism g : T'— Y such that pog = 5.
Observe then that there is a linear map f': Z — T, whose trace is {(¢, (¢,a)) | (¢,a) € tr(f)} such
that myo f' = f, so that ¢’ = go f" is a linear map Z — Y such that pog’ = f. So arbitrary linear
maps from a parallel hypercoherence to X can be lifted along p.

Last we show that any linear map h : Y — Y satisfying poh = p is actually a web morphism,
and hence must be the identity morphism from Y to Y. Indeed, one has poh = {(b,p(t/)) | (b,V") €
h} and so since poh = p and p is a web morphism, for all b € |Y|, there exists b’ € |Y| such
that (b,0") € h. Next, let b,b],b} € |Y]| be such that (b,b}), (b,05) € h. Since h € ¢D(Y —Y),
we must have {b],05} € I'(Y). But as poh = p, we have p(b}) = p(by) = p(b), and hence by the
characterization above of web morphisms, {b},05} ¢ T*(Y), so b} = b}, and h is a web morphism.

Consequently, and without loss of generality, instead of constructing rigid parallel unfoldings in
the category of hypercoherences and linear morphisms, we restrict our attention to the subcategory
of hypercoherences and web morphisms.

Before proving that all hypercoherences admit a rigid parallel unfolding, let us introduce a
few useful notations. Let X be a hypercoherence. If u € I'(X), let us denote by [',(X) the set
{vel'(X)|uCwv}and by F,(X) the set of all maximal subsets of I, (X) which are closed under
finite unions.

Lemma 18 Let o be a subset of I',,(X). One has o € F,(X) iff the two following conditions are
satisfied:

i) Vo,o' €a vUV €a
ii) For allv e Ty (X), ifvUv € T'(X) for all v’ € a, then v € a.

Proof: Assume first that o € F,(X) and let us prove property (ii). So let v € I',(X) be such
that
YV ea vUv el(X).

Let o/ = {vUv' | v € a} and § = aUa'. We have @« C § C T',(X). To conclude, it suffices to
prove that (3 is closed under binary unions. So let w,w’ € 3. Assume for instance that w,w’ € o/,
the other cases being simpler. Then w = vUv’ and w’ = vUv" for some v', v” € a. But v'Uv" € a,
and hence wUw' =v U (v Uv") € o'.
The converse implication is straightforward. .
For a € |X|, we abbreviate I'(;y(X) by I';(X) and F,1(X) by Fo(X). Observe that, if o €
Fu(X), then u € a by maximality. For o € F,(X), the only singleton belonging to a is {a}.
Observe that the three following conditions are equivalent:

e X is parallel.
e For all a € | X|, the set F,(X) is reduced to {I';(X)}.
e For all u € I'(X), the set F,(X) is reduced to {I',(X)}.

The cardinality of F,(X) measures in some sense the lack of parallelism of X at a.

Definition 19 We define now a hypercoherence X which is intended to be the rigid parallel un-
folding of X.
Its web is given by

|‘§(\V| = U fa(X) :

a€|X|
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Observe that this union is disjoint. Before giving F()?), we define a function px : |/\/;| — | X| by:
px (a) is the only @ € | X| such that {a} € a. In other words, px is characterized by

o € fpx(a)()() .

~

Let U C |X| and let u = px(U). We say that U € I'(X) iff U is finite and non-empty and satisfies

wel(X) and (U € Fu(X).

This condition can be rephrased as follows. First, let v € I'(X), let a € F,(X) and let w € a.
We denote by a,, the set anNtw = {v' € a | w C v'}. Observe that a,, € F,(X).

Lemma 20 A subset U of |)?| belongs to F()/(\') iff U is finite and non-empty, and satisfies the
following two conditions:

i) For all € U, the set uw = px(U) belongs to a.
ii) Forall o,/ € U, o, = a,.

And if U € F()?), one has a, = (U for each a € U (where u = px(U)).

~

Proof: First, assume that U € ['(X). We prove (i). We have U € F,(X), so v € (JU. But
(U C « and hence u € a for all @ € U. Next, let « € U. We have (U C ay. But o, € F,(X),
and our hypothesis says that U € F,(X), so (U = ay, and this proves (ii).

Conversely, let U be a finite and non-empty subset of |)?| satisfying (i) and (ii), and let u =
px (U). Since U is non-empty, u € I'(X) by condition (i). The set (U is closed under finite unions
as an intersection of sets having that property. Let v € (JU. For all @ € U one has v € «, and
hence px(a) € v. Hence u C v. Last, (U belongs to F,(X) since condition (ii) implies that
ay € (U and since a, € Fy(X) (for each a € U). .

Theorem 21 Let X be a hypercoherence.
i) ()?,px) is a rigid parallel unfolding of X .

ii) Furthermore, let Y be a parallel hypercoherence, let f : |Y| — |X| be a web morphism, let
b e |Y| and let o € Fypy(w) be such that f(Us(Y)) C . Then there exists a lifting g of f
along px such that g(b) = «.

iii) Specifically, for all o € |)?|, for all w € «, there exists U € Fa()/(\') such that px (U) = u.
Proof: Let us first check that X is parallel. Let U,V € F()?) be such that U NV # ), and let

o be an element of this intersection. Let u = px (U), v = px (V). Since U € T(X) we have u € a.
Similarly v € . But « is closed under unions so u Uv € a. Now let 3,y € U UV and let w C | X]|
be finite and such that « Uv C w. If w € 3, since B, € U or f,a € V, and since U,V € F()?),
we have w € . Then since y,a € U or y,a € V, we have w € 7. By lemma 20, we conclude that
UuV eI'(X).

Let U € I'(X). By definition, px(U/) € I'(X). If this set is a singleton {a}, then each element
of U is in Fo(X) and for two such a and o' we must have ay,) = o/{a}, that is @ = o'. So px is a
web morphism.

Let Y be a parallel hypercoherence, and let f : |Y| — |X| be a web morphism. We want to
build a web morphism g : |Y| — |)/(\'| such that pxyog = f.

Let B C |Y|. Assume that, for each b € B, we have found g(b) € Ff(;)(X) in such a way that
the two following conditions are satisfied.
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(a) Vbe B f(I'h(Y)) C ¢(b).
(b) Vv € F(Y) Vb, ' € BN g(b)f(v) = g(b/)f(u)'

These conditions are very natural. Indeed, let v € I'y(Y). First, g(b) € g(v), so px(g(v)) € g(b) (by
lemma 20, (i)). Since we want to have px og = f, this implies that f(v) € ¢(b) so condition (a)
must hold. Condition (b) comes from the fact that g(v) € F()?), and from lemma 20, (ii).

Let ¢ € |Y|. We prove that we can extend g to B U {c} in such a way that these two properties
still hold for this extension. For v € '.(Y) such that v N B # (), let us denote by F, the common
value of all the g(b)s(,)’s for b € BN v. Let

F=|J{F,|veT.(Y)and vn B #0} .

We first prove that F' is closed under unions. For i =1,2, let u; € F. Let v; € I'.(Y) be such that
v;NB # P and u; € F,,. Let b € vyNB. We have uy € g(b). Since Y is parallel and since ¢ € vy Ny,
we have vy Uvy € T'(Y), and so vy Uwy € Ty(Y) since b € vy. Hence uy U f(v; Uwy) € g(b) as ¢(b) is
closed under unions and contains f(I';(Y')) as a subset. Hence

up U f(vp Uwy) € g(b)f(vluvg) = Fyyu, -

Symmetrically one proves that us U f(vy Uwvy) € Fy Uy, and hence uy Uugy U f(vy Uvy) € Fy i,
that is
Uy U Uy € F’U1U’U2

since f(v;) C ;.

Next, we prove that F'U f(I'.(Y)) is closed under unions. Since this property holds for F' and
for f(I'.(Y)), we have just one case to check. Let w € F' and let v’ € ['.(Y). Let v € I'.(Y) be such
that vN B # () and u € F,. Again we choose b € v N B. We have

weg) and fvUv')eg(b),

hence
u U f(U U IU/) € g(b)f('qu’) = F’UU’U’

and we conclude since v U f(vUv') = uU f(v').

Let us choose for g(c) any element of F¢(,)(X) such that FU f(T.(Y)) C g(c). Indeed, we may
apply Zorn’s lemma, since, denoting by C the set of all subsets of I'y(.) (X) which are closed under
finite unions, each totally ordered subset 7 of C is upper-bounded by | J7 which belongs to C, and
we have proved that FU f(I'.(Y)) € C. Property (a) obviously holds for this extension of g; let us
check property (b). The only non-trivial case is when b € v N B and b’ = ¢ (and hence v € I'.(Y)).
But we have g(b) f(,) = F, by definition of F,, and by definition of g(c), we have that

F, C g(c)f('u) .

This inclusion is actually an equality by maximality of F, and because g(c)f(u) is closed under
unions.

To build the required function g on |Y|, one chooses an ordinal enumeration of |Y| and one uses
the property above in a trivial transfinite induction. As a result, we get a function g : |Y| — |)?|
satisfying (a) and (b) for B = |Y|. These two properties, together with lemma 20, imply that
g(v) € 1"()?) for all v € I'(Y). It is also clear that, by construction of g, for all b € |Y|, one has
px(g(b)) = f(b). For showing that g is a web morphism from Y to X, it remains to check that if
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v € (YY), one has #g(v) > 2. As f is a web morphism, one has # f(v) > 2, that is #px (¢g(v)) > 2
and hence g(v) cannot be a singleton.

[tem (ii) of the theorem is an obvious consequence of this construction as we can choose the
enumeration of |Y| in such a way that by = b, and for g(by), we can choose g(by) freely among
all the a € Fyp)(X) such that f(I'y, (Y)) C a. Item (iii) is a special case of (ii). Indeed, let
Y be the parallel hypercoherence defined by |Y| = w and I'*(Y) = {u} (if u is not a singleton;
otherwise, there is nothing to prove). Take for f the inclusion of |Y|into |X| which is obviously a
web morphism. Let g be a lifting of f along px, and set U = g(u).

To conclude, let A : X — X be a web morphism such that pxy oh = px, and assume that
h #Id. Let o € | X| be such that g = h(a) # . Let a = px(«) = px(8). Then by maximality
of @ and 3, there exist u € @ and v € § such that u U v ¢ T'(X). By (iii), we can find U € T',(X)
and V € Fg()/(\') such that px(U) = w and px (V) = v. Since h is a web morphism, we must have
h(U) € Tg(X), and since X is parallel, we have h(I/) UV € T5(X), hence px (h(U) U V) € [y(X)
since px is a web morphism. But px(R(U)U V) = u Uwv, and we have a contradiction. .

Remark: Another important consequence of the lifting property is that, whenever z is a clique
of X, there exists a clique A of X such that px(A) = x. Indeed, z may be considered as a
(trivially) parallel subspace of X. Usually, there are many cliques A in X such that px(A) = x.
But if z is sufficiently “large”, the clique A is unique. It can be checked for instance that if 7 is a
hypercoherence, if X = Z1 % Z and if « is the identity clique of X (that is, z = {(c,¢) | ¢ € |Z]}),
then there is exactly one clique A of X such that px(A) = x: there is only one way of unfolding
the identity. This possibility of lifting all cliques along px presents some similarity with part (iii)
of theorem 21 above. It is in some sense much stronger in that it deals with non necessarily finite
subsets of the web of X, and moreover, when z is finite, it says not only that z can be lifted in a
coherent subset of |)? , but moreover that all non-empty subsets of x can be simultaneously lifted
as coherent subsets of | X]|.

Remark: As observed by one of the referees of this paper, there is another (and simpler) way of
associating to a hypercoherence X a parallel hypercoherence Y: for |Y|, take the same definition
as for |)?|, but remove the maximality requirement (that is, an element of |Y| is a pair (a, A) where
a € |X|and A C T'y(X) is closed under finite unions, but not necessarily maximal such), and
for T'(Y), take lemma 20 as a definition. Then one can also define a projection web morphism
p:Y — X by p(a, A) = a, and it is straightforward that each web morphism from some parallel
hypercoherence to X can be lifted along p. Moreover, this construction can be characterized by a
universal property of initiality, and is clearly functorial. However, this very natural construction
is too “generous” in the sense that when X is already parallel, the hypercoherence associated to
X is not isomorphic to X itself. Moreover, this construction does not satisfy theorem 23 that
we consider as essential. A similar construction is also possible in the poset example of section 3
(replace “maximal totally ordered subsets” by “totally ordered subsets”).

The next proposition provides a characterization of coherence and incoherence in X which is
very simple and will be useful in the proof of the next theorem.

Proposition 22 Let U be a non-empty and finite subset of |/\/}|

~

i) U belongs to T'(X) iff, for all (us)acr such that u, € a for each a € U, one has |, ¢y o €
I'(X).

i) U beJl_ongs to T(X L) iff there exists (ug)acr such that us € « for each o € U, and Uaser ta €
['(X-+).
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Proof: We prove (i). Let U € F()?), and let (uqy)qer be such that u, € a for each av € U. Let
u = px(U). We know that for each o € U, u € a, so that u U u, € @ and hence v U u, € a,. Now
since U € F()?), one has a, = [|U by lemma 20, and hence v U u, € NU. As this holds for each
a € U, one has in particular |J,cr7(u Uuy) € T(X) but this last set is equal to (J,¢p ta as, for
each o € U, px(a) € u,.

Conversely, assume that | J o #a € ['(X) whenever u, € a for each a € U. Let u = px (U). As
= U,epr ta Where uy = {px(a)} € a for each a € U, we have u € I'(X). Now let @ € U and let
us prove that u € a. If this were not the case, there would exist some v € a such that uUv ¢ I'(X).
Now set ug = {px(8)} if 8 # o and u, = v. We have Usyup = uUv ¢ [(X), and this is a
contradiction. Last, let o, 8 € U, and let v € a be such that « C v, and assume that v ¢ 5. Then,
there exists w € 3 such that vUw ¢ ['(X). As previously, one derives a contradiction, defining a
family (uy)yer as follows:

v ify=a
Uy =< W ify=0
{px(7)} otherwise.
The union of that family is v U w, as u C v.

Now we prove (ii). Assume first that U € T(XL). If U is a singleton {a}, we can take
uo = {px(a)} € [(X1). Otherwise, U ¢ I'(X) and we apply (i). Conversely, let (tuq)actr be such
that u, € a for each @ € U, and v = (J ¢y ua € [(X1). If v is not a singleton, we conclude
directly, applying (i). Otherwise, v = {a} with px(«) = {a} for each o € U. Then U € F(/\/}J-)
because px is a web morphism. "

Theorem 23 Let X be a serial hypercoherence. Then X s serial loo (and hence is serial and
parallel).

Proof: Let U,V € F()?J-) having a non-empty intersection, and let & € UNV. By proposition 22
we can find a family (vg)ger such that vg € § for each 8 € U and a family (w,),ev such that
wy € v for each v € V, such that moreover

v= U vg €D(XY) and w= U wy € (X1 .
BeEU veV

We define a family (us)sepuv as follows:

vs iféeU\V
us = ws iféeV\U
vg U wg if(;EUﬂV,

then us € § for each § € UU V. Since X is serial, and since clearly px(«) € v N w, we have
vUw € (X1). But
U us = vUw

seUuv
and we conclude, by proposition 22. .
7 Unfolding a finite serial hypercoherence

We present now another, and maybe more intuitive, way of constructing X in the special case
where X is a finite and serial hypercoherence. For all such X, let us define a hypercoherence X
together with a web morphism ¢x : X — X by induction on #|X]| as follows:

21



i) If #|X| =1, then X = X and gx = Id.

if)

i)

If |X] € I'*(X), then by proposition 10, as X is serial, it can be written in a unique way
(up to permutations of indexes) as X = X; & ---& X,, where the X;’s are pairwise disjoint
non-empty subspaces of X verifying |X;| € [(X1). So the sets | X;| are the maximal subsets
of X which belong to I'(X1). Then we set

X=X1& - &X, and qx =qx, & & ax, -

If |X| ¢ ['(X), then let Xy,..., X,, be the maximal subspaces of X whose web belongs to
['(X). Observe that these subspaces are not necessarily disjoint (because X may not be
parallel). Then we set

—~

X=X2---aX,.

We define ¢x as
4x =qo(qx, - Dyx,)

where
¢ JUi x1x:) — |X]|
1=1
(t,a) — a

Indeed, ¢ is a web morphism from X; @ --- @ X,, = X as easily checked.

The hypothesis that X is serial is heavily used for proving that ¢y is a web morphism. Indeed, oth-

erwise, in the case where [ X| € I'"(X), the X;’s (maximal subspaces of X such that

Xil ¢ (X))

would not define a partition of X and then, setting X = X1 & & X and gx = ro(gx, & - & gx,,)

(where 7 :

X1 &+ & X, = | X]| is defined as the function ¢ above) would not give rise to a web

morphism in general. It turns out that when X is serial, r is an isomorphism, and this makes this

construction possible.
The following property immediately results from this construction.

Lemma 24 Let Z be a finite serial hypercoherence. If |Z| € T'(Z), then 1Z| € F(Z)

We shall use the following general lemma.

Lemma 25 Let (S, <) be a poset, let A C S be directed and B C S be finite. Then

(Vse AJteBs<t) = (IeBVsec As<t)

Proposition 26 Let X be finite and serial. Then (2 AqX) is a rigid parallel unfolding of X.
Consequently, there is a unique morphism ¢ : X — X such that pxop = qx, and ¢ is an

tsomorphism.

Proof: We prove the result by induction on #|X|. Let Y be a parallel hypercoherence and let
f:Y — X be a web morphism.

e For #|X| < 1, the result is obvious.
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e Assume that |X| € I*(X). Let X = X; & ---& X,, be the decomposition of X in maximal
subspaces X; such that |X;| € T'(X1) given by proposition 10. For i = 1,...,n, let Y;
be the subspace of Y whose web is f7'(|X;|), and let f; be the restriction of f to this
subspace. By inductive hypothesis, we can find ¢; : ¥; — 3(: such that gx, 0¢; = fi. We set
g=(g1& - -&gn)oj where j: |Y| = |Y1 & ---& Y,| maps each b € |Y| to (¢,b) where i is the
unique index such that b € |Y;|. As j is clearly a web morphism from Y to Y; & ---& Y, the
function ¢ is a web morphism from Y to )Z', and we have gxyog = f. Now, let h : XX
be such that gx oh = ¢x, and let h; be its restriction to Z It is easily checked that h; is a

web morphism X; — X; such that ¢x, o h; = ¢x, and hence by inductive hypothesis, h; = Id,
so that h = Id.

o Assume last that

X|¢T'(X), and let Xyq,..., X, be its maximal subspaces such that | X;| €
['(X). Since Y is parallel, it can be written as Y = . ; Y; where the family (|Y}[);es is an
enumeration (without repetitions) of [Y[/~y|, the equivalence relation ~|y| on [Y| having
been defined at the beginning of section 4 '*. For each j € J, ['(Y;) is a directed set. Indeed,
as |Y;| is an equivalence class of the relation ~y|, each finite subset of |Y;| is upper bounded
by an element v of I'(Y), and v is necessarily a subset of |Y;[, as two elements of v are
always ~y-equivalent. Hence by lemma 25 (with A = f(T'(Y;)), B = {|Xi],...,| X[}, the
order being of course the inclusion) there exists a function [ : J — {1,...,n} such that the
restriction f; of f to |Y;| is a web morphism f; : Y; — Xi(j)- By inductive hypothesis, we can

o~

lift f; along X, by a web morphism g; : Y; — Xj(;). Using the fact that ¥ = @J-EJYJ-, we
obtain in that way a web morphism g : Y — @7, X; = X which satisfies gxog = f. Now
let h: X = X be a web morphism such that gxoh =¢x. Let i € {1,...,n}. By lemma 24,
there exists j € {1,...,n} such that h(|5(v2|) C |/\f7]| By applying ¢x to both members of this
inclusion, we get | X;| C |X;| so that ¢ = j by maximality of the X}’s, and we conclude by

inductive hypothesis.

Let us give yet another way of presenting this construction, establishing a direct link with
section 2.

Definition 27 Let X be a finite hypercoherence. A tower of X is a sequence s = (ug, ..., u,) of
subsets of | X| such that

e uy = |X|,
o Hu, =1,

e if 0 < i< n, then w; is not a singleton, and if w; € ['*(X), then ;41 is a maximal subset of
u; which belongs to T'(X1), and if u; € T*(X*), then u;1; is a maximal subset of u; which
belongs to I'(X).

If @ is the element of | X | such that u, = {a}, one says that s is a tower at a. One writes a = g% (s)
as a is uniquely determined by s.

"The proof that Y is the sum of its subspaces Y; proceeds like the proof of proposition 9; by the way, one might
derive this decomposition of Y from proposition 10 applied to Y1 if |Y'| were assumed to be finite.
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Observe that if two towers of X are comparable for the prefix ordering of sequences, they must
be equal. Observe also that the first element of any tower of X must be |X|, so that two towers
have always a non-empty common prefix.

The set |T(X)| of all towers of X can naturally be considered as the web of a coherence space:
say that s,s’ € |T(X)| are strictly coherent if they are different and the last element u of their
longest common prefix belongs to I'*(X) (observe that as s # s, the set u cannot be a singleton).
We denote by T(X) this coherence space, which is serial-parallel.

Proposition 28 If X is a serial and finite hypercoherence, then there is a bijection ¢ : |T(X)| —

X| which is an isomorphism of hypercoherences from T(X)® to X and which moreover satisfies
T

gx °Y = qx-

Hence ¢} is a web morphism from T(X)® to X and (T(X), ¢%) is a rigid parallel unfolding of X,
by proposition 26.

Proof:  Straightforward induction based on the observation that in the definition of )A(:, the
| X;|’s are the maximal subsets of |X| such that |X;| € T(X*) when |X| € ['*(X) (case (i) of the
construction), and the maximal subsets of | X| such that | X;| € T'(X) when |X| € T*(X 1) (case (iii)
of the construction). .

If X is a serial and finite hypercoherence, we have established an isomorphism between T(X)*
and )?, in a rather indirect way. This correspondence can be made more explicit as follows.
Given a € |X| and s = (ug,...,u,) € |T(X)| a tower at a, consider the set S = {u; | i €
{0,...,n} and u; € I'(X)}. This is a subset of I',(X) which is obviously closed under unions
(indeed, it is totally ordered by the inclusion relation). It can be proved that there is exactly one
element «a(s) of F,(X) such that S C «(s), and that the map associating to s this unique element
a(s) of |X| is an isomorphism from T(X)° to X.

The serial-parallel coherence space associated to the serial and finite hypercoherence X =
('‘Bool™)™ % Bool in section 2 was T(X). So the coherence space of all complete plays of the
game associated to the type Bool” — Bool in the theory of sequential algorithms is canonical-
ly isomorphic to the rigid parallel unfolding of the hypercoherence interpreting this type in the
hypercoherent semantics.

8 A cardinality issue

The web of the rigid parallel unfolding of a hypercoherence X has a cardinality which generally is
strictly greater than the cardinality of | X|. Consider for instance the hypercoherence X whose web
is the set of integers, and where the only elements of ['*(X) are the sets of the shape

{-n,...,n,n+1} and {-n-1,-n,...,n}

for all n € N. It is easily checked that there is a bijective correspondence between Fy(X) and the
set of all subsets of N, so that #|X| = 2#X1.

But in denotational semantics, one tends to consider that the spaces used for interpreting
formulae or types should have a denumerable number of generators: this corresponds to the standard
requirement of w-algebraicity in Scott semantics for instance. When one deals with coherence
spaces, qualitative domains or hypercoherences, the corresponding condition is the countability of
the webs.
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We present a condition on hypercoherences that allows to control the cardinality of webs through
the general parallel unfolding construction of section 6, and which is preserved by all the standard
constructions of linear logic.

For a hypercoherence X satisfying this condition, we shall have, for all ¢ € | X|,

#px' (a) < o0 .

The degree of a € |X| is classically the number of hyperedges of X which contain a (that
is, #I'4(X)). Requiring the degree of a to be finite guarantees of course that #py'(a) < oc.
Unfortunately, this condition is not preserved under the constructions of linear logic. For instance,
if [*(X) = 0, the degree of @ in X is 1, whereas its degree in X+ is #|X| (when this cardinal is
infinite). So we shall define a notion of reduced degree which will be better behaved.

If Ais aset and a € A, we denote by Pg_ (A) the set of all finite subsets of A which contain a.

Let X be a hypercoherence and let a € | X|. We define on Pg_(|X|) an equivalence relation as
follows:

umx u M Yo e P(X]|) wUvel(X)edUuvel(X).

Actually, this equivalence relation can be more globally defined on Pg (|X|), but we consider here
only the local version.

Definition 29 Let X be a hypercoherence and let @ € |X|. The reduced degree of a in X is
dx (a) = #Pgn (| X])/=x
One says that X is locally finite if all the elements of | X| are of finite reduced degree.

Before studying these notions, we state a few trivial lemmas on equivalence relations.

Lemma 30 Lel F and F be sets and let R and S be lwo equivalence relations on E and F respec-
tively. Let R x S be the product of these two relations (so that (a,b) R X S (a’,b) iff « R ' and
b Sb), which is an equivalence relation. Then

#(E X F)/(Rx S) = (#E/R)(#F/S) .
This is obvious.

Lemma 31 Let E and F be two sets. Let R and S be two equivalence relations on E and F
respectively. If there is a function f: F — F such that

J(@) S fl@)=aRd

then
#FE/R < #F/S .

This is obvious.

Lemma 32 Let E be a set and R be an equivalence relation on FE. Let R* be the equivalence

relation on P(FE) defined as follows: x R* y iff
Voeaxdbey aRbO and Vbeydacax aRD.

Then
#P(E)/R* = 2#P/R
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Proof: Observe that any element of P(E)/R* is the class of a subset 2 of E satisfying:
Va,a' €z aRd = a=d

and that two such sets z and 2’ are equivalent (for R*) iff there is a bijection ¢ : # — 2’ such that
a R ¢(a) for all @ € z, so that there is a bijective correspondence between P(E)/R* and P(E/R).

Lemma 33 Let X be a hypercoherence and a € | X|. If a is of finile reduced degree in X, il is also
of finite reduced degree in X1 and more precisely

[dx1(a) —dx(a)| <1
Proof: Let P be the set of elements of Pg (|X|) which are not singletons. It is clear that
P/~x = P/~ 1, but dx(a) € {#P/~x,#P/~x + 1}, whence the result. .

Lemma 34 Let X andY be hypercoherences and let a € | X | be of finite reduced degree in X. Then
(1,a) is of finite reduced degree in X &Y, and more precisely

dX&Y(la a) € {dX(a)adX(a) +1}.
The proof is straightforward.

Lemma 35 Let X and Y be two hypercoherences. Let a € |X| and b € |Y| be of finite reduced
degrees in X andY respectively. Then (a,b) is of finite reduced degree in X @Y, and more precisely

dxgy (a,b0) < dx(a)dy(b) .
Proof: Consider the map

m PE(XaY]) - PLOXD x PL(Y))
w = (m(w), Ta(w))

If 7(w) is equivalent to w(w’) for the product of the equivalence relations ~x and ~y, then w ~xgy

w'.

Applying lemmas 30 and 31, we get the required inequation. .

Lemma 36 Let X be a hypercoherence and let x € |'X| be such that all the elements of x have
finite reduced degree in X. Then x has finite reduced degree in !X, and more precisely

dv_,\'(x) <14+ HQdX(a) .

a€xr

Proof: Let S(X) be the subspace of !X defined by

ISCOT = "X\ A0} -

We prove that
ds(X)(w) < H 9dx(a)

aEx
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and the result will follow from lemma 34, as clearly !X ~ 1& S(X), where 1 stands here for the
hypercoherence whose web is a singleton.
So let z € |S(X)|. For each a € z, let us define a function as follows

Secq : Pen(IS(X)) = P(Pga(IX])
U = {uePgi(|X]|)|u<U}

and let R, be the equivalence relation defined on P(Pg (| X)) by

Vueld Iu' el uyx u

7 .
UR U it {Vu’EU'EIuEUuqu’

Let U, U’ € PE (IS(X)]). Assume that Secy(U) R, Sec, (U') for all @ € x. We claim that
U zS(X) U'.

Indeed, let V' € PE_(|S(X)|) and assume that UUV € T';(S(X)). Let w<U'UV, let o' = wnJ U’
and v = wnNUV. Asz # 0, we have wnaz # 0, solet « € wNa. We have a € v/ Nuv, v’ < U’
and v < V. Since Sec,(U) R, Sec, (U’), there exists u such that ¢ € u, u < U and u =x u'. But
wUov<QUUV and UUV € I';(S(X)) by assumption, so u Uv € I[',(X), and hence v’ Uv € [',(X).
Since clearly w = v’ U v, we have proven that U' UV € T';(S(X)) as required.

To conclude, consider the map

Pin(S(X)) = [T PPa1X1)

U = (Seca(U))aEx

and apply lemmas 30, 31 and 32. "

Theorem 37 If X andY are locally finite hypercoherences, then so are X+, X &Y, XY, X®Y,
XBY,'X and 7X.

It is an immediate consequence of the previous lemmas.

Theorem 38 Let X be a hypercoherence and let a € |X| be of finite reduced degree. Then px*(a)
s a finite sel. More precisely,

#py' (a) < 20X
So if X is locally finite and if the cardinality of | X| is infinite, then

#1X] = #/X] .

Proof: Observe that the elements « of p;Yl (a) are closed under the equivalence relation =x. By
this, we mean that they satisfy

Vu,u' € PE(IX]) (u€aandumxyu)=u€a.

The next technical lemma will be useful in the proof of the last theorem of this section.

Lemma 39 Let X be a hypercoherence, and let W C |)?

be finite and non-empty. Let w = px(W).

i) For all w € W, one has w C u.
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ii) Letuw € W and let u' be a finite subset of | X| such that w C u'. Ifu' ~x u, then v’ € W.

The proof is straightforward.

Theorem 40 Let X be a hypercoherence and let o € |)?| If a = px () is of finite reduced degree
in X, then « is of finite reduced degree in X. More precisely,

dg(@) < dy(a)29x(®

So, if X is locally finite, X is locally finite.
Proof: We denote by ~% the equivalence relation defined on P(Pg (| X|)) by U =% V iff

Vu el eV urmxv and YweEV Iueld uxxv.

By lemma 32, this equivalence relation has 29x() classes. Let U, U’ € Pf?n(|)?|), and set u = px (U),
u' = px (U'). Assume that

w~x u and ﬂUz*X ﬂU’ .
We claim that U = U’, and the theorem will follow, by lemmas 30 and 31.
We prove now this claim. Let V € Pg‘n(|)?|) and let v = px(V). Assume that U UV € I(X).
This means that u Uv € I'(X) and that YUNNV € Fuu(X). As uUv € I'(X) and as v =x o/,

we have v/ Uv € T'(X). Tt remains to prove that (U ' NNV € Fu(X).
So let w’ be a finite subset of | X | such that «' U v C w’, and assume that

Vi e (\U'n(V w'Ut’ eT(X). (4)

We have to prove that w' € (YU'N(V (the set (\U' N[V is obviously closed under finite unions,
as an intersection of sets having that property).

As umx v/, one has U w' =~x v Uw' (indeed, =x is a congruence with respect to U). That
isw mx wUu. Let t e NUNNV. Ast € (U and as (U =% (U’ there exists t' € (YU’ such
that ¢’ =x t. We have then tUv ~x t'Uwv, that is (since ¢t € (|V and hence v C ¢ by lemma 39 (i))
t =x t' Uv. But we have t € [V, and so, by lemma 39 (ii), we have ¢’ Uv € [V and also, since
Uv=yx t=x t' € U, by lemma 39 (ii) again, we have ' Uv € (U’ and so ' Uv e NU'N V.
But w’ satisfies the property (4) above, hence we have w'Ut'Uv € T'(X), that is w'Ut’ € I'(X). But

~x t', hence w' Ut € T'(X), that is (w'Uu)Ut € T'(X) (as u C t). This holds forall t e NUNNV,
and we have uU v C w' U u, hence

w'Uue UMV

since YUNNV € Fuuw(X). Remember now that w'Uu =x w'. So, since v C w’ we have w’ € |V
by lemma 39 (ii).

On the other hand, since (YU ~% ((U’, and since we have proved above that w' Uu € U,
there exists s’ € (U’ such that w'Uu ~x s’. Then we have v’ C w’ and v’ =~x w'Uu~x s’ € NU',
and hence, by lemma 39 (ii) again, we get w’ € (U’ that is w’ € (YU’ N[V and this concludes
the proof of the claim, and of the theorem. .
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9 Some remarkable isomorphisms

This section presents some isomorphisms satisfied by the rigid parallel unfolding of hypercoherences.
As this operation gives rise to parallel hypercoherences and as the operations “&”, “@”, “®” and
“I” preserve parallelism of hypercoherences, it is not very surprising that the rigid parallel unfolding
commutes with these operations. This is the object of the four next statements.

Proposition 41 Let X and Y be two hypercoherences. Then (/\A’&)A/,px & py) is a rigid parallel
unfolding of X &Y.

Proof: Let Z be a parallel hypercoherence and let f: Z — X &Y be a web morphism. Consider
the subspaces Zx and Zy of Z defined by

1Zx| = f~"(X]) and |Zy|=/"(Y]).

Then |Z] is the disjoint union of |Zx| and |Zy|. Let fx and fy be the restrictions of f to |Zx
and |Zy|. We can lift fx and fy along px and py respectively, getting gx : Zx — X and
gy : Zy — Y. Oun the other hand, the canonical bijection |Z| — |Zx & Zy| is obviously a web
morphism j: Z — Zx & Zy. Now (gx & gy ) oj is a lifting of f along px & py.

We conclude by the observation that any web morphism A : X&Y — X &V such that
(px & py)oh = px & py is of the shape h = hx & hy where hx : X — X satisfies pxohx = px,
and similarly for hy. .

We can easily describe this isomorphism explicitly. The map |)A( & §A/| — |)’(/SE| associates to (1, a)
(where o € F,(X)) the element

{1} xuluealUfw e Pa(X &Y | (1,a) € wand wn ({2} x [V]) £ 0}
of F(1,0)(X &Y). Its inverse associates to v € F(1 4)(X &Y) the element
(1, {ma(w) | w € v and m (w) = {1}}) .

Proposition 42 Let X and Y be two hypercoherences. Then ()? & ?,px @ py) is a rigid parallel
unfolding of X &Y.

The proof is straightforward.

Proposition 43 Let X and Y be two hypercoherences. Then ()? ® ?,pX @ py) is a rigid parallel
unfolding of X @ Y.

In other words, there is a unique isomorphism ¢ : )@ — X @Y such that
(px ® py) o = pxay -
Proof: We construct directly the map ¢, by setting
p(v) = (m7,m2y) = ({mi(w) | w € v} {ma(w) [ w € 7})

for all v € |)’(/<—87Y|
Let (a,b) = pxgy (7). It is clear that w7y C I';(X) and that 77 is closed under binary unions,
and similarly for ma7.

29



Let us check that 7y is maximal. So let u € I';(X) be such that « U m(w) € I'(X) for all
w € y. We have (u x {b}) Uw € (X @Y) for all w € 7, and hence, by maximality of v, we have
u x {b} € v, hence u € my. And similarly for w7, hence ¢ is a well defined function from |)@|
to | X @Y.

We check now that ¢ is a web morphism. Let W € F*(AX"T—STY) and let w = pxgy (W), which
belongs to I'*(X @ Y). As w is not a singleton, ¢ (W) cannot be a singleton, so we just have to
check that o(W) € (X @ Y). Let us check that 7y (¢(W)) € [(X). Let 7,7’ € W and let u € m7
be such that m;(w) C uw. We must show that u € 77’ Let w’ € v be such that m (w’) = u. As

W e F(J@'), we have w € v and so, as 7 is closed under binary unions, we have w'Uw € . But
7 (w'Uw) = u, so we can assume that w C w’ (otherwise use w U w' instead of w’). Consequently,
w’ € 4" and hence u € 717" as required, so ¢ is a web morphism, and we have

(px @py)ow = pxgy

by definition of ¢. Consequently, for any parallel hypercoherence Z and any web morphism f :
7 — X @Y, there exists a web morphism f': 7 — X @Y such that (px @ py)o f = f: take a
morphism ¢ : Z — m such that pxgy og = f and set f' = pog.

As to rigidity, consider a web morphism A : X®V = X®Y such that

px @py = (px @ py)oh,

and let us show that A = Id. Assume it is not the case, and let («, ) € |)? ®§Af| be such that
(o, 5") = h(a, B) # (a, B). Without loss of generality, assume that o/ # a. Solet u € @ and v’ € o

be such that wUw’ ¢ I'(X). Let @ = px (@) = px (). By theorem 21 (iii), there exists U EAFQ(X)
such that px(U) = u. We have U x {8} € ', 3)(X ®Y) and so h(U x {B}) € ['(o (X @Y).
Similarly, there exists U’ € T'o/(X) such that px (U') = u/. We have U’ x {3} € F(a/ﬁ/)()? 2Y),
and so L

h(U x {8} U (U x {B'}) € T(ar,5n(X @Y)
as X ®Y is a parallel hypercoherence. But then we must have

(px @ py) (MU x {BH U (U x {7})) e T(X @Y,

that is (u x {b})U (v' x {b}) € (X @ Y), which is not the case since u Uu' ¢ I'(X). .

Proposition 44 Let X be a hypercoherence. (!)?, 'px) is a rigid parallel unfolding of 'X.

In other words, there is a unique isomorphism ¢ : X — !X such that Ipxop = pix.
Proof: Let z € |!X]| and let © € F,(!X). For all a € x, we define

2a(0) = {u € Py, (IX

Ja€uwand U €O uxa U} .

Let us prove that a = ¢,(0) belongs to F,(X).

First, a is closed under binary unions. Indeed, if u,u’ € «, let U,U’ € © be such that u < U
and v’ < U'. As clearly uUuw' <UUU" and as UU U’ € O, we have uU v € a.

As to the maximality of «, let v € [';(X) be such that vUu € ['(X) for all u € a. Let

V=Az}u{{c}|cev}.
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Let U € ©. We want to prove that UUV € I'(!X). Solet w U UV. Let u =wn|JU. We have
w<4U and a € u (since {a} € V CUUYV and hence a € w, and a € z € U, so a € |JU), hence
u € «. Furthermore, w = w U v. Indeed, if b € v, we have {b} € UUV, so b € w, hence v C w,
which implies v Uv C w. Conversely, let b € w. If b € |JU, then b € u and we are done. Otherwise,
let y € U UV be such that b € y, we know that y ¢ U, so y € V and y # z, so y = {c} for some
¢ € v and we are done. So w € I'(X) and hence UUV € I'(!X).

As this holds for all U € © we must have V € O, but v <V and « € v, hence v € a. Hence

©a(0) € Fu(X) .

Set
¢(0) ={ra(®) [a €z} .
Let w C 2 be non empty. We prove that U = {¢,(0) | a« € u} belongs to F()A() First we have
px(U) =u € I'(X) as z € qD(X). Next, let a,a’ € v and let v € ¢,(0©) be such that u C v. We
have @’ € v, hence also v € ©,/(0). So

©(0) € aD(X) .
Hence ¢ is a well defined map from |'/)Z'| to |!)?| and it is clear that

'pxop =mpx .

We check now that ¢ is a web morphism. Let U € F*(‘/)?) We just have to prove that
oU) € T(IX). So let C' < p(U) and let u = px (C).

Let us first check that < pix (/) which belongs to I'(!X), as pix is a web morphism. From
this, we shall deduce that v € I'(X). So let @ € u. Let a € C' be such that a« = px(a). Let © € U
be such that o € p(0O), that is a = ¢4(0) for some b € p1x (©). We have

b=px(¢s(0)) = px(a) =a,

hence a € pix(0). Conversely, let © € U and let 2 = pix(0). Let a € C' be such that a € ¢(0),
that is @ = ¢, (0) for some a € z. So we have

a=px(a)€px(C)=u.

~

We want now to prove that C' € I'(X). We already know that « = px(C) € I'(X). So let
a,a’ € C' and let v € a be such that v C v. We have to prove that v € o/. As C' < p(U), there
exist ©,0" € U such that a € p(0) and o' € ¢(O'), that is & = ¢,(0) and &/ = ¢,/ (0’) where
a = px(a) and ¢’ = px(a’) (and hence a,d’ € u). Since v € o = ¢,(0), there exists V € © such
that v 9V (see the definition of ¢,(0) at the beginning of the proof). As v C v and u < pix (U),
we also have

vV Upyx(U) .

AsU € F('/)Z') and V U pix (U) € ©, we have also
Vupx(U) € o,

and since @’ € u C v, we conclude that v € &’ and we are done.
So ¢ is a web morphism. From this, it results that !px has the lifting property.
We want now to prove rigidity.
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Observe first that, for all A € |')?| and a € !px(A), there is exactly one @ € A such that
px (@) = a, since py is a web morphism.
Let 7 : X — !X be a web morphism such that

Ipxoh =!px .

We must prove that A~ = Id. Assume it is not the case, so let A € |!)/(\'| be such that h(A) # A and
set ¢ = Ipx (A). As Ipx(A) = 'px(h(A)), we can find o € A and 3 € h(A) such that px (o) = px (B)
but @ # . Let u € o and v € 3 be such that w Uv ¢ I'(X). By theorem 21 (iii), there exists
Ce F()?) such that o € C' and px(C') = u. Let

A={Au{{r}[reC}.

Each section D of A satisfies D = CU (DN A), but @ € CN(DNA) (since « € C C D and a € A)
and C,DNAe€ F(X) so D € F(X) since X is a parallel hypercoherence. So

AeT(X),

and we have
px (A) ={z}U{{c}|c€u}.

In a similar way, we can find B € F(‘)?) such that h(A) € B and !px(B) = {z} U {{c} | c € v}.
As !X is a parallel hypercoherence and as h is a web morphism, we have h(A) U B € I(!X) (since
h(A) € h(A) N B), and hence Ipx (h(A)UB) € I'(1X). But

px(h(A)UB) ={z}U{{c}|ceuUv},

hence

wUv < lpx(h(A)UB)
whence a contradiction, since v U v ¢ T'(X). .

The “%” connective transforms parallel hypercoherences in non parallel ones, so we cannot hope
that the rigid parallel unfolding commute with it. We can however prove a result which states that,
when unfolding X % Y, one can indifferently unfold X and Y before. In our proof, we need the
assumption that both X and Y are serial. We do not know if the result can be extended to more
general situations.

Theorem 45 Let X and Y be serial hypercoherences. Then there is exactly one morphism o :

X3Y 5 XY such that
(px B py)opgxy 0P = Px=aY

and ¢ is an isomorphism.
Proof: It is sufficient to prove that (/\/> 3y, (px B py)opgmy) is a rigid parallel unfolding of
X3Y.

Let us first prove the lifting property. So let Z be a parallel hypercoherence and let f: Z —
X %Y be a web morphism. Let fx :|Z| = |X]| and fy : |Z] — |Y| be obtained by composing f
with the two projections (these functions have no reason to be web morphisms).

We define a hypercoherence Z’ by setting |Z'| = |Z| and

D7) ={wel(Z) | fy(w) e T(Y*)}.
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This hypercoherence is parallel because Z and Y+ are. Furthermore, fx is a web morphism from
7' to X. So let gx : Z' — X be alifting of fx along px. Let

412 = X x |Y]

be defined by
f(e) = (gx(c), fr(c)) -
Then f’is a web morphism from Z to X B Y such that (px BY)of' = f. As X is still serial by

theorem 23, we can perform the same operation on the other side, and we get a web morphism
'z X3Y

such that
(px Bpy)of'=1f,

and we conclude by lifting f” along pg e
Now let

e ——

h:XB3Y 5 XY

be a web morphism such that

(px Bpy)opggpoh=(px B py)oPgyp -
Assume that p oo 0h # pomp, otherwise we immediately conclude that A = Id, since ()? N }7', Poxy)
is rigid.

—

Let v € |X % Y| be such that

Pgap (h(7) # pgxe (V) -

Set
(0',8") = pgap (h(v)) and (a,f) = pgap(7) -

Let @ = px (o) = px(@’) and b = py(8) = py(f’). Assume for instance that a # o/ and 3 # 3’
(the other cases are similar).

Let u € a,v' € o and v € B,v" € B’ be such that uUw' ¢ I'(X) and v Uv" ¢ I'(Y).

By theorem 21 (iii), there exists U € T'4(X), U’ € Ty (X), V € Fg(?) and V' € Fg:(?) such
that px (U) = u, px (U’) = ', py (V) = v and py (V') = v".

We have U x V' € 7. Indeed, observe first that U x V' € F(aﬁ)()? 3 }/}) Let W be an element

of 7, and let us check that (U x V)UW € F()? x }A’) We can assume that W is not a singleton
and hence

m(W)eT*(X) or m(W)eTl*(Y).
If we are in the first case, then m (WU (U x V)) = m(W)uU € F*()?), since X is parallel and

we are done, and similarly in the other case.

Since U x V' € v, there exists U € Fw()? 3 }/}) such that pgrp (U) = U X V by theorem 21.
Consequently, e
W' = pgny (h(U)) € Tiar 57 (X 3 Y)

and, because both U’ and V' are coherent, we get

WU xV)el(X3Y),
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hence

(px Bpy) W U(U xV)eT(XTY).
Since (px & py)opgxpoh = (px X py)opgxy, We have
(px B py) (W) =(px ¥ py)(UxV)=uxuv,

)=
so that we have (u x v) U (v x v') € ['(X ¥Y) which is impossible, since the first projection of
that set is w U ' and the second is v U v/, both strictly incoherent sets. n

10 Interpretation of formulae

We define an interpretation of formulae of propositional linear logic as serial and parallel hyper-
coherences (or, equivalently, serial-parallel coherence spaces). For this purpose, we define the
connectives ¥ and ? which, applied to serial and parallel hypercoherences will give rise to serial
and parallel hypercoherences. The constants and the additive connectives will be left unchanged,
as well as linear negation. The other connectives will be defined using the De Morgan laws for
linear logic.

A very natural question arises here: since these connectives act on coherence spaces, why this
roundabout through hypercoherences for defining them? Of course, a direct definition is possible
(it is just a matter of translation), but does not enlighten at all the situation. The point is that,
even when defining for instance the web of EXF (for E and F serial-parallel coherence spaces),
we are really using the whole structure of the hypercoherence E€ % F¢ which seems non-trivial in
general; in particular, we do not see any way of extracting the structure of this hypercoherence from
the mere coherence space F % F (here, the % is performed in the category of coherence spaces,
according to the definitions given in [Gir95]), for instance. This means that the coherence space
structure of E and F is not really relevant, although it completely defines the objects E and F.

We are not giving a denotational semantics of linear logic in serial and parallel hypercoherences,
as we are not (yet) able to interpret proofs as cliques of the spaces we define in what follows. We
shall just show, using some of the results proven until now, that these constructions satisfy some
of the main isomorphisms of linear logic.

Deﬁnltlon 46 Let E and F be serial and parallel hypercoherences. One sets ERF=ERX F and
?E =7E.

By propositions 15 and by theorem 23, the hypercoherences defined in this way are serial and
parallel.

Let us give some more concrete hints on the structure of E%’F, just for the purpose of convincing
ourselves that it has to do with games. Let E and F be two serial and parallel hypercoherences,
that we assume to be finite for simplicity.

i) Assume first that |E| € T*(EL) and that |F| € T*(FL) (and then |ESF| e T*((E® F)*)).
Then, according to what has been said in section 5 about the connection between serial-
parallel finite coherent spaces and games, Player plays first in the game associated to E and
in the game associated to F'. We have, up to isomorphism,

FE=FE%---¢&F, and F=F1&- ---dF,

where |F4|,...,|E,| are the maximal elements of ['(E) and |Fil,...,|Fy| are the maximal
elements of T'(F) (by proposition 10 applied to E+). For the sake of simplicity again, assume
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that all these sets are strictly coherent (that is, are not singletons). These subspaces should be
considered as representing the various first possible moves for Player in the games associated
to E and F respectively (again, see section 5). It is clear that, for i = 1,...,n, |E;| X |F| €
[*(E % F) and that, for j =1,...,m, |E| x |F;| € [*(E % F). Moreover, the sets |E;| x |F|
and |E| x |F;| are the maximal subsets of [E' % F| which belong to I'(E % F), due to the
maximality properties of the sets |F;| and |F};|. Then the construction presented in section 7
shows that, up to a canonical isomorphism,

ERF = é(EZ-?S’F) ® Qm)(Efa’Fj)

=1 7=1

which means that, in E7A5’F, Player plays first, choosing one component of the % and playing
in that component according to the corresponding game.

ii) The other cases, when one at least of the spaces is strictly coherent as a whole, are simpler. As-
sume for instance that |E| € T*(E) and that |F| € [*(F1) (and then |[E® F| € [*(E % F)).
Then by proposition 10, and up to a canonical isomorphism, £ = Fy & ---& F, where the
spaces E; are the maximal subspaces of E whose web belongs to I'(E1). Then the sets
|E;| % |F| are the maximal subsets of |E % F| which belong to T'((E ® F)*) and one has,

according to the construction presented in section 7,

ERF = (B,8F) & - &(E,8F) ,

up to a canonical isomorphism (we shall see by the way that R is distributive over &, as
suggested by this isomorphism). This corresponds to the fact that, in the game-theoretic %,
Opponent cannot switch between the two components of the %.

e When both spaces are strictly coherent as a whole, Opponent must play simultaneously in
both components.

Observations (i) and (ii) above express the well-known switching condition of the % connective in
its game-theoretic interpretations.

Proposition 47 The operation R is associative. More precisely, there is exactly one isormorphism
o making the following diagram commutative:

(ERFYRG —F— ER(FRG)
PEary»a Pex(F3a)

(ERF)® G E % (FRG)
pEnF B G E X prac

(EXF)BG vEX (F3G)

where @q is the usual isomorphism.
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Proof: By theorem 45 and lemma 7, we know that composing the maps

.. PEsry3g ) RNE
(EFRRG DY pap s a PP gy myaa e B (PR Q)
we get a rigid parallel unfolding of £ % (E % () and we conclude by proposition 5. When applying
theorem 45, one uses the fact that G = G, up to a canonical isomorphism, since GG is parallel. =

Proposition 48 Let F, F and G be serial and parallel hypercoherences. There is a unique iso-
morphism @ making the following diagram commulalive.

ER(F & Q) —— (ERF) & (EHG)

PER(F & G) PERF & PERG

ER(F&G) 2 (EX F)&(E 3 G)
where g is the usual isomorphism.

It is a consequence of proposition 41, proposition 5 and lemma 7.

Proposition 49 Let E and F be serial and parallel hypercoherences. There is a unique isomor-
phism @ making the following diagram commutalive.

NE@F) —— CE)R(F)

P EaF) (PE) N (7F)

mE B prE

WESF) e (OB) § (7F)

where g is the usual isomorphism.
Proof: By theorem 45, composing the maps

PeEy»(2F) prE  por

(?E)R(?F) (?E) B (?F)
we get a rigid parallel unfolding of (7E) % (?F), and we conclude by proposition 5 and lemma 7. =

(?E)® (7F)
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