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Abstract

We propose a definition by reducibility of sequentiality for the interpretations of higher-order
programs and prove the equivalence between this notion and strong stability.

Introduction

Sequentiality is an abstract semantical notion which captures determinism for the interpretations of first-
order programs. Tt has been introduced independently by Vuillemin and Milner (cf. [V] and [Mi]). The
problem of extending this notion to higher-order programs, like those of Godel system T, has led to
various definitions:

e Sequential algorithms on concrete data structures (see [C1]) and more recently various game-
theoretic models (see [AJ, C2, HO, L]) inspired by the work of Blass [Bl1, BI2], which are quite
intentional models where programs of functional type are not simply interpreted by functions, but
by more complicated objects (“algorithms” or “strategies”) which contain detailed informations
about their behaviour.

e Strong stability, a notion which coincides with ordinary sequentiality at first order and admits an
extension to higher orders where all programs are simply interpreted by functions. This notion has
been introduced by Bucciarelli and the second author in [BE1].

We introduce here a new notion of sequentiality for functionals of finite type based on the type ¢ of
natural numbers. This notion is defined by a reducibility-like method (by induction on the type of the
functionals).

Let us give roughly the definition of this notion. We define by induction on the type o what is
sequentiality of type ¥ — o for all k.

e For o = 4, sequentiality is the usual Vuillemin-Milner notion.

e We say that f : ¥ — (¢ — 1) is sequential if, for any p € w and for any sequential function g of
type «+# — o the function

Mz, y)-F(x)(g(y) + "+ — 7
is sequential.
Similar notions have been introduced by Longo and Moggi (see [LM]) and more recently by Sazonov

and Voronkov (see [SV]) for extending naturally to higher order notions which make sense at first order.
The authors rediscovered independently this method.

*This paper is published in the proceedings of the LICS’94 conference.
tPart of this work was supported by Chalmers University of Technology.



The main result of this paper is that this new notion of sequentiality is equivalent to strong stability.
This is surprising because the two definitions have very different origins, reducibility comes from proof
theory whereas strong stability belongs to (almost) traditional domain theory.

For technical reasons concerning continuity, we could not obtain this result with the notion of higher

order sequentiality as it is defined above without excessive complications. So we had to embed all the

+®’s into ¢ in a natural way, and consider functions of type ¥ — ¢ instead of ¥ — o.

1 Preliminaries

1.1 About sets

Let £ and F be two sets. If C C E x F', we note C7 or Cg the first projection of C' and Cy or Cr its
second projection. We say that C'is a pairing of E and F'if C1y = E and Cy = F.

The disjoint union of E and F will be noted F + F and represented by G = (E x {1}) U (F x {2}). If
C C G, wenote Cy ={a € E|(a,1) € C} its first component and Cy = {b € F | (b,2) € C'} its second
component.

Let A and B be two sets. We say that A is a multisection of B and we write A < B if

Vaec AAbe Bacb and Vbe Bdac Aac€b.

This means that A C|J B and that AN b is non empty for all b € B.

If E is a set, we note Pf, (E) the set of its finite and non-empty subsets. We write z Cf, E when 2
is a finite and non-empty subset of F.
1.2 About qualitative domains and stable functions

We briefly recall the main definitions and results of [G1].
For the reader acquainted with domain theory, let us first say that a qualitative domain is a dIl-domain
where all primes are atoms. We give here a direct definition, borrowed from [G1].

Definition 1.1 A qualitative domain is a set E satisfying the following conditions' :
e leE.
e [fxel and y Cx theny € E.
o For any C-directed subset D of F, one has | JD € E.
If E is a qualitative domain, its web |E| is defined by
|E| ={a|{a} € £} .

This set is usually assumed to be enumerable.
The set of all finite elements of E/ will be written Egy,.

The web of a qualitative domain is the set of its prime (i.e. atomic) elements, that is the set of its
“generators”.

Definition 1.2 Let E and F be two qualitative domains. A function f: E — F is said to be stable iff :
o It is Scott-continuous, that is, for any D C E which is directed, one has f(|J D) = f(D).
e [t is conditionally multiplicative, that is, for any z,y € E such that x Uy € E, one has

flxny) = flz)n fy) .

INotice that F is in fact a set of sets, that § corresponds to the domain-theoretic L, and that the order of the corre-
sponding domain is the inclusion.




Let us recall that this last condition, in the case of qualitative domains, is equivalent to the following :
for all z € E, for all b € f(z) there exists a unique minimal zg C 2 such that b € f(zo).
This condition was originally called stability by Berry in [B1] and corresponds to a weak form of sequen-
tiality.

The category of qualitative domains and stable functions is cartesian closed (see [G1]). If E and F
are qualitative domains, their product £ x F' in this category can be described as follows :

ExF={2C|E|+|F||z1 € Eand z, € F} .

Observe also that the category has w-products.
We shall not describe here the exponential, but we shall define the notion of trace, which is the key
notion for this description.

Definition 1.3 Let E and F be qualitative domains. Let f : E — F be a stable function. The trace of
[ is the set tr (f) defined by

tr (f) = {(z0,b) € Fan x |F| | b € f(x0), o minimal}
The interest of this notion lies mainly in the following result.
Proposition 1.1 Let f: E — F be a stable function. Then, for any x € E, one has
f(z)={b|Fwo Cz (x0,b) €tr(f)} .

Furthermore, if f,g : E — F are two stable functions, one has tr(f) C tr(g) iff f < g for the stable
order.

Let us just recall that f < g for the stable order means that, for any z,y € F, if z C y, then

f(x) = fly) Ng(z) .

2  Vuillemin-Milner sequentiality

The purpose of this paper is to extend the classical notion of sequentiality introduced by Vuillemin and
Milner to higher order using a “reducibility” method, and to establish that this extension is identical to
the extension provided by strong stability. We first recall the classical definition, for functions which are
defined on and take their values in products of the “flat” domain of integers Ny = {1,0,1,2,...}, which
is ordered as follows :

<y ff z=Landy#L.

The products? N (forn = 1,2,...,w) are ordered by the standard product order.

Definition 2.1 Let n,m € {1,2,...,w}. We say that a function f : N} — N7 is sequential (in the
sense of Vuillemin-Milner) iff it is monotone, continuous and satisfies the following condition. For any
a € N}, for any j such that 0 < j < m, if f(a); = L, then

o citherVBeN'] f>a= f(f); =1L

o or there exists 1 such that 0 < i< n and o; = L and, for any B € N}, if § > a and f(B); # L
then 3; £ L.

In this definition, the integer 7 is called “sequentiality index of f for j at a”.

2The elements of N are sequences indexed on the set {i |0 <4 < n}



3 Hypercoherences

In a recent paper (see [E]), the second author has introduced the notion of hypercoherence as a simplified
framework where strong stability makes sense. We recall here the basic definitions and the properties of
this model that we use in the sequel.

Definition 3.1 A hypercoherence X is a pair (|X|,T (X)) where | X| is an enumerable set (the web) and
['(X) is a subset of P§, (X) (the atomic coherence) such that, for any a € |X|, one has {a} € T (X).

If X is a hypercoherence, we note I'* (X)) and call strict atomic coherence of X the set of all elements of
I' (X) which are not singleton (observe that X can be described by I'* (X) as well as by T (X)).

Out of a hypercoherence, we define a qualitative domain with coherence. The definition and basic
properties of these more general objects® are exposed in [BE1].

Definition 3.2 Let X be a hypercoherence. We define qD (X) and C (X) as follows :
4D (X) = {x C X | Vur Gy [X] wC 2 = u e T (X))

and
C(X) = {4 Cj, aD(X) |
VuCh | X| udA=>uel (X)}.

aD (X) will be called the qualitative domain generated by X and its elements are called the states of
aD (X)), and C(X) will be called the state coherence generated by X. The set of finite states of qD (X)
will be noted qDg, (X).

It is clear that gD (X) is always a qualitative domain, and its web is |X| by our only requirement
about hypercoherences.

The morphisms between hypercoherences that we shall consider in this paper are the strongly stable
functions. There is also a notion of linear morphisms between hypercoherences; their theory is developped

in [E].

Definition 3.3 Let X and Y be hypercoherences. A strongly stable function from X to Y (we shall also
write f: X — Y ) is a function f:qD(X) — qD(Y) which is continuous and satisfies

VAEC(X) f(A)eC(Y) and f(()A)=()F(A).

We have chosen this notation “f : X — Y7 because it would not make sense to speak of a strongly
stable function f : gD (X) — gD (Y) since strong stability involves also € (X) and C (Y) which cannot
be retrieved from D (X) and gD (Y).

Observe that, if X is any hypercoherence, any bounded, non-empty and finite subset of qD (X) is in
C (X). For this reason, any strongly stable fonction X — Y is stable from qD (X) to qD (Y'), and thus
we can use traces to represent strongly stable functions faithfully.

We note HCohF'S the category of hypercoherences and strongly stable functions.

Let X and Y be hypercoherences. Let X x Y be the hypercoherence defined by |X x Y| = |X|+ [Y]
andw e (X xY)ifwCf, | X xY|and

(wy =0 = w €T (X)) and (w1 =0 = wy €T (Y)) .

Let X — Y be the hypercoherence 7 whose web is the set of all (z,b) where z € qD(X) is finite and
b € |Y|, and whose atomic coherence is given by: w € T'(7) if w € P§, (|7]) and

w1 EC(X) =
(we € T(Y) and (#w2 = 1= #w; =1)) .

Then we have the following result:

3Not all qualitative domains with coherence are induced by hypercoherences in this way.



Proposition 3.1 The category HCOhFS is cartesian closed. If X and Y are two hypercoherences, their

cartesian product is X x Y and their ezponential (object of morphisms from X toY)is X =Y.
Furthermore, up to a natural order isomorphism, qD (X X Y) = qD(X) x D (Y') (this latter product

being equipped with the product order). And qD(X —Y) is the poset of traces of all strongly stable

functions X — Y, which is naturally isomorphic to the poset of all strongly stable functions X — Y

(equipped with the stable order).

Ift € qD(X —Y), we note f* the corresponding strongly stable function X — Y.

In the sequel, we shall consider a hypercoherence which will play a central role : the hypercoherence
N of flat integers. Its web is w, the set of natural integers, and T'(IN) is the set of all singletons of
IN| = w. One easily checks that, up to an order isomorphism, gD (N) = N, and so more generally, for
any n € {1,2,...}, gD(N") = N’.

We shall also consider the w-product N“ which can be directly defined as follows : |N¥| = w X w and
a non-empty and finite subset u of |[N¥| is in T' (N%) iff :

#U1:1:>#U221.

Again, up to an order isomorphism, one has qD (N¥) = NY..
One of the main reasons why strong stability has been introduced is that it allows a simple charac-
terization of Milner-Vuillemin sequentiality :

Proposition 3.2 Let n,m € {1,2,...,w}. A function f: N} — N7 is Vuillemin-Milner sequential if
and only if it is strongly stable N® — N™.

Proof: See [BE1]. .
Now we are ready to prove two lemmas which are the main tools in the proof of the result presented

in this paper.

Lemma 3.1 Let X be a hypercoherence. Let xg,21,... € qD(X) be an increasing w-chain. Then there
erists an increasing w-chain ag, oy, ... € qD(NY) and a strongly stable function g : N¥ — X such that
g(e;) = z; forallicw.

Proof: Let us define the family (a;);e, as follows (for instance) :
wi={(G0)]0<i<i—1}.

Tt is obviously an increasing w-chain of gD (N¥).
Let (2)icw be an increasing w-chain in D (X).
We define the function ¢ by its trace ¢ :

t={((4,0),a)|jE€wanda ez \zj_1} .

(We set by convention z_; = 0.)
It is obvious that ¢ € gD (N“ — X)), and so g = f* is a strongly stable function N* — X. Furthermore
we clearly have g(«;) = x; for all j and we are done. .

Lemma 3.2 Let X be a hypercoherence. Let A € C(X). Then there ezxists G € C(NY) and a strongly
stable function g : N* — X such that g(G) = A.

Proof: For any integer k > 1, we define a family {7]1“ }i=1.. & of elements of gD (N“) as follows :

7]162{(0ak_.7+1):)(J_Qak_l)}u .
{G,D),...,(k=1k=3)}.
It is easily checked that the set {'yjk }i=1. % isin C (N“), but that no proper subset of this set of cardinality

strictly greater than 1 isin C (INY).
Let A={z1,...,z5} be any element of C (X). Let zg = (i, ;. Let us define the following set ¢ :

{(0,a) | a € 2o} U{(v,a) | a € a;\ Toti=1,. .k -

Then we claim that ¢t € ¢D (N — X). Actually, let u be any non-empty subset of ¢, and assume that
u1 € C (N¥). Observe first that, by construction of ¢, one has : Ya € us 32 € A a € z. There are three
cases :



o () € uy. Let a € us be such that (0, a) € u. Then we have a € ¢ and hence Yz € A a € z, hence
us < A, hence u € T (X). If furthermore us is the singleton {a}, then u; must obviously be the
singleton {(j}.

e ) & uy and u, is a singleton {y¥} (for one i € {1,...,k}). Then us C z; and hence us € I' (X).

e (¢ uy and #uy > 2. Then we know that u; = {7f}i=1,~u,k- Let i € {1,...,k}. Let a € uy be such
that (7f,a) € u. Then we have a € z; by construction of ¢ and hence uy <I A, thus us € T'(X).
Furthermore, if uy is a singleton {a}, then we must have, for any i € {1,...,k}, a € z; \ o which
is clearly impossible.

Let f = f'. We have, for any i € {1,...,k},

and we are done. n

Proposition 3.3 Let X and Y be two hypercoherences. A function f : qD(X) — qD(Y) is strongly
stable from X to Y iff, for any strongly stable function g : N¥ — X, the function f o g is strongly stable
from N¥ to Y.

Proof: The direction = is obvious. Let us prove the converse, so let f : qD(X) — qD(Y) be any
function satisfying the condition mentioned above. Let us first check that f is continuous. Let (z;);e, be
an increasing w-chain in gD (X) (we can restrict our attention to increasing w-chain instead of general
directed sets because we have assumed that the web of a hypercoherence is enumerable). Using lemma 3.1,
we can find a strongly stable function g : N¥ — X and an increasing w-chain ag, a1, ... € qD (N%) such
that g(a;) = z; for all i € «. By hypothesis, we know that f o g is strongly stable, and hence continuous,

SO
U fg(e) = fa(lJ i)
i€t i€
that is, since ¢ is continuous :
Ur@)=rJw) .
i€t i€

Now let us check that f preserves coherence and commutes to the intersections of coherent sets. Let
A ={z1,...,2} be any element of C (X). Using lemma 3.2, we can find a G € C(N¥) and a strongly
stable function g : N¥ — X such that g(G) = A. But by hypothesis, f o g is strongly stable, so
f(A) = f(¢9(@)) is in C(Y). Furthermore, we have

()4

f(g(m () since g is strongly stable
ﬂ f(9(@)) since f o g is strongly stable
= (4

and we conclude that f is strongly stable. "

4 A functional version of the hypercoherent model

To any type o of our functional language, we associate its interpretation H, in the hypercoherent model.
This interpretation is of course a hypercoherence. The definition is straightforward :

e H =N
e H, ,=H,— H,

For the purpose of what follows, we want to consider the interpretation of a functional type like ¢ — ¢
as a set of functions. So to any type ¢ we associate a set D, and a bijection ®, : D, — qD (H,). We
procede as follows :



o we set D, = N (the flat domain of integers), and @, is the obvious bijection defined by :

®,(L)=0 and ®,(n)={n}forn+# L.

e And we set
DO—»T:{f:DUHDT |
®, o f o ®;! is strongly stable H, — H,}

and ®,_.(f) =tr (<I>T ofo <I>;1). So ®,_., is actually a bijection, and its reciproque is given by :
O L (t)=d7lo flod,.

g—T

Furthermore, to any type o, we associate the set D% of all functions f : NY — D, such that the
function @, o f be strongly stable N — H,. (In this definition, we identify the posets N and gD (N¥),
which are isomorphic.)

5 The reducibility model

We define two “projections” m,, 7, : N4 — NY as follows :
mo(a) = (a1, a3,...) and 7. (@) = (ag, as,...} .
We define also a “pairing” function p : N‘j_2 — N¥ by
pla, B) = aofoar P ...

To any type o, we associate inductively a set L,, and a set L% of functions from N9 to L,.
The intuition is that L, is the domain of interpretation of closed terms and L% is the domain of
interpretation of terms whose free variables are of basic type ¢ (these terms are called almost closed in

[Col]).

e The set L, is N, and the set L% is the set of all Vuillemin-Milner sequential functions from N9
to NJ_ .

e The set L,_., is the set of all functions f : L, — L, such that :
Vg g€Ly=fog€elL]
and the set LY_, _ is the set of all functions f: NY — L,_., such that, for any g € L%, the function
h:NY — L,
a = f(me(a))(g(mo(a)))
isin L¥.
The following lemma states the connection between L, and L%. It is not used in the sequel, and its

proof is left to the reader.

Lemma 5.1 For any type o and for any o € NY one has
Lo ={f(e) [ f € L5} .
Now we can state the main result of the paper.

Theorem 5.1 For any type o :
L, =D, and LY = DY



Proof: We prove this result by induction on types (we have to prove the two equations in the same
induction).

For o = 4, the first equation is obvious, and the second comes from the fact that a function D (N“) —
gD (N) is strongly stable iff it is sequential.

Now assume that the equations hold for ¢ and 7, and let us prove them for ¢ — 7. Let f € L,_ .
We have to prove that f € D,_,, that is we have to prove that ®, o f o ®;! : qD(H,) — qD (H;)
is strongly stable. We use the characterization given by proposition 3.3. So let g : N¥ — ¢D(H,) be
strongly stable. We just have to prove that ®, o f o ®>1 o g is strongly stable. Since LY = D¥, we know

g
that ®;! 0 g € L¥. So, by definition of L,_,, we have fo ®;1 o g € L%, that is, since L¥ = D¥, the
function ®, o f o ®;! o g is strongly stable from N“ to H,, and we are done. Now let f € D,_,, we
prove that f € L,_.. So let g € LY = D¥. The function @, o g is strongly stable. But, by definition of
Dy_, the function @, o f o ®; ! is strongly stable. So ®, o f o g is strongly stable, that is fog € L¥ by
inductive hypothesis.

Now we prove that L%_ = D¥_ . Let f € L%_ .. By the proof above, we know that f is a function
N4 — D,_,, and its exponential transpose f’ is thus a function N4 x D, — D,. We have to prove
that the function

h=®,0f o(dx®,"):N% x qD (H,) — qD (H,)
is strongly stable N¥ x H, — H,. For this purpose, we use proposition 3.3. Let ¢ : N¥ — N“ x H, be
any strongly stable function, we want to prove that ho g : qD (N¥) — qD (H;) is strongly stable. Let
g1 =mog:N¥ — N¥and go = mp0g : N¥ — H,. By inductive hypothesis, we know that ®;1ogs € LY,

and hence, by definition of LY_, . we know that the function

k:NY — L,

a = f(me(@)(®7" 0 g2)(mo(a)))
is in L¥. Hence, by inductive hypothesis, & € D¥, thus ®; o k is strongly stable N* — H,. Let
[ : N¥ — N be the strongly stable function defined by () = p(g1(«@), @). One clearly has hog = ®,0kol
and we conclude that h o g is strongly stable.

Conversely, let f € D%_ . We check that f € L¥_ . So let ¢ be any element of L%, we have to prove

that the function

h:NY — L,

a = f(me(a))(g(mo(a)))

isin LY. But let f' : N4 x D, — D, be the exponential transpose of f. We know that the function
k=@, 0f o(Idx ®;"): NY x qD (H,) — gD (H,)

is strongly stable. But ¢ € D¥ by inductive hypothesis, and hence ®, o g is strongly stable N¥ — H,.
Hence the function

ko(Idx (®,09))=®,0f o(ld x g) : N x N4 — qD(H;)
is strongly stable, so the function
h':N{ — qD(H)
a = (-0 f)(me(a), g(mo(ar)))
is strongly stable, that is ®7 o A’ € D¥, that is, by inductive hypothesis, ®7! o A’ € LY. But clearly

I
h = ®-1 o A’ and we are done. "

6 Conclusion

We consider that the definition (higher order sequentiality defined by induction on types) and the result
presented in this paper are important for two reasons. First, the notion of sequentiality presented here
gives the possibility to prove that functional languages are sequential by mean of a simple induction on
types, without using any abstract denotational model. For instance, sequentiality of Godel system T
is easily proved by this method. Second, it provides, at least in the hierarchy of simple types, a new
characterization of strong stability which is completely different from the original definition of this notion.



Acknowledgements

We wish to thank Daniel Fredholm who motivated by his questions the first versions of the present
definition by reductibility of sequentiality. We also want to thank Thierry Coquand for his remarks at
an early stage of this work.

References

[AJ] S. Abramsky and R. Jagadeesan Games and full completeness for multiplicative linear logic. To
appear in Journal of Symbolic Logic.

[B1] G. Berry. Modéles des lambda-calculs typés. Thése de Doctorat, Université Paris 7, 1979.

[B2] G. Berry. Stable Models of Typed Lambda-calculi. Proc. ICALP 1978, Lecture Notes in Computer
Science 62, Springer-Verlag.

[BC] G. Berry and P-L. Curien. Sequential algorithms on concrete data siructures. Theoretical Computer
Science 20, 1982.

[BI1] A. Blass. Degrees of indeterminacy of games. Fundamenta Mathematicae LXXVTII, pp. 151-166,
1972.

[BI2] A. Blass. A game semantics for linear logic. Annals of Pure and Applied Logic 56, pp. 183-220,
1992.

[BE1] A. Bucciarelli, T. Ehrhard. Sequentiality and strong stability. Proc. Logic in Computer Science
1991.

[Col] L. Colson. Représentation intentionnelle d’algorithmes dans les systémes fonctionnels : une étude
de cas. Thése de doctorat, Université Paris VII, Janvier 1991.

[C1] P-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming. (1986),
revised version, Birkhauser 1993.

[C2] P.-L. Curien. On the symmetry of sequentiality. Manuscript (1993).

[E] T. Ehrhard. Hypercoherences: a sirongly stable model of linear logic. To appear in Mathematical
Structures in Computer Science.

[G1] J-Y. Girard. The system F of variable types fifteen years later. Theoretical Computer Science 45,
1986.

[GLT] J-Y. Girard, Y. Lafont, P. Taylor. Proofs and Types. vol. T of Cambridge Tracts in Theoretical
Computer Science, 1991.

[HO] J.M.E. Hyland and C.-H. L. Ong. Fair games and full completeness for multiplicative linear logic
without the MIX-rule. Manuscript (1993).

[L] F. Lamarche. Sequentiality, games and linear logic. Manuscript (1992).
[KP] G. Kahn and G. Plotkin. Domaines Concrets. Rapport IRTA-LABORIA 336, 1978.

[LM] G. Longo and E. Moggi. The hereditary partial effective functionals and recursion theory in higher
types. Journal of Symbolic Logic 4, pp. 1319-1332 (1984).

[LS] J. Lambek, P. Scott. Introduction to Higher Order Categorical Logic. Cambridge University Press
1985.

[M] S.MacLane. Categories for the Working Mathematician. Graduate Texts in Mathematics 5, Springer
1971.

[Mi] R. Milner. Fully Abstract Models of Typed Lambda-Calculi. Theoretical Comuter Science 4(1), pp. 1-
23, 1977.



[P] G. Plotkin. LCF considered as a programming language. Theoretical Computer Science 5, pp. 223-
256, 1977.

[SV] V. Sazonov and A. Voronkov. A construction of typed lambda-models related to feasible computability.
Proc. Kurt Godel Colloquium, LNCS 713, Springer (1993).

[V] J. Vuillemin. Syntaze, Sémantique et Aziomatique d’un Langage de Programmation Simple. Thése

de Doctorat d’Etat, Université Paris VII, 1974.

10



