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Abstract. Given a semi-ring with unit which satis�es some algebraic
conditions, we de�ne an exponential functor on the category of sets and
relations which allows to de�ne a denotational model of di�erential linear
logic and of the lambda-calculus with resources. We show that, when the
semi-ring has an element which is in�nite in the sense that it is equal to
its successor, this model does not validate the Taylor formula and that
it is possible to build, in the associated Kleisli cartesian closed category,
a model of the pure lambda-calculus which is not sensible. This is a
quantitative analogue of the standard graph model construction in the
category of Scott domains. We also provide examples of such semi-rings.
Keywords: lambda-calculus, linear logic, denotational semantics, di�er-
ential lambda-calculus, resource lambda-calculus, non sensible models.

Introduction

The category of sets and relations is a quite standard denotational model of linear
logic which underlies most denotational models of this system (coherence spaces,
hypercoherence spaces, totality spaces, �niteness spaces. . . ). In this completely
elementary setting, a formula is interpreted as a set, and a proof of that formula
is interpreted as a subset of the set interpreting the formula.

Logical connectives are interpreted very simply: tensor product, par and lin-
ear implication are interpreted as cartesian products whereas direct product
(with) and direct sums (plus) are interpreted as disjoint union. The linear nega-
tion of a set is the same set: it is a remarkable feature of linear logic that it
admits such a �degenerate� semantics of types, which is nonetheless non trivial
in the sense that proofs are not identi�ed.

Exponentials are traditionally interpreted by the operation which maps a
set X to the set of all �nite multisets of elements of X (the origin of this idea
can be found in [Gir88]). One might be tempted to use �nite sets instead of
�nite multisets since, in the coherence space semantics, the exponential can be
interpreted by an operation which maps a coherence space to the sets of its
�nite cliques (with a suitable coherence). In the relational model however, such
an interpretation of the exponentials based on �nite sets is not possible as it
leads to a dereliction which is not natural (in the categorical sense).
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With this standard multiset-based interpretation of exponentials, the rela-
tional model interprets also the di�erential extensions of linear logic and of the
lambda-calculus presented in [ER03,ER06b,EL10]. In the di�erential lambda-
calculus, terms can be derived (di�erentiated): a term M of type A→ B can be
transformed into a term M ′ of type A→ (A→ B) which is linear in its second
parameter of type A (using a linear implication symbol � ( �, the type of M ′

could be written A→ (A( B)). The word �linear� can be taken here in its stan-
dard algebraic sense, or in its operational sense of �using its argument exactly
once�. This di�erentiation operation can be iterated, yielding a nth derivative
M (n) : A→ (An → B) which is n-linear in its n last arguments of type A, that
is M (n) : A → (A⊗ · · · ⊗A ( B). The introduction of this new construction
requires the possibility of freely adding terms of the same type: in the model
Rel, this addition operation is interpreted as set union (remember that terms
as interpreted as subsets of the interpretations of types). Also, each type has to
contain a 0 element which, here, is the empty set.

This strongly suggests to consider the following �Taylor series�, given a term
M of type A→ B and a term N of type A:

∑∞
n=0

1
n!M

(n)(0) ·(N, . . . , N). In this

formula, the map N 7→ 1
n!M

(n)(0) · (N, . . . , N) is the approximation of degree n
of the function M , that is the �part� of the function M which uses its argument
exactly n times. For simplifying the setting and for dealing easily with untyped
terms, it is suitable to consider a version of that formula where coe�cients are
all equal to one, and where addition of terms is an idempotent operation: terms
form a complete lattice and the Taylor expansion of M can be written more
simply

∨∞
n=0M

(n)(0) · (N, . . . , N).

With Regnier, the second author studied this operation in [ER08,ER06a],
introducing a lambda-calculus with resources which can be seen as the di�erential
lambda-calculus where ordinary3 application can be used only for applying a
term to 0: this is the only ordinary application needed if we want to Taylor
expand all the applications occurring in lambda-terms. In these two papers we
proved in an untyped setting that, Taylor expanding completely a lambda-term
M , one obtains a (generally in�nite) linear combination of resource terms and
that, if one normalizes each resource term occurring in that formal sum4, one
obtains the Taylor expansion of the Böhm tree of M .

This result implies that, in a denotational model which validates the Taylor
expansion formula in the sense that the interpretation of a term M is equal to
the interpretation of its Taylor expansion, the interpretation of an unsolvable
lambda-term5 is necessarily equal to 0. Since the multiset-based exponential of
Rel validates the Taylor expansion formula, any model of the pure lambda-

3 In the di�erential lambda-calculus, there are two kinds of application: the ordinary
application of a term to an argument, and the application of the nth derivative of
a term to a n-tuple of terms. This latter application is n-linear in its arguments
whereas the former is not linear.

4 Resource terms are strongly normalizing, even if they are not typeable.
5 We recall that a term is solvable i� its head reduction terminates, see [Kri93, Chap-
ter 4].



calculus in the corresponding cartesian closed category, such as the model pre-
sented in [BEM07,BEM09], seems to be bound to be sensible (at least if di�eren-
tial operations are interpreted in the standard way). This seems to be a serious
limitation in the equational expressive power of this kind of semantics.

This problem arose during a general investigation undertaken by the authors,
whose scope is to develop an algebraic setting for di�erential extensions of the
lambda-calculus, in the spirit of [PS98,MS09].

Content. The present paper proposes a solution to this problem, by introducing
new exponential operations onRel. The idea is quite simple: we replace the set N
of natural numbers (which are used for counting multiplicities of elements in mul-
tisets) with more general semi-rings which typically contain �in�nite elements� ω
such that ω+1 = ω.Mutatis mutandis, the various structures of the exponentials
(functorial action, dereliction etc) are interpreted as with the ordinary multiset-
based exponentials. For these structures to satisfy the required equations, some
rather restrictive conditions have to be satis�ed by the considered semi-ring: the
semi-rings which satisfy these conditions are called �multiplicity semi-rings�. We
show that such a semi-ring must contain N and we exhibit multiplicity semi-rings
with in�nite elements.

In these models with in�nite multiplicities, the di�erential constructions are
available, but the Taylor formula does not hold. It is possible to �nd morphisms
f : A → B (in the associated cartesian closed category) which are 6= 0 but are
such that, for all n, the nth derivative f (n)(0) : An → B is equal to 0. The
Taylor expansion of such a function is the 0 map, and hence the function is
di�erent from its Taylor expansion. This is analogous to the well known smooth
(C∞) map f : R → R de�ned by f(0) = 0 and f(x) = e−1/|x| for x 6= 0: all
the derivatives of f at 0 are equal to 0 and hence there is no neighborhood of 0
where f coincides with its Taylor expansion at 0. In some sense, f is in�nitely
�at at 0, and we obtain a similar e�ect with our in�nite multiplicities.

For any multiplicity semi-ring which contains an in�nite element, we build
a model of the pure lambda-calculus, which is not sensible and, more precisely,
where the term Ω = (λx (x)x)λx (x)x has a non-empty interpretation (we also
exhibit a non solvable term whose interpretation is distinct from that of Ω). We
use Krivine's notation for lambda-terms: the application of M to N is denoted
as (M)N .

Warning. Most proofs are omitted and will be available in a longer version of
this article.

1 The relational model of linear logic

Rel is the category whose objects are sets and with hom-sets Rel(X,Y ) =
P(X × Y ). In this category, composition is the ordinary composition of relations:
if R ∈ Rel(X,Y ) and S ∈ Rel(Y,Z), then

S ·R = {(a, c) ∈ X × Z | ∃b ∈ Y (a, b) ∈ R and (b, c) ∈ S} .



and identities are the diagonal relations: IdX = {(a, a) | a ∈ X}.
This category has a well known symmetric monoidal structure (compact

closed actually), with tensor product given on objects by X1 ⊗X2 = X1 ×X2

and on morphisms by

R1 ⊗R2 = {((a1, a2), (b1, b2)) | (ai, bi) ∈ Ri for i = 1, 2}

for any Ri ∈ Rel(Xi, Yi) (i = 1, 2). The associativity and symmetry isomor-
phisms are the obvious bijections, the neutral object of the tensor product is the
singleton set 1 = {∗}.

This monoidal category is closed: the object of morphisms from X to Y
is X ( Y = X × Y , with evaluation morphism ev ∈ Rel((X ( Y ) ⊗ X,Y )
given by ev = {(((a, b), a), b) | a ∈ X, b ∈ Y }. Given R ∈ Rel(Z ⊗ X,Y ), the
linear curry�cation of R is cur(R) ∈ Rel(Z,X ( Y ). This category is star-
autonomous, with dualizing object ⊥ = 1.

The category Rel is also cartesian: the cartesian product of a family of ob-
jects (Xi)i∈I is

∏
i∈I Xi =

⋃
i∈I({i} ×Xi). The binary cartesian product of X

and Y is denoted as X & Y and the terminal object is > = ∅. The projec-
tion πi ∈ Rel(

∏
i∈I Xi, Xi) is πi = {((i, a), a) | a ∈ Xi} and, given a family

(Ri)i∈I of morphisms Ri ∈ Rel(Y,Xi), the corresponding morphism 〈Ri〉i∈I ∈
Rel(Y,

∏
i∈I Xi) is given by 〈Ri〉i∈I = {(b, (i, a)) | i ∈ I and (b, a) ∈ Ri}.

2 Exponentials

We present a way of building exponential functors, once a notion of multiplicity
is given, as a semi-ring satisfying strong conditions.

2.1 Multiplicity semi-rings

Notational convention for indices. We shall use quite often multiple indices,
written as subscript as in �aijk� which has three indices i, j and k. When there
are no ambiguities, these indices will not be separated by commas. We insert
commas when we use multiplication on these indices, as in �ai,2j,k� for instance.

A semi-ring M is a multiplicity semi-ring if it is commutative, has a multi-
plicative unit and satis�es

(MS1) ∀n1, n2 ∈M n1 + n2 = 0⇒ n1 = n2 = 0 (we say that M is positive)

(MS2) ∀n1, n2 ∈M n1 + n2 = 1⇒ n1 = 0 or n2 = 0 (we say that M is discrete)

(MS3) ∀n1, n2, p1, p2 ∈ M n1 + n2 = p1 + p2 ⇒ ∃r11, r12, r21, r22 ∈ M n1 =
r11 + r12, n2 = r21 + r22, p1 = r11 + r21, p2 = r12 + r22 (we say that M has
the additive splitting property)

(MS4) ∀m, p, n1, n2 ∈M pm = n1+n2 ⇒ ∃p1, p2,m11,m12,m21,m22 ∈M m11+
m21 = m12 +m22 = m, p1m11 + p2m12 = n1, p1m21 + p2m22 = n2 and p1 +
p2 = p (we say that M has the multiplicative splitting property).



Remark 1. The motivation for Condition (MS4) is mainly technical: it is essential
in the proof of Lemma 7. It has also an intuitive content, describing what happens
when an element ofM can be written both as a sum and as a product. The proof
that this property holds in N is based on Euclidean division. We conjecture that
this property is independent from Conditions (MS1), (MS2) and (MS3).

Generalized splitting properties. The splitting conditions are expressed in
a binary way, we must generalize them to arbitrary arities. We �rst generalize
Condition (MS3).

Lemma 1. Let M be a semi-ring satisfying (MS1) and (MS3). Let n1, . . . , nl ∈
M and p1, . . . , pr ∈ M be such that

∑l
i=1 ni =

∑r
j=1 pj. Then there is a family

(sij)
l,r
i=1,j=1 of elements of M such that ∀i ∈ {1, . . . , l} ni =

∑r
j=1 sij and ∀j ∈

{1, . . . , r} pj =
∑l
i=1 sij.

Similarly, we generalize Condition (MS4).

Lemma 2. Let M be a semi-ring satisfying (MS1), (MS3) and (MS4). Let k ∈
N with k 6= 0. Let l = 2k−1. For all n1, . . . , nk,m, p ∈M , if pm = n1 + · · ·+ nk,
then there exist (pj)

l
j=1 ∈M and (mij)

k,l
i=1,j=1 with

• p1 + · · ·+ pl = p
• m1j + · · ·+mkj = m for j = 1, . . . , l
• and p1mi1 + · · ·+ plmil = ni for i = 1, . . . , k.

Proposition 1. Any multiplicity semi-ring M contains an isomorphic copy of
N.

We shall simply say that M contains N, that is N ⊆ M . In particular, a
multiplicity semi-ring cannot be �nite. An element m of a semi-ring will be said
to be in�nite if it satis�es m = m+ 1.

Examples of multiplicity semi-rings. The elements of a multiplicity semi-
ring should be considered as generalized natural numbers. We give here examples
of such semi-rings.

Natural numbers. The most canonical example of multiplicity semi-ring is the set
N of natural numbers, with the ordinary addition and multiplication. Of course,
N has no in�nite element.

Proposition 2. N is a multiplicity semi-ring.

Completed natural numbers. Let N = N ∪ {ω} be the �completed set of natural
numbers�. We extend addition to this set by n+ω = ω+n = ω, and multiplication
by 0ω = ω0 = 0 and nω = ωn = ω for n 6= 0, so that N has exactly one in�nite
element, namely ω.

Proposition 3. N is a multiplicity semi-ring.



A semi-ring with in�nite and non-idempotent elements. A more interesting ex-
ample is N2 = (N+ × N) ∪ {0}. The element (n, d) of this set (with n 6= 0) will
be denoted as nωd. We extend this notation to the case where n = 0, identifying
0ωd with 0, which is quite natural with these notations. Addition is de�ned as
follows (0 being of course neutral for this operation)

nωd + n′ωd
′
=


(n+ n′)ωd if d = d′

nωd if n 6= 0 and d′ < d

n′ωd
′

if n′ 6= 0 and d < d′

and multiplication is de�ned by nωdn′ωd
′
= nn′ωd+d′ . This semi-ring has in-

�nitely many in�nite elements: all the elements nωd of N2 with n 6= 0 and d 6= 0
are in�nite.

Proposition 4. N2 is a multiplicity semi-ring.

From now on, M denotes a multiplicity semi-ring.

2.2 The exponential functor

Given a set X, we de�ne !MX as the free M-module M〈X〉 generated by X, that
is, as the set of all functions µ : X → M such that supp(µ) = {a ∈ X | µ(a) 6=
0} (the support of µ) is �nite. These functions will be called M-multisets (of
elements of X).

Given a ∈ X, we denote as [a] ∈ !MX the function given by [a](b) = δa,b (the
Kronecker symbol which takes value 0 ∈M if a 6= b and 1 ∈M if a = b). We use
the standard algebraic notations for denoting the operations in the M-module
!MX. If µ ∈ !MX, we de�ne the cardinality of µ by #µ =

∑
a∈supp(µ) µ(a) ∈M.

Given R ∈ Rel(X,Y ), we de�ne !MR ∈ Rel(!MX, !MY ) as the set of all pairs
(µ, ν) such that one can �nd σ ∈M〈X × Y 〉 with supp(σ) ⊆ R and

∀a ∈ X µ(a) =
∑
b∈Y

σ(a, b) and ν(b) =
∑
a∈X

σ(a, b) .

We say then that σ is a witness of (µ, ν) for R. Observe that all these sums are
�nite because σ ∈M〈X × Y 〉.

It is clear from this de�nition that !M IdX = Id!MX . Let R ∈ Rel(X,Y ) and
S ∈ Rel(Y,Z). We denote as S ·R ∈ Rel(X,Z) the relational composition of R
and S.

Lemma 3. !M(S ·R) = !MS · !MR.

Proof. This is essentially an application of Lemma 1. 2

Lemma 4. Let R ⊆ X × Y and let (µi, νi) ∈ !MR and pi ∈ M for i = 1, . . . , n.
Then (

∑n
i=1 piµi,

∑n
i=1 piνi) ∈ !MR.



Proof. For each i, choose a witness σi of (µi, νi) for R. Then
∑n
i=1 piσi is a

witness of (
∑n
i=1 piµi,

∑n
i=1 piνi) for R. 2

2.3 Comonad structure of the exponential

We introduce the fundamental comonadic structure of the exponential functor,
which consists of two natural transformations usually called dereliction (the
counit of the comonad) and digging (the comultiplication of the comonad).

Dereliction. We set dX = {([a], a) | a ∈ X} ∈ Rel(!MX,X).

Lemma 5. dX is a natural transformation from !M to Id.

Proof. One applies Conditions (MS1) and (MS2). 2

Remark 2. One could consider taking M = {0, 1} with 1 + 1 = 1, and then we
would have !MX = Pfin(X), the set of all �nite subsets of X. But this semi-
ring does not satisfy Condition (MS2) and, indeed, dereliction is not natural as
already mentioned in the Introduction.

Digging. This operation is more problematic and some preliminaries are re-
quired.

Lemma 6. Let X and Y be sets and let R ⊆ X × Y . Let ν1, ν2 ∈ !MY and
µ ∈ !MX. If (µ, ν1 + ν2) ∈ !MR, then one can �nd µ1, µ2 ∈ !MX such that
µ1 + µ2 = µ and (µi, νi) ∈ !MR for i = 1, 2.

Proof. We use Lemma 1. 2

Given M ∈ !M!MX, we set

Σ(M) =
∑

m∈!MX

M(m)m ∈ !MX .

Since M has a �nite support, this sum is actually a �nite sum (the linear com-
bination, with coe�cients M(m) ∈M, is taken in the module !MX).

We de�ne pX ∈ Rel(!MX, !M!MX) by

pX = {(Σ(M),M) |M ∈ !M!MX} .

The next lemma is the main tool for proving the naturality of digging. It
combines the two generalized splitting properties of M.

Lemma 7. Let X and Y be sets and let R ⊆ X × Y be �nite. There exists
q(R) ∈ N with the following property: for any µ ∈ !MX,π ∈ !MY and p ∈ M, if
(µ, pπ) ∈ !MR, then one can �nd p1, . . . , pq(R) ∈M and µ1, . . . , µq(R) ∈ !MX such

that
∑q(R)
j=1 pj = p,

∑q(R)
j=1 pjµj = µ and (µj , π) ∈ !MR for each j = 1, . . . , q(R).



Proof. Let I = {a ∈ X | ∃b ∈ Y (a, b) ∈ R} and J = {b ∈ Y | ∃a ∈ X (a, b) ∈ R}.
Given b ∈ J , let degb(R) = #{a ∈ X | (a, b) ∈ R} − 1 ∈ N and let deg(R) =∑
b∈J degb(R). We prove the result by induction on deg(R).
Assume �rst that deg(R) = 0, so that, for any b ∈ J , there is exactly one

a ∈ I such that (a, b) ∈ R, let us set a = g(b): g is a surjective function from J to
I whose graph coincides with R (in the sense that R = {(g(b), b) | b ∈ J}). Let
σ be a witness of (µ, pπ) for R. For all b ∈ J we have pπ(b) =

∑
a∈X σ(a, b) =

σ(g(b), b) and for all a ∈ I we have µ(a) =
∑
g(b)=a σ(a, b) = p

∑
g(b)=a π(b). Let

τ ∈M〈X × Y 〉 be de�ned by

τ(a, b) =

{
π(b) if g(b) = a

0 otherwise.

then clearly supp(τ) ⊆ R and τ is a witness of (µ′, π) for R, where µ′ ∈ !MX
is given by µ′(a) =

∑
g(b)=a π(a). Since pµ

′ = µ, we have obtained the required

property (with q(R) = 1, p1 = p and µ1 = µ′).
Assume now that deg(R) > 0 and let us pick some b ∈ J such that k =

degb(R)+1 > 1. Let σ be a witness of (µ, pπ) for R. Let a1, . . . , ak be a repetition-
free enumeration of the elements a of I such that (a, b) ∈ R. We have

pπ(b) =

k∑
i=1

σ(ai, b) .

Let l = 2k−1. By Lemma 2, there exist p1, . . . , pl ∈M and (mij)
k,l
i=1,j=1 elements

of M with

• p1 + · · ·+ pl = p
• m1j + · · ·+mkj = π(b) for j = 1, . . . , l
• and p1mi1 + · · ·+ plmil = σ(ai, b) for i = 1, . . . , k.

Let b1, . . . , bk be pairwise distinct new elements, which do not belong to X nor
to Y , and let Y ′ = (Y \ {b}) ∪ {b1, . . . , bk}. We de�ne a new relation to which
we shall be able to apply the inductive hypothesis as follows:

S = {(a, b′) ∈ R | b′ 6= b} ∪ {(ai, bi) | i = 1, . . . , k} .

Then we have deg(S) = deg(R)− k + 1 < deg(R). Let τ ∈M〈X × Y ′〉 be given
by

τ(a, c) =


σ(a, c) if c /∈ {b1, . . . , bk}
σ(ai, b) if c = bi and a = ai

0 otherwise.

It is clear that supp(τ) ⊆ S. Moreover, τ is a witness of (µ,
∑l
j=1 pjπj) for S,

where πj ∈ !MY
′ is given by

πj(c) =

{
π(c) if c /∈ {b1, . . . , bk}
mij if c = bi.



for each j ∈ {1, . . . , l}. Indeed, for a ∈ X we have

∑
c∈Y ′

τ(a, c) =
∑

c∈Y ′\{b1,...,bk}

τ(a, c) +

k∑
i=1

τ(a, bi)

=
∑

c∈Y ′\{b1,...,bk}

σ(a, c) +

k∑
i=1

δa,aiσ(ai, b)

=
∑

c∈Y ′\{b1,...,bk}

σ(a, c) + σ(a, b) =
∑
b∈Y

σ(a, b) = µ(a)

and for c ∈ Y ′ \ {b1, . . . , bk} we have

∑
a∈X

τ(a, c) =
∑
a∈X

σ(a, c) = pπ(c) =

l∑
j=1

pjπj(c) since

{
∀j πj(c) = π(c)∑l
j=1 pj = p

and last, for c = bi (with i ∈ {1, . . . , k}), we have

∑
a∈X

τ(a, c) = σ(ai, b) =

l∑
j=1

pjmij =

l∑
j=1

pjπj(c) .

By Lemma 6, since
(
µ,
∑l
j=1 pjπj

)
∈ !MS, we can �nd µ1, . . . , µl ∈ !MX such

that
∑l
j=1 µj = µ and (µj , pjπj) ∈ !MS for each j ∈ l = {1, . . . , l}. Since

deg(S) < deg(R), we can apply the inductive hypothesis for each j ∈ l. So we

can �nd a family (pjs)
l,q(S)
j=1,s=1 of elements of M such that pj =

∑q(S)
s=1 pjs and we

can �nd a family (µjs)
l,q(S)
j=1,h=1 of elements of !MX such that

∑q(S)
s=1 pjsµjs = µj ,

and moreover (µjs, πj) ∈ !MS for each j ∈ l and s ∈ q(S). We conclude the proof
by showing that (µjs, π) ∈ !MR. Let τjs ∈ M〈X × Y ′〉 be a witness of (µjs, πj)
for S. Let σjs ∈M〈X × Y 〉 be given by

σjs(a, b
′) =

{
τjs(a, b

′) if b′ 6= b∑k
i=1 τjs(a, bi) if b′ = b.

For b′ ∈ Y \ {b}, we have
∑
a∈X σjs(a, b

′) =
∑
a∈X τjs(a, b

′) = πj(b
′) = π(b′).

Next we have

∑
a∈X

σjs(a, b) =
∑
a∈X

k∑
i=1

τjs(a, bi)

=

k∑
i=1

∑
a∈X

τjs(a, bi)

=

k∑
i=1

πj(bi) =

k∑
i=1

mij = π(b) .



On the other hand we have∑
b′∈Y

σjs(a, b
′) =

∑
b′∈Y \{b}

σjs(a, b
′) + σjs(a, b)

=
∑

b′∈Y \{b}

τjs(a, b
′) +

k∑
i=1

τjs(a, bi)

=
∑
c∈Y ′

τjs(a, c) = µjs(a) .

It remains to prove that supp(σjs) ⊆ R, but this results immediately from the
de�nition of σjs and from the fact that supp(τjs) ⊆ S.

Observe that we can take q(R) = lq(S), so that in general q(R) = 2deg(R).
2

Lemma 8. pX is a natural transformation from !M to !M!M.

Proof. This is essentially an application of Lemma 7. 2

Comonad equations We prove that d!MX · pX = Id!MX . Let (µ, µ
′) ∈ !MX ×

!MX. Assume �rst that (µ, µ′) ∈ d!MX · pX . Then we can �nd M ∈ !M!MX such
that (µ,M) ∈ pX and (M,µ′) ∈ d!MX . This means that M = [µ′] and hence
Σ(M) = µ′, hence µ = µ′. Conversely, for µ ∈ !MX we have (µ, [µ]) ∈ pX ,
therefore (µ, µ) ∈ d!MX · pX .

Next we prove that !M dX · pX = Id!MX . Let (µ, µ′) ∈ !M dX · pX . Let M ∈
!M!MX be such that (µ,M) ∈ pX , that is Σ(M) = µ, and (M,µ′) ∈ !M dX .
Let σ ∈ M〈!MX ×X〉 be a witness of (M,µ′) for dX . This means that µ′(a) =∑
ν∈!MX

σ(ν, a) = σ([a], a) since supp(σ) ⊆ dX , and that M(ν) = σ([a], a) if
ν = [a], and M(ν) = 0 if #ν 6= 1. It follows that Σ(M) =

∑
ν∈!MX

M(ν)ν =∑
a∈X σ([a], a)[a] = µ′ and hence µ = µ′. Conversely, one has (µ, µ) ∈ !M dX · pX ,

because M ∈ !M!MX de�ned by M(ν) = µ(a) if ν = [a] and M(ν) = 0 if #ν 6= 0
satis�es (µ,M) ∈ pX and (M,µ) ∈ !M dX .

Lemma 9. LetM∈ !M!M!MX. Then Σ(Σ(M)) =
∑
N∈!M!MX

M(N)Σ(N).

Proof. We have

Σ(Σ(M)) =
∑
ν∈!MX

Σ(M)(ν)ν

=
∑
ν∈!MX

( ∑
N∈!M!MX

M(N)N(ν)

)
ν

=
∑

N∈!M!MX

M(N)

( ∑
ν∈!MX

N(ν)ν

)



and we are done. 2

Using Lemma 9, one proves the last comonad equation, namely p!MX · pX =
!M pX · pX .

Fundamental isomorphism. One of the most important properties of the
exponential is that it maps cartesian products to tensor products. Combined
with the monoidal closure of Rel, this property leads to the cartesian closeness
of the Kleisli category Rel!.

Proposition 5. Given two sets X1 and X2, there is an natural bijection nX1,X2
:

!MX1 ⊗ !MX2 → !M(X1 & X2) and a bijection n0 : 1→ !M>.

Given (µ1, µ2) ∈ !MX1 ⊗ !MX2, we de�ne ν = n(µ1, µ2) ∈ !M(X1 & X2) by
ν(i, a) = µi(a) for i = 1, 2, and n0(∗) is unique element of !M> (the empty
multiset).

Structural morphisms. They are used for interpreting the structural rules
of linear logic, associated with the exponentials. The weakening morphism is
weakX : !MX → 1 is weakX = {([], ∗)}. The contraction morphism is contrX :
!MX → !MX ⊗ !MX is obtained by applying the !M functor to the diagonal map
X → X & X, so that contrX = {(λ+ ρ, (λ, ρ)) | λ, ρ ∈ !MX}.

There are other equations to check for proving that we have de�ned a model
of linear logic (see [Bie95]), the corresponding veri�cations are straightforward.

2.4 The Kleisli cartesian closed category

The objects of the Kleisli category Rel! of the comonad �!M� are the sets,
and Rel!(X,Y ) = Rel(!MX,Y ). Identity in this category is dereliction dX ∈
Rel!(X,X) and composition is de�ned as follows: let R ∈ Rel!(X,Y ) and
S ∈ Rel!(Y,Z), then S ◦ R = S · !MR · pX . We give a direct characterization of
this composition law.

Proposition 6. Let (µ, c) ∈ !MX × Z, we have (µ, c) ∈ S ◦ R i� there exist
b1, . . . , bn ∈ Y (not necessarily distinct), p1, . . . , pn ∈ M and µ1, . . . , µn ∈ !MX
such that

∀i ∈ {1, . . . , n} (µi, bi) ∈ R ,

(
n∑
i=1

pi[bi], c

)
∈ S and µ =

n∑
i=1

piµi .

Proof. Assume �rst that (µ, c) ∈ S ◦ R. Let M ∈ !M!MX such that (µ,M) ∈ pX
and let ν ∈ !MY be such that (ν, c) ∈ S and (M,ν) ∈ !MR. We have Σ(M) = µ.
Let σ ∈ M〈!MX × Y 〉 be a witness of (M,ν) for R, and let (µ1, b1), . . . , (µn, bn)
be a repetition-free enumeration of the set supp(σ) ⊆ R. Taking pi = σ(µi, bi),
we have

∑n
i=1 pi[bi] = ν and

∑n
i=1 pi[µi] =M , and therefore µ =

∑n
i=1 piµi.

Assume conversely that (µ, c) satis�es the conditions stated in the proposi-
tion. Then we take ν =

∑n
i=1 pi[bi] and M =

∑n
i=1 pi[µi]. We have (ν, c) ∈ S



and (µ,M) ∈ pX and we have just to check that (M,ν) ∈ !MR. We de�ne
σ =

∑n
i=1 pi[(µi, bi)]; this is a witness of (M,ν) for R, as easily checked. 2

We recall that the cartesian product of X and Y in this category is X &
Y , with projections obtained by composing π1 and π2 with dX&Y in Rel.
The function space of X and Y is !MX ( Y . Evaluation Ev ∈ Rel!(X &
(!MX ( Y ), Y ) ' Rel(!MX ⊗ !M(!MX ( Y ), Y ) is

Ev = {((µ, [(µ, b)]), b) | µ ∈ !MX and b ∈ Y } .

Curry�cation is de�ned as follows: let R ∈ Rel!(Z & X,Y ) ' Rel(!MZ ⊗
!MX,Y ), then Cur(R) = {(π, (µ, b)) | ((π, µ), b) ∈ R} ∈ Rel!(Z, !MX ( Y ).

Di�erential structure and the Taylor expansion. Without giving pre-
cise de�nitions, let us mention that the di�erential structure of this model,
which consists of natural linear morphisms ∂X ∈ Rel (X, !MX) (codereliction),
coweakX ∈ Rel (1, !MX) (coweakening) and cocontrX ∈ Rel (!MX ⊗ !MX, !MX)
(cocontraction) allows to associate, with any morphism R ∈ Rel!(X,Y ), its
Taylor expansion R∗ ∈ Rel!(X,Y ). When M = N, one has M∗ = M but this
equation does not hold anymore when M has an in�nite element ω. In that case,
if R = {(ω[∗], ∗)} ∈ Rel!(1, 1), one has R

∗ = ∅ 6= R.

3 Graph models in Rel

Graph models [Bar84] have been isolated by Scott and Engeler in the continuous
semantics. We develop here a similar construction, in the relational semantics.
Let A be a non-empty set whose elements will be called atoms, and are not pairs.
Let ι : A→ (!MA( A) be a partial injective map.

We de�ne a sequence (Dι
n)n∈N of sets as follows: Dι

0 = A and Dι
n+1 = Dι

n ∪
((!MD

ι
n ( Dι

n) \ ι(A)). This sequence is monotone, and we set Dι =
⋃
n∈ND

ι
n.

We have !MD
ι ( Dι =

⋃
n∈N(!MD

ι
n ( Dι

n).
We de�ne a function ϕ : Dι → (!MD

ι ( Dι) by

ϕ(α) =

{
ι(a) if α = a ∈ A
α if α /∈ A

and a function ψ : (!MD
ι ( Dι)→ Dι by

ψ(µ, α) =

{
a if (µ, α) = ι(a) where a ∈ A
(µ, α) if (µ, α) /∈ ι(A) .

This de�nition makes sense because ι is injective, and because, if (µ, α) ∈
(!MD

ι
n ( Dι

n) \ ι(A), then (µ, α) ∈ Dι
n+1 ⊆ Dι. Let (µ, α) ∈ !MD

ι ( Dι.
If (µ, α) ∈ ι(A), let a be the unique element of A such that ι(a) = (µ, α). We
have ϕ(ψ(µ, α)) = ϕ(a) = ι(a) = (µ, α). If (µ, α) /∈ ι(A), we have ϕ(ψ(µ, α)) =
ϕ(µ, α) = (µ, α) because (µ, α) /∈ A, since no element of A is a pair.



So we have ϕ ◦ ψ = Id. We de�ne two morphisms App = {([α], ϕ(α)) | α ∈
Dι} ∈ Rel!(D

ι, !MD
ι ( Dι) and Lam = {([(µ, α)], ψ(µ, α)) | (µ, α) ∈ !MD

ι (
Dι} ∈ Rel!(!MD

ι ( Dι, Dι). Then we have App ◦ Lam = Id!MDι(Dι , so that D
ι

is a re�exive object in Rel!, whatever be the choice of the multiplicity semi-ring
M.

3.1 Interpreting terms

Given a lambda-term M and a repetition-free list of variables x = (x1, . . . , xn)
which contains all free variables of M , the interpretation [M ]x ∈ Rel!(D

ιn, Dι)
(where Dιn is the cartesian product of Dι with itself, n times) is de�ned by
induction on M as follows

• [xi]x = πi (the ith projection from (Dι)
n
to Dι)

• [λxN ]x = Lam ◦ Cur([M ]x,x), assuming that x does not occur in x
• [(N)P ]x = Ev ◦ 〈App ◦ [N ]x, [P ]x〉

Using the cartesian closeness ofRel! and the fact that App ◦ Lam = Id!MDι(Dι ,
one proves that ifM andM ′ are beta-equivalent, and x is a repetition-free list of
variables which contain all the free variables ofM andM ′, one has [M ]x = [M ′]x.
This requires to prove �rst a substitution lemma, see [AC98].

We present now this interpretation as a typing system (a variation of de
Carvalho's system R [DC08]). A type is an element of Dι. Given µ ∈ !MD

ι and
α ∈ Dι, we set µ → α = ψ(µ, α). A typing context is a �nite partial function
from variables to !MD

ι. If Γ1, . . . , Γk are contexts with the same domain and
p1, . . . , pk ∈ M, the sum

∑k
i=1 piΓi is de�ned pointwise (using the addition of

!MD
ι). The typing rules are

x1 : [], . . . , xn : [], x : [α] ` x : α
Γ, x : µ `M : α

Γ ` λxM : µ→ α
Γ `M : (

∑n
i=1 pi[βi])→ α ∀i ∈ n Γi ` N : βi

Γ +
∑n
i=1 piΓi ` (M)N : α

In the last rule, all contexts involved must have same domain, and the βi's need
not be distinct.

Proposition 7. The judgment Γ `M : α is derivable i� (Γ (x1), . . . , Γ (xn), α) ∈
[M ]x where x = (x1, . . . , xn) is a repetition-free enumeration of the domain of
Γ , which is assumed to contain all the free variables of M .

Proof. Straightforward induction on the judgment, using Proposition 6. 2

We take for M a multiplicity semi-ring which contains an in�nite element ω
(remember that this means that ω + 1 = ω). Let A = {a}, ι : A → (!MA ( A)
be de�ned by ι(a) = (ω[a], a), so that (ω[a] → a) = a. Let Ω = (δ) δ where
δ = λx (x)x.

Proposition 8. In the model Dι, we have [Ω] = {a}.



Proof. We have the following deduction tree (we have inserted in this tree the
equations between types or M-multisets of types that we use)

x : [a] ` x : a = ω[a]→ a x : [a] ` x : a

x : [a] + ω[a] = ω[a] ` (x)x : a

` λx (x)x : ω[a]→ a

(same derivation)

` λx (x)x : ω[a]→ a = a

` (λx (x)x)λx (x)x : a

Therefore a ∈ [Ω].

Conversely, let α ∈ Dι and assume that ` Ω : α. There must exist µ ∈ !MD
ι

such that ` δ : µ→ α and ∀β ∈ supp(µ) ` δ : β. Form the �rst of these two
judgments we get x : µ ` (x)x : α and hence there must exist ν ∈ !MD

ι such
that µ = ν + [ν → α]. From the second judgment we get ` δ : ν → α and
∀β ∈ supp(ν) ` δ : β. Iterating this process, we build a sequence (µi)

∞
i=1 of

elements of !MD
ι such that ` δ : µi → α, ∀β ∈ supp(µi) ` δ : β and µi =

µi+1 +[µi+1 → α] for all i. Let βi = µi → α, it follows that ∀i βi ∈ supp(µ1) and
since supp(µ1) is �nite, we can �nd i and n > 0 such that βi+n = βi. We have
βi = (µi → α) = ((µi+1+[βi+1])→ α) = · · · = ((µi+n+[βi+1]+· · ·+[βi+n])→ α)
and since βi = βi+n = (µi+n → α), we get µi+n = µi+n + [βi+1] + · · · + [βi+n]
(because ψ is injective) and hence βi+n ∈ supp(µi+n). But βi+n = (µi+n → α)
and hence we must have βi+n = a. Indeed, if βi+n /∈ A then by de�nition of
ψ we have βi+n = (µi+n, α) and, if k is the least integer such that βi+n ∈ Dι

k,
we have k > 0 and β ∈ Dι

k−1 for all β ∈ supp(µi+n). This is impossible since
βi+n ∈ supp(µi+n). Since (µi+n → α) = a, we have α = a and we are done. 2

Since ([] → a) ∈ [λy Ω] and a 6= ([] → a), we have found two unsolvable
terms (namely Ω and λy Ω) with distinct interpretations in Dι and hence this
model is not sensible.

Conclusion

We have introduced the algebraic concept of multiplicity semi-ring, which can
be used for generalizing the standard exponential construction of the relational
model of linear logic. Such a semi-ring must contain N as a sub-semi-ring but can
also have in�nite elements ω such that ω+1 = ω. In that case, the corresponding
model of linear logic is a model of the di�erential lambda-calculus which does
not satisfy the Taylor formula, and it is possible to build non sensible models of
the lambda-calculus in the corresponding Kleisli cartesian closed category. This
shows that models of the pure di�erential lambda-calculus can have non sensible
theories and provides a new way of building models of the pure lambda-calculus
where non termination is taking into account in a quantitative way by means of
these in�nite multiplicities.
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Appendix: omitted proofs

Proof of Lemma 1. Assume �rst that l = 2 and let us prove the result by
induction on r. For r = 1, one takes s11 = n1 and s21 = n2. Assume that the
property holds for r and let us prove it for r+1. Let q1 =

∑r
j=1 pj and q2 = pr+1.

Then, applying Condition (MS3), we can �nd tik ∈ M for i = 1, 2 and k = 1, 2
such that n1 = t11 + t12, n2 = t21 + t22, q1 = t11 + t21 and q2 = t12 + t22. By
inductive hypothesis we can �nd a family (uij)

2,r
i=1,j=1 such that t11 =

∑r
j=1 u1j ,

t21 =
∑r
j=1 u2j and pj = u1j + u2j for j = 1, . . . , r. Then we de�ne (sij)

2,r+1
i=1,j=1

by setting sij = uij for i = 1, 2 and j = 1, . . . , r, and si,r+1 = ti2 for i = 1, 2.
Now we prove the result for an arbitrary value of l, by induction on this

parameter. For l = 1, we set s1j = pj for j = 1, . . . , r. Assume that the result

holds for l and let us prove it for l+1. Letm1 =
∑l
i=1 ni andm2 = nl+1. We have

m1 +m2 =
∑r
j=1 pj so we can apply the property that we have just proved. Let

(tkj)
2,r
k=1,j=1 be a family of elements of M such that mk =

∑r
j=1 tkj for k = 1, 2

and pj = t1j + t2j for j = 1, . . . , r. By inductive hypothesis, we can �nd a family

(uij)
l,r
i=1,j=1 such that ni =

∑r
j=1 uij for i = 1, . . . , l and pj =

∑l
i=1 uij . Then we

de�ne a family (sij)
l+1,r
i=1,j=1 by setting sij = uij for i = 1, . . . , l and j = 1, . . . , r,

and sl+1,j = t2j for j = 1, . . . , r, and we are done. 2

Proof of Lemma 2. By induction on k. For k = 1, one has l = 1, and one takes
p1 = p and m11 = m.

Assume that the result holds for k (and let l = 2k−1) and let us prove it for k+
1. Let n1, . . . , nk+1,m, p ∈M with n1+· · ·+nk+1 = mp. By inductive hypothesis,
we can �nd (pj)

l
j=1 ∈M and (mij)

k,l
i=1,j=1 with the following properties

• p1 + · · ·+ pl = p
• m1j + · · ·+mkj = m for j = 1, . . . , l
• mi1p1 + · · ·+milpl = ni for i = 1, . . . , k − 1
• and mk1p1 + · · ·+mklpl = nk + nk+1.

By Lemma 1, we can �nd a family (rjh)
l,1
j=1,h=0 of elements of M such that

nk+h = r1h + · · · + rlh for h = 0, 1 and ∀j ∈ l mkjpj = rj0 + rj1. By Condi-
tion (MS4), for each j ∈ l, we can �nd pj1, pj2 ∈ M with pj1 + pj2 = pj and a

family (sjuh)
2,1
u=1,h=0 of elements of M such that mkj = sj10 + sj11 = sj20 + sj21

and rjh = sj1hpj1 + sj2hpj2 for each j ∈ l and h = 0, 1. For i ∈ k − 1 we have

ni = mi1p11 +mi1p12 + · · ·+milpl1 +milpl2

and for h = 0, 1, we have

nk+h = r1h + · · ·+ rlh

= s11hp11 + s12hp12 + · · ·+ sl1hpl1 + sl2hpl2 .

Let us de�ne a family (p′j′)
2l
j′=1 of elements of M by setting p′1 = p11, p

′
2 =

p12, . . . , p
′
2l−1 = pl1, p

′
2l = pl2 and let use de�ne a family (m′ij′)

k+1,2l
i=1,j′=1 by setting



m′i,2j−1 = m′i,2j = mij for i ∈ k − 1 and j ∈ l, and by m′k+h,2j−1 = sj1h and

m′k+h,2j = sj2h for j ∈ l and h = 0, 1. With these de�nitions, we have

• p′1 + · · ·+ p′2l = p1 + · · ·+ pl = p
• m′1,2j−1+· · ·+m′k+1,2j−1 = m1,j+· · ·+mk−1,j+sj10+sj11 = m1j+· · ·+mkj =
m for j = 1, . . . , l
• m′1,2j+· · ·+m′k+1,2j = m1,j+· · ·+mk−1,j+sj20+sj21 = m1j+· · ·+mkj = m
for j = 1, . . . , l
• m′i,1p′1 + · · ·+m′i,2lp

′
2l = ni for i = 1, . . . , k + 1

and the lemma is proved. 2

Proof of Proposition 1. One de�nes a map f : N → M by induction on natural
numbers by f(0) = 0 and f(n + 1) = f(n) + 1, that is f(n) =

∑n
i=1 1; we

denote this sum as n · 1. This map is a semi-ring morphism as easily checked,
by induction on natural numbers again. We prove that f is injective, so let
p ∈ N and let us prove that f(n) = f(n + p) ⇒ p = 0 by induction on n. For
n = 0, assume that p · 1 = 0. Applying Condition (MS1) we get easily p = 0 (by
induction on p actually). Assume now that (n + 1 + p) · 1 = (n + 1) · 1, that is
(n+ p) · 1+1 = n · 1+1. By Condition (MS3), one can �nd r11, r12, r21, r22 ∈M
such that n+ p = r11 + r12, 1 = r21 + r22, n = r11 + r21 and 1 = r12 + r22. By
Condition (MS2), there are two cases to consider: either r22 = 1, and in that
case r21 = r12 = 0, or r22 = 0, and in that case r21 = r12 = 1. In both cases we
have n+ p = n and hence p = 0 by inductive hypothesis. 2

Proof of Proposition 2. Let us check Condition (MS3), so let n1, n2, p1, p2 ∈ N
be such that n1 + n2 = p1 + p2 and let q be this common value. Pick arbitrarily
sets I1, I2, J1, J2 ⊆ q of respective cardinality n1, n2, p1 and p2. It su�ces to take
rij = #(Ii ∩ Jj).

We prove now Condition (MS4). We apply Euclidian division by p and we
get n1 = q1p + r1 and n2 = q2p + r2 where r1, r2 < p. We have r1 + r2 =
p(m − q1 − q2), and since r1, r2 < p, we must have m − q1 − q2 = 0 or m −
q1 − q2 = 1. In the �rst case we have r1 = r2 = 0. Pick p1, p2 ∈ N such
that p1 + p2 = p. Set m11 = m12 = q1 and m21 = m22 = q2. Then we have
m11 + m21 = m12 + m22 = m, p1m11 + p2m12 = p1q1 + p2q1 = pq1 = n1

and p1m21 + p2m22 = p1q2 + p2q2 = pq2 = n2 as required. Assume now that
m − q1 − q2 = 1. We set p1 = r1, p2 = r2, m11 = q1 + 1, m12 = q1, m21 = q2

and m22 = q2 + 1. We have m11 +m21 = m12 +m22 = q1 + q2 + 1 = m. Next
we have p1m11 + p2m12 = r1(q1 + 1) + r2q1 = (r1 + r2)q1 + r1 = pq1 + r1 = n1.
Similarly we have p1m21 + p2m22 = n2, as required. 2

Proof of Proposition 3. We check Condition (MS3), so assume that n1+n2 = p1+
p2 = q. If q 6= ω, then we have ni, pj ∈ N for each i, j and we use Condition (MS3)
for N. Assume that q = ω. Without loss of generality we can assume that n1 =
p1 = ω. We can take r11 = ω, r22 = 0, r12 = p2 and r21 = n2. Last we check



Condition (MS4), so assume that pm = n1 + n2 = q. Assume �rst that q ∈ N.
If q 6= 0, we know that p,m, n1, n2 ∈ N and we can use Condition (MS4) in N.
If q = 0, then n1 = n2 = 0 and we must have m = 0 or p = 0. If p = ω and
m = 0 then we can take p1 = ω, p2 = 0, m11 = m12 = m21 = m22 = 0. If p = 0
and m = ω, we take p1 = p2 = 0, m11 = m21 = ω and m12 = m22 = 0. We are
left with the case were q = ω. Without loss of generality we can assume that
n1 = ω, and of course we must have m 6= 0 and p 6= 0. Assume �rst that p = ω.
Then we can take p1 = ω, p2 = n2, m11 = m, m21 = 0, m12 = m′ such that
m′ + 1 = m and m22 = 1. Assume last that m = ω. Then we can take p1 = p′

with p′ + 1 = p, p2 = 1, m11 = ω, m21 = ω, m12 = ω and m22 = n2. 2

Proof of Proposition 4. A simple case analysis shows that this addition is asso-
ciative, and it is obvious that it is commutative. Distributivity is easily checked
as well, so that we have de�ned a semi-ring. Observe that ω + 1 = ω, but that
ω + ω = 2ω 6= ω and actually, unlike N, this semi-ring has no element n such
that n+ n = n (apart from 0 of course).

Let us check the splitting property, so assume that n1ω
d1 +n2ω

d2 = p1ω
e1 +

p2ω
e2 and let us build a family (qijω

fij )2,2i=1,j=1. If d1 = d2 and e1 = e2, we
are reduced to the splitting property of N. If d1 = d2 and e1 > e2, then we
have (n1 + n2)ω

d1 = p1ω
e1 . We can set for instance q11ω

f11 = n1ω
d1 , q12ω

f12 =
p2ω

e2 , q21ω
f21 = n2ω

d1 and q22ω
f22 = 0. Then we have q11ω

f11 + q12ω
f12 =

n1ω
d1 + p2ω

e2 = n1ω
d1 , q21ω

f21 + q22ω
f22 = n2ω

d1 , q11ω
f11 + q21ω

f21 = n1ω
d1 +

n2ω
d1 = p1ω

e1 and q12ω
f12 + q22ω

f22 = p2ω
e2 . The last case to consider (up

to commutativity of addition) is d1 > d2 and e1 > e2. Then we know that
n1ω

d1 = p1ω
e1 . We can set q11ω

f11 = n1ω
d1 , q12ω

f12 = p2ω
e2 , q21ω

f21 = n2ω
d2

and q22ω
f22 = 0.

Let us check Condition (MS4), so assume that mωcpωe = n1ω
d1 + n2ω

d2 .
If d1 = d2 we are reduced to Condition (MS4) in N, so assume that d2 < d1

(and of course n1 6= 0 and n2 6= 0). So we have pmωe+c = n1ω
d1 . Our goal is to

�nd (pjω
ej )2j=1 and (mijω

cij )2,2i=1,j=1 with p1ω
e1 + p2ω

e2 = pωe, p1ω
e1mi1ω

ci1 +

p2ω
e2mi2ω

ci2 = niω
di for i = 1, 2 and m1jω

c1j +m2jω
c2j = mωc for j = 1, 2. We

consider several cases. For the two �rst cases, we set p1ω
e1 = pωe, m11ω

c11 =
mωc and m21ω

c21 = 0, so that m11ω
c11 +m21ω

c21 = mωc holds trivially.

• Assume �rst that c ≤ d2. We set p2ω
e2 = n2ω

d2−c, m22ω
c22 = ωc and

m12ω
c12 = (m − 1)ωc. We have e + c = d1 > d2 and hence e1 = e >

d2− c = e2 so that p1ω
e1 +p2ω

e2 = pωe. Next we have m12ω
c12 +m22ω

c22 =
(m − 1)ωc + ωc = mωc. And p1ω

e1m11ω
c11 + p2ω

e2m12ω
c12 = pmωe+c +

n2(m − 1)ωd2 = pmωd1 = n1ω
d1 since e + c = d1 > d2. Last we have

p1ω
e1m21ω

c21 + p2ω
e2m22ω

c22 = 0 + n2ω
d2−cωc = n2ω

d2 .
• Assume now that c > d2 and that e > 0. We set p2ω

e2 = n2 (so e2 = 0),
m22ω

c22 = ωd2 , m12ω
c12 = mωc. Then we have p1ω

e1 + p2ω
e2 = pωe + n2 =

pωe since e > 0. Also m12ω
c12 + m22ω

c22 = mωc + ωd2 = mωc since we
have assumed that c > d2. Next we have p1ω

e1m11ω
c11 + p2ω

e2m12ω
c12 =

pωemωc+n2mω
c = mpωe+c = n1ω

d1 since e > 0. Last we have p1ω
e1m21ω

c21+
p2ω

e2m22ω
c22 = 0 + n2ω

d2 .



• Last, assume that c > d2 and e = 0, so that c = d1. We take p1ω
e1 = 1,

p2ω
e2 = p − 1. We set m11ω

c11 = mωc, m12ω
c12 = mωc, m21ω

c21 = n2ω
d2

and m22ω
c22 = 0. We have m11ω

c11 +m21ω
c21 = mωc + n2ω

d2 = mωc since
c > d2 and m12ω

c12 + m22ω
c22 = mωc. Next, we have p1ω

e1m11ω
c11 +

p2ω
e2m12ω

c12 = mωc + (p − 1)mωc = n1ω
d1 and last p1ω

e1m21ω
c21 +

p2ω
e2m22ω

c22 = n2ω
d2 . 2

Proof of Lemma 3. First, let (µ, π) ∈ !M(S ·R). Let ϕ be a witness of (µ, π) for
S ·R. For each (a, c) ∈ S ·R, let us choose f(a, c) ∈ Y such that (a, f(a, c)) ∈ R
and (f(a, c), c) ∈ S (here, we apparently need the Axiom of Choice). Let ν ∈
M〈Y 〉 be given by

ν(b) =
∑

f(a,c)=b

ϕ(a, c) .

This sum is �nite, because ϕ has �nite support. Moreover, if b ∈ supp(ν) then we
must have b = f(a, c) for some (a, c) ∈ supp(ϕ) and there are only �nitely many
such pairs (a, c), so ν has �nite support: ν ∈ !MY . We check that (µ, ν) ∈ !MR,
and for this we exhibit a witness, namely σ ∈M〈X × Y 〉 given by

σ(a, b) =
∑

f(a,c)=b

ϕ(a, c) .

Indeed, we have

∀a ∈ X
∑
b∈Y σ(a, b) =

∑
b∈Y

∑
f(a,c)=b ϕ(a, c) =

∑
(a,c)∈S·R ϕ(a, c) = µ(a)

∀b ∈ Y
∑
a∈X σ(a, b) =

∑
a∈X

∑
f(a,c)=b ϕ(a, c) =

∑
f(a,c)=b ϕ(a, c) = ν(b)

One checks similarly that (ν, π) ∈ !MS, and hence (µ, π) ∈ !MS · !MR.
Conversely, let (µ, π) ∈ !MS · !MR. Let ν ∈ !MY be such that (µ, ν) ∈ !MR

and (ν, π) ∈ !MS and let σ ∈ M〈X × Y 〉 and τ ∈ M〈Y × Z〉 be corresponding
witnesses. Let b ∈ Y . We have∑

a∈X
σ(a, b) =

∑
c∈Z

τ(b, c) = ν(b) .

By Lemma 1, we can �nd ϕb ∈M〈X × Z〉 such that

∀a ∈ X σ(a, b) =
∑
c∈Z

ϕb(a, c) and ∀c ∈ Z τ(b, c) =
∑
a∈X

ϕb(a, c) .

Let ϕ =
∑
b∈supp(ν) ϕ

b. Let a ∈ X, we have

µ(a) =
∑
b∈Y

σ(a, b) =
∑
b∈Y

∑
c∈Z

ϕb(a, c) =
∑
c∈Z

∑
b∈Y

ϕb(a, c) =
∑
c∈Z

ϕ(a, c) .

Similarly one show that π(c) =
∑
a∈X ϕ(a, c). Last observe that if (a, c) ∈

supp(ϕ), one has (a, c) ∈ supp(ϕb) for some b. For such a b we have (a, b) ∈
supp(σ) ⊆ R and (b, c) ∈ supp(τ) ⊆ S. This shows that supp(ϕ) ⊆ S ·R, so that
ϕ is a witness of (µ, π) for S ·R, and hence (µ, π) ∈ !MS ·R. 2



Proof of Lemma 5. Let R ∈ Rel(X,Y ). We must show that R · dX = dY ·!MR.
Let µ ∈ !MX and b ∈ Y . Assume �rst that (µ, b) ∈ R · dX ; this means that there
exists a ∈ X such that (µ, a) ∈ dX and (a, b) ∈ R. Hence we have µ = [a]. We
have ([a], [b]) ∈ !MR and hence also (µ, b) ∈ dY ·!MR.

Conversely assume that (µ, b) ∈ dY ·!MR, so that (µ, [b]) ∈ !MR, and let
σ ∈ M〈X × Y 〉 be a witness. We have

∑
a∈X σ(a, b

′) = [b](b′) for each b′ ∈ Y .
By Conditions (MS1) and (MS2), one has ∀a ∈ X σ(a, b′) = 0 for each b′ 6= b,
and there exists a ∈ X such that σ(a, b) = 1 and σ(a′, b) = 0 for all a′ 6= a. We
have therefore µ = [a]. Since (a, b) ∈ R, this shows that (µ, b) ∈ R · dX because
([a], a) ∈ dX . 2

Proof of Lemma 6. Let σ ∈ M〈X × Y 〉 be a witness of (µ, ν) for R. Let b ∈ Y .
We have ν1(b)+ν2(b) =

∑
a∈X σ(a, b). By Lemma 1 we can �nd ϕbi ∈M〈X〉 (for

i = 1, 2) such that νi(b) =
∑
a∈X ϕ

b
i (a) (for i = 1, 2) and σ(a, b) = ϕb1(a)+ϕ

b
2(a).

Let σi(a, b) = ϕbi (a). Then σ1(a, b) + σ2(a, b) = σ(a, b) and this shows that
supp(σi) ⊆ R for i = 1, 2 (using Condition (MS1)). We have

∑
a∈X σi(a, b) =

νi(b) for each i ∈ {1, 2} and b ∈ Y . We set µi(a) =
∑
b∈Y σi(a, b). Then µi ∈ !MX

for i = 1, 2 since σi has �nite support. Moreover (µi, νi) ∈ !MR with witness σi
for i = 1, 2. We conclude because µ1(a) + µ2(a) =

∑
b∈Y (σ1(a, b) + σ2(a, b)) =∑

b∈Y σ(a, b) = µ(a). 2

Proof of Lemma 8. Let X and Y be sets and let R ⊆ X × Y . Let (µ,Π) ∈
!MX × !M!MY .

Assume �rst that (µ,Π) ∈ !M!MR·pX . LetM ∈ !M!MX be such that (M,Π) ∈
!M!MR and (µ,M) ∈ pX , that is Σ(M) = µ. Let Θ ∈M〈!MX × !MY 〉 be a witness
of (M,Π) for !MR. This means that

∀µ′ ∈ !MX M(µ′) =
∑

π′∈!MY

Θ(µ′, π′)

∀π′ ∈ !MY Π(π′) =
∑

µ′∈!MX

Θ(µ′, π′))

Since supp(Θ) ⊆ !MR, by Lemma 4, we have ∑
µ′∈!MX,π′∈!MY

Θ(µ′, π′)µ′,
∑

µ′∈!MX,π′∈!MY

Θ(µ′, π′)π′

 ∈ !MR,

that is (Σ(M), Σ(Π)) ∈ !MR. Therefore (µ,Π) ∈ pY ·!MR, since (Σ(Π), Π) ∈
pY .

Conversely, assume that (µ,Π) ∈ pY ·!MR, that is (µ,Σ(Π)) ∈ !MR, that is
(µ,
∑
π∈!MY

Π(π)π) ∈ !MR. Let R0 ⊆ R be �nite and such that

(µ,
∑
π∈!MY

Π(π)π) ∈ !MR0 .



Such an R0 exists because µ and Π have �nite support. By Lemma 6, one can
�nd a family (µπ)π∈supp(Π) of elements of !MX such that µ =

∑
π∈supp(Π) µ

π and

∀π ∈ supp(Π), (µπ, Π(π)π) ∈ !MR0. Applying Lemma 7, for each π ∈ supp(Π),

we can �nd a family (µπi )
q(R0)
i=1 of elements of !MX and a family (pπi )

q(R0)
i=1 of

elements of M such that

•
∑q(R0)
i=1 pπi = Π(π)

•
∑q(R0)
i=1 piµ

π
i = µπ

• and ∀i ∈ q(R0) (µπi , π) ∈ !MR.

We de�ne M ∈M!MX by setting

M =
∑

π∈supp(Π)

i∈q(R0)

pπi [µ
π
i ] .

This sum is �nite because supp(Π) is a �nite set.
We have

Σ(M) =
∑

π∈supp(Π)
i∈q(R0)

pπi µ
π
i

=
∑

π∈supp(Π)

q(R0)∑
i=1

pπi µ
π
i =

∑
π∈supp(Π)

µπ = µ ,

so that (µ,M) ∈ pX . Moreover we have ∀π ∈ supp(Π)∀i ∈ q(R0) (µ
π
i , π) ∈ !MR

and hence by Lemma 4 we haveM,
∑

π∈supp(Π)

i∈q(R0)

pπi [π]

 ∈ !M!MR

and hence (M,Π) ∈ !M!MR because∑
π∈supp(Π)

i∈q(R0)

pπi [π] =
∑

π∈supp(Π)

Π(π)[π] = Π .

This shows that (µ,Π) ∈ !M!MR · pX as announced. 2

Proof of Lemma 8. We prove that p!MX · pX = !M pX · pX , so let (µ,M) ∈ !MX×
!M!M!MX. Assume �rst that (µ,M) ∈ p!MX · pX , that is Σ(Σ(M)) = µ. We
de�ne M ∈M!MX as follows:

M(ν) =
∑

N∈!M!MX
Σ(N)=ν

M(N) .



ThenM ∈ !M!MX. Indeed, for each ν ∈ supp(M) we can �nd N ∈ supp(M) such
that ν ∈ supp(N), hence supp(M) ⊆

⋃
N∈supp(M) supp(N) and this latter set is

�nite. We have

Σ(M) =
∑
ν∈!MX

M(ν)ν

=
∑
ν∈!MX

 ∑
Σ(N)=ν

M(N)

 ν

=
∑

N∈!M!MX

M(N)Σ(N)

= Σ(Σ(M)) = µ

and hence (µ,Σ(M)) ∈ pX . Let Θ ∈M〈!MX × !M!MX〉 be de�ned by

Θ(ν,N) =

{
M(N) if Σ(N) = ν

0 otherwise.

Then clearly supp(Θ) ⊆ pX . Moreover, we have
∑
ν∈!MX

Θ(ν,N) =M(N) for all
N ∈ !M!MX and

∑
N∈!M!MX

Θ(ν,N) =
∑
Σ(N)=νM(N) =M(ν) for all ν ∈ !MX,

by de�nition ofM . This shows that Θ is a witness of (M,M) for pX . So we have
shown that (M,M) ∈ !M pX and therefore (µ,M) ∈ !M pX · pX .

Assume conversely that (µ,M) ∈ !M pX · pX . So letM ∈ !M!MX be such that
(µ,M) ∈ pX and (M,M) ∈ !M pX . Let Θ ∈ M〈!MX × !M!MX〉 be a witness of
(M,M) for pX . Since supp(Θ) ⊆ pX , there is a map H : !M!MX →M such that

Θ(ν,N) =

{
H(N) if Σ(N) = ν

0 otherwise.

For any N ∈ !M!MX we must haveM(N) =
∑
ν∈!MX

Θ(ν,N)) = H(N) so that
H = M. Therefore we have M(ν) =

∑
Σ(N)=νM(N) for all ν ∈ !MX. By

Lemma 9 we have

Σ(Σ(M)) =
∑

N∈!M!MX

M(N)Σ(N)

=
∑
ν∈!MX

 ∑
Σ(N)=ν

M(N)ν


=
∑
ν∈!MX

M(ν)ν since M(ν) =
∑

Σ(N)=ν

M(N)

= Σ(M) = µ

Therefore (µ,M) ∈ p!MX · pX . 2



Proof of Proposition 5. The second bijection is n = {(∗, [])}. The �rst one is

nX1,X2
= {((µ1, µ2), in1(µ1) + in2(µ2) | µ1 ∈ !MX1 and µ2 ∈ !MX2}

where ini(µ) =
∑
a∈Xi µ(a)[(i, a)]. Let us check that this isomorphism is natural,

so let Ri ⊆ Xi × Yi for i = 1, 2. We must check that nY1,Y2
· (!MR1 ⊗ !MR2) =

!M(R1 & R2) · nX1,X2
. So let µi ∈ !MXi and νi ∈ !MYi for i = 1, 2.

Assume �rst that ((µ1, µ2), in1(ν1) + in2(ν2)) ∈ nY1,Y2 · (!MR1 ⊗ !MR2). This
means that one can �nd ν′i ∈ !MYi for i = 1, 2 such that (µi, ν

′
i) ∈ !MRi for

i = 1, 2, and ((ν′1, ν
′
2), in1(ν1) + in2(ν2)) ∈ nY1,Y2

. This means that νi = ν′i for
i = 1, 2. Since (µ1, ν1) ∈ !MR1, we have (in1(µ1), in1(ν1)) ∈ !M(R1 & R2) and
similarly (in2(µ2), in2(ν2)) ∈ !M(R1 & R2) and hence (in1(µ1)+ in2(µ2), in1(ν1)+
in2(ν2)) ∈ !M(R1 & R2) by Lemma 4. But ((µ1, µ2), in1(µ1) + in2(µ2)) ∈ nX1,X2

and we have therefore ((µ1, µ2), in1(ν1) + in2(ν2)) ∈ !M(R1 & R2) · nX1,X2 .
Assume conversely that ((µ1, µ2), in1(ν1)+in2(ν2)) ∈ !M(R1 & R2)·nX1,X2

, so
that there exist µ′i ∈ !MXi for i = 1, 2 with ((µ1, µ2), in1(µ

′
1) + in2(µ

′
2)) ∈ nX1,X2

and (in1(µ
′
1) + in2(µ

′
2), in1(ν1) + in2(ν2)) ∈ !M(R1 & R2). Therefore µ

′
i = µi

for i = 1, 2 and hence (in1(µ1) + in2(µ2), in1(ν1) + in2(ν2)) ∈ !M(R1 & R2).
Let ϕ be a witness of (in1(µ1) + in2(µ2), in1(ν1) + in2(ν2)) for R1 & R2. Since
supp(ϕ) ⊆ R1 & R2, we have (µi, νi) ∈ !MRi for i = 1, 2: take ϕi ∈ M〈Xi × Yi〉
de�ned by ϕi(ai, bi) = ϕ((i, ai), (i, bi)), then ϕi is a witness of (µi, νi) for Ri. It
follows that ((µ1, µ2), (ν1, ν2)) ∈ !MR1 ⊗ !MR2 and therefore ((µ1, µ2), in1(ν1) +
in2(ν2)) ∈ nY1,Y2

· (!MR1 ⊗ !MR2). 2


