Interpreting a Finitary Pi-Calculus in Differential
Interaction Nets

Thomas Ehrhard and Olivier Laurent

Preuves, Programmes & Systémes
Université Denis Diderot and CNRS

Abstract. We propose and study a translation of a pi-calculus without
sums nor replication /recursion into an untyped and essentially promotion-
free version of differential interaction nets. We define a transition system
of labeled processes and a transition system of labeled differential in-
teraction nets. We prove that our translation from processes to nets is
a bisimulation between these two transition systems. This shows that
differential interaction nets are sufficiently expressive for representing
concurrency and mobility, as formalized by the pi-calculus.

Introduction

Linear Logic proofs [Gir87] admit a proof net representation which has a very
asynchronous and local reduction procedure, suggesting strong connections with
parallel computation. This impression has been enforced by the introduction of
interaction nets and interaction combinators by Lafont in [Laf95].

But the attempts towards “concurrent” interpretations of linear logic (e.g.
[EW9IT7], [AM99], [Mel06], [Bef05], [CF06] based on [FMO05]...) missed a cru-
cial feature of true concurrency, such as modelled by process calculi like Milner’s
m-calculus [Mil93,SW01]): its intrinsic non-determinism. This failure is easily un-
derstandable since there is an apparent contradiction between non-determinism
and the Curry-Howard approach to computation consisting in identifying proofs
and programs. According to this paradigm, a well-behaved proof system should
possess a confluent cut-elimination procedure. But confluence is a way of ex-
pressing determinism in a rewriting setting: typically, it implies that a closed
proof of boolean type cannot reduce to true and also to false.

Many denotational models of the lambda-calculus and of linear logic ad-
mit some form of non-determinisms (e.g. [Plo76,Gir88]), showing that a non-
deterministic proof calculus is not necessarily trivial. The first author introduced
such models, based on vector spaces in [Ehr02 Ehr(05], which have a nice proof-
theoretic counterpart, corresponding to a simple extension of the rules that linear
logic associates with the exponentials. In this differential setting, the weakening
rule has a mirror image rule called coweakening, and similarly for dereliction and
for contraction, and the reduction rules have the corresponding mirror symmetry.
The corresponding formalism of differential interaction nets has been introduced
in a joint work by the first author and Regnier [ER06].

In a joint work with Kohei Honda [HLO6], the second author proposed a
translation of a version of the w-calculus in proof-nets for a version of linear
logic extended with the cocontraction rule. The basic idea consists in inter-
preting the parallel composition as a cut between a contraction link (to which
several outputs are connected, through dereliction links) and a cocontraction
link, to which several promoted receivers are connected. Being promoted, these
receivers are replicable, in the sense of the w-calculus. The other fundamental
idea of this translation consists in using linear logic polarities for making the
difference between outputs (negative) and inputs (positive), and of imposing a
strict alternation between these two polarities. This allows to recast in a polar-
ized linear logic setting a typing system for the m-calculus previously introduced
by Berger, Honda and Yoshida in [BHY03]. This translation can be considered
as the first really convincing Curry-Howard interpretation of processes, but has
two features which can be considered as slight defects: it accepts only replicable
receivers and is not really modular (the parallel composition of two processes
cannot be described as a combination of the corresponding nets).

Principle of the translation. The purpose of the present paper is to continue
this line of ideas, using more systematically the new structures introduced by
differential interaction nets’.

The first key decision we made, guided by the structure of the typical co-
contraction/contraction cut intended to interpret parallel composition, was of
associating with each free name of a process not one, but two free ports in the
corresponding differential interaction net. One of these ports will have a !-type
(positive type) and will have to be considered as the input port of the corre-
sponding name for this process, and the other one will have a ?-type (negative
type) and will be considered as an output port.

We discovered structures which allow to combine
these pairs of wires for interpreting parallel composi- A
tion and called them communication areas: they are v v
obtained by combining in a completely symmetric way
cocontraction and contraction cells. There are com-
munication areas of any “arity” (number of pairs of A A
wires connected to it). The communication area of
arity 3 can be pictured as in Figure 1, where cocon- v
traction cells are pictured as !-labeled triangles and
contraction cells as 7-labeled triangles. The ports cor-
responding to the same pairs are the principal ports Fig. 1. Communication
of antipodic cells. area

! One should mention here that translations of the 7-calculus into nets of various
kinds, subject to local reduction relations, have been provided by various authors
(cf. the work of Laneve, Parrow and Victor on solo diagrams [LPV01], of Beffara
and Maurel [BMO05], of Milner on bigraphs [JM04], of Mazza [Maz05] on multiport
interaction nets etc.). But these settings have no clear logical grounds nor simple
denotational semantics.

Content. We first introduce differential interaction nets, typed with a recur-
sive typing system (introduced by Danos and Regnier in [Reg92] and corre-
sponding to the untyped lambda-calculus) for avoiding the appearance of non
reducible configurations. This system is finitary in the sense that it has no pro-
motion. Using these cells, we define a “toolbox”, a collection of nets that we shall
combine for interpreting processes, and a few associated reductions, derived from
the basic reduction rules of differential interaction nets.

We organize reduction rules of nets as a labeled transition system, whose ver-
tices are nets, and where the transitions correspond to dereliction/codereliction
reduction. Then we define a process algebra which is a polyadic 7-calculus, with-
out replication and without sums. We specify the operational semantics of this
calculus by means of an abstract machine inspired by the machine presented
in [AC98], Chapter 16. We define a transition system whose vertices are the
states of this machine, and transitions correspond to input/output reductions.
Last we define a “translation” relation from machine states to nets and show that
this translation relation is a bisimulation between the two transition systems.

The main goal of this work is not to define one more translation of the -
calculus into yet another exotic formalism. We want to illustrate by our bisimu-
lation result that differential interaction nets are sufficiently expressive for simu-
lating concurrency and mobility, as formalized in the 7-calculus. We believe that
differential interaction nets have their own interest and find a strong mathemat-
ical and logical justification in their connection with linear logic, in the existence
of various denotational models and in the analogy between its basic constructs
and fundamental mathematical operations such as differentiation and convolu-
tion product. The fact that differential interaction nets support concurrency and
mobility suggests that they might provide more convenient mathematical and
logical foundations to concurrent computing.

1 Differential interaction nets

1.1 Presentation of the cells

Our nets will be typed using a type system which corresponds to the untyped
lambda-calculus. This typing system is based on a single type symbol o (the
type of outputs), subject to the following recursive equation o = ?0*-2%0. We set
t =o', sothat 1 =lo® ¢ and o = 2. %0.

We assume known from the reader the basics of interaction nets, as intro-
duced by Lafont in [Laf95], see also [ER06] for a more detailed introduction to
differential interaction nets. In our pictures, cells are represented by triangles,
and the principal port is located at one of the angles of the triangle. Sometimes,
we shall put a black dot to locate the auxiliary port numbered 1. The other aux-
iliary ports are numbered in the obvious way, starting from this marked auxiliary
port (the arity of the cell is the number of its auxiliary ports).

In the present setting, there are eleven kinds of cells: par (arity 2), bottom
(arity 0), tensor (arity 2), one (arity 0), dereliction (arity 1), weakening (arity 0),

contraction (arity 2), codereliction (arity 1), coweakening (arity 0), cocontraction
(arity 2) and closed promotion (arity 0). We present now the various kinds of
cells, with their typing rules, in a pictorial way.

1.1.1 Multiplicative cells. The par and tensor cells, as well as their “nullary”
versions bottom and one are as follows:

i lo p . o .
1.1.2 Exponential cells. They are typed according to a strictly polarized

discipline. Here are first the why not cells, which are called dereliction, weakening
and contraction:

i
e P e
i

and then the bang cells, called codereliction, coweakening and cocontraction:
lo
) : lo : lo i:i : lo
lo

1.1.3 Closed promotion cells and simple nets. The notion of simple net
is then defined inductively, together with the notion of closed promotion cell.
Given a (non necessarily simple) net s with only one free port we

lo

introduce a cell '

A simple net is a net, built according to the usual construction rules of
typed interaction nets recorded in Section 6.1, using the kinds of cells we have
introduced.

1.1.4 Nets. A net is a finite sum of simple nets having all the same interface.
Remember that the interface of a simple net s is the set of its free ports, together
with the mapping associating to each free port the type of the oriented wire of
s whose ending point is the corresponding port.

Let £ be a countable set of labels containing a distinguished element 7 (to be
understood as the absence of label). A labeled simple net is a simple net where
all dereliction and codereliction cells are equipped with labels belonging to L.
We require moreover that, if two labels occurring in a labeled net are equal, they
are equal to 7. All the nets we consider in this paper are labeled. In our pictures,
the labels of dereliction and codereliction cells will be indicated, unless it is 7,
in which case the (co)dereliction cell will be drawn without any label.

2 Reduction rules

We denote by A the collection of all simple nets and by N(A) the collection of
all nets (finite sums of simple nets with the same interface).

A reduction rule is a subset R of A x N(A) consisting of pairs (s, s’) where
s is made of two cells connected by their principal ports and s’ has the same

interface as s. This set can be finite or infinite. Such a relation is easily extended
to arbitrary simple nets (s R t if there is (so,u; + -+ 4+ u,) € R where s¢ is
a subnet of s, each u; is simple and ¢ = ¢; + --- + t,, where t; is obtained by
replacing sp by u; in s). This relation is extended to nets (sums of simple nets):
51 + -+ 5, (where each s; is simple) is related to s’ by this extension R* if
s =s| +---+ s}, where, for each i, s; R s; or s; = s}. Last, R* is the transitive
and reflexive closure of R>.

2.1 Defining the reduction

2.1.1 Multiplicative reduction. The first two rules concern the interaction
of two multiplicative cells of the same arity.

7 7 7
TI<@s - & D>
~m ~m
o o o c
where ¢ stands for the empty simple net (not to be confused with the net 0 €

N(A), which is not a simple net). The next two rules concern the interaction
between a binary and a nullary multiplicative cell.

So here the reduction rule (denoted as ~»y,) has four elements.

2.1.2 Communication reduction. Let R C £. We have the following re-

ductions if I, m € R.
L i L L
e, R >
m

So the set ~»¢ g is in bijective correspondence with the set of pairs (I,m) with
ImeRandl=m=1l=m=r.

2.1.3 Non-deterministic reduction. Let R C £. We have the following
reductions if [€ R.

2.1.4 Structural reduction.
G 0 ﬂ lo ﬂ
s M } ;S@M
- > - N
” » % " % N v
2.1.5 Box reduction.

Lt (D)

Observe that the reduction rules are compatible with the identification of the
coweakening cell with a promotion cell containing the 0 net. Observe also that
the only rules which do not admit a “symmetric” rule are those which involve
promotion cell. Indeed, promotion is the only asymmetric rule of differential
linear logic.

One can check that we have provided reduction rules for all possible redexes,
compatible with our typing system: for any simple net?> s made of two cells
connected through their principal ports, there is a reduction rule whose left
member is s. This rule is unique, up to the choice of a set of labels, but this
choice has no influence on the right member of the rule.

2.2 Confluence

Theorem 1. Let R,R' C L. Let R C A x N(A) be the union of some of the
reduction relations ~c r, ~>nd,R’; ~m, ~*s and~>y. The relation R* is confluent

on N(A).

The proof is essentially trivial since the rewriting relation has no critical pair
(see [ER06]). Given R C L, we consider in particular the following reduction:
~R = ~omUno (U gUnop Unong R We set ~rq =~ (“d” for “deterministic”)
and denote by ~q the symmetric and transitive closure of this relation.

Some of the reduction rules we have defined depend on a set of labels. This
dependence is clearly monotone in the sense that the relation becomes larger
when the set of labels increases.

2.3 A transition system of simple nets

2.3.1 {l,m}-neutrality. Let [and m be distinct elements of £\ {7}. We call
(I,m)-communication redex a communication redex whose (co)dereliction cells

2 And remember that such a structure must be typed.

are labeled by [and m. We say that a simple net s is {I, m}-neutral if, whenever
$ ~71.my §'» none of the simple summands of s contains an ((, m)-communication
redex.

Lemma 1. Let s be a simple net. If s “”?l m} s" where all the simple summands
of s' are {l,m}-neutral, then s is also {I, m}-neutral.

2.3.2 The transition system. We define a labeled transition system D,
whose objects are simple nets, and transitions are labeled by pairs of distinct

elements of £\ {7}. Let s and ¢ be simple nets, we have s L™, ¢ if the following
holds: s M?lvm} $1 + 82 + --- + s, where s; is a simple net which contains
an (I, m)-communication redex (with dereliction labeled by m and codereliction
labeled by /) and becomes t when one reduces this redex, and each s; (for i > 1)
is {l, m}-neutral.

Lemma 2. The relation ~q C A X A is a a bisimulation on D.

3 A toolbox for process calculi interpretation

3.1 Compound cells

3.1.1 Generalized contraction and cocontraction. A generalized con-
traction cell or contraction tree is a simple net + (with one principal port and
a finite number of auxiliary ports) which is either a wire or a weakening cell or
a contraction cell whose auxiliary ports are connected to the principal port of
other contraction trees, whose auxiliary ports become the auxiliary ports of ~.
Generalized cocontraction cells (cocontraction trees) are defined dually.

We use the same graphical notations for generalized (co)contraction cells as
for ordinary (co)contraction cells, with a “%” in superscript to the “!” or “?”
symbols to avoid confusions. Observe that there are infinitely many generalized
(co)contraction cells of any given arity.

3.1.2 The dereliction-tensor and the codereliction-par cells. Let n be
a non-negative integer. We define an n-ary cell as follows. It will be decorated
by the label of its dereliction cell (if different from 7).

lo

!on)
=11 | o

The number of tensor cells in this compound cell is equal to n. One defines dually
the !% compound cell.

3.1.3 The prefix cells. Now we can define the compound cells which will
play the main role in the interpretation of prefixes of the m-calculus. Thanks to
the above defined cells, all the oriented wires of the nets we shall define will bear
type 7¢ or lo. Therefore, we adopt the following graphical convention: the wires
will bear an orientation corresponding to the 7 type.

The n-ary input cell and the n-ary output cell are defined as

with n pairs of auxiliary ports.

Prefix cells are labeled by the label carried by their outermost dereliction-
tensor or codereliction-par compound cell, if different from 7, the other codereliction-
par or dereliction-tensor compound cells being unlabeled (that is, labeled by 7).

3.1.4 Transistors and boxed identity. In order to implement the sequen-
tiality corresponding to sequences of prefixes in the m-calculus, we shall use the
unary output prefix cell defined above as a kind of transistor, that is, as a kind
of switch that one can put on a wire, and which is controlled by another wire.
This idea is strongly inspired by the translation of the m-calculus in the calculus
of solos®.

These switches will be closed by “boxed identity cells”, 0
which are the unique use we make of promotion in the wb
present work. Let I be the “identity” net of Figure 2. P

Then we shall use the closed promotion cell labeled by

N
I > Fig. 2. Identity

3.2 Communication tools

3.2.1 The communication areas. Let n > —2. We
define a family of nets with 2(n 4 2) free ports, called
communication areas of order n, that we shall draw using
rectangles with beveled angles. Figure 3 shows how we
picture a communication area of order 3.
A communication area of order n is made of n+42 pairs Fig. 3. Area of or-
of (n + 1)-ary generalized cocontraction and contraction der 3
cells (71,71)y -+, (W41, Vg 1), With, for each i and j such
that 1 <i < j <n+42, a wire from an auxiliary port of fyj to an auxiliary port
of 7;” and a wire from an auxiliary port of 7, to an auxiliary port of 'y;'.
So the communication area of order —2 is the empty net ¢, and communica-
tion areas of order —1, 0 and 1 are respectively of the shape

% It is shown in [LV03] that one can encode the m-calculus sequentiality induced by
prefix nesting in the completely asynchronous solo formalism: the idea of such trans-
lations is to observe that, in a solo process like P = vy (u(z,y) | y(...)) | Q, the first
solo must interact before the second one with the environment Q.

NI
o X
- AV

3.2.2 Identification structures. Let n,p € N and let f : {1,...,p} —
{1,...,n} be a function. An f-identification net is a structure with p + n pairs
of free ports (p pairs correspond to the domain of f and, in our pictures, will
be attached to the non beveled side of the identification structure, and n pairs
correspond to the codomain of f, attached to the beveled side of the structure)
as in Figure 4(a). Such a net is made of n communication areas, and on the j’th
area, the j’th pair of wires of the codomain is connected, as well as the pairs
of wires of index i of the domain such that f(:) = j. For instance, if n = 4,
p=3, f(1) =2, f(2) =3 and f(3) = 2, a corresponding identification structure
is made of three communication areas, two of order —1, one of order 0 and one
of order 1, as in Figure 4(b).

(c) Reduction

Fig. 4. Identification structures

3.3 Useful reductions.

3.3.1 Aggregation of communication areas. One of the nice properties
of communication areas is that, when one connects two such areas through a pair
of wires, one gets another communication area; if the two areas are of respective
orders p and ¢, the resulting area is of order p 4 ¢, see Figure 5.

Fig. 5. Aggregation

3.3.2 Composition of identification structures. In particular, we get
the reduction of Figure 4(c).

3.3.3 Port forwarding in a net. Let ¢ be a net and p be a free port of ¢.
We say that p is forwarded in t if there is a free port ¢ of ¢ such that ¢ is of one
of the two following shapes:

3.3.4 Forwarding of derelictions and coderelictions in communication
areas. The following reduction shows that derelictions and coderelictions can
meet eachother, when connected to a common communication areas. Let [,m €
L, then

/\’)?Lm} >

where N is a non-negative integer (actually, N = (p + 1)?) and, in each simple
net t;, both ports r and r’ are forwarded.

3.3.5 General forwarding. Let [€ L. The following more general but less
informative property will also be used: one has

N
= T £

i=1

where in each simple net w;, the port r is forwarded (see 3.3.3). Of course one
also has a dual reduction (where the dereliction is replaced by a codereliction,
and the generalized contraction by a generalized cocontraction).

3.3.6 Reduction of prefixes. Let [,m € L. If we connect an n-ary output
prefix labeled by m to a p-ary input prefix labeled by [, we obtain a net which
reduces by ~¢ () to a net u which reduces by “”?T} to 0if n # p and to simple
wires, in Figure 6(a), if n = p.

3.3.7 Transistor triggering. A boxed identity connected to the principal
port of a unary output cell used as a “transistor” turns it into a simple wire as
in Figure 6(b).

—~
—
o llmp UG >t~
—~
m ——
(a) Prefixes interaction (b) Transistor

triggering
Fig. 6. Prefix reduction

4 A polyadic finitary m-calculus and its encoding

The process calculus we consider is a fragment of the m-calculus where we have
suppressed the following features: sums, replication, recursive definitions, match
and mismatch. This does not mean of course that differential interaction nets
cannot interpret these features. Let A/ be a countable set of names. Qur processes
are defined by the following syntax. We use the same set of labels as before.

— nil is the empty process.

— If P, and P, are processes, then P; | P, is a process.

— If P is a process and a € N, then va - P is a process. a is bound in this
process.

— If Pis a process, a, by, ...,b, € N, the names b; being pairwise distinct and
if l € £, then @ = [lJa(by ...by) - P is a process (prefixed by an input action,
whose subject is @ and whose objects are the b;; a is free and each b; is bound
in @ and hence a is distinct from each b;).

— If P is a process, a,by,...,b, € N and [€ L, then W(bl...bn> -Pis a
process (prefixed by an output action, whose subject is @ and whose objects
are the b;’s). This construction does not bind the names b;, and one does not
require the b; to be distinct. The name a can be equal to some of the b;s.

The purpose of this labeling of prefixes is to distinguish the various occurrences
of names as subject of prefixes. The set FV(P) of free names of a process P is
defined in the obvious way. The a-equivalence relation on processes is defined as
usual.

A labeled process is a process where all prefixes are labeled, by pairwise
distinct labels, all these labels being different from 7. If P is a labeled process,
L(P) denotes the set of all labels occurring in P. Observe that this set has a
natural poset (forest actually) structure (I < m if, in P, [labels a prefix u and
m occurs in the process prefixed by p).

All the processes we consider in this paper are labeled.

4.1 An execution model

Rather than considering a rewriting relation on processes as one usually does,
we prefer to define an “environment machine”, similar to the machine introduced
in [AC98], Chapter 16*.

An environment is a function from a finite subset Dom e of A to a finite subset
Codome of M. A closure is a pair (P, e) where P is a process and e is an environ-
ment such that FV(P) C Dom(e). A soup is a multiset S = (Py,e1) - (Pn,en)
of closures (denoted by simple juxtaposition). The codomain of a soup is the
union of the codomains of the environments of this soup. The soup S is labeled
if all the P;’s are labeled, with pairwise disjoint sets of labels. A state is a pair

* The reason for this choice is that the rewriting approach uses an operation which
consists in replacing a name by another name in a process. The corresponding op-
eration on nets is rather complicated and we prefer not to define it here.

(S, L) where S is a soup and L is a set of names (the names which have to be
considered as local to the state). The state (S, L) is labeled if the soup S is
labeled.

All the states we consider are labeled. One defines the poset L£(S, L) of all
labels of the state (S, L) in the straightforward way, as the parallel composition
of the posets associated to the processes of the closures of S.

4.1.1 Canonical form of a state. We say that a process is guarded if
it starts with an input prefix or an output prefix. We say that a soup S =
(P1,e1) - (Pn,en) is canonical if each P; is guarded, and that a state (S, L) is
canonical if the soup S is canonical. One defines a rewriting relation ~»c,, which
allows to turn a state into a canonical one.

((nil,€)S, L) ~can (S, L)
((va- P,e)S,L) ~scan ((P,ela — d'])S, LU {a'})
(P]Q,€)S, L) ~en (P e)(Q,e€)S, L)

where, in the second rule, a’ € N\ (L U Codom(e) U Codom(S)). One shows
easily that, up to a-conversion, this reduction relation is confluent, and it is
clearly strongly normalizing. We denote by Can(S, L) the normal form of the
state (S, L) for this rewriting relation.

Moreover, observe that if (S, L) ~cn (T, M), then (S, L) and (T, M) have

the same set of free names.

4.1.2 Transitions. Next, one defines a labeled transition system S;. The
objects of this system are labeled canonical states and the transitions, labeled
by pairs of labels, are defined as follows.

(([l]a(bli ’ b") - P, e)([m]a/<bl1 s b;) : Pla 6/)5, L)
L7 Can((Pyefby — €' (b)), ..., by — € (B)])(P',€))S, L)

if e(a) = ¢/(a’). Observe that if (S, L) - (T, M) then FV(T, M) C FV(S, L).

4.2 Translation of processes

Since we do not work up to associativity and commutativity of contraction and
cocontraction, it does not make sense to define this translation as a function from
processes to nets. For each repetition-free list of names aq,...,a,, we define a
relation Z,, . 4, from processes whose free names are contained in {a1,...,a,}
to nets ¢ which have 2n + 1 free ports a4, a9, ..., d.,,a’ and c as in Figure 7(a).
The additional port ¢ will be used for controlling the sequentiality of the reduc-
tion, thanks to transistors. Reducing the translation of a process will be possible
only when a boxed identity cell will be connected to its control port. This is
completely similar to the additional control free name in the translation of the
m-calculus in solos, in [LV03].
Clearly, if P and P’ are a-equivalent, then PZ,, .. sifft P'Z, . .. s.

bl bn

(a) Notation (b) Empty process (c) Restriction

S
(¢4
h bl-‘ bn
1%
> N 1 n
e \
N
1
i’ 1/
a5 n
bl bn

(f) Output prefix

Fig. 7. Process and state translation

4.2.1 Empty process. One has nil Z, . tif ¢ is ¢ is as in Figure 7(b).

4.2.2 Name restriction. One hasva-P Ty, 3, tiff ¢t is as in Figure 7(c),
with s satisfying P Zg p,,... 5, S-

4.2.3 Parallel composition. One has P, | P, Iy, 3, t iff the simple net
t is as in Figure 7(d), where Py Ty, ., t1, P2 Zp,,... 5, t2 and v1,...,7, are
communication areas of order 1.

4.2.4 Input prefix. Let! € £. Assume that a,b1,...,by,c1,...,cp are pair-
wise distinct names and let @ = [l]a(by...b,) - P. One has Q T, ..., t if all
the free names of P are contained in a,by,...,bp,c1,...,cp and if ¢ is as in Fig-
ure 7(e), where « is a communication area of order 1 and where s is a simple net
which satisfies P Za b,bn,c1,0000p S-

4.2.5 OQutput prefix. Let [€ L. Let by,...,b, be a list of pairwise distinct
names and let Q = [[]bs){bs(1)---bs(q) - P, where f:{0,1,...,q} — {1,...,n}
is a function. One has Q Zy,, . 1, t if all the free names of P are contained in
bi,...,b, and if ¢t is as in Figure 7(f), where 71, ...,~, are communication areas

of order 1, ¢ is an f-identification structure and where s is a simple net which
satisfies P Ty, .. 5, S.

4.2.6 States. Let S = (Pj,e1)...(Pn,en) be a soup and by,...,b, be a
repetition-free list of names containing all the codomains of the environments
e1,...,en. We assume that the domains of the environments e; are pairwise
disjoint, which is possible up to a-conversion. Let a1, ..., a, be a repetition-free
enumeration of the elements of Uivzl Dome;, such that there is a list of non-
negative integers 0 = hg < hy < --- < hy = p such that, for i = 1,..., N, the
list ap; ,+1,-.-,an, is a repetition-free enumeration of the elements of Dom(e;).
Lete: {1,...,p} — {1,...,n} be the map which is uniquely defined by the fact
that, for each ¢ = 1,..., N and each j such that h;,_1 +1 < j < h;, one has
ei(aj) S be(j)-

Then one has S Zy, .., t if t is a simple net of the following shape, where
51,..., sy are simple nets such that P; Z, . ;. s; and § is an e-identification
structure as in Figure 7(g).

Last, if we are moreover given L C A and a repetition-free list of names
b1, ..., by containing all the free names of the state (S, L), one has (S, L) Ty, .. ».,
w if one has S Zy, .. b, c1,....c, t for some repetition-free enumeration cy, ..., c, of
L (assumed of course to be disjoint from by, ..., b,, which is always possible up
to a-equivalence), and u is obtained by plugging communication areas of order

3

—1 on the pairs of free ports of ¢ corresponding to the c;s.

5 Comparing the transition systems

We establish first two results which are the main ingredients towards our bisim-
ulation theorem.

Proposition 1. Let (S, L) and (T, M) be canonical states and let l,m € L\{7}.

Assume that (S, L) 17, (T, M). Let s be a simple net such that (S,L) Zp, .. b, S
where by, ..., by is a repetition-free list of names containing all the free names of

(S,L). Then there are simple nets to and t such that (T, M) Ty, p, t, s im, to
and tg ~q t.

Proposition 2. Let (S, L) be a canonical state and by, ..., b, be a repetition-
free list of names containing all the free names of (S, L). Let s be a simple net
such that (S,L) Ly, v, . If () is a simple net such that s dm, ty, then there is

a canonical state (T, M) such that (S, L) 1, (T, M) and there exists a simple
net t such that (T, M) Iy, .. 5, t and t ~q t.

We are now ready to state a bisimulation theorem. Given a repetition-free list
b1,..., by, of names, we define a relation Zj, ., between states and simple nets
by (Sa L) Ibl,...,b
and sg ~q S.

s if there exists a simple net sq such that (S, L) Zp, .. 5, So

n

Theorem 2. The relation fbl,...,bn defines a bisimulation between the labeled
transition systems Sy and Dy.

References

[ACO8|

[AMO]

[Bef05]

Roberto Amadio and Pierre-Louis Curien. Domains and lambda-calculi, vol-
ume 46 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1998.

Samson Abramsky and Paul-André Melliés. Concurrent games and full com-
pleteness. In Proceedings of the 14th Annual IEEE Symposium on Logic in
Computer Science. IEEE, 1999.

Emmanuel Beffara. Logique, Réalisabilité et Concurrence. PhD thesis, Uni-
versité Denis Diderot, 2005.

[BHY03] Martin Berger, Kohei Honda, and Nobuko Yoshida. Strong normalisability

[BMO5]

[CFO6]

[Ehr02]
[Ehr05]
[ER06]
[EW97]

[FMO5]

Gir87]
[Gir8s]
[HLO6]
[TMO4]

[Lafo5]

[LPVO01]

[LV03]

[Maz05]

in the pi-calculus. Information and Computation, 2003. To appear.
Emmanuel Beffara and Frangois Maurel. Concurrent nets: a study of prefixing
in process calculi. Theoretical Computer Science, 356, 2005.

Pierre-Louis Curien and Claudia Faggian. An approach to innocent strate-
gies as graphs. Technical report, Preuves, Programmes et Systémes, 2006.
Submitted for publication.

Thomas Ehrhard. On Koéthe sequence spaces and linear logic. Mathematical
Structures in Computer Science, 12:579 623, 2002.

Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer
Science, 15(4):615 646, 2005.

Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theo-
retical Computer Science, 2006. To appear.

Uffe Engberg and Glynn Winskel. Completeness results for linear logic on
petri nets. Annals of Pure and Applied Logic, 86(2):101-135, 1997.

Claudia Faggian and Francois Maurel. Ludics nets, a game model of con-
current interaction. In Proceedings of the 20th Annual IEEE Symposium on
Logic in Computer Science, pages 376 385. IEEE Computer Society, 2005.
Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102,
1987.

Jean-Yves Girard. Normal functors, power series and the A-calculus. Annals
of Pure and Applied Logic, 37:129-177, 1988.

Kohei Honda and Olivier Laurent. An exact correspondence between a typed
pi-calculus and polarized proof-nets. In preparation, 2006.

Ole Jensen and Robin Milner. Bigraphs and mobile processes (revised). Tech-
nical report, Cambridge University Computer Laboratory, 2004.

Yves Lafont. From proof nets to interaction nets. In J.-Y. Girard, Y. Lafont,
and L. Regnier, editors, Advances in Linear Logic, pages 225 247. Cambridge
University Press, 1995. Proceedings of the Workshop on Linear Logic, Ithaca,
New York, June 1993.

Cosimo Laneve, Joachim Parrow, and Bjérn Victor. Solo diagrams. In Pro-
ceedings of the Jth conference on Theoretical Aspects of Computer Science,
TACS’01, number 2215 in Lecture Notes in Computer Science. Springer-
Verlag, 2001.

Cosimo Laneve and Bj6érn Victor. Solos in concert. Mathematical Structures
in Computer Science, 13(5):657 683, 2003.

Damiano Mazza. Multiport interaction nets and concurrency. In Proceedings
of CONCUR 2005, number 3653 in Lecture Notes in Computer Science, pages
21-35. Springer-Verlag, 2005.

[Mel06] Paul-André Melliés. Asynchronous games 2: the true concurrency of inno-
cence. Theoretical Computer Science, 358(2):200-228, 2006.

[Mil93] Robin Milner. The polyadic pi-calculus: a tutorial. In Logic and Algebra of
Specification, pages 203-246. Springer-Verlag, 1993.

[Plo76] Gordon Plotkin. A powerdomain construction. SIAM Journal of Computing,
5(3):452-487, 1976.

[Reg92] Laurent Regnier. Lambda-Calcul et Réseaus. Theése de doctorat, Université

Paris 7, January 1992.
[SW01] Davide Sangiorgi and David Walker. The pi-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2001.

6 Annex: auxiliary notions

We recall here some notions which are not necessarily well known, and we also
give some additional material about our particular way of presenting processes.

6.1 Reminder: the general formalism of interaction nets

Assume we are given a set of kinds and that an arity (a non-negative integer)
and a typing rule is associated with each kind, this typing rule being a list
(Ao, A1, ..., Ay,) of types (where n is the arity associated to the kind; types are
typically formulae of linear logic). A net is made of cells. With each cell ~ is
associated a kind and therefore an arity n and a typing rule (Ao, A1,...,Ay).
Such a cell v has one principal port py and n auziliary ports p1,...,p,. A net
has also a finite set of free ports. All these ports (the free ports and the ports
associated with cells) have to be pairwise distinct and a set of wires is given.
This wiring is a family of pairwise disjoint sets of ports of cardinality 2 (ordinary
wires) or 0 (loops), and the union of these wires must be equal to the set of all
ports of the net. An oriented wire of the net is an ordered pair (p1,p2) where
{p1,p2} is a wire. In a net, a type is associated with each oriented wire, in such
a way that if A is associated with (py,p2), then AL is associated with (pg, p1).
Last, the typing rules of the cells must be respected in the sense that for each cell
~ of arity n, whose ports are pg,p1,-..,p, and typing rule is (Ag, 41, ..., An),
denoting by pj, pl, ..., p, the ports of the net uniquely defined by the fact that
the sets {p;,p}} are wires (for ¢ = 0,1,...,n), then the oriented wires (po, p()
(P, p1)s- - - (P, Pn) have type Ag, A;,...,A, respectively.

3

6.2 Arity typing of processes.

Although not strictly necessary, it is convenient to assume that our processes are
“typed” in the sense that each name is given with an arity, which is a possibly
empty list of arities. When a name of arity (p1,...,pn) occurs as subject, it is
always assumed that it has n objects by, ..., by, the arity of b; being p;. This
guarantees that, during the reduction, when an input prefix communicates with
an output prefix, the numbers of objects of the two involved prefixes coincide.
Since this is a standard m-calculus notion (see [SWO01], Part III), we shall not
say more about it, and we shall simply assume that, during the reduction of
processes and states, the arities of communicating prefixes always coincide.

6.3 «-equivalence of states.

Given a partial function f : N — N and a process P, we denote by f - P the
process where each free name a has been replaced by f(a) (if a € Dom f) — this
construction is not part of the syntax, it is a meta-operation like substitution in
the lambda-calculus —. Of course, bound names have to be renamed to avoid
name clashes.

Two closures (Py, e1) and (P, e2) are a-equivalent (written (P, e1) ~q (P2, €2))
if there is a bijection on names f such that f - P; and P, are a-equivalent,
and ey o f = e;. Two soups S and T are a-equivalent if S = v;...yy and
T =0y ...0N5 with ; ~g 6; for each i. Let f : NV — N be a function. If v = (P, ¢)
is a closure, one sets f-y = (P, f o e). And last, f-(v1...vn) = (7). (f-¥n)

Two states (S, L) and (T, M) are a-equivalent if there is a bijection on names
f which is the identity on A"\ L and satisfies f(L) = M and f-S ~, T. The
free names of a state (S, L) are the names belonging to the codomain of S but
not to L, we denote by FV(S, L) the set of these free names.

6.4 Relating the rewriting and the abstract machine approaches to
the operational semantics of the mw-calculus

We recall a more standard way of presenting the operational semantics of the
m-calculus and outline its equivalence with the environment machine style we
have chosen.

One defines first a structural equivalence relation between labeled w-terms,
denoted as ~. Tt is the least equivalence relation such that

nil | P~ P
PlQ~QIP
(P1Q)|R~P|(Q]R)
va-vb-P~vb-va-P

va - nil ~ nil

(va-P)|Q~va-(P|Q) ifag¢d FVQ

Then one can define a labeled transition system, where the transitions are labeled
by pairs of labels (as all the transition systems we consider in the present paper).
This transition system is defined by the following rules:

a(by,....by) - P | [mlaler, ... cn) - Po 25 Piler, ... ca/br, ... ba] | P2

p~P PP PP p ™ p
PlﬂPQ P|Qlﬂ>P[|Q
p ™ pr

Im
va-P —=va- P

Then one defines a translation relation 7 between states and processes. We
say that P 7 (S,L) if S = (Pr,e1) - (Pn,en), L = {a1,...,a;} and P ~
vaj...ag-((e1-Pr|--2) | en- Pn).

Proposition 3. For any process P, one has P T Can((P,e),0) where e is the
partial identity function whose domain is FV(P). Moreover, the relation T is a
bisimulation.

The proof is easy.

7 Annex: proofs

We give the proofs of all the statements of the paper.

7.1 Proof of Lemma 1
The following is a simple, but quite useful remark.

Lemma 3. Let so be a simple net which contains an (I, m)-communication re-
dex. If sg Mi{l,m} to, then to is simple, contains an (I, m)-communication redex
and one has actually so ~} to. Moreover, if s is the simple net obtained from sy
by reducing the (I, m)-communication redex, then s ~»q t where t is the simple
net obtained from ty by reducing the (I, m)-communication redex of to.

Now we can prove Lemma 1.
Proof. Assume s v?l!m} t = s1+---+ s, where each s; is simple and where

s1 contains an (I, m)-communication redex. By the Church-Rosser property of
M?l’m}, there is s’ such that ¢ «»?l!m} s"” and s’ «»?l’m} s”. By Lemma 3

"

applied to s1, s’ must have a summand containing an (I, m)-communication

redex, contradicting our hypothesis on s’. O

7.2 Proof of Lemma 2

Im
Proof. Let s,s’ € A and assume that s ~q s’. Assume moreover that s ——

t, which means that s «»?l’m} so + 81 + -+ + s, where each s; is simple, sg
contains an (I, m)-communication redex, each s; is {l,m}-neutral for ¢ > 1 and
t is obtained by reducing the (I, m)-communication redex of ¢y. By the Church-
Rosser property of «»?l’m} (remember that ~»q C «»?l’m}), there exists u € N(A)
such that so+s1 4 48, 7,y uand s’ ~7;,m} - But by lemmas 3 and 1, we
have u = ug+uy +- - -+ ty, with sg ~»q ug, ug contains an (I, m)-communication
redex, and if we reduce this redex, we obtain a net ¢’ such that ¢ ~»q ¢'. O

7.3 A diving lemma

We first introduce the auxiliary notions of guarded cell and of a (co)dereliction
cell diving into a process. We then state and prove two lemmas which will be
crucial in the proofs of Proposition 1 and 2.

7.3.1 Guarded dereliction and codereliction cells. TLet [,r € £ be dis-
tinct, r # 7 and let s € A. Let ¢ be a (co)dereliction cell labeled by [in s. One
says that § is guarded by (the dereliction or codereliction cell labeled by) r in s
if there is a sequence py, ..., p, of pairwise distinct ports of s such that

— p1 is the auxiliary port of § and ps is its principal port;

— Pn—1 is the auxiliary port of r and p,, is its principal port;

— and for each ¢ with 1 < i < n — 1, either p; and p; ;1 are the two ports of a
wire of s or there is a cell in s such that p;_; is an auxiliary port of that cell
and p; is its principal port.

Such a sequence of ports will be called a guarding path from 6 to r in s (observe
that since r # 7, there is no ambiguity on the (co)dereliction cell labeled by r
in s, whereas [can be equal to 7 and so there might be several (co)dereliction
cells labeled by [in s).

7.3.2 Persistency.

Lemma 4. Let s be a simple net, let R C L, let [,r be labels which are distinct,
with r # 7. Let § be an l-labeled (co)dereliction cell which is guarded by r in s
and assume that s ~%5 s1+- -+ s, where the s; are simple. Then ¢ and r occur,
and § is guarded by r, in each of the simple nets s;.

Proof. The proof is straightforward: the (co)dereliction r can take part only to
non-deterministic reductions during an ~»g-reduction, and hence cannot disap-
pear (more precisely, its only way of disappearing is by turning to 0 the whole
simple net where it occurs). m]

7.3.3 Diving of derelictions and coderelictions. Let [€ £\ {7}, let u
be a simple net, let P be a process. We say that [dives into P in u if there is a
repetition-free list of names by,...,b, and a simple net s such that P Zy, 5, s
and w is of one of the following shapes (according to whether [labels a dereliction
or a codereliction cell):

0 u s 0 s

C C

ZZ% Z&

where 6 is a boxed identity cell, or a net of the following shape, consisting of a
labeled input of output prefix compound cell, with a label different from 7:

With these notations, our aim is here to prove the following property.

Lemma 5 (Diving). Assume that l € L\ {7} dives into P in the simple net
u, and let m € L\ {7} which does not occur in P. Then u is {I, m}-neutral.

The label m cannot occur in P, but it can occur in the remainder of u; the
meaning of the lemma is that, during the reduction, “I cannot exit from P” or,
more precisely, if it exits, it is by the control port c.

7.4 Proof of Lemma 5

Proof. By induction on P and contradiction, so assume that u M*{‘l m} U+ u’
and that w; contains an (I, m)-communication redex.

Assume first that P = nil. Assume that [is a dereliction. Then u has the
following shape

Thus u «»*{‘l7m} 0 by 3.3.5. Hence by the Church-Rosser property of v?l,m}, we
must have u; + v’ ’\’)?l,m} 0. But this is impossible by Lemma 3 since u; has an
(I,m)-communication redex.

The case P = P; | P, is similarly handled: using 3.3.5 and the inductive
hypothesis, one shows that «»?l’m} u’ where u' is a sum of {l, m}-neutral
simple nets, and hence w is {l, m}-neutral by Lemma 1.

If P=va-(Q, one applies directly the inductive hypothesis.

To conclude, we consider the case where P = [r]bo)(bfa1y .. bfp)) - Q- As-
sume first that [is a dereliction. Then w is of the following shape (without loss of
generality, we assume that the dereliction is connected to a port corresponding
to the name by,), where s is a simple net satisfying Q Zp, .. 5, s

Then, aggregating first the communication area -,, with the communication area
of the f-identification structure to which it is connected, we see that we have
U ’\”ifl,m} Zf\]:l u; where u; is a simple net which has the following shape

where, according to 3.3.5, in v;, the principal port of [is forwarded (see the
definition of this concept in 3.3.3)

1. to the port b of s
2. or to the principal port of the coweakening cell v, in the case where f(0) = n

3. or to one of the input auxiliary port of the compound cell ¢, corresponding
to an index j € {1,...,q} such that f(j) =n.

For i satisfying (2), we have u; ’\’)?l,m} 0. For i satisfying (3), [is guarded by
r # 7 (the labeled dereliction cell of ¢) in u;, and so w; is {l,m}-neutral by
Lemma 4. For ¢ satisfying (1), the inductive hypothesis applies, showing that u;
is {I, m}-neutral. Therefore u is {l, m}-neutral by Lemma 1.

Assume now that [is a codereliction, so that u has the following shape (with
the same notations as above).

VAN

t

As before, we have u '\”J{Fl m} Zi\;l u; where the u;’s have the same shape as
before. Using the same notations, in v;, the principal port of [is forwarded

1. to the port b, of s

2. or to the dotted auxiliary port of the transistor output compound cell 3, in
the case where f(0) =n

3. or to one of the input auxiliary port of the compound cell ¢, corresponding
to an index j € {1,...,q} such that f(j) =n.

The cases (1) and (3) are handled as before. So consider an index i corresponding
to case (2). There are two possibilities, depending on the value of the net 6. If ¢
is a boxed identity cell, then u; «»?l’m} u’ where v’ is a simple net which contains
the following subnet

r = !
3 ,9—<]7

-

Since we have r ¢ {l,m} (remember that we have assumed that m does not occur
in P), this subnet has no «»?Lm}—redex, and therefore, it will still be present in
any simple summand of a net v” such that u’ «»?l’m} u”. So v’ is {l, m}-neutral,
and so is u by Lemma 1.

Assume last that 6 consists of an 7’-labeled output or input prefix compound
cell (with 7' # 1) together with a generalized contraction cell (second possibility
for 6 in 7.3.3). Here we can have ' = m, but [is guarded by ' in u, and hence
w is {l,m}-neutral by Lemma 4 and Lemma 1.

The case where P starts with an input prefix is completely similar, and of
course simpler, to that of an output prefix. O

Lemma 6. Let (S, L) be a state and let by, ..., b, be a repetition-free enumera-
tion of the free names of (S,L). Let (T, M) be its canonical form and let s be a
simple net such that (S, L) Ly, ..., . Then there ezists a simple net t such that
(T, M) Ly, p, t and s ~g 1.

The proof is by simple inspection of the definition of the interpretation relation,
using 3.3.1.

7.5 Proof of Proposition 1

Proof. We know that S must be of the shape

S = ([l]a(01 ... Cp)-P, 61)([m]df(0) <df(1) .. .df(p)>-Q, 62)(P3, 63) e (PN, eN) (1)

where we assume that the e; have pairwise disjoint domains, that a, c1,...,cp,
Cp+1-- -, Cptq 18 arepetition-free enumeration of the domain of ey, that dy, ..., d,
is a repetition-free enumeration of the domain of ey, that hq, ..., h,, is a repetition-
free enumeration of the union of the domains of es,...,en, and f: {0,...,p} —

{1,...,r} is a function, and we have e;(a) = ea(ds(0)). And (T, M) = Can(S’, L)

where

S' = (P,ei[c1 — ea(dp(n)), ..., cp — ea(dyp))(Q,e2)(Ps,e3) - - (P, en) .

Without loss of generality, we can assume that f(0) = 1. With these nota-
tions, s is the following simple net, where s; is a simple net such that P Zoscr,..cprq
$1, S2 is a simple net such that Q Zg, . 4. s2 and s’ stands for the juxtaposi-
tion of simple nets s; such that P; Z,.s; (for 3 < i < N) where h* stands for
an enumeration of the domain of e; (so that the lists of names h® are pairwise
disjoint, and their concatenation is a repetition-free enumeration of the names
hi,...,hm), with a boxed identity connected to the control ports of each s;:

52
c
di ... d
s s Cptt-- Cptg
Q2
r ?
C 0o\
B 1
? !
m, .
pL_r

r+q+m+1

= et AL

In this net, e is the function {1,...,7+¢+m-+1} — {1,...,n} which corresponds
to the union of the functions e; for i = 1,..., N. Observe that we have e(1) =
e(r + 1) since by hypothesis e;(a) = ea(dy).

We have omitted in the picture the pairs of free ports corresponding to
biy...ybuybrt1, ..., byyn, the names b; for ¢ > n corresponding to the elements
of L; remember that they are there and that each pair of free port corresponding
to a b; with ¢ > n is connected to a communication area of order —1.

Then we can reduce this net along the following steps.

— Observe first that the pairs of ports 1 and r + 1 (attached to the domain of
e) are connected to a common communication area d; in the identification
structure labeled by e (see 3.2.2) since e(1) = e(r 4+ 1), and also that the
codomain pair of ports 1 and the domain pair of ports 0 of the identification

structure labeled by f are connected to a common communication area s
in this identification structure, since f(0) = 1. We apply reduction 3.3.1
for aggregating the communication areas 7, d1, 72 and Jo in an unique
communication area §. Let u be the obtained simple net, we have s M?l,m} Uu.
Apply reduction 3.3.7 to both transistors 81 and B2 and let v’ be the obtained
simple net, we have u v?l’m} u'.

u/ contains therefore the following subnet v

T \ T29+4
l

2 |
> <

where, for i = —1,0, ..., g the pair of ports (re;y3,72i+4) is connected either

to the pair of port a of s;

or to one of the pairs of ports c,41, ..., Ccptq Of 51

or to one of the pairs of ports hy, ..., hy, of s’

or to a pair of ports of one of the communication areas connected to

do,...,d,

or to the pair of ports d;

6. or to one of the auxiliary pairs of ports of the output prefix compound
cell labeled by m

7. or to one of the pairs of ports b; corresponding to codomain pairs of
ports of the identification structure e; these pairs of ports are either free
in s (and hence in u’) or connected to a communication area of order
—1.

==

o

To v, we can apply reduction 3.3.4.

This subnet reduces by the «»?l m} Te-

duction to a sum vy + vy + -+ + vk r1 T2g+4
where vy is m) l

and the v;’s (j > 1) are nets of the
shape

where the principal port of [and m are forwarded to ports among 71, ..., 72g44.
We have u’ ~7, , ug +uj + -+ +uj, where u is obtained by replacing in
u’ the net v by the net v; (j =0,...,k).

We apply the (I, m)-communication reduction to u(, getting a simple net g
which is ~q equivalent to the following simple net

S1

C
a €1...Cp Cpit-- Cpigq
—
1
f/ :
LL P
1 r re1 " r42 Tl r+qg+m
(e)
where [’ is the restriction of f to {1,...,p}. This net is ~g equivalent to a

simple net t; with (S’, L) Zy, .., t1 (upon applying 3.3.1 to the communi-
cation areas of the identification structure f’, the ones which are connected
to the pairs of free ports d; of sy and those belonging to the identification
structure e). By Lemma 6, there is a simple net ¢t such that ¢; ~5 t and
(T, M) Zoy,....bn t-

To conclude, we must check that, for 7 > 1, u; is {l,m}-neutral. But, for each
of the two labels | and m, we are in one of the seven cases (1) to (7) above.
Consider for instance label [. If we are in case (1), (2), (3), (5), we can directly
apply Lemma 5.

Assume that we are in case (4), we can
apply 3.3.5 and see that u/; «»?l!m} w1 +
wg where wy and wsy are simple, and w;
contains a subnet of the shown shape
(assuming that in uz l is forwarded to
the communication area connected to
d,). Hence by Lemma 5, wy is {l,m}-
neutral.

On the other hand, ws contains a sub-
net of the following shape. This subnet
M?l,m} reduces by 3.3.5 to a sum of sim-
ple nets in each of which [is guarded by
m. Therefore, by Lemma 1, ws is {I,m}-
neutral. So by the same lemma, v’ is
{l, m}-neutral.

If we are in case (6) then, in u/, [is guarded by m and hence u’; is {I,m}-
neutral by Lemma 4. Last assume we are in case (7); in this case, [is connected
to an auxiliary port of a generalized structural cell whose principal port is free,
or is connected to a weakening cell. In both cases again it is clear that u; is

{l,m}-neutral O

7.6 Proof of Proposition 2

Proof. One shows first that both [and m must be minimal in the poset £(S, L).
Assume for instance that m is not minimal. Then the principal port of the
dereliction cell labeled by m is connected to an auxiliary port of a transistor
whose principal port is connected to an auxiliary port of an input or output
prefix cell, labeled say by m’, with m’ < m (actually, m’ is the predecessor of m
in the forest £(S,L)). Say for instance that the prefix cell labeled by m’ is an
input prefix cell. So s contains the following subnet

So m is guarded by m/ in s and so, whenever s v?l m} s’, no simple net appear-
m
ing in s’ can contain an (I, m)-communication redex, in contradiction with our

hypothesis that s fm, th-

We have seen that [and m are minimal in the poset £(S, L) and this means
that in S, the prefixes labeled by [and m are the outermost prefixes of P; and
P, where S = (P1,e1) - (Pn,en) (and the choice of P; and P, is uniquely
determined by ! and m), that is, S is of the form described by Equation (1) in
the proof of Proposition 1, P; denoting the first process in that expression, which
is guarded by an [-labeled input prefix, and P» the second one, which is guarded
by an m-labeled output prefix. Using the notations of that formula, we argue
now that necessarily ej(a) = ea(dy(p)). But if this is not the case, an inspection
of the interpretation of input prefixes (Paragraph 4.2.4), of states (Section 4.2.6)
and of the identification structure (Paragraph 3.2.2) associated to the “global
environment” e shows that s ~7, .\ s = s) + -+ + s where for each 7, s; is
simple and one of the following holds:

1. in s}, I is forwarded to a free port of s’
2. orin s}, [dives into a subnet ¢ such that P; Z,, . tforsome j=1,...,N
and ci1,...,c, is a repetition-free enumeration of the domain of e;.

In case (1), s, is {l, m}-neutral. The same is true of s} in case (2) when the index
Jj is different from 2 since then P; cannot contain the label m and we can apply
Lemma 5. In the case j = 2, using our assumption that ej(a) # ea(ds()), we
see that [dives into ¢ through a free port which does not correspond to dy)
and from this (and from an inspection of the interpretation of output prefixes,
Paragraph 4.2.5), we see that s; v?l’m} s’ where s’ is a sum of simple nets
in which, either [is guarded by m, or [dives into a subnet u of ¢ such that
Q Ih,,...n, u (for a suitable list of names hy,...,h,), where @ is the process
guarded by the m-labeled output prefix of P; (and therefore, @ does not contain
the label m). Applying Lemma 4 in the first case and Lemma 5 in the second
case, we see that each simple summand of s’ is {/,m}-neutral and therefore

s; also is {l,m}-neutral by Lemma 1. Finally, by the same lemma, s itself is

{l, m}-neutral, contradicting the hypothesis that s fm, th-

So we must have ej(a) = ea(dy)) and since our processes and states are
implicitly arity-typed (see Paragraph 6.2), we know that the number of objects
of the two involved prefixes coincide (the common value of these numbers is p,
according to our notations).

Using the same notations as in Proposition 1, and the statement itself of this
theorem, we have (S, L) L (T, M) and there are simple nets t and ¢, such
that (T, M) Zp,,...p, t, t ~q to and s tm, to- This means more precisely that
s M?l,m} s' = so+s1+---+sp, with the s;’s simple, such that sy has an (I, m)-
communication redex and each s; (for j > 1) is {I,m}-neutral and ¢, is the net
obtained by reducing the (I, m)-communication redex of sg.

We conclude by showing that to ~q t.

We know from our hypothesis that s ~7, 1 s” = s{+ 5] + - + s;, where
so has an (I, m)-communication redex and each s’; (for j > 1) is {/,m}-neutral,
and tj, is the simple net obtained from s{, by reducing its (I, m)-communication
redex.

By the Church Rosser property Of“”?z,m}v there is a net u such that s’ «»?l’m}
u and s” «»?l’m} u. By Lemma 3, we have u = ug + v’ with sg ~+q ug and
S0 ~d uo, thanks also to the {l,m}-neutrality of s; and s for j > 1. Moreover
(still by Lemma 3), ug contains an (I, m)-communication redex as well, and if vy
is the net obtained by reducing the (I, m)-communication redex of ug, we have
also tg ~q v and ¢ ~q vo. So we have tg ~q tj. O

7.7 Proof of Theorem 2

Proof. Let (S, L) be a canonical state and s; be a simple net, and assume that
(S,L) Ty, ,...b, S1- So there is a simple net s such that (S,L) Zp, . 5, s and

n

S ~q S1.
Assume first that (S, L) 1=, (T, M), with [, m two distinct elements of £L\{7}.
By Proposition 1, there are simple nets ¢¢ and ¢ such that (T, M) Zp, .. 5, to ~a't

and s % ¢, By Lemma 2 (~q is a bisimulation), there exists ¢; such that t ~q ¢;
and s tm, t1. We have (T, M) fbl,,,,,bn t1.

Conversely, assume that sy dm, t1. By Lemma 2, there exists ¢ such that
t ~qt; and s dm By Proposition 2, there is a canonical state (T, M) and a
simple net to such that (S, L) 1, (T, M) and (T, M) Is,....p, to ~a t. We have
(T, M) Ty, .., t1- O

8 Annex: examples

We give a few examples to illustrate some key features of communication in the
m-calculus as represented in differential interaction nets.

8.1 Concurrent communication

Let P be the process:

va - (([l]a() il | fmjad) - nn) | Tlal) - nn)

The simplest state containing P is (S, L) = ((P,0),0). We have (S, L) Z s where
s is the following simple net:

1 I

!

By applying aggregations of communication areas, we obtain the simple net
S1.

thus s ~¥ s;. Since P is in fact a CCS process, we can remark how the translation
into differential interaction nets is given by first a tree (with nodes represented
with dashed boxes) corresponding to the tree structure of the CCS process (built
from sequential and parallel compositions), and second communication areas for
the identification of names.

The simple net s; reduces to the following net sy (51~} s2):

where the choice between actions ready to communicate will be done. This means
that ss reduces to a sum of simple nets containing in particular the following sg
(82 ’\/)?l,m} S3 —|— e):

= i <

If ¢ is obtained from s3 by reducing the (I,m)-communication redex, we have

im

s — t. This_con@oonds to (S, L) ~ean (([I]a() - nil,e)([m]al) - nil, e)([r]a() -
nil,e), {a'}) 1, (([r]a() - nile),{a’}) (with e defined only on {a} by e(a) = a’)

in the environment machine.

8.2 Sequentiality

Let P be the process:

va - ([l]a() [960) - nil | Tr]6() - nil | fmlad) - nil)

The simplest state containing P is (S, L) = ((P,e),?) (with e defined on {a, b}
by e(a) = o’ and e(b) = V’). We have (S, L) Z,/ »» s with s ~ s; (aggregations
of communication areas) and s; is the following simple net:

Since P is again a CCS process, we can see its tree structure in the differential
interaction net sq.

The simple net s; reduces to the following net sy (51~} s2):

D
b ! a’

.

Then there exists a simple net s3 such that s “’)?z m} 83+ and if ¢ is
obtained from s3 by reducing the (I, m)-communication redex it contains, we

have s % ¢. Moreover ¢ reduces to the following net:

This corresponds to (S, L) ~ean (([[]a() - [16() - nil,e)([m]b() - nil,e)(m]a() -
nil,e), 0) 1=, (([1"16(0) - nil, €)([m/]b() - nil, e), D) in the environment machine.

8.3 Name passing

Let P, @ and R be processes such that the free names of P are a and z, the only
free name of @ is y and the free names of R are x and b. Let P’ be the process:

ve- ([a() P)2() - Q) | [mla(x) - [m]z() - R

The simplest state containing P’ is (S, L) = ((P’,¢),) (with e defined on {a, b}
by e(a) = @’ and e(b) = V). If P Z,. s1, Q I, s and R Z,; s3, we have
(S,L) Ty p 8" with s’ ~¥ s} (aggregations of communication areas) and s} is
the following simple net:

We have s 2L ¢ with ¢ ~% s5 and s} is the following simple net:

C S1

C S2
a z : Y

| U

!

o

where the identification of the names z and x corresponds to the connection of
the associated communication areas.

Finally t “% ' with ¢ ~% g5 and s4 is the following simple net:

c 51 c 82 c 83
b a z Y b x b
(I 4
(L/

where y and b are also identified. L
This corresponds to (S, L) ~cn (([lJalz) - Pyelz — 2'))([I']z(y) - Q, e[z —

Z’])([m]a(x)-m,j, €), {2} 5 (Pelz = 2))([1]2(9)-Qs elz = =) (W] (b)-
R,elz i 2)), {z'}) % (Pelz = 2N)(Qselz = 2,y o V]) (R e[z — 2]), {z'})

in the environment machine.

