
Interpreting a Finitary Pi-Cal
ulus in Di�erentialIntera
tion NetsThomas Ehrhard and Olivier LaurentPreuves, Programmes & SystèmesUniversité Denis Diderot and CNRSAbstra
t. We propose and study a translation of a pi-
al
ulus withoutsums nor repli
ation/re
ursion into an untyped and essentially promotion-free version of di�erential intera
tion nets. We de�ne a transition systemof labeled pro
esses and a transition system of labeled di�erential in-tera
tion nets. We prove that our translation from pro
esses to nets isa bisimulation between these two transition systems. This shows thatdi�erential intera
tion nets are su�
iently expressive for representing
on
urren
y and mobility, as formalized by the pi-
al
ulus.Introdu
tionLinear Logi
 proofs [Gir87℄ admit a proof net representation whi
h has a veryasyn
hronous and lo
al redu
tion pro
edure, suggesting strong 
onne
tions withparallel 
omputation. This impression has been enfor
ed by the introdu
tion ofintera
tion nets and intera
tion 
ombinators by Lafont in [Laf95℄.But the attempts towards �
on
urrent� interpretations of linear logi
 (e.g.[EW97℄, [AM99℄, [Mel06℄, [Bef05℄, [CF06℄ based on [FM05℄. . . ) missed a 
ru-
ial feature of true 
on
urren
y, su
h as modelled by pro
ess 
al
uli like Milner's
π-
al
ulus [Mil93,SW01℄): its intrinsi
 non-determinism. This failure is easily un-derstandable sin
e there is an apparent 
ontradi
tion between non-determinismand the Curry-Howard approa
h to 
omputation 
onsisting in identifying proofsand programs. A

ording to this paradigm, a well-behaved proof system shouldpossess a 
on�uent 
ut-elimination pro
edure. But 
on�uen
e is a way of ex-pressing determinism in a rewriting setting: typi
ally, it implies that a 
losedproof of boolean type 
annot redu
e to true and also to false.Many denotational models of the lambda-
al
ulus and of linear logi
 ad-mit some form of non-determinisms (e.g. [Plo76,Gir88℄), showing that a non-deterministi
 proof 
al
ulus is not ne
essarily trivial. The �rst author introdu
edsu
h models, based on ve
tor spa
es in [Ehr02,Ehr05℄, whi
h have a ni
e proof-theoreti
 
ounterpart, 
orresponding to a simple extension of the rules that linearlogi
 asso
iates with the exponentials. In this di�erential setting, the weakeningrule has a mirror image rule 
alled 
oweakening, and similarly for dereli
tion andfor 
ontra
tion, and the redu
tion rules have the 
orresponding mirror symmetry.The 
orresponding formalism of di�erential intera
tion nets has been introdu
edin a joint work by the �rst author and Regnier [ER06℄.



In a joint work with Kohei Honda [HL06℄, the se
ond author proposed atranslation of a version of the π-
al
ulus in proof-nets for a version of linearlogi
 extended with the 
o
ontra
tion rule. The basi
 idea 
onsists in inter-preting the parallel 
omposition as a 
ut between a 
ontra
tion link (to whi
hseveral outputs are 
onne
ted, through dereli
tion links) and a 
o
ontra
tionlink, to whi
h several promoted re
eivers are 
onne
ted. Being promoted, thesere
eivers are repli
able, in the sense of the π-
al
ulus. The other fundamentalidea of this translation 
onsists in using linear logi
 polarities for making thedi�eren
e between outputs (negative) and inputs (positive), and of imposing astri
t alternation between these two polarities. This allows to re
ast in a polar-ized linear logi
 setting a typing system for the π-
al
ulus previously introdu
edby Berger, Honda and Yoshida in [BHY03℄. This translation 
an be 
onsideredas the �rst really 
onvin
ing Curry-Howard interpretation of pro
esses, but hastwo features whi
h 
an be 
onsidered as slight defe
ts: it a

epts only repli
ablere
eivers and is not really modular (the parallel 
omposition of two pro
esses
annot be des
ribed as a 
ombination of the 
orresponding nets).Prin
iple of the translation. The purpose of the present paper is to 
ontinuethis line of ideas, using more systemati
ally the new stru
tures introdu
ed bydi�erential intera
tion nets1.The �rst key de
ision we made, guided by the stru
ture of the typi
al 
o-
ontra
tion/
ontra
tion 
ut intended to interpret parallel 
omposition, was ofasso
iating with ea
h free name of a pro
ess not one, but two free ports in the
orresponding di�erential intera
tion net. One of these ports will have a !-type(positive type) and will have to be 
onsidered as the input port of the 
orre-sponding name for this pro
ess, and the other one will have a ?-type (negativetype) and will be 
onsidered as an output port.
!

? ?

?

! !

Fig. 1. Communi
ationarea
We dis
overed stru
tures whi
h allow to 
ombinethese pairs of wires for interpreting parallel 
omposi-tion and 
alled them 
ommuni
ation areas : they areobtained by 
ombining in a 
ompletely symmetri
 way
o
ontra
tion and 
ontra
tion 
ells. There are 
om-muni
ation areas of any �arity� (number of pairs ofwires 
onne
ted to it). The 
ommuni
ation area ofarity 3 
an be pi
tured as in Figure 1, where 
o
on-tra
tion 
ells are pi
tured as !-labeled triangles and
ontra
tion 
ells as ?-labeled triangles. The ports 
or-responding to the same pairs are the prin
ipal portsof antipodi
 
ells.1 One should mention here that translations of the π-
al
ulus into nets of variouskinds, subje
t to lo
al redu
tion relations, have been provided by various authors(
f. the work of Laneve, Parrow and Vi
tor on solo diagrams [LPV01℄, of Be�araand Maurel [BM05℄, of Milner on bigraphs [JM04℄, of Mazza [Maz05℄ on multiportintera
tion nets et
.). But these settings have no 
lear logi
al grounds nor simpledenotational semanti
s.



Content. We �rst introdu
e di�erential intera
tion nets, typed with a re
ur-sive typing system (introdu
ed by Danos and Regnier in [Reg92℄ and 
orre-sponding to the untyped lambda-
al
ulus) for avoiding the appearan
e of nonredu
ible 
on�gurations. This system is �nitary in the sense that it has no pro-motion. Using these 
ells, we de�ne a �toolbox�, a 
olle
tion of nets that we shall
ombine for interpreting pro
esses, and a few asso
iated redu
tions, derived fromthe basi
 redu
tion rules of di�erential intera
tion nets.We organize redu
tion rules of nets as a labeled transition system, whose ver-ti
es are nets, and where the transitions 
orrespond to dereli
tion/
odereli
tionredu
tion. Then we de�ne a pro
ess algebra whi
h is a polyadi
 π-
al
ulus, with-out repli
ation and without sums. We spe
ify the operational semanti
s of this
al
ulus by means of an abstra
t ma
hine inspired by the ma
hine presentedin [AC98℄, Chapter 16. We de�ne a transition system whose verti
es are thestates of this ma
hine, and transitions 
orrespond to input/output redu
tions.Last we de�ne a �translation� relation from ma
hine states to nets and show thatthis translation relation is a bisimulation between the two transition systems.The main goal of this work is not to de�ne one more translation of the π-
al
ulus into yet another exoti
 formalism. We want to illustrate by our bisimu-lation result that di�erential intera
tion nets are su�
iently expressive for simu-lating 
on
urren
y and mobility, as formalized in the π-
al
ulus. We believe thatdi�erential intera
tion nets have their own interest and �nd a strong mathemat-i
al and logi
al justi�
ation in their 
onne
tion with linear logi
, in the existen
eof various denotational models and in the analogy between its basi
 
onstru
tsand fundamental mathemati
al operations su
h as di�erentiation and 
onvolu-tion produ
t. The fa
t that di�erential intera
tion nets support 
on
urren
y andmobility suggests that they might provide more 
onvenient mathemati
al andlogi
al foundations to 
on
urrent 
omputing.1 Di�erential intera
tion nets1.1 Presentation of the 
ellsOur nets will be typed using a type system whi
h 
orresponds to the untypedlambda-
al
ulus. This typing system is based on a single type symbol o (thetype of outputs), subje
t to the following re
ursive equation o = ?o⊥�o. We set
ι = o⊥, so that ι = !o ⊗ ι and o = ?ι�o.We assume known from the reader the basi
s of intera
tion nets, as intro-du
ed by Lafont in [Laf95℄, see also [ER06℄ for a more detailed introdu
tion todi�erential intera
tion nets. In our pi
tures, 
ells are represented by triangles,and the prin
ipal port is lo
ated at one of the angles of the triangle. Sometimes,we shall put a bla
k dot to lo
ate the auxiliary port numbered 1. The other aux-iliary ports are numbered in the obvious way, starting from this marked auxiliaryport (the arity of the 
ell is the number of its auxiliary ports).In the present setting, there are eleven kinds of 
ells: par (arity 2), bottom(arity 0), tensor (arity 2), one (arity 0), dereli
tion (arity 1), weakening (arity 0),




ontra
tion (arity 2), 
odereli
tion (arity 1), 
oweakening (arity 0), 
o
ontra
tion(arity 2) and 
losed promotion (arity 0). We present now the various kinds of
ells, with their typing rules, in a pi
torial way.1.1.1 Multipli
ative 
ells. The par and tensor 
ells, as well as their �nullary�versions bottom and one are as follows:
•

o

o
?ι � •

!o

⊗

ι

ι
⊥

o
1

ι1.1.2 Exponential 
ells. They are typed a

ording to a stri
tly polarizeddis
ipline. Here are �rst the why not 
ells, whi
h are 
alled dereli
tion, weakeningand 
ontra
tion:
?

ι ?ι
?

?ι
?

?ι
?ι

?ιand then the bang 
ells, 
alled 
odereli
tion, 
oweakening and 
o
ontra
tion:
!

o !o
!

!o
!

!o
!o

!o1.1.3 Closed promotion 
ells and simple nets. The notion of simple netis then de�ned indu
tively, together with the notion of 
losed promotion 
ell.Given a (non ne
essarily simple) net s with only one free port os weintrodu
e a 
ell s!
!o .A simple net is a net, built a

ording to the usual 
onstru
tion rules oftyped intera
tion nets re
orded in Se
tion 6.1, using the kinds of 
ells we haveintrodu
ed.1.1.4 Nets. A net is a �nite sum of simple nets having all the same interfa
e.Remember that the interfa
e of a simple net s is the set of its free ports, togetherwith the mapping asso
iating to ea
h free port the type of the oriented wire of

s whose ending point is the 
orresponding port.Let L be a 
ountable set of labels 
ontaining a distinguished element τ (to beunderstood as the absen
e of label). A labeled simple net is a simple net whereall dereli
tion and 
odereli
tion 
ells are equipped with labels belonging to L.We require moreover that, if two labels o

urring in a labeled net are equal, theyare equal to τ . All the nets we 
onsider in this paper are labeled. In our pi
tures,the labels of dereli
tion and 
odereli
tion 
ells will be indi
ated, unless it is τ ,in whi
h 
ase the (
o)dereli
tion 
ell will be drawn without any label.2 Redu
tion rulesWe denote by ∆ the 
olle
tion of all simple nets and by N〈∆〉 the 
olle
tion ofall nets (�nite sums of simple nets with the same interfa
e).A redu
tion rule is a subset R of ∆ × N〈∆〉 
onsisting of pairs (s, s′) where
s is made of two 
ells 
onne
ted by their prin
ipal ports and s′ has the same



interfa
e as s. This set 
an be �nite or in�nite. Su
h a relation is easily extendedto arbitrary simple nets (s R t if there is (s0, u1 + · · · + un) ∈ R where s0 isa subnet of s, ea
h ui is simple and t = t1 + · · · + tn where ti is obtained byrepla
ing s0 by ui in s). This relation is extended to nets (sums of simple nets):
s1 + · · · + sn (where ea
h si is simple) is related to s′ by this extension RΣ if
s′ = s′1 + · · ·+ s′n where, for ea
h i, si R s′i or si = s′i. Last, R∗ is the transitiveand re�exive 
losure of RΣ.2.1 De�ning the redu
tion2.1.1 Multipli
ative redu
tion. The �rst two rules 
on
ern the intera
tionof two multipli
ative 
ells of the same arity.

• •� ⊗

?ι ?ι

o

o
;m

o o

?ι

⊥
o

;m ε1where ε stands for the empty simple net (not to be 
onfused with the net 0 ∈
N〈∆〉, whi
h is not a simple net). The next two rules 
on
ern the intera
tionbetween a binary and a nullary multipli
ative 
ell.� 1

o
;m

?ι

o

?ι

o 1

!

;m

!o

ι

⊗ ⊥

!o

ι

?

⊥So here the redu
tion rule (denoted as ;m) has four elements.2.1.2 Communi
ation redu
tion. Let R ⊆ L. We have the following re-du
tions if l, m ∈ R.
? !

ι ι?ι
;c,R

ι

l mSo the set ;c,R is in bije
tive 
orresponden
e with the set of pairs (l, m) with
l, m ∈ R and l = m ⇒ l = m = τ .2.1.3 Non-deterministi
 redu
tion. Let R ⊆ L. We have the followingredu
tions if l ∈ R.

?

?

?

?

ι ?ι

?ι?ι

!? +

l

l

;nd,R

?ι

l

!

!

!

!

! ?
o !o

!o

!o
+

l

l

;nd,R
l

? !
ι ?ι

l
;nd,R 0 ! ?

o !o

l
;nd,R 0



2.1.4 Stru
tural redu
tion.
?ι

?ι

?ι
?

!

!

! ;s !

!o

!o

!o
?

?

? ;s

?ι
? ;s εs! ?

?ι

?ι

?ι
;s

s!

s!

s!

?ι
? ! ;s ε ? !

?ι

?ι

?ι
?ι

?ι
;s

!

!

?

?2.1.5 Box redu
tion.
?

ι ?ι
s;bs!

lObserve that the redu
tion rules are 
ompatible with the identi�
ation of the
oweakening 
ell with a promotion 
ell 
ontaining the 0 net. Observe also thatthe only rules whi
h do not admit a �symmetri
� rule are those whi
h involvepromotion 
ell. Indeed, promotion is the only asymmetri
 rule of di�erentiallinear logi
.One 
an 
he
k that we have provided redu
tion rules for all possible redexes,
ompatible with our typing system: for any simple net2 s made of two 
ells
onne
ted through their prin
ipal ports, there is a redu
tion rule whose leftmember is s. This rule is unique, up to the 
hoi
e of a set of labels, but this
hoi
e has no in�uen
e on the right member of the rule.2.2 Con�uen
eTheorem 1. Let R, R′ ⊆ L. Let R ⊆ ∆ × N〈∆〉 be the union of some of theredu
tion relations ;c,R, ;nd,R′ , ;m, ;s and ;b. The relation R∗ is 
on�uenton N〈∆〉.The proof is essentially trivial sin
e the rewriting relation has no 
riti
al pair(see [ER06℄). Given R ⊆ L, we 
onsider in parti
ular the following redu
tion:
;R = ;m∪;c,{τ}∪;s∪;b∪;nd,R. We set ;d = ;∅ (�d� for �deterministi
�)and denote by ∼d the symmetri
 and transitive 
losure of this relation.Some of the redu
tion rules we have de�ned depend on a set of labels. Thisdependen
e is 
learly monotone in the sense that the relation be
omes largerwhen the set of labels in
reases.2.3 A transition system of simple nets2.3.1 {l, m}-neutrality. Let l and m be distin
t elements of L\{τ}. We 
all
(l, m)-
ommuni
ation redex a 
ommuni
ation redex whose (
o)dereli
tion 
ells2 And remember that su
h a stru
ture must be typed.



are labeled by l and m. We say that a simple net s is {l, m}-neutral if, whenever
s ;

∗
{l,m} s′, none of the simple summands of s′ 
ontains an (l, m)-
ommuni
ationredex.Lemma 1. Let s be a simple net. If s ;

∗
{l,m} s′ where all the simple summandsof s′ are {l, m}-neutral, then s is also {l, m}-neutral.2.3.2 The transition system. We de�ne a labeled transition system DLwhose obje
ts are simple nets, and transitions are labeled by pairs of distin
telements of L \ {τ}. Let s and t be simple nets, we have s

lm
−→ t if the followingholds: s ;

∗
{l,m} s1 + s2 + · · · + sn where s1 is a simple net whi
h 
ontainsan (l, m)-
ommuni
ation redex (with dereli
tion labeled by m and 
odereli
tionlabeled by l) and be
omes t when one redu
es this redex, and ea
h si (for i > 1)is {l, m}-neutral.Lemma 2. The relation ∼d ⊆ ∆ × ∆ is a a bisimulation on DL.3 A toolbox for pro
ess 
al
uli interpretation3.1 Compound 
ells3.1.1 Generalized 
ontra
tion and 
o
ontra
tion. A generalized 
on-tra
tion 
ell or 
ontra
tion tree is a simple net γ (with one prin
ipal port anda �nite number of auxiliary ports) whi
h is either a wire or a weakening 
ell ora 
ontra
tion 
ell whose auxiliary ports are 
onne
ted to the prin
ipal port ofother 
ontra
tion trees, whose auxiliary ports be
ome the auxiliary ports of γ.Generalized 
o
ontra
tion 
ells (
o
ontra
tion trees) are de�ned dually.We use the same graphi
al notations for generalized (
o)
ontra
tion 
ells asfor ordinary (
o)
ontra
tion 
ells, with a �∗� in supers
ript to the � !� or �?�symbols to avoid 
onfusions. Observe that there are in�nitely many generalized(
o)
ontra
tion 
ells of any given arity.3.1.2 The dereli
tion-tensor and the 
odereli
tion-par 
ells. Let n bea non-negative integer. We de�ne an n-ary 
ell as follows. It will be de
oratedby the label of its dereli
tion 
ell (if di�erent from τ).

?⊗

!o

!o

?ι

⊗

⊗

⊗

1

?

!o

!o

!o

ι ?ι

•

•

•

•

=... l

lThe number of tensor 
ells in this 
ompound 
ell is equal to n. One de�nes duallythe !� 
ompound 
ell.



3.1.3 The pre�x 
ells. Now we 
an de�ne the 
ompound 
ells whi
h willplay the main role in the interpretation of pre�xes of the π-
al
ulus. Thanks tothe above de�ned 
ells, all the oriented wires of the nets we shall de�ne will beartype ?ι or !o. Therefore, we adopt the following graphi
al 
onvention: the wireswill bear an orientation 
orresponding to the ?ι type.The n-ary input 
ell and the n-ary output 
ell are de�ned as
!�?⊗

?⊗

!

•• ......... =
ll

?

!�
!� ?⊗

•• ......... =
llwith n pairs of auxiliary ports.Pre�x 
ells are labeled by the label 
arried by their outermost dereli
tion-tensor or 
odereli
tion-par 
ompound 
ell, if di�erent from τ , the other 
odereli
tion-par or dereli
tion-tensor 
ompound 
ells being unlabeled (that is, labeled by τ).3.1.4 Transistors and boxed identity. In order to implement the sequen-tiality 
orresponding to sequen
es of pre�xes in the π-
al
ulus, we shall use theunary output pre�x 
ell de�ned above as a kind of transistor, that is, as a kindof swit
h that one 
an put on a wire, and whi
h is 
ontrolled by another wire.This idea is strongly inspired by the translation of the π-
al
ulus in the 
al
ulusof solos3. ��?⊗

⊥

o•Fig. 2. IdentityThese swit
hes will be 
losed by �boxed identity 
ells�,whi
h are the unique use we make of promotion in thepresent work. Let I be the �identity� net of Figure 2.Then we shall use the 
losed promotion 
ell labeled by
I !: I ! .3.2 Communi
ation tools

3Fig. 3. Area of or-der 3
3.2.1 The 
ommuni
ation areas. Let n ≥ −2. Wede�ne a family of nets with 2(n + 2) free ports, 
alled
ommuni
ation areas of order n, that we shall draw usingre
tangles with beveled angles. Figure 3 shows how wepi
ture a 
ommuni
ation area of order 3.A 
ommuni
ation area of order n is made of n+2 pairsof (n + 1)-ary generalized 
o
ontra
tion and 
ontra
tion
ells (γ+

1 , γ−
1 ), . . . , (γ+

n+1, γ
−
n+1), with, for ea
h i and j su
hthat 1 ≤ i < j ≤ n + 2, a wire from an auxiliary port of γ+

i to an auxiliary portof γ−
j and a wire from an auxiliary port of γ−

i to an auxiliary port of γ+
j .So the 
ommuni
ation area of order −2 is the empty net ε, and 
ommuni
a-tion areas of order −1, 0 and 1 are respe
tively of the shape3 It is shown in [LV03℄ that one 
an en
ode the π-
al
ulus sequentiality indu
ed bypre�x nesting in the 
ompletely asyn
hronous solo formalism: the idea of su
h trans-lations is to observe that, in a solo pro
ess like P = νy (u(x, y) | y(. . . )) | Q, the �rstsolo must intera
t before the se
ond one with the environment Q.



?∗

!∗

!∗ ?∗

!∗?∗

!∗ ?∗

?∗ !∗

?∗!∗3.2.2 Identi�
ation stru
tures. Let n, p ∈ N and let f : {1, . . . , p} →
{1, . . . , n} be a fun
tion. An f -identi�
ation net is a stru
ture with p + n pairsof free ports (p pairs 
orrespond to the domain of f and, in our pi
tures, willbe atta
hed to the non beveled side of the identi�
ation stru
ture, and n pairs
orrespond to the 
odomain of f , atta
hed to the beveled side of the stru
ture)as in Figure 4(a). Su
h a net is made of n 
ommuni
ation areas, and on the j'tharea, the j'th pair of wires of the 
odomain is 
onne
ted, as well as the pairsof wires of index i of the domain su
h that f(i) = j. For instan
e, if n = 4,
p = 3, f(1) = 2, f(2) = 3 and f(3) = 2, a 
orresponding identi�
ation stru
tureis made of three 
ommuni
ation areas, two of order −1, one of order 0 and oneof order 1, as in Figure 4(b).

1 . . .

. . .

f

p

n1(a) Nota-tion −1

1

0−1(b) Example ;
∗
s

f

g

g ◦ f

. . .

. . .

. . .

. . .

. . .(
) Redu
tionFig. 4. Identi�
ation stru
tures3.3 Useful redu
tions.3.3.1 Aggregation of 
ommuni
ation areas. One of the ni
e propertiesof 
ommuni
ation areas is that, when one 
onne
ts two su
h areas through a pairof wires, one gets another 
ommuni
ation area; if the two areas are of respe
tiveorders p and q, the resulting area is of order p + q, see Figure 5.
p + q ...... p ;

∗
sq ... ...Fig. 5. Aggregation



3.3.2 Composition of identi�
ation stru
tures. In parti
ular, we getthe redu
tion of Figure 4(
).3.3.3 Port forwarding in a net. Let t be a net and p be a free port of t.We say that p is forwarded in t if there is a free port q of t su
h that t is of oneof the two following shapes:
?∗

p

q...
· · ·

... !∗

p

q

· · ·

......3.3.4 Forwarding of dereli
tions and 
odereli
tions in 
ommuni
ationareas. The following redu
tion shows that dereli
tions and 
odereli
tions 
anmeet ea
hother, when 
onne
ted to a 
ommon 
ommuni
ation areas. Let l, m ∈
L, then

?

!

!

?

?! ! ?
ti

r r′
;

∗
{l,m}

· · ·

p + 1 p +

N∑

i=1

· · · · · ·

l l lmm

mwhere N is a non-negative integer (a
tually, N = (p + 1)2) and, in ea
h simplenet ti, both ports r and r′ are forwarded.3.3.5 General forwarding. Let l ∈ L. The following more general but lessinformative property will also be used: one has
?

... ui

r ...?∗? ;
∗
{l}

N∑

i=1

l...... p
lwhere in ea
h simple net ui, the port r is forwarded (see 3.3.3). Of 
ourse onealso has a dual redu
tion (where the dereli
tion is repla
ed by a 
odereli
tion,and the generalized 
ontra
tion by a generalized 
o
ontra
tion).3.3.6 Redu
tion of pre�xes. Let l, m ∈ L. If we 
onne
t an n-ary outputpre�x labeled by m to a p-ary input pre�x labeled by l, we obtain a net whi
hredu
es by ;c,{l,m} to a net u whi
h redu
es by ;

∗
{τ} to 0 if n 6= p and to simplewires, in Figure 6(a), if n = p.3.3.7 Transistor triggering. A boxed identity 
onne
ted to the prin
ipalport of a unary output 
ell used as a �transistor� turns it into a simple wire asin Figure 6(b).

• • ...!?
... ...

m

l

;c,{l,m} u ;
∗
∅(a) Pre�xes intera
tion I ! ?

•
;

∗
∅(b) TransistortriggeringFig. 6. Pre�x redu
tion



4 A polyadi
 �nitary π-
al
ulus and its en
odingThe pro
ess 
al
ulus we 
onsider is a fragment of the π-
al
ulus where we havesuppressed the following features: sums, repli
ation, re
ursive de�nitions, mat
hand mismat
h. This does not mean of 
ourse that di�erential intera
tion nets
annot interpret these features. LetN be a 
ountable set of names. Our pro
essesare de�ned by the following syntax. We use the same set of labels as before.� nil is the empty pro
ess.� If P1 and P2 are pro
esses, then P1 | P2 is a pro
ess.� If P is a pro
ess and a ∈ N , then νa · P is a pro
ess. a is bound in thispro
ess.� If P is a pro
ess, a, b1, . . . , bn ∈ N , the names bi being pairwise distin
t andif l ∈ L, then Q = [l]a(b1 . . . bn) ·P is a pro
ess (pre�xed by an input a
tion,whose subje
t is a and whose obje
ts are the bi; a is free and ea
h bi is boundin Q and hen
e a is distin
t from ea
h bi).� If P is a pro
ess, a, b1, . . . , bn ∈ N and l ∈ L, then [l]a〈b1 . . . bn〉 · P is apro
ess (pre�xed by an output a
tion, whose subje
t is a and whose obje
tsare the bi's). This 
onstru
tion does not bind the names bi, and one does notrequire the bi to be distin
t. The name a 
an be equal to some of the bis.The purpose of this labeling of pre�xes is to distinguish the various o

urren
esof names as subje
t of pre�xes. The set FV(P ) of free names of a pro
ess P isde�ned in the obvious way. The α-equivalen
e relation on pro
esses is de�ned asusual.A labeled pro
ess is a pro
ess where all pre�xes are labeled, by pairwisedistin
t labels, all these labels being di�erent from τ . If P is a labeled pro
ess,
L(P ) denotes the set of all labels o

urring in P . Observe that this set has anatural poset (forest a
tually) stru
ture (l < m if, in P , l labels a pre�x µ and
m o

urs in the pro
ess pre�xed by µ).All the pro
esses we 
onsider in this paper are labeled.4.1 An exe
ution modelRather than 
onsidering a rewriting relation on pro
esses as one usually does,we prefer to de�ne an �environment ma
hine�, similar to the ma
hine introdu
edin [AC98℄, Chapter 164.An environment is a fun
tion from a �nite subset Dom e ofN to a �nite subset
Codom e of N . A 
losure is a pair (P, e) where P is a pro
ess and e is an environ-ment su
h that FV(P ) ⊆ Dom(e). A soup is a multiset S = (P1, e1) · · · (PN , eN )of 
losures (denoted by simple juxtaposition). The 
odomain of a soup is theunion of the 
odomains of the environments of this soup. The soup S is labeledif all the Pi's are labeled, with pairwise disjoint sets of labels. A state is a pair4 The reason for this 
hoi
e is that the rewriting approa
h uses an operation whi
h
onsists in repla
ing a name by another name in a pro
ess. The 
orresponding op-eration on nets is rather 
ompli
ated and we prefer not to de�ne it here.



(S, L) where S is a soup and L is a set of names (the names whi
h have to be
onsidered as lo
al to the state). The state (S, L) is labeled if the soup S islabeled.All the states we 
onsider are labeled. One de�nes the poset L(S, L) of alllabels of the state (S, L) in the straightforward way, as the parallel 
ompositionof the posets asso
iated to the pro
esses of the 
losures of S.4.1.1 Canoni
al form of a state. We say that a pro
ess is guarded ifit starts with an input pre�x or an output pre�x. We say that a soup S =
(P1, e1) · · · (PN , eN ) is 
anoni
al if ea
h Pi is guarded, and that a state (S, L) is
anoni
al if the soup S is 
anoni
al. One de�nes a rewriting relation ;can whi
hallows to turn a state into a 
anoni
al one.

((nil, e)S, L) ;can (S, L)

((νa · P, e)S, L) ;can ((P, e[a 7→ a′])S, L ∪ {a′})

((P | Q, e)S, L) ;can ((P, e)(Q, e)S, L)where, in the se
ond rule, a′ ∈ N \ (L ∪ Codom(e) ∪ Codom(S)). One showseasily that, up to α-
onversion, this redu
tion relation is 
on�uent, and it is
learly strongly normalizing. We denote by Can(S, L) the normal form of thestate (S, L) for this rewriting relation.Moreover, observe that if (S, L) ;can (T, M), then (S, L) and (T, M) havethe same set of free names.4.1.2 Transitions. Next, one de�nes a labeled transition system SL. Theobje
ts of this system are labeled 
anoni
al states and the transitions, labeledby pairs of labels, are de�ned as follows.
(([l]a(b1 . . . bn) · P, e)([m]a′〈b′1 . . . b′n〉 · P

′, e′)S, L)
lm
−→ Can((P, e[b1 7→ e′(b′1), . . . , bn 7→ e′(b′n)])(P ′, e′)S, L)if e(a) = e′(a′). Observe that if (S, L)

lm
−→ (T, M) then FV(T, M) ⊆ FV(S, L).4.2 Translation of pro
essesSin
e we do not work up to asso
iativity and 
ommutativity of 
ontra
tion and
o
ontra
tion, it does not make sense to de�ne this translation as a fun
tion frompro
esses to nets. For ea
h repetition-free list of names a1, . . . , an, we de�ne arelation Ia1,...,an

from pro
esses whose free names are 
ontained in {a1, . . . , an}to nets t whi
h have 2n + 1 free ports aι
1, a

o
1, . . . , a

ι
n, ao

n and c as in Figure 7(a).The additional port c will be used for 
ontrolling the sequentiality of the redu
-tion, thanks to transistors. Redu
ing the translation of a pro
ess will be possibleonly when a boxed identity 
ell will be 
onne
ted to its 
ontrol port. This is
ompletely similar to the additional 
ontrol free name in the translation of the
π-
al
ulus in solos, in [LV03℄.Clearly, if P and P ′ are α-equivalent, then P Ia1,...,an

s i� P ′ Ia1,...,an
s.
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ess and state translation4.2.1 Empty pro
ess. One has nil Ib1,...,bn
t if t is t is as in Figure 7(b).4.2.2 Name restri
tion. One has νa ·P Ib1,...,bn

t i� t is as in Figure 7(
),with s satisfying P Ia,b1,...,bn
s.4.2.3 Parallel 
omposition. One has P1 | P2 Ib1,...,bn

t i� the simple net
t is as in Figure 7(d), where P1 Ib1,...,bn

t1, P2 Ib1,...,bn
t2 and γ1, . . . , γn are
ommuni
ation areas of order 1.4.2.4 Input pre�x. Let l ∈ L. Assume that a, b1, . . . , bn, c1, . . . , cp are pair-wise distin
t names and let Q = [l]a(b1 . . . bn) · P . One has Q Ia,c1,...,cp

t if allthe free names of P are 
ontained in a, b1, . . . , bn, c1, . . . , cp and if t is as in Fig-ure 7(e), where γ is a 
ommuni
ation area of order 1 and where s is a simple netwhi
h satis�es P Ia,b1,...,bn,c1,...,cp
s.4.2.5 Output pre�x. Let l ∈ L. Let b1, . . . , bn be a list of pairwise distin
tnames and let Q = [l]bf(0)〈bf(1) . . . bf(q)〉 ·P , where f : {0, 1, . . . , q} → {1, . . . , n}is a fun
tion. One has Q Ib1,...,bn
t if all the free names of P are 
ontained in

b1, . . . , bn and if t is as in Figure 7(f), where γ1, . . . , γn are 
ommuni
ation areas



of order 1, δ is an f -identi�
ation stru
ture and where s is a simple net whi
hsatis�es P Ib1,...,bn
s.4.2.6 States. Let S = (P1, e1) . . . (PN , eN) be a soup and b1, . . . , bn be arepetition-free list of names 
ontaining all the 
odomains of the environments

e1, . . . , eN . We assume that the domains of the environments ei are pairwisedisjoint, whi
h is possible up to α-
onversion. Let a1, . . . , ap be a repetition-freeenumeration of the elements of ⋃N

i=1 Dom ei, su
h that there is a list of non-negative integers 0 = h0 ≤ h1 ≤ · · · ≤ hN = p su
h that, for i = 1, . . . , N , thelist ahi−1+1, . . . , ahi
is a repetition-free enumeration of the elements of Dom(ei).Let e : {1, . . . , p} → {1, . . . , n} be the map whi
h is uniquely de�ned by the fa
tthat, for ea
h i = 1, . . . , N and ea
h j su
h that hi−1 + 1 ≤ j ≤ hi, one has

ei(aj) = be(j).Then one has S Ib1,...,bn
t if t is a simple net of the following shape, where

s1,. . . , sN are simple nets su
h that Pi Ib1,...,bn
si and δ is an e-identi�
ationstru
ture as in Figure 7(g).Last, if we are moreover given L ⊆ N and a repetition-free list of names

b1, . . . , bn 
ontaining all the free names of the state (S, L), one has (S, L) Ib1,...,bn

u if one has S Ib1,...,bn,c1,...,cp
t for some repetition-free enumeration c1, . . . , cp of

L (assumed of 
ourse to be disjoint from b1, . . . , bn, whi
h is always possible upto α-equivalen
e), and u is obtained by plugging 
ommuni
ation areas of order
−1 on the pairs of free ports of t 
orresponding to the cjs.5 Comparing the transition systemsWe establish �rst two results whi
h are the main ingredients towards our bisim-ulation theorem.Proposition 1. Let (S, L) and (T, M) be 
anoni
al states and let l, m ∈ L\{τ}.Assume that (S, L)

lm
−→ (T, M). Let s be a simple net su
h that (S, L) Ib1,...,bn

swhere b1, . . . , bn is a repetition-free list of names 
ontaining all the free names of
(S, L). Then there are simple nets t0 and t su
h that (T, M) Ib1,...,bn

t, s
lm
−→ t0and t0 ∼d t.Proposition 2. Let (S, L) be a 
anoni
al state and b1, . . . , bn be a repetition-free list of names 
ontaining all the free names of (S, L). Let s be a simple netsu
h that (S, L) Ib1,...,bn

s. If t′0 is a simple net su
h that s
lm
−→ t′0, then there isa 
anoni
al state (T, M) su
h that (S, L)

lm
−→ (T, M) and there exists a simplenet t su
h that (T, M) Ib1,...,bn

t and t ∼d t′0.We are now ready to state a bisimulation theorem. Given a repetition-free list
b1, . . . , bn of names, we de�ne a relation Ĩb1,...,bn

between states and simple netsby: (S, L) Ĩb1,...,bn
s if there exists a simple net s0 su
h that (S, L) Ib1,...,bn

s0and s0 ∼d s.Theorem 2. The relation Ĩb1,...,bn
de�nes a bisimulation between the labeledtransition systems SL and DL.
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esses.6.1 Reminder: the general formalism of intera
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iated with ea
h kind, this typing rule being a list
(A0, A1, . . . , An) of types (where n is the arity asso
iated to the kind; types aretypi
ally formulae of linear logi
). A net is made of 
ells. With ea
h 
ell γ isasso
iated a kind and therefore an arity n and a typing rule (A0, A1, . . . , An).Su
h a 
ell γ has one prin
ipal port p0 and n auxiliary ports p1, . . . , pn. A nethas also a �nite set of free ports. All these ports (the free ports and the portsasso
iated with 
ells) have to be pairwise distin
t and a set of wires is given.This wiring is a family of pairwise disjoint sets of ports of 
ardinality 2 (ordinarywires) or 0 (loops), and the union of these wires must be equal to the set of allports of the net. An oriented wire of the net is an ordered pair (p1, p2) where
{p1, p2} is a wire. In a net, a type is asso
iated with ea
h oriented wire, in su
ha way that if A is asso
iated with (p1, p2), then A⊥ is asso
iated with (p2, p1).Last, the typing rules of the 
ells must be respe
ted in the sense that for ea
h 
ell
γ of arity n, whose ports are p0, p1, . . . , pn and typing rule is (A0, A1, . . . , An),denoting by p′0, p

′
1, . . . , p

′
n the ports of the net uniquely de�ned by the fa
t thatthe sets {pi, p

′
i} are wires (for i = 0, 1, . . . , n), then the oriented wires (p0, p

′
0),

(p′1, p1),. . . ,(p′n, pn) have type A0, A1,. . . ,An respe
tively.6.2 Arity typing of pro
esses.Although not stri
tly ne
essary, it is 
onvenient to assume that our pro
esses are�typed� in the sense that ea
h name is given with an arity, whi
h is a possiblyempty list of arities. When a name of arity (ρ1, . . . , ρn) o

urs as subje
t, it isalways assumed that it has n obje
ts b1, . . . , bn, the arity of bi being ρi. Thisguarantees that, during the redu
tion, when an input pre�x 
ommuni
ates withan output pre�x, the numbers of obje
ts of the two involved pre�xes 
oin
ide.Sin
e this is a standard π-
al
ulus notion (see [SW01℄, Part III), we shall notsay more about it, and we shall simply assume that, during the redu
tion ofpro
esses and states, the arities of 
ommuni
ating pre�xes always 
oin
ide.



6.3 α-equivalen
e of states.Given a partial fun
tion f : N → N and a pro
ess P , we denote by f · P thepro
ess where ea
h free name a has been repla
ed by f(a) (if a ∈ Dom f) � this
onstru
tion is not part of the syntax, it is a meta-operation like substitution inthe lambda-
al
ulus �. Of 
ourse, bound names have to be renamed to avoidname 
lashes.Two 
losures (P1, e1) and (P2, e2) are α-equivalent (written (P1, e1) ∼α (P2, e2))if there is a bije
tion on names f su
h that f · P1 and P2 are α-equivalent,and e2 ◦ f = e1. Two soups S and T are α-equivalent if S = γ1 . . . γN and
T = δ1 . . . δN with γi ∼α δi for ea
h i. Let f : N → N be a fun
tion. If γ = (P, e)is a 
losure, one sets f ·γ = (P, f ◦ e). And last, f ·(γ1 . . . γN ) = (f ·γ1) . . . (f ·γN )Two states (S, L) and (T, M) are α-equivalent if there is a bije
tion on names
f whi
h is the identity on N \ L and satis�es f(L) = M and f · S ∼α T . Thefree names of a state (S, L) are the names belonging to the 
odomain of S butnot to L, we denote by FV(S, L) the set of these free names.6.4 Relating the rewriting and the abstra
t ma
hine approa
hes tothe operational semanti
s of the π-
al
ulusWe re
all a more standard way of presenting the operational semanti
s of the
π-
al
ulus and outline its equivalen
e with the environment ma
hine style wehave 
hosen.One de�nes �rst a stru
tural equivalen
e relation between labeled π-terms,denoted as ∼. It is the least equivalen
e relation su
h that

nil | P ∼ P

P | Q ∼ Q | P

(P | Q) | R ∼ P | (Q | R)

νa · νb · P ∼ νb · νa · P

νa · nil ∼ nil

(νa · P ) | Q ∼ νa · (P | Q) if a /∈ FV QThen one 
an de�ne a labeled transition system, where the transitions are labeledby pairs of labels (as all the transition systems we 
onsider in the present paper).This transition system is de�ned by the following rules:
[l]a(b1, . . . , bn) · P1 | [m]a〈c1, . . . , cn〉 · P2

lm
−→ P1[c1, . . . , cn/b1, . . . , bn] | P2

P1 ∼ P ′
1 P ′

1
lm
−→ P ′

2 P ′
2 ∼ P2

P1
lm
−→ P2

P
lm
−→ P ′

P | Q
lm
−→ P ′ | Q

P
lm
−→ P ′

νa · P
lm
−→ νa · P ′



Then one de�nes a translation relation T between states and pro
esses. Wesay that P T (S, L) if S = (P1, e1) · · · (Pn, en), L = {a1, . . . , ak} and P ∼
νa1 . . . ak · ((e1 · P1 | · · ·) | en · Pn).Proposition 3. For any pro
ess P , one has P T Can((P, e), ∅) where e is thepartial identity fun
tion whose domain is FV(P ). Moreover, the relation T is abisimulation.The proof is easy.7 Annex: proofsWe give the proofs of all the statements of the paper.7.1 Proof of Lemma 1The following is a simple, but quite useful remark.Lemma 3. Let s0 be a simple net whi
h 
ontains an (l, m)-
ommuni
ation re-dex. If s0 ;

∗
{l,m} t0, then t0 is simple, 
ontains an (l, m)-
ommuni
ation redexand one has a
tually s0 ;

∗
d t0. Moreover, if s is the simple net obtained from s0by redu
ing the (l, m)-
ommuni
ation redex, then s ;d t where t is the simplenet obtained from t0 by redu
ing the (l, m)-
ommuni
ation redex of t0.Now we 
an prove Lemma 1.Proof. Assume s ;

∗
{l,m} t = s1 + · · · + sn where ea
h si is simple and where

s1 
ontains an (l, m)-
ommuni
ation redex. By the Chur
h-Rosser property of
;

∗
{l,m}, there is s′′ su
h that t ;

∗
{l,m} s′′ and s′ ;

∗
{l,m} s′′. By Lemma 3applied to s1, s′′ must have a summand 
ontaining an (l, m)-
ommuni
ationredex, 
ontradi
ting our hypothesis on s′. 27.2 Proof of Lemma 2Proof. Let s, s′ ∈ ∆ and assume that s ∼d s′. Assume moreover that s

lm
−→

t, whi
h means that s ;
∗
{l,m} s0 + s1 + · · · + sn where ea
h si is simple, s0
ontains an (l, m)-
ommuni
ation redex, ea
h si is {l, m}-neutral for i ≥ 1 and

t is obtained by redu
ing the (l, m)-
ommuni
ation redex of t0. By the Chur
h-Rosser property of ;
∗
{l,m} (remember that ;d ⊆ ;

∗
{l,m}), there exists u ∈ N〈∆〉su
h that s0+s1+ · · ·+sn ;

∗
{l,m} u and s′ ;

∗
{l,m} u. But by lemmas 3 and 1, wehave u = u0 +u1 + · · ·+um with s0 ;d u0, u0 
ontains an (l, m)-
ommuni
ationredex, and if we redu
e this redex, we obtain a net t′ su
h that t ;d t′. 27.3 A diving lemmaWe �rst introdu
e the auxiliary notions of guarded 
ell and of a (
o)dereli
tion
ell diving into a pro
ess. We then state and prove two lemmas whi
h will be
ru
ial in the proofs of Proposition 1 and 2.



7.3.1 Guarded dereli
tion and 
odereli
tion 
ells. Let l, r ∈ L be dis-tin
t, r 6= τ and let s ∈ ∆. Let δ be a (
o)dereli
tion 
ell labeled by l in s. Onesays that δ is guarded by (the dereli
tion or 
odereli
tion 
ell labeled by) r in sif there is a sequen
e p1, . . . , pn of pairwise distin
t ports of s su
h that� p1 is the auxiliary port of δ and p2 is its prin
ipal port;� pn−1 is the auxiliary port of r and pn is its prin
ipal port;� and for ea
h i with 1 < i < n − 1, either pi and pi+1 are the two ports of awire of s or there is a 
ell in s su
h that pi−1 is an auxiliary port of that 
elland pi is its prin
ipal port.Su
h a sequen
e of ports will be 
alled a guarding path from δ to r in s (observethat sin
e r 6= τ , there is no ambiguity on the (
o)dereli
tion 
ell labeled by rin s, whereas l 
an be equal to τ and so there might be several (
o)dereli
tion
ells labeled by l in s).7.3.2 Persisten
y.Lemma 4. Let s be a simple net, let R ⊆ L, let l, r be labels whi
h are distin
t,with r 6= τ . Let δ be an l-labeled (
o)dereli
tion 
ell whi
h is guarded by r in sand assume that s ;
∗
R s1 + · · ·+sp where the si are simple. Then δ and r o

ur,and δ is guarded by r, in ea
h of the simple nets si.Proof. The proof is straightforward: the (
o)dereli
tion r 
an take part only tonon-deterministi
 redu
tions during an ;R-redu
tion, and hen
e 
annot disap-pear (more pre
isely, its only way of disappearing is by turning to 0 the wholesimple net where it o

urs). 27.3.3 Diving of dereli
tions and 
odereli
tions. Let l ∈ L \ {τ}, let ube a simple net, let P be a pro
ess. We say that l dives into P in u if there is arepetition-free list of names b1, . . . , bn and a simple net s su
h that P Ib1,...,bn

sand u is of one of the following shapes (a

ording to whether l labels a dereli
tionor a 
odereli
tion 
ell):
?∗

?

· · · · · ·

s

· · ·

θ

t

c

l
· · ·

!∗

!

· · · · · ·

s

· · ·

θ

t

c

l
· · ·

where θ is a boxed identity 
ell, or a net of the following shape, 
onsisting of alabeled input of output pre�x 
ompound 
ell, with a label di�erent from τ :



?∗

. . . . . .
· · ·

...With these notations, our aim is here to prove the following property.Lemma 5 (Diving). Assume that l ∈ L \ {τ} dives into P in the simple net
u, and let m ∈ L \ {τ} whi
h does not o

ur in P . Then u is {l, m}-neutral.The label m 
annot o

ur in P , but it 
an o

ur in the remainder of u; themeaning of the lemma is that, during the redu
tion, �l 
annot exit from P � or,more pre
isely, if it exits, it is by the 
ontrol port c.7.4 Proof of Lemma 5Proof. By indu
tion on P and 
ontradi
tion, so assume that u ;

∗
{l,m} u1 + u′and that u1 
ontains an (l, m)-
ommuni
ation redex.Assume �rst that P = nil. Assume that l is a dereli
tion. Then u has thefollowing shape

?

?

?∗

t

· · ·

θ
c

· · · · · ·

l
· · ·

Thus u ;
∗
{l,m} 0 by 3.3.5. Hen
e by the Chur
h-Rosser property of ;

∗
{l,m}, wemust have u1 + u′

;
∗
{l,m} 0. But this is impossible by Lemma 3 sin
e u1 has an

(l, m)-
ommuni
ation redex.The 
ase P = P1 | P2 is similarly handled: using 3.3.5 and the indu
tivehypothesis, one shows that u ;
∗
{l,m} u′ where u′ is a sum of {l, m}-neutralsimple nets, and hen
e u is {l, m}-neutral by Lemma 1.If P = νa · Q, one applies dire
tly the indu
tive hypothesis.To 
on
lude, we 
onsider the 
ase where P = [r]bf(0)〈bf(1) . . . bf(p)〉 · Q. As-sume �rst that l is a dereli
tion. Then u is of the following shape (without loss ofgenerality, we assume that the dereli
tion is 
onne
ted to a port 
orrespondingto the name bn), where s is a simple net satisfying Q Ib1,...,bn

s:



•

?

?
•

!

I !

?∗

?

...
bnb1 . . .

...1
nq

0

c

f...
c

. . .

s

r

. . .

θ

t

l

...γn

· · ·· · ·Then, aggregating �rst the 
ommuni
ation area γn with the 
ommuni
ation areaof the f -identi�
ation stru
ture to whi
h it is 
onne
ted, we see that we have
u ;

∗
{l,m}

∑N

i=1 ui where ui is a simple net whi
h has the following shape
•

?

?
•

!

I !

?

...
bnb1 . . .

c

c

. . .

s

r

. . .

θ

t

l

· · ·

vi

......γ
ϕ

· · ·

0

q

β

where, a

ording to 3.3.5, in vi, the prin
ipal port of l is forwarded (see thede�nition of this 
on
ept in 3.3.3)1. to the port b+
n of s2. or to the prin
ipal port of the 
oweakening 
ell γ, in the 
ase where f(0) = n3. or to one of the input auxiliary port of the 
ompound 
ell ϕ, 
orrespondingto an index j ∈ {1, . . . , q} su
h that f(j) = n.For i satisfying (2), we have ui ;

∗
{l,m} 0. For i satisfying (3), l is guarded by

r 6= τ (the labeled dereli
tion 
ell of ϕ) in ui, and so ui is {l, m}-neutral byLemma 4. For i satisfying (1), the indu
tive hypothesis applies, showing that uiis {l, m}-neutral. Therefore u is {l, m}-neutral by Lemma 1.Assume now that l is a 
odereli
tion, so that u has the following shape (withthe same notations as above).



•

?

?
•

!

I !

!∗

!

...
bnb1 . . .

...1
nq

0

c

f...
c

. . .

s

r

. . .

θ

t

l

γn

· · ·· · ·

...β

As before, we have u ;
∗
{l,m}

∑N

i=1 ui where the ui's have the same shape asbefore. Using the same notations, in vi, the prin
ipal port of l is forwarded1. to the port b−n of s2. or to the dotted auxiliary port of the transistor output 
ompound 
ell β, inthe 
ase where f(0) = n3. or to one of the input auxiliary port of the 
ompound 
ell ϕ, 
orrespondingto an index j ∈ {1, . . . , q} su
h that f(j) = n.The 
ases (1) and (3) are handled as before. So 
onsider an index i 
orrespondingto 
ase (2). There are two possibilities, depending on the value of the net θ. If θis a boxed identity 
ell, then ui ;
∗
{l,m} u′ where u′ is a simple net whi
h 
ontainsthe following subnet

? !∗
!

r l...Sin
e we have r /∈ {l, m} (remember that we have assumed that m does not o

urin P ), this subnet has no ;
∗
{l,m}-redex, and therefore, it will still be present inany simple summand of a net u′′ su
h that u′

;
∗
{l,m} u′′. So u′ is {l, m}-neutral,and so is u by Lemma 1.Assume last that θ 
onsists of an r′-labeled output or input pre�x 
ompound
ell (with r′ 6= τ) together with a generalized 
ontra
tion 
ell (se
ond possibilityfor θ in 7.3.3). Here we 
an have r′ = m, but l is guarded by r′ in u, and hen
e

u is {l, m}-neutral by Lemma 4 and Lemma 1.The 
ase where P starts with an input pre�x is 
ompletely similar, and of
ourse simpler, to that of an output pre�x. 2Lemma 6. Let (S, L) be a state and let b1, . . . , bn be a repetition-free enumera-tion of the free names of (S, L). Let (T, M) be its 
anoni
al form and let s be asimple net su
h that (S, L) Ib1,...,bn
s. Then there exists a simple net t su
h that

(T, M) Ib1,...,bn
t and s ∼s t.The proof is by simple inspe
tion of the de�nition of the interpretation relation,using 3.3.1.



7.5 Proof of Proposition 1Proof. We know that S must be of the shape
S = ([l]a(c1 . . . cp)·P, e1)([m]df(0)〈df(1) . . . df(p)〉·Q, e2)(P3, e3) · · · (PN , eN) (1)where we assume that the ei have pairwise disjoint domains, that a, c1, . . . , cp,

cp+1 . . . , cp+q is a repetition-free enumeration of the domain of e1, that d1, . . . , dris a repetition-free enumeration of the domain of e2, that h1, . . . , hm is a repetition-free enumeration of the union of the domains of e3,. . . ,eN , and f : {0, . . . , p} →
{1, . . . , r} is a fun
tion, and we have e1(a) = e2(df(0)). And (T, M) = Can(S′, L)where

S′ = (P, e1[c1 7→ e2(df(1)), . . . , cp 7→ e2(df(p))])(Q, e2)(P3, e3) · · · (PN , eN) .Without loss of generality, we 
an assume that f(0) = 1. With these nota-tions, s is the following simple net, where s1 is a simple net su
h that P Ia,c1,...,cp+q

s1, s2 is a simple net su
h that Q Id1,...,dr
s2 and s′ stands for the juxtaposi-tion of simple nets si su
h that Pi I

h
isi (for 3 ≤ i ≤ N) where h

i stands foran enumeration of the domain of ei (so that the lists of names h
i are pairwisedisjoint, and their 
on
atenation is a repetition-free enumeration of the names

h1, . . . , hm), with a boxed identity 
onne
ted to the 
ontrol ports of ea
h si:
!

I !

•

?
•

?

I !

?

I ! ?

I !

•
!

•

dr

. . .

. . .

. . .

a cp+1. . .
c c1 . . .

. . .

cp

l

. . . . . . . . .

s′

e

s1

cp+q

...h1

hm

r + 2r

β2

γ1

σ

1

d1

s2

...
c

f

p

m

c ...
r

0

1

r + 1

β1 ...
r + q + m + 1

γ2

In this net, e is the fun
tion {1, . . . , r+q+m+1} → {1, . . . , n} whi
h 
orrespondsto the union of the fun
tions ei for i = 1, . . . , N . Observe that we have e(1) =
e(r + 1) sin
e by hypothesis e1(a) = e2(d1).We have omitted in the pi
ture the pairs of free ports 
orresponding to
b1, . . . , bn, bn+1, . . . , bn+n′ , the names bi for i > n 
orresponding to the elementsof L; remember that they are there and that ea
h pair of free port 
orrespondingto a bi with i > n is 
onne
ted to a 
ommuni
ation area of order −1.Then we 
an redu
e this net along the following steps.� Observe �rst that the pairs of ports 1 and r + 1 (atta
hed to the domain of

e) are 
onne
ted to a 
ommon 
ommuni
ation area δ1 in the identi�
ationstru
ture labeled by e (see 3.2.2) sin
e e(1) = e(r + 1), and also that the
odomain pair of ports 1 and the domain pair of ports 0 of the identi�
ation



stru
ture labeled by f are 
onne
ted to a 
ommon 
ommuni
ation area δ2in this identi�
ation stru
ture, sin
e f(0) = 1. We apply redu
tion 3.3.1for aggregating the 
ommuni
ation areas γ1, δ1, γ2 and δ2 in an unique
ommuni
ation area δ. Let u be the obtained simple net, we have s ;
∗
{l,m} u.� Apply redu
tion 3.3.7 to both transistors β1 and β2 and let u′ be the obtainedsimple net, we have u ;

∗
{l,m} u′.� u′ 
ontains therefore the following subnet v

! ?

? !

· · ·

δ

m l
g + 2

r2g+4r1where, for i = −1, 0, . . . , g the pair of ports (r2i+3, r2i+4) is 
onne
ted either1. to the pair of port a of s12. or to one of the pairs of ports cp+1, . . . , cp+q of s13. or to one of the pairs of ports h1, . . . , hm of s′4. or to a pair of ports of one of the 
ommuni
ation areas 
onne
ted to
d2, . . . , dr5. or to the pair of ports d16. or to one of the auxiliary pairs of ports of the output pre�x 
ompound
ell labeled by m7. or to one of the pairs of ports bi 
orresponding to 
odomain pairs ofports of the identi�
ation stru
ture e; these pairs of ports are either freein s (and hen
e in u′) or 
onne
ted to a 
ommuni
ation area of order
−1.To v, we 
an apply redu
tion 3.3.4.This subnet redu
es by the ;

∗
{l,m} re-du
tion to a sum v0 + v1 + · · · + vkwhere v0 is

? !

· · ·

m l
g

δ

r1 r2g+4and the vj 's (j ≥ 1) are nets of theshape
? !

· · ·

m l

r1 r2g+4

wjwhere the prin
ipal port of l andm are forwarded to ports among r1, . . . , r2g+4.We have u′
;

∗
{l,m} u′

0 + u′
1 + · · · + u′

k where u′
j is obtained by repla
ing in

u′ the net v by the net vj (j = 0, . . . , k).� We apply the (l, m)-
ommuni
ation redu
tion to u′
0, getting a simple net t0whi
h is ∼d equivalent to the following simple net



I !I !

dr

. . .

. . .

. . .

a cp+1. . .c1 . . .

. . .

cp

. . . . . . . . .

s′

s1

cp+q

...h1

hm

r

c

...
r

1

p

f ′

1

d1

s2

c

e

1

r + 1 r + 2 r + q + m

...where f ′ is the restri
tion of f to {1, . . . , p}. This net is ∼s equivalent to asimple net t1 with (S′, L) Ib1,...,bn
t1 (upon applying 3.3.1 to the 
ommuni-
ation areas of the identi�
ation stru
ture f ′, the ones whi
h are 
onne
tedto the pairs of free ports di of s2 and those belonging to the identi�
ationstru
ture e). By Lemma 6, there is a simple net t su
h that t1 ∼s t and

(T, M) Ib1,...,bn
t.To 
on
lude, we must 
he
k that, for j ≥ 1, u′

j is {l, m}-neutral. But, for ea
hof the two labels l and m, we are in one of the seven 
ases (1) to (7) above.Consider for instan
e label l. If we are in 
ase (1), (2), (3), (5), we 
an dire
tlyapply Lemma 5.Assume that we are in 
ase (4), we 
anapply 3.3.5 and see that u′
j ;

∗
{l,m} w1 +

w2 where w1 and w2 are simple, and w1
ontains a subnet of the shown shape(assuming that in u′
j , l is forwarded tothe 
ommuni
ation area 
onne
ted to

dr). Hen
e by Lemma 5, w1 is {l, m}-neutral. !∗

!

?

•

I !

dr

. . .

. . .d1

s2

c

l

m ...On the other hand, w2 
ontains a sub-net of the following shape. This subnet
;

∗
{l,m} redu
es by 3.3.5 to a sum of sim-ple nets in ea
h of whi
h l is guarded by

m. Therefore, by Lemma 1, w2 is {l, m}-neutral. So by the same lemma, u′
j is

{l, m}-neutral. ?

?
•

!

•
!∗

!

l...f

p

m
...
r

0

1
τ1 ......If we are in 
ase (6) then, in u′

j, l is guarded by m and hen
e u′
j is {l, m}-neutral by Lemma 4. Last assume we are in 
ase (7); in this 
ase, l is 
onne
tedto an auxiliary port of a generalized stru
tural 
ell whose prin
ipal port is free,or is 
onne
ted to a weakening 
ell. In both 
ases again it is 
lear that u′

j is
{l, m}-neutral 2



7.6 Proof of Proposition 2Proof. One shows �rst that both l and m must be minimal in the poset L(S, L).Assume for instan
e that m is not minimal. Then the prin
ipal port of thedereli
tion 
ell labeled by m is 
onne
ted to an auxiliary port of a transistorwhose prin
ipal port is 
onne
ted to an auxiliary port of an input or outputpre�x 
ell, labeled say by m′, with m′ < m (a
tually, m′ is the prede
essor of min the forest L(S, L)). Say for instan
e that the pre�x 
ell labeled by m′ is aninput pre�x 
ell. So s 
ontains the following subnet
!

?
•

••

?

I !

I !

m′m

... ...So m is guarded by m′ in s and so, whenever s ;
∗
{l,m} s′, no simple net appear-ing in s′ 
an 
ontain an (l, m)-
ommuni
ation redex, in 
ontradi
tion with ourhypothesis that s

lm
−→ t′0.We have seen that l and m are minimal in the poset L(S, L) and this meansthat in S, the pre�xes labeled by l and m are the outermost pre�xes of P1 and

P2 where S = (P1, e1) · · · (PN , eN ) (and the 
hoi
e of P1 and P2 is uniquelydetermined by l and m), that is, S is of the form des
ribed by Equation (1) inthe proof of Proposition 1, P1 denoting the �rst pro
ess in that expression, whi
his guarded by an l-labeled input pre�x, and P2 the se
ond one, whi
h is guardedby an m-labeled output pre�x. Using the notations of that formula, we arguenow that ne
essarily e1(a) = e2(df(0)). But if this is not the 
ase, an inspe
tionof the interpretation of input pre�xes (Paragraph 4.2.4), of states (Se
tion 4.2.6)and of the identi�
ation stru
ture (Paragraph 3.2.2) asso
iated to the �globalenvironment� e shows that s ;
∗
{l,m} s′ = s′1 + · · · + s′q where for ea
h i, s′i issimple and one of the following holds:1. in s′i, l is forwarded to a free port of s′2. or in s′i, l dives into a subnet t su
h that Pj Ic1,...,cr

t for some j = 1, . . . , Nand c1, . . . , cr is a repetition-free enumeration of the domain of ej.In 
ase (1), s′i is {l, m}-neutral. The same is true of s′i in 
ase (2) when the index
j is di�erent from 2 sin
e then Pj 
annot 
ontain the label m and we 
an applyLemma 5. In the 
ase j = 2, using our assumption that e1(a) 6= e2(df(0)), wesee that l dives into t through a free port whi
h does not 
orrespond to df(0)and from this (and from an inspe
tion of the interpretation of output pre�xes,Paragraph 4.2.5), we see that si ;

∗
{l,m} s′ where s′ is a sum of simple netsin whi
h, either l is guarded by m, or l dives into a subnet u of t su
h that

Q Ih1,...,hq
u (for a suitable list of names h1, . . . , hq), where Q is the pro
essguarded by the m-labeled output pre�x of P2 (and therefore, Q does not 
ontainthe label m). Applying Lemma 4 in the �rst 
ase and Lemma 5 in the se
ond
ase, we see that ea
h simple summand of s′ is {l, m}-neutral and therefore



si also is {l, m}-neutral by Lemma 1. Finally, by the same lemma, s itself is
{l, m}-neutral, 
ontradi
ting the hypothesis that s

lm
−→ t′0.So we must have e1(a) = e2(df(0)) and sin
e our pro
esses and states areimpli
itly arity-typed (see Paragraph 6.2), we know that the number of obje
tsof the two involved pre�xes 
oin
ide (the 
ommon value of these numbers is p,a

ording to our notations).Using the same notations as in Proposition 1, and the statement itself of thistheorem, we have (S, L)

lm
−→ (T, M) and there are simple nets t and t0 su
hthat (T, M) Ib1,...,bn

t, t ∼d t0 and s
lm
−→ t0. This means more pre
isely that

s ;
∗
{l,m} s′ = s0 + s1 + · · ·+ sp, with the sj 's simple, su
h that s0 has an (l, m)-
ommuni
ation redex and ea
h sj (for j ≥ 1) is {l, m}-neutral and t0 is the netobtained by redu
ing the (l, m)-
ommuni
ation redex of s0.We 
on
lude by showing that t0 ∼d t′0.We know from our hypothesis that s ;

∗
{l,m} s′′ = s′0 + s′1 + · · · + s′q, where

s′0 has an (l, m)-
ommuni
ation redex and ea
h s′j (for j ≥ 1) is {l, m}-neutral,and t′0 is the simple net obtained from s′0 by redu
ing its (l, m)-
ommuni
ationredex.By the Chur
h Rosser property of ;∗
{l,m}, there is a net u su
h that s′ ;

∗
{l,m}

u and s′′ ;
∗
{l,m} u. By Lemma 3, we have u = u0 + u′ with s0 ;d u0 and

s′0 ;d u0, thanks also to the {l, m}-neutrality of sj and s′j for j ≥ 1. Moreover(still by Lemma 3), u0 
ontains an (l, m)-
ommuni
ation redex as well, and if v0is the net obtained by redu
ing the (l, m)-
ommuni
ation redex of u0, we havealso t0 ;d v0 and t′0 ;d v0. So we have t0 ∼d t′0. 27.7 Proof of Theorem 2Proof. Let (S, L) be a 
anoni
al state and s1 be a simple net, and assume that
(S, L) Ĩb1,...,bn

s1. So there is a simple net s su
h that (S, L) Ib1,...,bn
s and

s ∼d s1.Assume �rst that (S, L)
lm
−→ (T, M), with l, m two distin
t elements of L\{τ}.By Proposition 1, there are simple nets t0 and t su
h that (T, M) Ib1,...,bn

t0 ∼d tand s
lm
−→ t. By Lemma 2 (∼d is a bisimulation), there exists t1 su
h that t ∼d t1and s1

lm
−→ t1. We have (T, M) Ĩb1,...,bn

t1.Conversely, assume that s1
lm
−→ t1. By Lemma 2, there exists t su
h that

t ∼d t1 and s
lm
−→ t. By Proposition 2, there is a 
anoni
al state (T, M) and asimple net t0 su
h that (S, L)

lm
−→ (T, M) and (T, M) Ib1,...,bn

t0 ∼d t. We have
(T, M) Ĩb1,...,bn

t1. 28 Annex: examplesWe give a few examples to illustrate some key features of 
ommuni
ation in the
π-
al
ulus as represented in di�erential intera
tion nets.



8.1 Con
urrent 
ommuni
ationLet P be the pro
ess:
νa ·

((
[l]a() · nil | [m]a〈〉 · nil

)
| [r]a〈〉 · nil

)The simplest state 
ontaining P is (S, L) = ((P, ∅), ∅). We have (S, L) I s where
s is the following simple net:

I !

I !

?∗

?∗

?

!
•

• •

?∗

?

•
?

!∗

I !

•

?∗

?

•
?

!∗

I !

?∗

l m r

By applying aggregations of 
ommuni
ation areas, we obtain the simple net
s1:

?∗

!

I !

?∗

I !

?•

•

?

?

I !

?∗

•

•

?

?

I !

?∗

•

•
!∗

?∗

!∗

l
m r

thus s ;
∗
s s1. Sin
e P is in fa
t a CCS pro
ess, we 
an remark how the translationinto di�erential intera
tion nets is given by �rst a tree (with nodes representedwith dashed boxes) 
orresponding to the tree stru
ture of the CCS pro
ess (builtfrom sequential and parallel 
ompositions), and se
ond 
ommuni
ation areas forthe identi�
ation of names.The simple net s1 redu
es to the following net s2 (s1 ;

∗
d s2):



!
•

I ! ?∗

?∗

?
•

?∗

I !

!∗

!∗

I ! ?∗

?•

l
m

r

where the 
hoi
e between a
tions ready to 
ommuni
ate will be done. This meansthat s2 redu
es to a sum of simple nets 
ontaining in parti
ular the following s3(s2 ;
∗
{l,m} s3 + · · · ):

I !

?∗

!

?
•

?∗

I !

!∗

?
•

?∗

I !

m •

r

l

If t is obtained from s3 by redu
ing the (l, m)-
ommuni
ation redex, we have
s

lm
−→ t. This 
orresponds to (S, L) ;can (([l]a() · nil, e)([m]a〈〉 · nil, e)([r]a〈〉 ·

nil, e), {a′})
lm
−→ (([r]a〈〉 · nil, e), {a′}) (with e de�ned only on {a} by e(a) = a′)in the environment ma
hine.8.2 SequentialityLet P be the pro
ess:

νa ·
(
[l]a() · [l′]b() · nil | [m′]b〈〉 · nil | [m]a〈〉 · nil

)The simplest state 
ontaining P is (S, L) = ((P, e), ∅) (with e de�ned on {a, b}by e(a) = a′ and e(b) = b′). We have (S, L) Ia′,b′ s with s ;
∗
s s1 (aggregationsof 
ommuni
ation areas) and s1 is the following simple net:
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Sin
e P is again a CCS pro
ess, we 
an see its tree stru
ture in the di�erentialintera
tion net s1.The simple net s1 redu
es to the following net s2 (s1 ;
∗
d s2):
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l
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b′Then there exists a simple net s3 su
h that s2 ;
∗
{l,m} s3 + · · · and if t isobtained from s3 by redu
ing the (l, m)-
ommuni
ation redex it 
ontains, wehave s

lm
−→ t. Moreover t redu
es to the following net:
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l′

m′

a′

b′This 
orresponds to (S, L) ;can (([l]a() · [l′]b() · nil, e)([m′]b〈〉 · nil, e)([m]a〈〉 ·

nil, e), ∅)
lm
−→ (([l′]b() · nil, e)([m′]b〈〉 · nil, e), ∅) in the environment ma
hine.8.3 Name passingLet P , Q and R be pro
esses su
h that the free names of P are a and z, the onlyfree name of Q is y and the free names of R are x and b. Let P ′ be the pro
ess:

νz ·
(
[l]a〈z〉 · P | [l′]z(y) · Q

)
| [m]a(x) · [m′]x〈b〉 · RThe simplest state 
ontaining P ′ is (S, L) = ((P ′, e), ∅) (with e de�ned on {a, b}by e(a) = a′ and e(b) = b′). If P Ia,z s1, Q Iy s2 and R Ix,b s3, we have

(S, L) Ia′,b′ s′ with s′ ;
∗
s s′1 (aggregations of 
ommuni
ation areas) and s′1 isthe following simple net:
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a′We have s′
ml
−→ t with t ;

∗
d s′2 and s′2 is the following simple net:
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a′where the identi�
ation of the names z and x 
orresponds to the 
onne
tion ofthe asso
iated 
ommuni
ation areas.Finally t
l′m′

−→ t′ with t′ ;
∗
d s′3 and s′3 is the following simple net:
I ! I !

c c cs1 s2 s3

a z y x bI !

b′

a′where y and b are also identi�ed.This 
orresponds to (S, L) ;can (([l]a〈z〉 · P, e[z 7→ z′])([l′]z(y) · Q, e[z 7→

z′])([m]a(x)·[m′]x〈b〉 · R, e), {z′})
ml
−→ ((P, e[z 7→ z′])([l′]z(y)·Q, e[z 7→ z′])([m′]x〈b〉·

R, e[x 7→ z′]), {z′})
l′m′

−→ ((P, e[z 7→ z′])(Q, e[z 7→ z′, y 7→ b′])(R, e[x 7→ z′]), {z′})in the environment ma
hine.


