Interpreting a Finitary Pi-Calculus in Differential
Interaction Nets”

Thomas Ehrhard?®, Olivier Laurent

® Preuves, Programmes et Systémes, CNRS and Université Paris Diderot — Paris 7
b Laboratoire de I’Informatique du Parallélisme, Université de Lyon, ENS Lyon - CNRS -
UCBL - INRIA

Abstract

We propose and study a translation of a pi-calculus without sums nor recursion
into an untyped version of differential interaction nets. We define a transi-
tion system of labeled processes and a transition system of labeled differential
interaction nets. We prove that our translation from processes to nets is a
bisimulation between these two transition systems. This shows that differen-
tial interaction nets are sufficiently expressive for representing concurrency and
mobility, as formalized by the pi-calculus.

Our study will concern essentially a replication-free fragment of the pi-
calculus, but we shall also give indications on how to deal with a restricted
form of replication.

Key words: linear logic, interaction nets, concurrency, pi-calculus

Introduction

Linear Logic proofs [Gir87] admit a proof net representation which has a very
asynchronous and local reduction procedure, suggesting strong connections with
parallel computation. This impression has been enforced by the introduction of
interaction nets and interaction combinators by Lafont in [Laf95].

But the attempts at relating concurrency with linear logic (e.g. [EW97],
[AM99], [Mel06], [Bef05], [CF06] based on [FMO5]...) missed a crucial fea-
ture of concurrency, such as modeled by process calculi like Milner’s m-calculus
[Mil93], [SWO1]: its intrinsic non-determinism. Indeed, all known logical sys-
tems had either an essentially deterministic reduction procedure — this is the
case of intuitionistic and linear logic, and of classical systems such as Girard’s
LC or Parigot’s A — or an excessively non-deterministic one, as Gentzen’s clas-
sical sequent calculus LK, which equates all proofs of the same formula.

However, many denotational models of the lambda-calculus and of linear
logic admit some form of non-determinism (e.g. [Plo76, Gir88b]), showing that

UThis work has been partially funded by the ANR. project BLAN07-1 189926 TIF Curry-
Howard for Concurrency (CHOCO).

Preprint submitted to Elsevier October 2, 2009

a non-deterministic proof calculus is not necessarily trivial. The first author
introduced such models, based on vector spaces (see e.g. [Ehr05]), which have
a nice proof-theoretic counterpart, corresponding to a simple extension of the
rules that linear logic associates with the exponentials.

In this differential linear logic (DiLL), the weakening rule has a mirror image
rule called coweakening, and similarly for dereliction and for contraction, and the
reduction rules have the same mirror symmetry'. The corresponding formalism
of differential interaction nets (DIN) has been introduced in a joint work by
the first author and Regnier [ER06]. In DiLL, two proofs of the same formula
can be added and there is a 0-proof of any formula, which is neutral for this
addition. So the set of proofs of any formula is a commutative monoid and this is
necessary because the reductions associated with the dereliction/cocontraction
and codereliction/contraction cuts of DiLL lead to such non trivial sums of
proofs: in that sense, DiLL is a non-deterministic logic. As it is well known
in a categorical setting, this possibility of adding proofs is equivalent to the
identification of the two additive connectives @ and &.

In a joint work with Kohei Honda [HLOS8], the second author proposed a
translation of a version of the m-calculus in proof-nets for a version of linear logic
extended with the cocontraction rule (as we now understand). The basic idea
consists in interpreting the parallel composition as a cut between a contraction
link (to which several outputs are connected, through dereliction links) and a
cocontraction link, to which several promoted receivers are connected. Being
promoted, these receivers are replicable, in the sense of the 7-calculus. The other
fundamental idea of this translation consists in using linear logic polarities for
making the difference between outputs (negative) and inputs (positive), and of
imposing a strict alternation between these two polarities. This allows to recast
in a polarized linear logic setting a typing system for the m-calculus previously
introduced by Berger, Honda and Yoshida in [BHYO04]. This translation has
two features which can be considered as slight defects: it accepts only replicable
receivers and it is not really modular (the parallel composition of two processes
cannot be described as a combination of the corresponding nets).

One should mention here that translations of the m-calculus into nets of var-
ious kinds, subject to local reduction relations, have been provided by several
authors (cf. the work of Laneve, Parrow and Victor on solo diagrams [LPVO01],
of Beffara and Maurel [BMO06], of Milner on bigraphs [TMO03], of Mazza [Maz05]
on multiport interaction nets etc.). One should also mention the early work of
Honda and Yoshida [HY94] which introduces a system of combinators for inter-
preting a process algebra. These combinators have connections with Lafont’s
interaction nets; just like multiport interaction nets and solo diagrams, this sys-
tem seems however to lack the main feature of interaction nets, namely (strong)
confluence. Moreover, as far as we know, these approaches have no clear logical
grounds nor simple denotational semantics. Indeed, the fact that DINs have

IThe only non symmetric rule of DiLL is promotion. Finding a symmetric version thereof
seems to be a rather challenging task!

a denotational semantics, together with the translation we propose, suggest to
interpret, the m-calculus in DINs’ denotational models and to study the induced
equivalence of processes. This approach will be developed in further work. It
should be observed moreover that the denotational models of DINs’ are also
models of the lambda-calculus, suggesting natural combinations between con-
current programming (as modeled in DINs) and functional programming.

Principle of the translation. The purpose of the present paper is to con-
tinue this line of ideas, using more systematically the new structures introduced
by DINs.

The first key decision we made, guided by the structure of the typical co-
contraction/contraction cut intended to interpret parallel composition, was of
associating with each free name of a process not one, but two free ports in the
corresponding differential interaction net. One of these ports will have a !-type
(positive type) and will have to be considered as the input port of the corre-
sponding name for this process, and the other one will have a ?-type (negative
type) and will be considered as an output port.

We discovered structures which allow one to com-
bine these pairs of wires for interpreting parallel com- 4 »
position and called them communication areas: they
can be seen as complete graphs between vertices made 4"'}
of pairs of contraction cells (marked by a “?” sym- v v
bol) and cocontraction cells (marked by a “!” symbol),
connected by edges which are pairs of wires. An ex-
ample of such a structure, with 3 vertices, is given Fi) .

X R X § igure 1: Communication
in figure 1. Output and input prefixes will be inter- ..

preted using dereliction and codereliction, as well as

the multiplicative connectives.

Content. We first introduce differential linear logic, presented as a sequent
calculus, and then differential interaction nets. These nets are typed with the
recursive typing system introduced by Danos and Regnier in [Reg92] (which
corresponds to the untyped lambda-calculus) for avoiding the appearance of
non reducible configurations. To simplify the presentation, these nets use only
a restricted form of the promotion rule of linear logic, which is sufficient for
interpreting a replication-free version of the m-calculus, as well as a restricted
form of replication. In this setting, we define a “toolbox”, a collection of nets
that we shall combine for interpreting processes, and a few associated reductions,
derived from the basic reduction rules of differential interaction nets.

We organize reduction rules of nets as a labeled transition system, whose ver-
tices are nets, and where the transitions correspond to dereliction/codereliction
reductions. Then we define a process algebra which is a polyadic m-calculus,
without replication and without sums. We specify the operational semantics of
this calculus by means of an abstract machine inspired by the machine presented
in [AC98, Chapter 16]. We define a transition system whose vertices are the
states of this machine, and transitions correspond to input/output reductions.

And we define a “translation” relation from machine states to nets and show that
this translation relation is a bisimulation between the two transition systems.

Last, we sketch the extension of this translation to a version of our 7-calculus
augmented with a restricted form of replication (input-guarded replication where
the only free name of the replicated process is the subject of the input prefix, and
moreover, this name is not free in the continuation of the replicated input prefix).
We conclude the paper with several concrete examples, showing how various
operational features of the m-calculus are modeled in differential interaction
nets.

1. Differential interaction nets

1.1. Differential linear logic

In the fragment of linear logic we use, there are two constants 1 and L and
4 connectives: ® and % which are binary (the multiplicative connectives) and !
and ? (the exponentials), which are unary. Given a formula A, its dual (or linear
negation) A~ is defined by induction: (A ® B)* = AL%¥BL etc. We present the
logical system in a sequent calculus style, with unilateral sequents (all formulae
are on the right side of the turnstyle symbol). The identity rules are the axiom
and the cut rule:

FT,A FA AL

)

1
FAL A “TA

The multiplicative rules are:

FT,A FAB FT,AB kT
FT,.AA® B Fr, A3 1 FT, L

The “standard” exponential rules are the weakening, contraction and dereliction
rules:
T FI,7A,7A FT,A
FI,7A FI,7A FI,7A

The exponential rules which are new in differential linear logic are the coweak-
ening, cocontraction and codereliction rules:

- FI,IA FAA FT,A

-4 FT.A A FT,14

The promotion rule is a standard rule of ordinary linear logic. It allows to turn
a proof into a duplicable object:

F7A4y,...,74,,B

F7A4y,...,74,,!B

Because the reduction rules for the dereliction/cocontraction and codereliction-
/contraction redexes produce formal sums of proofs, we have to introduce a rule
for such sums.

FT FT

FT
There is one such rule for each n € N (the number of premises), and in particular
for n = 0, so that each sequent is provable in this logic by a 0 proof: this means
that our proofs should be considered as partial objects, just as Bohm trees in
the lambda-calculus, which are partial lambda-terms (in this analogy, the
symbol of Bohm trees corresponds to the 0 proof).

The graphical formalism of interaction nets is much more convenient for
representing this system, in particular when one wants to deal with the cut
elimination rules (the reduction of the contraction/cocontraction cut is partic-
ularly unnatural in the sequent calculus presentation).

1.2. The general formalism of interaction nets

We recall now the general syntax of interaction nets, as introduced in [Laf95].
See also [ER06] for more details. Assume we are given a set of symbols and
that an arity (a non-negative integer) and a typing rule is associated with each
symbol. This typing rule is a list (Ag, 41,. .., A,) of types, where n is the arity
associated with the symbol. Types are formulae of some system of linear logic.
A net is made of cells. With each cell v is associated exactly one symbol and
therefore an arity n and a typing rule (Ao, A1,...,A4,). Such a cell v has one
principal port py and n auziliary ports py,...,p,. A net has also a finite set of
free ports. All these ports (the free ports and the ports associated with cells)
have to be pairwise distinct and a set of wires is given. This wiring is a set
of pairwise disjoint sets of ports of cardinality 2 (ordinary wires) or 0 (loops?),
and the union of these wires must be equal to the set of all ports of the net. In
other words, each port of the net (free or associated with a cell) is connected to
exactly one other port (free or associated with a cell) through a wire, and each
such wire connects exactly two ports: ports cannot be shared. The free ports
of the net are those which are not associated with a cell.

An oriented wire of the net is an ordered pair (p1,p2) where {p1,p2} is a
wire. In a net, a type is associated with each oriented wire, in such a way
that if A is associated with (py, p2), then A is associated with (pa,p;). Last,
the typing rules of the cells must be respected in the sense that for each cell
~ of arity n, whose ports are po, p1,...,pn and typing rule is (Ag, A1,..., 4,),
denoting by py, pi, .- ., pl, the ports of the net uniquely defined by the fact that
the sets {p;, p;} are wires (for i = 0,1,...,n), then the oriented wires (po, p()),
(P, 1) - - (P, Pn) have types Ag, Aq,...,A, respectively.

The free ports of the net constitute its A
interface. With each free port p can be B E
associated the type of the unique oriented %~ 8 J—@_F*p
wire whose endpoint is p: this is the type 7

of p in the interface of the net. Figure 2

Figure 2: An interaction net

2To be more precise, one has to specify the number of loops in the net, but this will not
play any role in the sequel.

shows a typical example of a typed interac-

tion net, with cells of symbols «, 8 and 7, of respective types (B, A+, C+),
(B, A, E+,Dt) and (F, D,C). The interface is (p: E,q: F). Cells are repre-
sented as triangles, with principal port located at one of the angles and other
ports on the opposite edge. We often draw a black dot to locate the auxiliary
port number 1.

1.83. Presentation of the cells

Our nets will be typed using a type system which corresponds to the untyped
lambda-calculus. This system is based on a single type symbol o (the type of
outputs), subject to the recursive equation o = 70-20. We set « = o', so that
t =!o® .t and o = 1tWo. The tensor connective is used only with premises !o
and ¢ and dually for the par, and therefore, the only types we actually need are
o, t, lo and 7: for typing our nets.

In the present setting, there are eleven symbols: par (arity 2), bottom (ar-
ity 0), tensor (arity 2), one (arity 0), dereliction (arity 1), weakening (arity 0),
contraction (arity 2), codereliction (arity 1), coweakening (arity 0), cocontrac-
tion (arity 2) and closed promotion (arity 0). We present now the various cell
symbols, with their typing rules, in a pictorial way.

1.3.1. Multiplicative cells. The par and tensor cells, and their “nullary”
versions bottom and one are as follows:

L lo
= ¢ o — 9 L o L
— 3 — ®

o L

The first two cells are graphical representations of the % and ® rules of
Section 1.1. The last two cells are similar to the L and 1 rules.

1.3.2. Exponential cells. They are typed according to a strictly polarized
discipline. Here are first the why not cells, which are called dereliction, weaken-
ing and contraction:

L 7 i = | I
? >=
]
7

and then the bang cells, called codereliction, coweakening and cocontraction:

o lo lo = | lo
I >
—

1.3.3. Closed promotion cells and the definition of nets. The notion
of net is then defined inductively, together with closed promotion cells.

e A simple differential net is a typed interaction net, which uses the mul-
tiplicative and exponential cells introduced above as well as the closed
promotion cells we are defining now.

o A differential net is a finite formal sum S = s; + --- + s, of simple
differential nets having all the same interface, and this interface is then
considered as the interface of S. A particular case is the net S = 0 (the
empty sum), and this net has to be given together with its interface: there
is a 0 net for each interface.

e Given a differential net S with only one free port we introduce
!

the closed promotion cell I}; This corresponds to the promotion
box construction of linear logic nets, restricted here to the case where the
resulting box has no “auxiliary ports”. We say that s is the subnet of this
promotion cell. There would be of course no difficulties in introducing
more general promotion cells, with auxiliary ports, but we shall not use
them in the present work.

In the sequel, since no confusion with other kinds of interaction nets will be
possible, we shall use “net” for “differential net”.

1.3.4. Logical correctness. It is easy to transform any® proof of the se-
quent calculus of Section 1.1 into a net made of these cells. The nets which
result from this translation are exactly those which satisfy one of the various
equivalent correctness criteria [Gir87, DR&9, ...]|: one says that such nets can
be sequentialized*. One of the most remarkable features of interaction nets is
that they allow to compute (using the forthcoming reduction rules), even on
structures which cannot be sequentialized.

1.3.5. Labeled nets. We now introduce labels and labeled nets, which are
nets where particular cells are equipped with labels. The labeled transition sys-
tem of differential nets will be defined using these labels in Section 2.3. We shall
also use these labels in Section 4 for defining a version of the w-calculus where
prefixes are labeled, and for defining a transition system for this mw-calculus.
The main result of the paper will be a comparison between these two systems.
These labels are not used for representing the names of the m-calculus, but just
for identifying the various occurrences of names.

Let £ be a countable set of labels containing a distinguished element 7 (to
be understood as the absence of label). A labeled simple net is a simple net
where all dereliction, codereliction and promotion cells are equipped with labels
belonging to L.

All the nets we consider in this paper are labeled. In our pictures, the labels
of dereliction, codereliction and box cells will be indicated, when this label is

3Not exactly any actually, because we consider only a restricted form of promotion in our
differential interaction nets, but the general promotion rule can be translated as well, with
more general nets.

4The criteria have to be extended to the differential setting. This is straightforward:
cocontraction is handled like the tensor rule.

different from 7. When its label is 7, a (co)dereliction or box cell will be drawn
without any label.

2. Reduction rules

We denote by A the collection of all simple nets, ranged over by the letters
s, t, u, with or without subscripts or superscripts, and by N(A) the collection
of all nets (finite sums of simple nets with the same interface), ranged over by
the letters S, T', U, with or without subscripts or superscripts. We consider A
as a subset of N(A) (s € A being identified with the sum made of exactly one
copy of s).

A reduction rule is a subset R of A x N(A) consisting of pairs (s, .S) where
s is a simple net made of two cells connected by their principal ports and S is a
net that has the same interface as s. There are actually reduction rules which
transform simple nets in non simple ones, see 2.1.3.

This set R can be finite or infinite. Such a relation is easily extended to
arbitrary simple nets (s R T if there is (sp,u; + -+ + u,) € R where s¢ is a
subnet of s, each wu; is a simple net and T = t{ + - - - + t,, where ¢; is the simple
net resulting from the replacement of sy by w; in s). This relation is extended
to nets (sums of simple nets): s; + -+ + s, (where each s; is simple) is related
to T by this extension R* if T = T} + --- + T}, where, for each i, s; R T} or
s; = T;. Last, R* is the transitive closure of R* (which is reflexive).

2.1. Defining the reduction

We give now the reduction rules of differential interaction nets. They corre-
spond to the cut elimination rules of the differential linear logic of Section 1.1.

2.1.1. Multiplicative reduction. The first two rules concern the interaction
of two multiplicative cells of the same arity.

7 7 7
= ¢ o = = o
= <
= 3 & > ~m = ~m €&
o o o

where ¢ stands for the empty simple net (not to be confused with the net
0 € N(A), the empty sum, which is not a simple net). The next two rules
concern the interaction between a binary and a nullary multiplicative cell.

N o —_—
—_|® +<] ~m ® +<] ~rm

2.1.2. Communication reduction. This is in some sense the most funda-
mental reduction of the system: from the process calculus viewpoint, it corre-
sponds to a communication between an input and an output prefix which have
the same subject.

Let R C L. We have the following reductions if [,m € R.

Ll L '|L L

2.1.3. Non-deterministic reduction. These rules will be used for imple-
menting the non-determinism of the process calculus. Let R C £. We have the
following reductions if [€ R.

el
7
> : ~nd,R =7 +
= nd, 9—/{+
7
|
lo >l lo 0 'l lo
! + :
/[lo
o: lo
[

L\k T
?

L 7
!
[
o lo g
? ~> o
] = nd,R ——
L i
~nd,R 0

Remark 1 One can consider a sum s; + --- + s, of several simple nets as
a non-deterministic superposition, and then a reduction s ~ s; + -+ + s,
can be interpreted as meaning that all the reductions s ~ s1,...,5 ~ s, are
possible, but that the various outcomes s; correspond to semantically distinct
computations. In that case, there is an essential conflict between these various
choices, as it should be clear in the rules above: in the two terms of the sums,
we establish completely different connections in the net.

On the other hand, by reducing various redexes in s, it is also possible to
obtain various results: s ~» T1,...,s ~ T, but these choices of redexes in s
commute with each other (this is the main content of Theorem 2), and the
resulting nets T1,...,T}, are semantically equivalent.

One of the main features of differential interaction nets is that they reify
this distinction in the rewriting rules: in the first case s reduces to the net
51+ -+ s, whereas in the second case, s reduces to each of the nets 77,...,T}.
Moreover, this reification is compatible with (and actually, comes from) the de-
notational semantics of differential linear logic (see e.g. [Ehr05]), where these
“non-deterministic sums” are interpreted as algebraic sums. Of course this dis-
tinction between two kinds of reduction is not new (it is pervasive in rewriting
theory, in concurrency etc), what is new is its formalization in the present set-
ting, using formal sums.

?

~nd,R 0

2.1.4. Structural reduction. From the process calculus viewpoint, these
rules implement the associativity and commutativity laws of parallel composi-
tion which are implicit in the Chemical Abstract Machine [BB90], and in the
abstract machine of Section 4.2. They also implement some of the laws asso-
ciated with name restriction (scope extrusion in particular). They are called
“structural” because they correspond to the interaction between the structural
and the costructural rules of differential linear logic.

i o ;L_f<l lo | m
b 1 -0 lo
—_— g = g
i m lo m
? ? l s'
2 7 o 7
7 Ny 7
?
~rg € - 17 9—@ g .
T 7 5!
2
i 'L L
T T = ! ? =
7 —_—] > i | ——
=
~rg € S > s 20
T T — < [y S=—
i 0
7 % 7

We use ~g for the symmetric and transitive closure of ~».

2.1.5. Box reduction. Let R C L. We have the following reductions if

l,m e R.

Observe that the reduction rules are compatible with the identification of the
coweakening cell with a promotion cell containing the 0 net. Observe also that
the only rules which do not admit a “symmetric” rule are those which involve
a promotion cell. Indeed, promotion is the only asymmetric rule of differential
linear logic.

2.1.6. Completeness of the reduction. One can check that we have pro-
vided reduction rules for all redexes compatible with our typing system: for any
simple net s made of two cells connected through their principal ports, there is
a reduction rule whose left member is s. This rule is unique, up to the choice of
a set of labels, but this choice has no influence on the right member of the rule.

10

2.1.7. Conditions on labeled nets. We say that a simple net s satisfies the
condition on labels for simple nets if two labels associated with distinct cells®
of s are either distinct or equal to 7. As such, this condition will not preserved
under reduction, due to the fact that promotion cells are duplicated. Therefore,
we reinforce this condition by requiring also that all the promotion cells of s be
labeled by 7 and all the labels occurring in subnets of promotion cells of s be
equal to 7. We shall refer to the conjunction of these conditions as to the CLB
(condition on labels and bozes).

One can also check, by simple inspection of the rules that, if ¢ is a simple net
which satisfies the CLB and if ¢t ~ ¢; + -+ - + ¢,, by one of our reduction rules,
then all the simple nets ¢; satisfy the CLB.

2.2. Confluence

Theorem 2 Let R,R',R" C L. Let R C A x N(A) be the union of some of
the reduction relations ~c r, ~nd,R’s ~m; ~s and ~ rr. The relation R* is
confluent on N(A).

The proof is essentially trivial since the rewriting relation has no critical pair
(see [ER06]). Given R C L, we consider in particular the following reduction:
~oR = ~omUnog 1y UnsgUnop iy Unong re We set ~aq =~ (“d” for “determin-
istic”) and denote by ~q the symmetric and transitive closure of this relation.
Observe that, if s and S are nets with s simple and if s ~»q S, then S is also
simple.

Some of the reduction rules we have defined depend on a set of labels. This
dependence is clearly monotone in the sense that the relation becomes larger
when the set of labels increases.

2.8. A transition system of simple nets

2.3.1. Restriction on simple nets. From now on, and until Section 6, we
assume that all simple nets satisfy the CLB; remember that, together, these
conditions are preserved under reduction. This will be sufficient for dealing
with replication-free processes. The reason for this restriction is that the useful
Lemmata 3 and 4 seem to depend on the uniqueness of label occurrences.

2.3.2. {l,m}-neutrality. Let [and m be distinct elements of £\ {7}. We
call (I, m)-communication redex a communication redex whose codereliction cell
is labeled by [and whose dereliction cell is labeled by m.

The following is a simple, but quite useful remark.

Lemma 3 Let sg be a simple net which contains an (I, m)-communication re-
dex. If sg M?l,m} To, then Ty is a simple net to which contains an (I,m)-
communication redex and one has actually sqg ~} to. Moreover, if s is the

5This means that they can also occur in subnets associated with promotion cells, at any
depth.

11

simple net resulting from the reduction of the (I, m)-communication redex in
50, then s ~»34 t where t is the simple net resulting from the reduction of the
(1, m)-communication redez in tg.

We say that a simple net s is {I, m}-neutral if, whenever s “”?z m} S, none
of the simple summands of S contains an (I, m)-communication redex.

Lemma 4 Let s be a simple net. If s “”?l m} S where all the simple summands
of S are {l,m}-neutral, then s is also {l,m}-neutral.

The converse implication clearly holds, but we do not use it.

Proof. Assume, towards a contradiction, that s M’{Flﬂn} T=s1+-+ s, where
each s; is simple and where s; contains an (I, m)-communication redex. By
the Church-Rosser property of M?Lm}’ there is S’ such that T' «»hm} S’ and
S «»hm} S’. By Lemma 3 applied to s1, S’ must have a summand containing
an (I, m)-communication redex, contradicting our hypothesis on S. O

2.3.3. The transition system. We define a labeled transition system D,
whose objects are simple nets, and transitions are labeled by pairs of distinct

elements of £\ {7}. Let s and ¢ be simple nets, we have s A, 4 if the following
holds: s M?l,m} so + 81+ -+ s, where sg is a simple net which contains an
(I, m)-communication redex and becomes ¢t when one reduces this redex, and
each s; (for i > 0) is {I, m}-neutral.

Remark 5 The simple nets si,...,s, correspond to other possible commu-
nications, where typically the codereliction labeled by [will meet a dereliction
labeled by some m’ # m, and similarly for the dereliction labeled by m. So these
terms are not garbage but correspond to the branches of the non-deterministic
reductions which do not lead to a communication between [and m. There are
two restrictions in our definition which deserve further comments:

e The non-deterministic steps allowed in the reduction from s to sg + s1 +
-+ 4 s, can involve only the codereliction and dereliction labeled by [
and m respectively. In process algebras, prefixes communicate in one
step through a parallel composition. This single step becomes here a
sequence of many elementary steps and our restriction allows to avoid
considering the steps which have nothing to do with the communication
we are interested in.

e The second restriction consists in requiring the s;s to be (I, m)-neutral
for i > 0 and seems to potentially prune out relevant (I,m) communica-
tions from the LTS D,, and therefore to weaken Proposition 11 and hence
Theorem 12.

We think that Theorem 12 would hold even without these restrictions in the
definition of D, which are here only for making the proofs tractable. In the

12

final remark of the Conclusion, we shortly argue that the second restriction is
not essential. The first one can probably be weakened as well.

Lemma 6 The relation ~q3 C A X A is a strong bisimulation on D..

Proof. Let s,s’ € A and assume that s ~q4 s’. Assume moreover that s g
which means that s Mi{l,m} so + 81 + -+ + s, where each s; is simple, sg
contains an (I, m)-communication redex, each s; is {/, m}-neutral for 7 > 1 and
t results from the reduction of the (I,m)-communication redex of so. By the
Church-Rosser property of M,{Fl,m} (remember that ~q C M,{Fl,m})’ there exists
U € N(A) such that sg + s1 + -+ + sp ~Tmy U and s ~7,my U. But by
Lemmata 3 and 4, we have U = ug +u1 + - - - + U, With sg ~3 ug, up contains
an (I, m)-communication redex, and if we reduce this redex, we obtain a net ¢’
such that ¢ ~7 t'. a

3. A toolbox for process calculi interpretation

We introduce now a few families of simple nets, which are built using the
previously introduced basic cells. They will be used as basic modules for in-
terpreting processes. All of these nets, but the communication areas, can be
considered as compound cells: in reduction, they behave in the same way as
cells of interaction nets. We advise the reader acquainted with the w-calculus
to have simultaneously a look at Section 4.3 in order to figure out how these
various structures will be used.

3.1. Compound cells

3.1.1. Generalized contraction and cocontraction. A generalized con-
traction cell or contraction tree is a simple net v (with one principal port and
a finite number of auxiliary ports) which is either a wire or a weakening cell or
a contraction cell whose auxiliary ports are connected to the principal port of
other contraction trees, whose auxiliary ports become the auxiliary ports of ~.
Generalized cocontraction cells (cocontraction trees) are defined dually.

We use the same graphical notations for generalized (co)contraction cells as
for ordinary (co)contraction cells, with a “¥” in superscript to the “!” or “?”
symbols to avoid confusions. Observe that there are infinitely many generalized
(co)contraction cells of any given arity. Figure 3 gives an example of a ternary
generalized cocontraction cell.

3.1.2. The dereliction-tensor and the codereliction-par cells. Let n be
a non-negative integer. We define an n-ary 7® compound cell as in Figure 4.
It will be decorated by the label of its dereliction cell (if different from 7). The
number of tensor cells in this compound cell is equal to n. We define dually the
1% compound cell.

13

Dt -
p =]

Figure 3: A ternary generalized cocontraction cell and its graphical representation (all oriented
wires are typed with 7.)

lo

2 T
1o ® b
- 2>

g 7 lo l
7Q >—=>— —

P I .

Figure 4: Dereliction-tensor compound cell (the codereliction-par is dual)

3.1.3. The prefix cells. Now we can define the compound cells which will
play the main role in the interpretation of prefixes of the m-calculus. Thanks
to the above defined cells, all the oriented wires of the nets we shall define will
have type 7¢ or lo. Therefore, we adopt the following graphical convention: the
wires will have an orientation corresponding to the ?7¢ type.

The n-ary input cell and the n-ary output cell are defined in Figure 5, they
have n pairs of auxiliary ports. In Section 6, we shall also use a version of
the input prefix where the codereliction cell has been removed. The main port
of this pre-input cell has therefore type o (when oriented towards the outside)
instead of lo. We use the same notation as for the input cell (Figure 5), with
the only difference that the symbol “!” will be replaced by the symbol “%”. See
an example in Figure 6.

Prefix cells are labeled by the label carried by their outermost ?® or !%
compound cell, if different from 7, the other ?® or !% compound cells being
unlabeled (that is, labeled by 7).

}
-

Figure 5: Input and output compound cells

14

P

Figure 6: Identity

3.1.4. Transistors and boxed identity. In order to implement the sequen-
tiality corresponding to sequences of prefixes in the 7-calculus, we shall use the
unary output prefix cell defined above as a kind of transistor, that is, as a kind
of switch that one can put on a wire, and which is controlled by another wire.
This idea is strongly inspired by the translation of the m-calculus in the solos
calculus 6.

These switches will be closed by “boxed identity cells”, which are the unique
use we make of promotion in the present work (apart from the extension sketched
in Section 6). Let I be the “identity” net of Figure 6, which uses a pre-input com-

pound cell. Then we shall use the closed promotion cell labeled by I': l>—€

3.2. Communication tools

3.2.1. The communication areas. Let n > —2. We
define a family of nets with 2(n + 2) free ports, called ﬂ
communication areas of order n, that we shall draw using
rectangles with beveled angles. Figure 7 shows how we 3
picture a communication area of order 3. —
A communication area of order n is made of n+2 pairs Figure 7: Area of order
of (n + 1)-ary generalized cocontraction and contraction 3
cells (77,77 »--» (V420 Vo), with, for each ¢ and j such that 1 < i < j <
n+ 2, a wire from an auxiliary port of 'y;r to an auxiliary port of ;" and a wire

from an auxiliary port of ;" to an auxiliary port of ’y]?L.
So the communication area of order —2 is the empty net ¢, and commu-
nication areas of order —1, 0, 1 and 2 are the structures shown in Figure 8.

3.2.2. Identification structures. Let n,p € N and let f : {1,...,p} —
{1,...,n} be a function. An f-identification net is a structure with p + n pairs
of free ports (p pairs correspond to the domain of f and, in our pictures, will
be attached to the non beveled side of the identification structure, and n pairs
correspond to the codomain of f, attached to the beveled side of the structure)
as in Figure 9(a). Such a net is made of n communication areas, and on the j-th
area, the j-th pair of wires of the codomain is connected, as well as the pairs
of wires of index ¢ of the domain such that f(i) = j. For instance, if n = 4,

6Tt is shown in [LV03] that one can encode the m-calculus sequentiality induced by prefix
nesting in the completely asynchronous solos formalism: the idea of such translations is to
observe that, in a solos process like P = vy (u(z,y) | y(...)) | Q, the second solo cannot
interact with the environment @ before the first one.

15

< I* 7 >

% [E3 %

—_—<7* I >

/
W,
A
NN

I* ?

[E

%

2% [E3

N
<
s

Figure 8: Communication areas of order —1, 0, 1 and 2

p=3, f(1) =2, f(2) = 3 and f(3) = 2, a corresponding identification structure
is made of four communication areas, two of order —1, one of order 0 and one
of order 1, as in Figure 9(b).

When we want to mention a particular communication area of such a struc-
ture, we refer to it as to the j-th communication area (where j is the corre-
sponding element of {1,...,n}).

At o -

1]

f L ~ro g
1 n T % g
(a) Notation o

(b) Example

(¢) Reduction

Figure 9: Identification structures

3.8. Useful reductions.

3.3.1. Aggregation of communication areas. One of the nice properties
of communication areas is that, when one connects two such areas through a pair
of wires, one gets another communication area; if the two areas are of respective
orders p > —1 and ¢ > —1, the resulting area is of order p + ¢, see Figure 10.

16

— —

<] < «
: P q Dol p+q
— =
e ——

Figure 10: Aggregation, with p,q > —1

3.3.2. Composition of identification structures. In particular, we get
the reduction of Figure 9(c).

3.3.3. Port forwarding in a net. Let ¢ be a net and p be a free port of .
We say that p is forwarded in t if there is a free port g of ¢ such that ¢ is of one
of the two shapes given in Figure 11. When a port is forwarded in a net, we
mark this port with a small triangle, as in Figures 12 and 13.

[:l;?* 9_(] [:L!* _éq

Figure 11: Port forwarding

3.3.4. Communication and forwarding of derelictions and coderelic-
tions in communication areas. The reduction of Figure 12 shows that dere-
lictions and coderelictions can meet, each other, when connected to a common
communication area. More precisely, let [,m € L, then we have the reduction
of Figure 12, where N is a non-negative integer (actually, N = (p+2)?) and, in

%MN

_|% p+2 A ~Tim) > <

Figure 12: Dereliction and codereliction communicating through a communication area. The
forwarded ports are indicated by small triangles.

each simple net t;, both ports r and 7’ are forwarded.

17

3.3.5. General forwarding. Let ! € £. The more general but less informa-
tive property shown in Figure 13 will also be used, where in each simple net

l
= —
= - =
— . = u; :
? ki D C o~y i -
I = | - /=
I N

Figure 13: General forwarding

u;, the port r is forwarded (see 3.3.3). Of course one also has a dual reduc-
tion (where the dereliction is replaced by a codereliction, and the generalized
contraction by a generalized cocontraction).

3.3.6. Reduction of prefixes. Let [,m € L. If we connect an n-ary output
prefix labeled by m to a p-ary input prefix labeled by [, we obtain a net which
reduces by ~¢ 1,m) t0 a net u which reduces by «»’ET} to 0 if n # p and to
simple wires by ~, as in Figure 14(a), if n = p.

3.3.7. Transistor triggering. A boxed identity connected to the principal
port of a unary output cell used as a “transistor” turns it into a simple wire as
in Figure 14(b).

—
—
* . *
e ftmy Ung - D q ~0
—
==
(a) Prefixes interaction (b) Transistor trig-

gering

Figure 14: Prefixes and transistors

4. A polyadic finitary mw-calculus and its encoding

The process calculus we consider is a fragment of the w-calculus where we
have suppressed the following features: sums, replication, recursive definitions,
match and mismatch. This does not mean of course that differential interac-
tion nets cannot interpret these features. We shortly discuss this point in the
Conclusion.

It is well known that the monadic 7-calculus is as expressive as the polyadic
one. We nevertheless consider a polyadic version of the w-calculus because our
encoding can easily be adapted to other process algebras, and in particular to
asynchronous ones (such as the solos calculus), where polyadicity is essential for

18

expressiveness. Moreover, polyadic calculi are more natural and widely used in
the process algebra community.

Let N be a countable set of names. Our processes are defined by the following
syntax. We use the same set £ of labels as before.

e nil is the empty process.
e If P, and P, are processes, then P; | P, is a process.

e If Pis aprocess and a € NV, then va- P is a process. The name a is bound
in this process.

e If P is a process, a,by,...,b, € N, the b;s being pairwise distinct and if
l €L, then @ = [l]a(by...b,)- P is a process (prefixed by an input action,
whose subject is @ and whose objects are the b;s; the name «a is free and
each b; is bound in @ and hence a is distinct from each b;).

e If P is a process, a,by,...,b, € N and | € L, then [lJa(b;...b,) - P is
a process (prefixed by an output action, whose subject is ¢ and whose
objects are the b;s). This construction does not bind the names b;, and
we do not require the b;s to be distinct. The name a can be equal to some

of the b;s.

We introduce this labeling of prefixes to distinguish the various occurrences of
names as subject of prefixes; these labels do not play any active role in the
reduction of processes, they are here only for tracing purposes. The set FV(P)
of free names of a process P is defined in the obvious way. The a-equivalence
relation on processes is defined as usual.

A labeled process is a process where all prefixes are labeled, by pairwise
distinct labels, all these labels being different from 7. If P is a labeled process,
L(P) denotes the set of all labels occurring in P. Observe that this set has a
natural poset (forest actually) structure (I < m if, in P, [labels a prefix y and
m occurs in the process prefixed by).

All the processes we consider in this paper are labeled.

4.1. Arity typing of processes.

Although not strictly necessary, it is convenient to assume that our processes
are “typed” (one often speaks rather of “sorting” in this context) in the sense
that each name is given with an arity, which is a possibly empty list of arities.
When a name of arity (p1,...,pn) occurs as subject, it is always assumed that
it has n objects b1, ..., by, the arity of b; being p;. This guarantees that, during
the reduction, when an input prefix communicates with an output prefix, the
numbers of objects of the two involved prefixes coincide. Since this is a standard
m-calculus notion (see [SWO01, Part III]), we shall not say more about it, and
we shall simply assume that, during the reduction of processes and states, the
arities of communicating prefixes always coincide.

19

4.2. An execution model

Rather than considering a rewriting relation on processes as one usually does,
we prefer to define an “environment machine”, similar to the machine introduced
in [AC98, Chapter 16]7, which itself is based on the Chemical Abstract Machine
of Berry and Boudol [BB90)]. It is not difficult to show that this presentation of
the m-calculus is equivalent to more standard ones.

An environment is a function e from a finite subset Dome of N to a fi-
nite subset Codome of N. A closure is a pair (P,e) where P is a process
and e is an environment such that FV(P) C Dom(e). A soup is a multiset
I'=(P1,e1) - (Pn,en) of closures (denoted by simple juxtaposition). The set
FV(T') of free names of a soup I is the union of the codomains of the envi-
ronments of I". The soup I' is labeled if all the P;s are labeled, with pairwise
disjoint sets of labels. A state is a pair (I', L) where I is a soup and L is a set
of names (the names which have to be considered as local to the state) and we
set FV(I', L) = FV(I") \ L. The state (I", L) is labeled if the soup I is labeled.

All the states we consider are labeled. We define the poset £(T', L) of all
labels of the state (T, L) in the straightforward way, as the parallel composition
of the posets associated with the processes of the closures of T'.

4.2.1. a-equivalence of states. Given a partial function f : N' — N and
a process P, we denote by f - P the process where each free name a has been
replaced by f(a) (if @ € Dom f) — this construction is not part of the syntax, it
is a meta-operation like substitution in the lambda-calculus. Of course, bound
names have to be renamed to avoid name clashes.

Two closures (Py,e1) and (P, e) are a-equivalent (written (Pp,e1) ~g
(P2, e2)) if there is a bijection on names f such that f - P; and P, are a-
equivalent, and es o f = e;. Two soups I and A are a-equivalent if ' = v ... yn
and A = §;...0y with v; ~ 0; for each i. Let f : NV — N be a func-
tion. If v = (P,e) is a closure, one sets f-~v = (P,f o e). And last,
folmcoaw) =0) (fw)-

Two states (I, L) and (A, M) are a-equivalent if there is a bijection on names
f which is the identity on N\ L and satisfies f(L) = M and f-T ~, A.

4.2.2. Canonical form of a state. We say that a process is guarded if
it starts with an input prefix or an output prefix. We say that a soup I' =
(Py,e1) - (Pn,en) is canonical if each P; is guarded, and that a state (I', L) is
canonical if the soup I' is canonical. We define a rewriting relation ~»c,, which

"The reason for this choice is that the rewriting approach uses an operation which consists
in replacing a name by another name in a process. The corresponding operation on nets is
rather complicated and we prefer not to define it here.

20

turns any state into a canonical one.

((nil,e)T', L) ~ean (T, L)
((va-P,e)l,L) ~an ((Pela—d])I,LU{a’})
((P | Q,G)F,L) ~can ((P, €)(Q,€)F,L)

where, in the second rule, a’ € N \ (L U Codom(e) U FV(I")). It is easy to
show that, up to a-equivalence, this reduction relation is confluent, and it is
clearly strongly normalizing. We denote by Can(T", L) the normal form of the
state (I, L) for this rewriting relation. Observe that if (', L) ~can (A, M) then
FV(A, M) C FV(T, L).

4.2.3. Transitions. Next, we define a labeled transition system S;. The
objects of this system are labeled canonical states and the transitions, labeled
by pairs of labels, are defined as follows.

([a(bs - -bu) - Poe)([nla’(p . br) - Poe')T, 1)
I, Can((Pyefby — €' (b)), ..., by — € (B)])(P',)T, L)
if e(a) = ¢/(a’). Observe that if (T, L) - (A, M) then FV(A, M) C FV(T, L).

4.8. Translation of processes to differential interaction nets

Since we do not work up to associativity and commutativity of contraction
and cocontraction, it does not make sense to define this translation as a function

from processes to nets. For each repetition-free list of names ai,...,a,, we
define a relation Z,, . ,, from processes whose free names are contained in
{ai1,...,a,} to simple nets ¢ which have 2n + 1 free ports a},a3,...,al,a’ and

c as in Figure 15(a). The additional port ¢ will be used for controlling the
sequentiality of the reduction, thanks to transistors. Reducing the translation
of a process will be possible only when a boxed identity cell is connected to its
control port. This is completely similar to the additional control free name in
the translation of the 7-calculus in solos, in [LVO3]®.

It will be possible to check that, if P and P’ are a-equivalent, then P Z,, .,
siff P' Ty, 4, s- We define now the translation relation, by induction on
processes. And next we define the translation relation for states.

4.3.1. Empty process. One has nil Z,, ., tif t is as in Figure 15(b).

8There is a simple interpretation of solo diagrams into differential interaction nets, which
uses only our toolbox without promotion so that solo diagrams can be seen as an interme-
diate graphical language which can be implemented in the low level differential syntax. Our
translation of the m-calculus results from an analysis and a simplification of the composed
translation “m-calculus — solo diagrams — differential nets”. The simplification results from
some rewiring and from the use of the boxed identity cells which are easily replicable. The
translation of solos into differential nets leads to cycles (which appear when a name is identi-
fied with itself) which are avoided in the present direct translation. Well behaved conditions
on solos for avoiding such cycles are introduced and studied in [ELO08].

21

by .
(a) Notation (b) Empty process

(d) Parallel composition

Figure 15: Translation of processes: structural constructions, see Section 4.3

4.3.2. Name restriction. One hasva-P Ty, ., tiff ¢ is as in Figure 15(c),
with s satisfying P Zo p, ... 5, S

4.3.3. Parallel composition. One has Py | P, T, .. 5, t iff the simple net
t is as in Figure 15(d), where Py Ty, . 4, t1, P> Ly, b, t2 and y1,...,7, are
communication areas of order 1.

4.3.4. Input prefix. Let ! e £. Assume that a,b1,...,b,,c1,..., ¢, are pair-
wise distinct names and let @ = [l[Ja(by...b,) - P. One has Q Zo,,....c, tif t is
as in Figure 16(a), where « is a communication area of order 1 and where s is
a simple net which satisfies P Zo5,.... b,,c1,....c, - The communication area v is
required to endow the channel a with a further input communication capability
and making it available to the environment.

4.3.5. Output prefix. Letl € L. Let by,...,b, be a list of pairwise distinct
names and let @ = [I]bso)(bs(1) - .- by(q)) - P, where f: {0,1,...,¢} — {1,...,n}
is a function (this function is uniquely determined by @ and by the enumeration
b1,...,bp). So b1,...,b, is a list of pairwise distinct names containing all the
names of the prefix we want to translate and the function f says where each
name occurs in the prefix; observe that some names of the list can be omitted
in the prefix (f is not necessarily surjective). One has Q Iy, 5, t if ¢ is as
in Figure 16(b), where 71,...,7, are communication areas of order 1, ¢ is an
f-identification structure and where s is a simple net which satisfies P Ty, . s,
s. This identification structure and the additional communication areas are
required because the names occurring in the output prefix are not necessarily

22

(a) Input prefix
(b) Output prefix

Figure 16: Translation of processes: prefix constructions, see Section 4.3

{
A

Figure 17: State translation, see Section 4.3

distinct from each other, and the object names are not bound by the output
prefix: the identification structures implement these equalities between names
and the communication areas make the corresponding communication channels
available to the environment. These structures are not required in an input
prefix because, in such a prefix, the object names are bound, pairwise distinct
and distinct from the subject name which is free in the prefix.

4.3.6. States. Let I' = (P1,e1)...(Pn,en) be a soup and by,...,b, be a
repetition-free list of names containing all the codomains of the environments
e1,...,en (that is, containing FV(I')). We assume that the domains of the
environments e; are pairwise disjoint, which is possible up to a-equivalence. Let
ai,...,ap be a repetition-free enumeration of the elements of vazl Dome;, such
that there is a list of non-negative integers 0 = hg < hy < --- < hy = p such
that, for ¢ = 1,..., N, the list ap, ,+1,...,an,; is a repetition-free enumeration
of the elements of Dom(e;). Let e : {1,...,p} — {1,...,n} be the map which
is uniquely defined by the fact that, for each i = 1,..., N and each j such that
hi_1+1<j < h;, one has ei(aj) = be(j)-

Then one hasI' 7, . 5, tiftis asimple net of the shape shown in Figure 4.3,
where s1,..., sy are simple nets such that P; 7, an, Si and ¢ is an e-
identification structure.

-1+l

23

L 6 o o r
=]
9—|>9—? 73’9—|>—e
—_—

Figure 18: A guarding path from the dereliction § to the codereliction r.

Last, if we are moreover given L C A and a repetition-free list of names
b1,...,by, containing all the free names of the state (I', L), one has (I, L) Z,,
w if one has I' Zp, ... b, .c1,....c, ¢ fOr some repetition-free enumeration ci, ..., ¢,
of L (assumed of course to be disjoint from by, ..., b, which is always possible
up to a-equivalence), and w is the simple net ¢ with additional communication
areas of order —1 plugged on its pairs of free ports corresponding to the ¢;s.

A simple inspection of the translation above shows that, if (I', L) Zy, ., u,
then the simple net u satisfies the CLB of 1.3.5.

Before reading the following technical developments, it might be a good idea
to have a look at Section 7 where examples of our translation are given.

5. Comparing the transition systems

5.1. A diving lemma

We first introduce the auxiliary notions of guarded cell and of a derelic-
tion or codereliction cell diving into a process. We then state and prove two
lemmata which will be crucial in proving Propositions 10 and 11. These propo-
sitions express the two directions in the main bisimulation result of the paper,
Theorem 12.

5.1.1. Guarded dereliction and codereliction cells. Let [, € L be dis-
tinct, r # 7 and let s € A. Let § be a (co)dereliction cell labeled by I in s. We
say that 0 is guarded by (the dereliction or codereliction cell labeled by) r in s
if there is a sequence py, ..., p, of pairwise distinct ports of s such that

e p; is the auxiliary port of § and ps is its principal port;
e p,_1 is the auxiliary port of r and p,, is its principal port;

e and for each ¢ with 1 < ¢ < n — 1, either p; and p; 41 are the two ports of
a wire of s or there is a cell in s such that p; is an auxiliary port of that
cell and p;41 is its principal port.

Such a sequence of ports will be called a guarding path from § to r in s (observe
that since r # 7, there is no ambiguity on the (co)dereliction cell labeled by r
in s, whereas [can be equal to 7 and so there might be several (co)dereliction
cells labeled by [in s). See Figure 18 for an example of such a path.

24

0 < S 0 < s
C C
?* !*
l% #
t t

Figure 19: Diving of dereliction and codereliction: initial configurations

%
‘\...

Figure 20: Possible shape for the subnet 6 of Figure 19

,r,l

ll\

5.1.2. Persistency.

Lemma 7 Let s be a simple net, let R C L, let l,r be labels which are distinct,
with v # 7. Let 0 be an l-labeled (co)dereliction cell which is guarded by r in
s and assume that s ~% s1 + --- + s, where the s; are simple. Then 0 and r
occur, and § is guarded by r, in each of the simple nets s;.

Proof. The proof is straightforward: the (co)dereliction r can take part only in
non-deterministic reductions during an ~»z-reduction, and hence cannot disap-
pear (more precisely, its only way of disappearing is by turning to 0 the whole
simple net where it occurs). Hence the guarding path from § to r is preserved
during this reduction since its cells are not involved in any redex. o

5.1.3. Diving of derelictions and coderelictions. Let [€ £\ {7}, let u
be a simple net, let P be a process. We say that [dives into P in u if there is a
repetition-free list of names by, ...,b, and a simple net s such that P Z, . 3. s
and wu is of one of the shapes (according to whether [labels a dereliction or a
codereliction cell) shown in Figure 19, where 6 is either a boxed identity cell or
a net of the shape shown in Figure 20, consisting of a labeled input or output
prefix compound cell, with a label r’ # 7.
With these notations, our aim is here to prove the following property.

Lemma 8 (Diving) Assume that | € £\ {7} dives into P in the simple net

u, and let m € L\ {7} be a label which does not occur in P. Then u is {l,m}-
neutral.

25

Figure 21: Proof of Lemma 8

The label m cannot occur in P, but it can occur in the remainder of u; the
meaning of the lemma is that, during the reduction, “I cannot exit from P” or,
more precisely, if it exits, it is by the control port c¢. This lemma will be essential
in the proofs of Propositions 10 and 11 and seems to be a crucial property of
our translation.

Proof. By induction on P (and, in some cases, by contradiction: in these cases,
we assume that u «»hm} uy + U and that u; contains an (I, m)-communication
redex).

Assume first that P = nil. Assume that [is a dereliction. Then u has the
shape shown in Figure 21. Thus u M’{Flﬂn} 0 by 3.3.5. Hence by the Church-
Rosser property ofv’flm}, we must have uy +U M,{Fl,m} 0. But this is impossible
by Lemma 3 since u; has an (I, m)-communication redex. The case where [is a
codereliction is similar.

The case P = P, | P, is handled similarly: using 3.3.5 and the inductive
hypothesis, one shows that u «»?l,m} V where V is a sum of {l, m}-neutral
simple nets, and hence w is {l, m}-neutral by Lemma 4.

If P =va- @, one applies directly the inductive hypothesis.

To conclude, we consider the case where P = [r]bs)(bs1)-- - bs(p)) - Q-
Assume first that [is a dereliction. Then u is of the shape shown in Figure 22
(without loss of generality, we assume that the dereliction is connected to a port
corresponding to the name b,,), where s is a simple net satisfying Q Zy,.. s, s
Then, aggregating first the communication area -, with the communication
area of the f-identification structure to which it is connected, we see that we
have u Mi{l,m} Zivzl u; where u; is a simple net which has the shape shown in
Figure 23 and where, according to 3.3.5, in v;, the principal port of [is forwarded
(see the definition of this concept in 3.3.3 and remember that this is indicated
pictorially by a small triangle)

1. to the port b of s
2. or to the principal port of the coweakening cell 7, in the case where f(0) =
n

3. or to one of the input auxiliary port of the compound cell ¢, corresponding
to an index j € {1,...,q} such that f(j) = n.

26

Figure 22: Proof of Lemma 8

Figure 23: Proof of Lemma 8

27

Figure 24: Proof of Lemma 8

For 4 satisfying (2), we have u; ~{my 0. For i satisfying (3), 1 is guarded by
r # 7 (the labeled dereliction cell of ¢) in w;, and so u; is {l,m}-neutral by
Lemma 7. For i satisfying (1), the inductive hypothesis applies, showing that
u; is {l, m}-neutral. Therefore u is {l, m}-neutral by Lemma 4.

Assume now that [is a codereliction, so that u has the shape shown in
Figure 24 (with the same notations as above).

As before, we have u M,{Fl,m} Zf\il u; where the u;s have the same shape as
before. Using the same notations, in v;, the principal port of [is forwarded

1. to the port b, of s

2. or to the dotted auxiliary port of the transistor output compound cell 3,
in the case where f(0) =n

3. or to one of the input auxiliary ports of the compound cell ¢, corresponding
to an index j € {1,...,q} such that f(j) = n.

The cases (1) and (3) are handled as before. So consider an index i corre-
sponding to case (2). There are two possibilities, depending on the value of the

net 6.
l

If 6 is a boxed identity cell, then u; ~7, . u’ r - <
where v’ is a simple net which contains the sub- > =

net shown aside. =

Since we have r ¢ {l,m} (remember that we have assumed that m does
not occur in P), this subnet has no M?lﬁm}—redex, and therefore, it will still be
present in any simple summand of a net U such that ' ’\’)?l,m} U. So v is
{l, m}-neutral, and so is u by Lemma 4.

Assume last that 6 consists of an 7’-labeled output or input prefix compound
cell (with 7' # 7) together with a generalized contraction cell (second possibility
for 6 in 5.1.3, see Figure 20). Here we can have ' = m, but [is guarded by »/
in u, and hence w is {l,m}-neutral by Lemma 7 and Lemma 4.

The case where P starts with an input prefix is completely similar to that
of an output prefix, and of course simpler. O

28

Lemma 9 Let (I', L) be a state and let by, ..., b, be a repetition-free enumera-
tion of the free names of (I', L). Let (A, M) be the canonical form of (I'; L) and
let s be a simple net such that (I',L) Iy, .5, s. Then there exists a simple net
t such that (A, M) Ty, b, t and s ~g t.

The equivalence relation ~g is defined in 2.1.4. The proof is by simple inspection
of the definition of the interpretation relation, using 3.3.1.

We establish now two results which are the main ingredients towards our
bisimulation theorem.

Proposition 10 Let (T', L) and (A, M) be canonical states and let l,m € L\

{r}. Assume that (T, L) Am, (A, M). Let s be a simple net and assume that
(T,L) Zp,....», s where by,..., by is a repetition-free list of names containing
all the free names of (I'yL). Then there are simple nets to and t such that

b b, st and to ~q t.

.....

Proof. We know that I" must be of the shape

([l]a(q .. .Cp) - P, 61)([m]df(0) <df(1) .. .df(p)> - Q, 62)(P3, 63) e (PN, eN) (1)

where we assume that the e;s have pairwise disjoint domains, that a, cp11,.. .,
Cp+q 18 a repetition-free enumeration of the domain of e; (these names are as-
sumed to be distinct from the names ci,...,c,, which are bound in the first
process of the soup (1)), that di,...,d, is a repetition-free enumeration of the
domain of ey, that hy,...,h,, is a repetition-free enumeration of the union of
the domains of es,...,en, and f: {0,...,p} — {1,...,r} is a function, and we
have e;(a) = ea(ds(0)). And (A, M) = Can(I", L) where

I" = (P,erler = ea(dpny), .- ¢p = ea(dpp)])(Q,e2)(Ps,e3) - (P, en).

Without loss of generality, we can assume that f(0) = 1. With these nota-
tions, the simple net s is of the shape shown in Figure 25, where s; is a simple
net such that P Zy ¢, ... ¢, 51, S2 is a simple net such that Q Zy, ... 4, s2 and s
stands for the juxtaposition of simple nets s;s such that P; Z+s; (for 3 <i < N)

.....

where A stands for an enumeration of the domain of e; (so that the lists of names
hi are pairwise disjoint, and their concatenation is a repetition-free enumeration
of the names hi,...,hy), with a boxed identity connected to the control ports
of each s;. In this net, e is the function {1,....,7+qg+m+ 1} — {1,...,n}
which corresponds to the union of the functions e; for ¢ = 1,..., N. Observe
that we have e(1) = e(r + 1) since by hypothesis e;(a) = ea(dy).

We have omitted in Figure 25 the pairs of free ports corresponding to
biy...ybny bpt1y. .. bygpns, the names b; for ¢ > n corresponding to the ele-
ments of L; remember that they are there and that each pair of frees port
corresponding to a b; with ¢ > n is connected to a communication area of order
—1.

Then we can reduce the net of Figure 25 along the following steps.

29

Figure 25: Translation of the state of Formula (1)

T1 l /\ T2g+4

l

B N S

Figure 26: Proof of Proposition 10

e Observe first that the pairs of ports 1 and r + 1 (attached to the domain
of e) are connected to a common communication area d; in the identifi-
cation structure labeled by e (see 3.2.2) since e(1) = e(r + 1), and also
that the codomain pair of ports 1 and the domain pair of ports 0 of the
identification structure labeled by f are connected to a common commu-
nication area do in this identification structure, since f(0) = 1. We apply
reduction 3.3.1 to aggregate the communication areas 1, d1, 72 and ds
in a unique communication area §. Let u be the resulting simple net, we
have s M?lﬂn} u.

e Apply reduction 3.3.7 to both transistors §; and f2 and let u' be the

resulting simple net, we have u M?l,m} (e

e u contains therefore the subnet v shown in Figure 26 where, for i =

—1,0,...,g the pair of ports (r2;4+3,72i+4) is connected either
1. to the pair of ports a of sy
2. or to one of the pairs of ports cpq1,...,¢cprq Of 51
3. or to one of the pairs of ports hi,...,h,, of s’
4. or to a pair of ports of one of the communication areas connected to
do,...,d,

ot

. or to the pair of ports d;

6. or to one of the auxiliary pairs of ports of the output prefix compound
cell labeled by m

30

1 T2g+4

(a) The net vg (b) The net v; for j > 1

Figure 27: Proof of Proposition 10

59 51
¢ la ...q I
. c
! r a C1...Cp Cpit.. Cpiq
—
1
Al
- J
: p J g
1 . r r+11([" r4+2
\ c)

Figure 28: Proof of Proposition 10

7. or to one of the pairs of ports by, corresponding to codomain pairs of
ports of the identification structure e; these pairs of ports are either
free in s (and hence in u’) or connected to a communication area of
order —1.

To v, we can apply reduction 3.3.4. This subnet reduces by the M?Lm}
reduction to a sum vy + vy + - - - + v, where vg is shown in Figure 27(a)
and the v;s (j > 1) are nets of the shape shown in Figure 27(b) where the
principal port of [and m are forwarded to ports among 71,...,72944. We
have w’ ~7, v ug + uj + -+ + uj, where u results from the replacement
of the net v by the net v; in v’ (j =0,....k).

e We apply the (I, m)-communication reduction to u(, getting a simple net
to which is ~q equivalent to the simple net of Figure 28 where f’ is the
restriction of f to {1,...,p}. This net is ~g equivalent to a simple net
t1 with (I",L) Zp, .. », t1 (upon applying 3.3.1 to the communication
areas of the identification structure f’, the ones which are connected to
the pairs of free ports d; of sy and those belonging to the identification
structure e). By Lemma 9, there is a simple net ¢ such that ¢; ~¢ ¢ and
(A, M) Iy, ... p, t.

To conclude, we must check that, for j > 1, u} is {l,m}-neutral. But, for each

31

of the two labels | and m, we are in one of the seven cases (1) to (7) above.
Consider for instance label [. If we are in case (1), (2), (3), (5), we can directly
apply Lemma 8.

Assume that we are in case (4) and that,
in uf;, the codereliction labeled by 1 is
forwarded to the communication area
connected to d,. (so that r > 2), we
can apply 3.3.5 and see that M,{Fl,m}
wy + we where wy; and ws are simple,
and w; contains a subnet of the shape
shown aside. Hence by Lemma 8, wy is
{l, m}-neutral.

On the other hand, in ws, [is connected to the r-th communication area
(in the sense of 3.2.2) of the identification structure labeled by f and the other
pairs of ports of that communication area are connected to auxiliary ports of
the output prefix compound cell labeled by m. Therefore, by Lemmata 7 and 4,
wy is {l, m}-neutral. So, by Lemma 4, v} is {/,m}-neutral.

If we are in case (6) then, in u}, [is guarded by m and hence u} is {l,m}-
neutral by Lemma 7. Last assume we are in case (7); in this case, [is connected
to an auxiliary port of a generalized structural cell whose principal port is free,
or is connected to a weakening cell. In both cases again it is clear that u/ is

{l, m}-neutral O

We prove now a converse statement. We explain in 7.4.3 that this statement,
and hence also Theorem 12, can be strengthened.

Proposition 11 Let (T', L) be a canonical state and by, ..., b, be a repetition-
free list of names containing all the free names of (I, L). Let s be a simple net

such that (T, L) Ty, .. », S If t§, is a simple net such that s dm, ty, then there is

a canonical state (A, M) such that (T, L) Am, (A, M) and there exists a simple
net t such that (A, M) Iy, . 4, t and t ~q 1.

Proof. We show first that both [and m must be minimal in the poset L(T', L) (see
Section 4.2). Assume for instance that m is not minimal. Then the principal
port of the dereliction cell labeled by m is connected to an auxiliary port of
a transistor whose principal port is connected to an auxiliary port of an input
or output prefix cell, labeled say by m’, with m’ < m (actually, m’ is the
predecessor of m in the forest £(I', L)). Say for instance that the prefix cell
labeled by m/’ is an input prefix cell.

Hence s contains the subnet shown
aside. So m is guarded by m’ in s and
S0, whenever s M,{Fl,m} s, no simple net
appearing in s’ can contain an (I,m)-
communication redex, in contradiction

. . Im
with our hypothesis that s — ¢{,.

32

We have seen that [and m are minimal in the poset £(T', L) and this means
that in I', the prefixes labeled by [and m are the outermost prefixes of P, and
P, where T' = (Py,e1)---(Pn,en) (and the choice of P, and P, is uniquely
determined by [and m), that is, T" is of the form described by Formula (1) in
the proof of Proposition 10, P; denoting the first process in that expression,
which is guarded by an [-labeled input prefix, and P, the second one, which
is guarded by an m-labeled output prefix. Using the notations of Formula (1),
we argue now that necessarily ei(a) = e2(ds()) (we can refer to Figure 25 as
describing s). But if this is not the case, an inspection of the interpretation of
input prefixes 4.3.4, of states 4.3.6 and of the identification structure associated
with the “global environment” e (see 3.2.2) shows that s ~Tm) S'=s1++s

where for each i, s} is simple and one of the following holds:

1. in s}, [is forwarded to a free port of S’

2. or ! divesinto P; in s for some j = 1,..., N. We denote by ¢ the subnet of
s; such that P; Z;, .. t, where ci,..., ¢, is a repetition-free enumeration
of the domain of e;.

In case (1), s

tis {l,m}-neutral. The same is true of s, in case (2) when the
index j is different from 2 since then P; cannot contain the label m and we can
apply Lemma 8. In the case j = 2, using our assumption that e;(a) # ea2(ds(q)),
we see that [dives into P, through a free port which does not correspond to
df(y and from this (and from an inspection of the interpretation of output
prefixes 4.3.5), we see that s; ~Tm S” where S” is a sum of simple nets in
which, either [is guarded by m, or l}dives into @ in t where @ is the process
guarded by the m-labeled output prefix of P, (and therefore, @ does not contain
the label m). Applying Lemma 7 in the first case and Lemma 8 in the second
case, we see that each simple summand of S” is {l,m}-neutral and therefore

s; also is {l,m}-neutral by Lemma 4. Finally, by the same lemma, s itself is

{l, m}-neutral, contradicting the hypothesis that s LN to-

So we must have e;(a) = ea(dy()) and since our processes and states are
implicitly arity-typed (see 4.1), we know that the number of objects of the two
involved prefixes coincide (the common value of these numbers is p, according
to our notations).

Using the same notations as in Proposition 10, and the statement itself of
I

that proposition, we have (I', L) — (A, M) and there are simple nets ¢ and ¢

such that (A, M) Zp,... b, t, t ~a to and s tm, to. This means more precisely
that s ’\’)?l,m} S" = 59+ s1 + -+ + sp, with the s;s simple, such that sy has
an (I, m)-communication redex and each s; (for j > 1) is {l, m}-neutral and ¢,
is the simple net which results from the reduction of the (I, m)-communication
redex in sg.

We conclude by showing that tg ~q t,.

We know from our hypothesis that s ~ T S" = sy+s) +- -+ sy, where s,
has an (I, m)-communication redex and each s’; (for j > 1) is {/, m}-neutral, and
ty is the simple net which results from the reduction of the (I, m)-communication
redex in s).

33

By the Church Rosser property of M’{Fl,m}’ there is a net U such that
S’ ~{my U and S ~1my U- By Lemma 3, we have U = uo + U’ with
so ~5 uo and sp ~3 ug, thanks also to the {/,m}-neutrality of s; and s} for
j > 1. Moreover (still by Lemma 3), uo contains an (I, m)-communication redex
as well, and if vy is the net which results from the reduction of the (I,m)-
communication redex in wug, we have also tg ~} v and t{, ~3 vo. So we have
to ~q t/0. |

We are now ready to state a bisimulation theorem. Given a repetition-free
list b1, ..., b, of names, we define a relation 7, . 5, between states and simple
nets by: (I, L) fbl,___7bn s if there exists a simple net s such that (I', L) Zp, .,
sp and sg ~q S.

Theorem 12 The relation fbh,,,,bn s a strong bisimulation between the labeled
transition systems Sy and Dy.

Proof. Let (T', L) be a canonical state and s; be a simple net, and assume that
(T, L) fbl,m,bn s1. So there is a simple net s such that (I, L) Z, .. 5, s and
s ~q S1-

Assume first that (T, L) 1, (A, M), with I, m two distinct elements of £\
{7}. By Proposition 10, there are simple nets ¢ty and ¢ such that (A, M) Zy, . 5,
to ~q t and s dmy By Lemma 6 (~q is a bisimulation), there exists ¢; such
that t ~q t1 and s dm, t1. We have (A, M) jbl,m,bn t1.

Conversely, assume that s; im, t;. By Lemma 6, there exists ¢ such that
t ~q t1 and s dmy, By Proposition 11, there is a canonical state (A, M) and
a simple net ¢ such that (I, L) 1, (A, M) and (A, M) Iy, .. b, to ~a t. We
have (A, M) fbl,.,.,bn t. O

6. Dealing with replication

We extend our 7-calculus with the following construction?: if | € £, if
a and by,...,b, are pairwise distinct names and if P is a process such that
FV(P) C {b1,...,b,}, then [l]!a(by,...,b,) - P is a process, whose only free
name is a. This process is guarded, in the sense of 4.2.2. This extension has no
influence on the definition of the relation ~»,, on the states of our environment
machine. The transition of the machine has to be extended with the following
rule:

(([Na(by ... by) - Pye)([m]a’ (b} ...0),) - P e")T, L)
I, Can(([[)ta(by . . . by) - Pye)
(Pe[by €' (b)), ..., by — €' (b)) (P, e)T, L)

9This is a restricted form of replication: all the free names of the replicable process have
to be bound by the prefix.

34

ay ap o
a) Box with transistor (b) The subnet u

T

Figure 29: Translation of input replication

We extend now the translation relation Z to the replicated input process.
Let P be a process whose free names are contained in the repetition-free list
b1,...,bn, and let a,ai,...,a, be a list of pairwise distinct names. We set
['a(by...by) - P Iyq,,...a, s if, for some simple net ¢ such that P 7y, 4, t, s
is of the shape given by Figure 29(a). The promotion cell of that net contains
the net shown in Figure 29(b).

When P 7y, ..., t for a process with replication P, the simple net ¢ does not
satisfy the CLB (see 1.3.5) in general since promotion cells will have labels # 7,
so that a bisimulation theorem will be harder to obtain (the transition system
of simple nets is defined only for nets satisfying the CLB in Section 2.3). One
should label in a different way the various copies of promotion cells, in the spirit
of the geometry of interaction [Gir88a|, with a similar discipline for processes
as well.

7. Examples and conclusion

We give a few examples to illustrate some key features of communication in
the m-calculus as represented in differential interaction nets.

7.1. Concurrent communication

Let P be the process (the restriction is here only to illustrate its interpreta-
tion in nets by a communication area of order —1):

va - (([l]a() il | fmal) - nn) | Ta() - nn) .

The simplest state containing P is (I', L) = ((P,0),?). We have (I', L) Z s where
s is the simple net of Figure 30.

By applying aggregations of communication areas, we obtain the simple net
s1 of Figure 31. Thus s ~* s1. Since P is in fact a CCS process (namely va-(a |
a | @)), we can remark how the translation into differential interaction nets is
given by first a tree (with nodes represented with dashed boxes) corresponding
to the tree structure of the CCS process (built from sequential and parallel
compositions), and second communication areas for the identification of names.

The simple net s; reduces to the net sy (s1 ~»} s2) of Figure 32, where

35

Figure 30: Concurrent communication in a CCS process

Figure 31: A CCS process: first step

36

AN

Figure 32: A CSS process: second step

Figure 33: A CSS process: final state

the choice between actions ready to communicate will be done. This means
that so reduces to a sum of simple nets containing in particular the net sj3
(s2 ~7)) s3 +) of Figure 33. If ¢ results from the reduction of the (I, m)-

communication redex in s3, we have s T 4 This corresponds to (I, L) ~>can
(([aQ) il) (fmla() - nil, e) ([rla() - nil, e), {a'}) = (([rlal) - nil, e), {a’}) (with e
defined only on {a} by e(a) = a’) in the environment machine.

7.2. Sequentiality
Let P be the process:

[Wa() - [1160) - nil | Tm/b() - nil | [m]af) - nil

The simplest state containing P is (T', L) = ((P,e),0) (with e defined on {a, b}
by e(a) = a’ and e(b) = b"). We have (I', L) Z,/ v s with s ~* s1 (aggregations

37

o,
i

Figure 34: Sequentiality: si, translation of the process

P = [Ja() - [I'Ib() - nil | [m/]b() - nil | [m]a() - nil

of communication areas) and s; is the simple net of Figure 34; observe that
there is a guarding path from I’ to [which enforces sequentiality by preventing
I’ to interact with m. Since P is again a CCS process (namely a - b | b | @), we
can see its tree structure in the differential interaction net s; of Figure 34.
The simple net s; reduces to the simple net s, of Figure 35 (s ~} s2),
where the above mentioned guarding path is preserved.
Then there exists a simple net s3 such that so M?l,m} s3 + -+ and if ¢

results from the reduction of the (I,m)-communication redex in s3, we have
s ™, t. Moreover t reduces to the net of Figure 36. This corresponds to

(T, L) ~can (([ta() - [115() - nil, e) ([m/To() - nil, e) (fm]a() - nil,e), 0) <= (([1]b() -

nil, e)([m/]b() - nil,),) in the environment machine.

7.3. Name passing

Let P, @Q and R be processes such that the free names of P are a and z, the
only free name of @ is y and the free names of R are x and b. Let P’ be the
process:

ve- (Mat) - P |)2(w) - Q) | Imlalz) - Tah) - R

38

bl

Figure 35: Sequentiality: simple net sz, first step

= 5 ,,,

Figure 36: Sequentiality: simple net s3, second step

+ VN
L
g

G//

Figure 37: Name passing: simple net s}, translation of the process P’ (after a few structural
reductions)

The simplest state containing P’ is (I', L) = ((P’,e),0) (with e defined on {a,b}
by e(a) = o’ and e(b) = V). If P Z,, s1, Q Z, s2 and R Z,; s3, we have
(T,L) Iy " with s’ ~F s} (aggregations of communication areas) and s} is
the simple net of Figure 37.

We have s’ 7% ¢ with ¢ ~4 sy and s4 is the simple net of Figure 38, where
the identification of the names z and x corresponds to the connection of the
associated corlrgnunication areas.

Finally ¢ Eml 4 with ¢/ ~% s4 and s4 is the simple net of Figure 39 where y
and b are also identified.

This corresponds to

(0,L) ~an (([Maz) - Prelz = 2N([112(y) - Qrelz = =)
7 (Ima() - [T (b) - R.e), {='})
5 (Pelz = ZD([2() - Quelz =)
. ([T (b) - R ela = 21),{='})
B (Prelz o 2D(@selz > 2y = VDR el 21),{2))

in the environment machine.

7.4. Conclusion

The main goal of this work was not to define one more translation of the
m-calculus into yet another exotic formalism. We wanted to illustrate by our
bisimulation result that differential interaction nets are sufficiently expressive
for simulating concurrency and mobility, as formalized in the m-calculus. We
believe that differential interaction nets have their own interest and find a strong

40

Figure 38: Name passing: simple net s/, first step

Figure 39: Name passing: simple net s}, final state

41

mathematical and logical justification in their connection with linear logic, in
the existence of various denotational models and in the analogy between its ba-
sic constructs and fundamental mathematical operations such as differentiation
and convolution product. The fact that differential interaction nets support
concurrency and mobility suggests that they might provide more convenient
mathematical and logical foundations to concurrent computing. In particular,
this work suggests that differential linear logic might be the logical side of a
Curry-Howard correspondence for concurrency and mobility, but there is still a
lot of work to do for enforcing this idea. The following issues are crucial.

7.4.1. Logical correctness. The nets which result from our translation do
not satisfy in general the Danos-Regnier acyclicity criterion, so they cannot
always be sequentialized into proofs of the sequent calculus of Section 1.1. We
think that the sequentializable nets are already quite expressive in terms of
concurrency and mobility, but this claim has to be enforced by mathematical
results. One research direction here would be to try to identify a well-behaved
and sufficiently expressive fragment of the w-calculus, or of the solos calculus,
whose processes are translated into sequentializable nets.

7.4.2. Typing. And then of course, there is the question of typing, which is
orthogonal to the sequentializabilty issue. The nets presented here are “weakly
typed”: they are typed using a type o which satisfies the recursive equation
0= ?(0")®0 = (0o = o). This is a typing system which accepts all untyped
lambda-terms'?, and hence does not convey any information about terms, but
has two effects when used in our setting. First it prevents “clashes” to appear
during the reduction of nets (for instance, the principal port of a tensor cell
connected to the principal port of another tensor cell). Second, it allows to in-
terpret our nets in some denotational models of the untyped differential lambda-
calculus, such as the relational model presented in [BEMO07]. It is possible to
adopt more informative typing disciplines, such as second order propositional
linear logic. The question is then again to understand if such typed and logically
correct differential nets are still sufficiently expressive in terms of concurrency
and mobility and to design typed and logically correct process algebras asso-
ciated with such nets. The success of this research program would lead to a
true extension of the Curry-Howard correspondence to concurrency. Of course,
many other issues have to be addressed as well. Let us mention only a few of
them.

e How should we handle the sum of process algebras in our setting, and how
is it related to the additive connectives of linear logic?

e What kind of replication can we encode in our nets, using more general

10Remember that the untyped lambda-calculus can be translated into nets of multiplicative-
exponential linear logic, which are typed in this typing system, and satisfy the Danos-Regnier
acyclicity criterion, see [Reg92].

42

instances of the promotion rule of linear logic than the closed promotion
of Section 67

e Since our nets belong to a differential extension of linear logic in which
the lambda-calculus can be faithfully represented as well, does our setting
suggest new ways of combining concurrent and functional programming?

e Our nets admit denotational models, such as the relational model intro-
duced in [BEMO07]. What kind of equivalence on processes do such inter-
pretations induce through our translation?

7.4.3. Final remark. In the final revision process of this paper, we observed
that Proposition 11 can be strengthened. Indeed, with the notations of that
proposition, if (I', L) Ty, .. 5, s and if s Mi{l,m} so + 81+ --- + s, where sq is
a simple net which contains an (I, m)-communication redex, then s; is {I,m}-
neutral for each ¢« > 1. This is actually a simple consequence of Theorem 2 and

n

of Proposition 10, observing first that we must have (T', L) 1m, (A, M) for some
(A, M), as we did at the beginning of the proof of Proposition 11. This indicates
that Theorem 12 still holds if we remove the {l, m}-neutrality restriction in the
definition of the transition system D, (see Remark 5 in 2.3.3).

References

[AC98] Roberto Amadio and Pierre-Louis Curien. Domains and lambda-
calculi, volume 46 of Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, 1998.

[AM99] Samson Abramsky and Paul-André Melliés. Concurrent games and
full completeness. In Proceedings of the 14th Annual IEEE Symposium
on Logic in Computer Science. IEEE, 1999.

[BB90] Gérard Berry and Gérard Boudol. The chemical abstract machine. In
Proceedings of the 17Th ACM Symposium on Principles of Program-
ming Languages (POPL), pages 81-94. ACM Press, January 1990.

[Bef05] Emmanuel Beffara. Logique, Réalisabilité et Concurrence. PhD thesis,
Université Denis Diderot, 2005.

[BEMO07] Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. Not
enough points is enough. In Proceedings of the 21st Annual Conference
of the European Association for Computer Science Logic (CSL’07),
Lecture Notes in Computer Science. Springer-Verlag, September 2007.

[BHY04] Martin Berger, Kohei Honda, and Nobuko Yoshida. Strong normalis-
ability in the pi-calculus. Information and Computation, 191:145-202,
2004.

43

[BMO06]

[CFO6]

[DR8Y]

[Ehr05]

[ELOS]

[ERO6]

[EW97]

[FMO5]

[Girs7]

[Gir88al

[Gir88hb|

[HLO8]

[HY94]

Emmanuel Beffara and Francois Maurel. Concurrent nets: a
study of prefixing in process calculi. Theoretical Computer Science,
356(3):356-373, 2006.

Pierre-Louis Curien and Claudia Faggian. An approach to innocent
strategies as graphs. Technical Report hal-00155293, CCSD-HAL,
2006. Submitted for publication.

Vincent Danos and Laurent Regnier. The structure of multiplicatives.
Archives for Mathematical Logic, 28(3):181-203, 1989.

Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Com-
puter Science, 15(4):615-646, 2005.

Thomas Ehrhard and Olivier Laurent. Acyclic solos and differential
interaction nets. Submitted to Logical Methods in Computer Science,
October 2008.

Thomas Ehrhard and Laurent Regnier. Differential interaction nets.
Theoretical Computer Science, 364(2):166-195, 2006.

Uffe Engberg and Glynn Winskel. Completeness Results for Linear
Logic on Petri Nets. Annals of Pure and Applied Logic, 86(2):101-135,
1997.

Claudia Faggian and Francois Maurel. Ludics nets, a game model of
concurrent interaction. In Proceedings of the 20th Annual IEEE Sym-
posium on Logic in Computer Science, pages 376-385. IEEE Com-
puter Society, 2005.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1—
102, 1987.

Jean-Yves Girard. Geometry of interaction II: Deadlock free algo-
rithm. In Martin-Lof & Mints, editor, Proceedings of COLOG 88, vol-
ume 417 of Lecture Notes in Computer Science, pages 76-93. Springer-
Verlag, 1988.

Jean-Yves Girard. Normal functors, power series and the A-calculus.
Annals of Pure and Applied Logic, 37:129-177, 1988.

Kohei Honda and Olivier Laurent. An exact correspondence between
a typed pi-calculus and polarised proof-nets. Submitted to Theoretical
Computer Science, November 2008.

Kohei Honda and Nobuko Yoshida. Combinatory representation of
mobile processes. In Proceedings of the 21st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 348-360.
ACM, 1994.

44

[TMO3]

[Lafo5]

[LPVO1]

[LVO03]

[Maz05]

[Mel06]

[Mil93]

[Plo76]

[Reg92]

[SWO1]

Ole Jensen and Robin Milner. Bigraphs and transitions. In Proceed-
ings of the 80th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages table, pages 38-49. ACM, 2003.

Yves Lafont. From proof nets to interaction nets. In J.-Y. Girard,
Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, pages
225-247. Cambridge University Press, 1995. Proceedings of the Work-
shop on Linear Logic, Ithaca, New York, June 1993.

Cosimo Laneve, Joachim Parrow, and Bjorn Victor. Solo diagrams.
In Proceedings of the 4th conference on Theoretical Aspects of Com-
puter Science, TACS’ 01, number 2215 in Lecture Notes in Computer
Science. Springer-Verlag, 2001.

Cosimo Laneve and Bjérn Victor. Solos in concert. Mathematical
Structures in Computer Science, 13(5):657-683, 2003.

Damiano Mazza. Multiport interaction nets and concurrency. In Pro-
ceedings of CONCUR 2005, number 3653 in Lecture Notes in Com-
puter Science, pages 21-35. Springer-Verlag, 2005.

Paul-André Melliés. Asynchronous games 2: the true concurrency of
innocence. Theoretical Computer Science, 358(2):200-228, 2006.

Robin Milner. The polyadic pi-calculus: a tutorial. In Logic and
Algebra of Specification, pages 203-246. Springer-Verlag, 1993.

Gordon Plotkin. A powerdomain construction. STAM Journal of Com-
puting, 5(3):452-487, 1976.

Laurent Regnier. Lambda-Calcul et Réseauz. Thése de doctorat, Uni-
versité Paris 7, January 1992.

Davide Sangiorgi and David Walker. The pi-calculus: a Theory of
Mobile Processes. Cambridge University Press, 2001.

45

