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tWe propose and study a translation of a pi-
al
ulus without sums nor re
ursioninto an untyped version of di�erential intera
tion nets. We de�ne a transi-tion system of labeled pro
esses and a transition system of labeled di�erentialintera
tion nets. We prove that our translation from pro
esses to nets is abisimulation between these two transition systems. This shows that di�eren-tial intera
tion nets are su�
iently expressive for representing 
on
urren
y andmobility, as formalized by the pi-
al
ulus.Our study will 
on
ern essentially a repli
ation-free fragment of the pi-
al
ulus, but we shall also give indi
ations on how to deal with a restri
tedform of repli
ation.Key words: linear logi
, intera
tion nets, 
on
urren
y, pi-
al
ulusIntrodu
tionLinear Logi
 proofs [Gir87℄ admit a proof net representation whi
h has a veryasyn
hronous and lo
al redu
tion pro
edure, suggesting strong 
onne
tions withparallel 
omputation. This impression has been enfor
ed by the introdu
tion ofintera
tion nets and intera
tion 
ombinators by Lafont in [Laf95℄.But the attempts at relating 
on
urren
y with linear logi
 (e.g. [EW97℄,[AM99℄, [Mel06℄, [Bef05℄, [CF06℄ based on [FM05℄. . . ) missed a 
ru
ial fea-ture of 
on
urren
y, su
h as modeled by pro
ess 
al
uli like Milner's π-
al
ulus[Mil93℄, [SW01℄: its intrinsi
 non-determinism. Indeed, all known logi
al sys-tems had either an essentially deterministi
 redu
tion pro
edure � this is the
ase of intuitionisti
 and linear logi
, and of 
lassi
al systems su
h as Girard'sLC or Parigot's λµ � or an ex
essively non-deterministi
 one, as Gentzen's 
las-si
al sequent 
al
ulus LK, whi
h equates all proofs of the same formula.However, many denotational models of the lambda-
al
ulus and of linearlogi
 admit some form of non-determinism (e.g. [Plo76, Gir88b℄), showing that
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a non-deterministi
 proof 
al
ulus is not ne
essarily trivial. The �rst authorintrodu
ed su
h models, based on ve
tor spa
es (see e.g. [Ehr05℄), whi
h havea ni
e proof-theoreti
 
ounterpart, 
orresponding to a simple extension of therules that linear logi
 asso
iates with the exponentials.In this di�erential linear logi
 (DiLL), the weakening rule has a mirror imagerule 
alled 
oweakening, and similarly for dereli
tion and for 
ontra
tion, and theredu
tion rules have the same mirror symmetry1. The 
orresponding formalismof di�erential intera
tion nets (DIN) has been introdu
ed in a joint work bythe �rst author and Regnier [ER06℄. In DiLL, two proofs of the same formula
an be added and there is a 0-proof of any formula, whi
h is neutral for thisaddition. So the set of proofs of any formula is a 
ommutative monoid and this isne
essary be
ause the redu
tions asso
iated with the dereli
tion/
o
ontra
tionand 
odereli
tion/
ontra
tion 
uts of DiLL lead to su
h non trivial sums ofproofs: in that sense, DiLL is a non-deterministi
 logi
. As it is well knownin a 
ategori
al setting, this possibility of adding proofs is equivalent to theidenti�
ation of the two additive 
onne
tives ⊕ and &.In a joint work with Kohei Honda [HL08℄, the se
ond author proposed atranslation of a version of the π-
al
ulus in proof-nets for a version of linear logi
extended with the 
o
ontra
tion rule (as we now understand). The basi
 idea
onsists in interpreting the parallel 
omposition as a 
ut between a 
ontra
tionlink (to whi
h several outputs are 
onne
ted, through dereli
tion links) and a
o
ontra
tion link, to whi
h several promoted re
eivers are 
onne
ted. Beingpromoted, these re
eivers are repli
able, in the sense of the π-
al
ulus. The otherfundamental idea of this translation 
onsists in using linear logi
 polarities formaking the di�eren
e between outputs (negative) and inputs (positive), and ofimposing a stri
t alternation between these two polarities. This allows to re
astin a polarized linear logi
 setting a typing system for the π-
al
ulus previouslyintrodu
ed by Berger, Honda and Yoshida in [BHY04℄. This translation hastwo features whi
h 
an be 
onsidered as slight defe
ts: it a

epts only repli
ablere
eivers and it is not really modular (the parallel 
omposition of two pro
esses
annot be des
ribed as a 
ombination of the 
orresponding nets).One should mention here that translations of the π-
al
ulus into nets of var-ious kinds, subje
t to lo
al redu
tion relations, have been provided by severalauthors (
f. the work of Laneve, Parrow and Vi
tor on solo diagrams [LPV01℄,of Be�ara and Maurel [BM06℄, of Milner on bigraphs [JM03℄, of Mazza [Maz05℄on multiport intera
tion nets et
.). One should also mention the early work ofHonda and Yoshida [HY94℄ whi
h introdu
es a system of 
ombinators for inter-preting a pro
ess algebra. These 
ombinators have 
onne
tions with Lafont'sintera
tion nets; just like multiport intera
tion nets and solo diagrams, this sys-tem seems however to la
k the main feature of intera
tion nets, namely (strong)
on�uen
e. Moreover, as far as we know, these approa
hes have no 
lear logi
algrounds nor simple denotational semanti
s. Indeed, the fa
t that DINs have1The only non symmetri
 rule of DiLL is promotion. Finding a symmetri
 version thereofseems to be a rather 
hallenging task! 2



a denotational semanti
s, together with the translation we propose, suggest tointerpret the π-
al
ulus in DINs' denotational models and to study the indu
edequivalen
e of pro
esses. This approa
h will be developed in further work. Itshould be observed moreover that the denotational models of DINs' are alsomodels of the lambda-
al
ulus, suggesting natural 
ombinations between 
on-
urrent programming (as modeled in DINs) and fun
tional programming.Prin
iple of the translation. The purpose of the present paper is to 
on-tinue this line of ideas, using more systemati
ally the new stru
tures introdu
edby DINs.The �rst key de
ision we made, guided by the stru
ture of the typi
al 
o-
ontra
tion/
ontra
tion 
ut intended to interpret parallel 
omposition, was ofasso
iating with ea
h free name of a pro
ess not one, but two free ports in the
orresponding di�erential intera
tion net. One of these ports will have a !-type(positive type) and will have to be 
onsidered as the input port of the 
orre-sponding name for this pro
ess, and the other one will have a ?-type (negativetype) and will be 
onsidered as an output port.
! ?

? !

?!Figure 1: Communi
ationarea
We dis
overed stru
tures whi
h allow one to 
om-bine these pairs of wires for interpreting parallel 
om-position and 
alled them 
ommuni
ation areas : they
an be seen as 
omplete graphs between verti
es madeof pairs of 
ontra
tion 
ells (marked by a �?� sym-bol) and 
o
ontra
tion 
ells (marked by a � !� symbol),
onne
ted by edges whi
h are pairs of wires. An ex-ample of su
h a stru
ture, with 3 verti
es, is givenin �gure 1. Output and input pre�xes will be inter-preted using dereli
tion and 
odereli
tion, as well asthe multipli
ative 
onne
tives.Content. We �rst introdu
e di�erential linear logi
, presented as a sequent
al
ulus, and then di�erential intera
tion nets. These nets are typed with there
ursive typing system introdu
ed by Danos and Regnier in [Reg92℄ (whi
h
orresponds to the untyped lambda-
al
ulus) for avoiding the appearan
e ofnon redu
ible 
on�gurations. To simplify the presentation, these nets use onlya restri
ted form of the promotion rule of linear logi
, whi
h is su�
ient forinterpreting a repli
ation-free version of the π-
al
ulus, as well as a restri
tedform of repli
ation. In this setting, we de�ne a �toolbox�, a 
olle
tion of netsthat we shall 
ombine for interpreting pro
esses, and a few asso
iated redu
tions,derived from the basi
 redu
tion rules of di�erential intera
tion nets.We organize redu
tion rules of nets as a labeled transition system, whose ver-ti
es are nets, and where the transitions 
orrespond to dereli
tion/
odereli
tionredu
tions. Then we de�ne a pro
ess algebra whi
h is a polyadi
 π-
al
ulus,without repli
ation and without sums. We spe
ify the operational semanti
s ofthis 
al
ulus by means of an abstra
t ma
hine inspired by the ma
hine presentedin [AC98, Chapter 16℄. We de�ne a transition system whose verti
es are thestates of this ma
hine, and transitions 
orrespond to input/output redu
tions.3



And we de�ne a �translation� relation from ma
hine states to nets and show thatthis translation relation is a bisimulation between the two transition systems.Last, we sket
h the extension of this translation to a version of our π-
al
ulusaugmented with a restri
ted form of repli
ation (input-guarded repli
ation wherethe only free name of the repli
ated pro
ess is the subje
t of the input pre�x, andmoreover, this name is not free in the 
ontinuation of the repli
ated input pre�x).We 
on
lude the paper with several 
on
rete examples, showing how variousoperational features of the π-
al
ulus are modeled in di�erential intera
tionnets.1. Di�erential intera
tion nets1.1. Di�erential linear logi
In the fragment of linear logi
 we use, there are two 
onstants 1 and ⊥ and
4 
onne
tives: ⊗ and ` whi
h are binary (the multipli
ative 
onne
tives) and !and ? (the exponentials), whi
h are unary. Given a formula A, its dual (or linearnegation) A⊥ is de�ned by indu
tion: (A ⊗ B)⊥ = A⊥`B⊥ et
. We present thelogi
al system in a sequent 
al
ulus style, with unilateral sequents (all formulaeare on the right side of the turnstyle symbol). The identity rules are the axiomand the 
ut rule:

⊢ A⊥, A
⊢ Γ, A ⊢ ∆, A⊥

⊢ Γ, ∆The multipli
ative rules are:
⊢ Γ, A ⊢ ∆, B

⊢ Γ, ∆, A ⊗ B

⊢ Γ, A, B

⊢ Γ, A`B ⊢ 1
⊢ Γ

⊢ Γ,⊥The �standard� exponential rules are the weakening, 
ontra
tion and dereli
tionrules:
⊢ Γ

⊢ Γ, ?A
⊢ Γ, ?A, ?A

⊢ Γ, ?A

⊢ Γ, A

⊢ Γ, ?AThe exponential rules whi
h are new in di�erential linear logi
 are the 
oweak-ening, 
o
ontra
tion and 
odereli
tion rules:
⊢ !A

⊢ Γ, !A ⊢ ∆, !A

⊢ Γ, ∆, !A

⊢ Γ, A

⊢ Γ, !AThe promotion rule is a standard rule of ordinary linear logi
. It allows to turna proof into a dupli
able obje
t:
⊢ ?A1, . . . , ?An, B

⊢ ?A1, . . . , ?An, !BBe
ause the redu
tion rules for the dereli
tion/
o
ontra
tion and 
odereli
tion-/
ontra
tion redexes produ
e formal sums of proofs, we have to introdu
e a rulefor su
h sums. 4



⊢ Γ · · · ⊢ Γ
⊢ ΓThere is one su
h rule for ea
h n ∈ N (the number of premises), and in parti
ularfor n = 0, so that ea
h sequent is provable in this logi
 by a 0 proof: this meansthat our proofs should be 
onsidered as partial obje
ts, just as Böhm trees inthe lambda-
al
ulus, whi
h are partial lambda-terms (in this analogy, the Ωsymbol of Böhm trees 
orresponds to the 0 proof).The graphi
al formalism of intera
tion nets is mu
h more 
onvenient forrepresenting this system, in parti
ular when one wants to deal with the 
utelimination rules (the redu
tion of the 
ontra
tion/
o
ontra
tion 
ut is parti
-ularly unnatural in the sequent 
al
ulus presentation).1.2. The general formalism of intera
tion netsWe re
all now the general syntax of intera
tion nets, as introdu
ed in [Laf95℄.See also [ER06℄ for more details. Assume we are given a set of symbols andthat an arity (a non-negative integer) and a typing rule is asso
iated with ea
hsymbol. This typing rule is a list (A0, A1, . . . , An) of types, where n is the arityasso
iated with the symbol. Types are formulae of some system of linear logi
.A net is made of 
ells. With ea
h 
ell γ is asso
iated exa
tly one symbol andtherefore an arity n and a typing rule (A0, A1, . . . , An). Su
h a 
ell γ has oneprin
ipal port p0 and n auxiliary ports p1, . . . , pn. A net has also a �nite set offree ports. All these ports (the free ports and the ports asso
iated with 
ells)have to be pairwise distin
t and a set of wires is given. This wiring is a setof pairwise disjoint sets of ports of 
ardinality 2 (ordinary wires) or 0 (loops2),and the union of these wires must be equal to the set of all ports of the net. Inother words, ea
h port of the net (free or asso
iated with a 
ell) is 
onne
ted toexa
tly one other port (free or asso
iated with a 
ell) through a wire, and ea
hsu
h wire 
onne
ts exa
tly two ports: ports 
annot be shared. The free portsof the net are those whi
h are not asso
iated with a 
ell.An oriented wire of the net is an ordered pair (p1, p2) where {p1, p2} is awire. In a net, a type is asso
iated with ea
h oriented wire, in su
h a waythat if A is asso
iated with (p1, p2), then A⊥ is asso
iated with (p2, p1). Last,the typing rules of the 
ells must be respe
ted in the sense that for ea
h 
ell

γ of arity n, whose ports are p0, p1, . . . , pn and typing rule is (A0, A1, . . . , An),denoting by p′0, p
′
1, . . . , p

′
n the ports of the net uniquely de�ned by the fa
t thatthe sets {pi, p

′
i} are wires (for i = 0, 1, . . . , n), then the oriented wires (p0, p

′
0),

(p′1, p1),. . . ,(p′n, pn) have types A0, A1,. . . ,An respe
tively.
•

•

•
α β

γ

A

B

C

E

F p

q
DFigure 2: An intera
tion netThe free ports of the net 
onstitute itsinterfa
e. With ea
h free port p 
an beasso
iated the type of the unique orientedwire whose endpoint is p: this is the typeof p in the interfa
e of the net. Figure 22To be more pre
ise, one has to spe
ify the number of loops in the net, but this will notplay any role in the sequel. 5



shows a typi
al example of a typed intera
-tion net, with 
ells of symbols α, β and γ, of respe
tive types (B, A⊥, C⊥),
(B⊥, A, E⊥, D⊥) and (F, D, C). The interfa
e is (p : E, q : F ). Cells are repre-sented as triangles, with prin
ipal port lo
ated at one of the angles and otherports on the opposite edge. We often draw a bla
k dot to lo
ate the auxiliaryport number 1.1.3. Presentation of the 
ellsOur nets will be typed using a type system whi
h 
orresponds to the untypedlambda-
al
ulus. This system is based on a single type symbol o (the type ofoutputs), subje
t to the re
ursive equation o = ?o⊥`o. We set ι = o⊥, so that
ι = !o ⊗ ι and o = ?ι`o. The tensor 
onne
tive is used only with premises !oand ι and dually for the par, and therefore, the only types we a
tually need are
o, ι, !o and ?ι for typing our nets.In the present setting, there are eleven symbols: par (arity 2), bottom (ar-ity 0), tensor (arity 2), one (arity 0), dereli
tion (arity 1), weakening (arity 0),
ontra
tion (arity 2), 
odereli
tion (arity 1), 
oweakening (arity 0), 
o
ontra
-tion (arity 2) and 
losed promotion (arity 0). We present now the various 
ellsymbols, with their typing rules, in a pi
torial way.1.3.1. Multipli
ative 
ells. The par and tensor 
ells, and their �nullary�versions bottom and one are as follows:

•

o

o
?ι

`
•

!o

⊗

ι

ι
⊥

o
1

ιThe �rst two 
ells are graphi
al representations of the ` and ⊗ rules ofSe
tion 1.1. The last two 
ells are similar to the ⊥ and 1 rules.1.3.2. Exponential 
ells. They are typed a

ording to a stri
tly polarizeddis
ipline. Here are �rst the why not 
ells, whi
h are 
alled dereli
tion, weaken-ing and 
ontra
tion:
?

ι ?ι
?

?ι
?

?ι
?ι

?ιand then the bang 
ells, 
alled 
odereli
tion, 
oweakening and 
o
ontra
tion:
!

o !o
!

!o
!

!o
!o

!o1.3.3. Closed promotion 
ells and the de�nition of nets. The notionof net is then de�ned indu
tively, together with 
losed promotion 
ells.
• A simple di�erential net is a typed intera
tion net, whi
h uses the mul-tipli
ative and exponential 
ells introdu
ed above as well as the 
losedpromotion 
ells we are de�ning now.6



• A di�erential net is a �nite formal sum S = s1 + · · · + sn of simpledi�erential nets having all the same interfa
e, and this interfa
e is then
onsidered as the interfa
e of S. A parti
ular 
ase is the net S = 0 (theempty sum), and this net has to be given together with its interfa
e: thereis a 0 net for ea
h interfa
e.
• Given a di�erential net S with only one free port o

S we introdu
ethe 
losed promotion 
ell !o
S! . This 
orresponds to the promotionbox 
onstru
tion of linear logi
 nets, restri
ted here to the 
ase where theresulting box has no �auxiliary ports�. We say that s is the subnet of thispromotion 
ell. There would be of 
ourse no di�
ulties in introdu
ingmore general promotion 
ells, with auxiliary ports, but we shall not usethem in the present work.In the sequel, sin
e no 
onfusion with other kinds of intera
tion nets will bepossible, we shall use �net� for �di�erential net�.1.3.4. Logi
al 
orre
tness. It is easy to transform any3 proof of the se-quent 
al
ulus of Se
tion 1.1 into a net made of these 
ells. The nets whi
hresult from this translation are exa
tly those whi
h satisfy one of the variousequivalent 
orre
tness 
riteria [Gir87, DR89, . . . ℄: one says that su
h nets 
anbe sequentialized4. One of the most remarkable features of intera
tion nets isthat they allow to 
ompute (using the forth
oming redu
tion rules), even onstru
tures whi
h 
annot be sequentialized.1.3.5. Labeled nets. We now introdu
e labels and labeled nets, whi
h arenets where parti
ular 
ells are equipped with labels. The labeled transition sys-tem of di�erential nets will be de�ned using these labels in Se
tion 2.3. We shallalso use these labels in Se
tion 4 for de�ning a version of the π-
al
ulus wherepre�xes are labeled, and for de�ning a transition system for this π-
al
ulus.The main result of the paper will be a 
omparison between these two systems.These labels are not used for representing the names of the π-
al
ulus, but justfor identifying the various o

urren
es of names.Let L be a 
ountable set of labels 
ontaining a distinguished element τ (tobe understood as the absen
e of label). A labeled simple net is a simple netwhere all dereli
tion, 
odereli
tion and promotion 
ells are equipped with labelsbelonging to L.All the nets we 
onsider in this paper are labeled. In our pi
tures, the labelsof dereli
tion, 
odereli
tion and box 
ells will be indi
ated, when this label is3Not exa
tly any a
tually, be
ause we 
onsider only a restri
ted form of promotion in ourdi�erential intera
tion nets, but the general promotion rule 
an be translated as well, withmore general nets.4The 
riteria have to be extended to the di�erential setting. This is straightforward:
o
ontra
tion is handled like the tensor rule. 7



di�erent from τ . When its label is τ , a (
o)dereli
tion or box 
ell will be drawnwithout any label.2. Redu
tion rulesWe denote by ∆ the 
olle
tion of all simple nets, ranged over by the letters
s, t, u, with or without subs
ripts or supers
ripts, and by N〈∆〉 the 
olle
tionof all nets (�nite sums of simple nets with the same interfa
e), ranged over bythe letters S, T , U , with or without subs
ripts or supers
ripts. We 
onsider ∆as a subset of N〈∆〉 (s ∈ ∆ being identi�ed with the sum made of exa
tly one
opy of s).A redu
tion rule is a subset R of ∆×N〈∆〉 
onsisting of pairs (s, S) where
s is a simple net made of two 
ells 
onne
ted by their prin
ipal ports and S is anet that has the same interfa
e as s. There are a
tually redu
tion rules whi
htransform simple nets in non simple ones, see 2.1.3.This set R 
an be �nite or in�nite. Su
h a relation is easily extended toarbitrary simple nets (s R T if there is (s0, u1 + · · · + un) ∈ R where s0 is asubnet of s, ea
h ui is a simple net and T = t1 + · · ·+ tn where ti is the simplenet resulting from the repla
ement of s0 by ui in s). This relation is extendedto nets (sums of simple nets): s1 + · · · + sn (where ea
h si is simple) is relatedto T by this extension RΣ if T = T1 + · · · + Tn where, for ea
h i, si R Ti or
si = Ti. Last, R∗ is the transitive 
losure of RΣ (whi
h is re�exive).2.1. De�ning the redu
tionWe give now the redu
tion rules of di�erential intera
tion nets. They 
orre-spond to the 
ut elimination rules of the di�erential linear logi
 of Se
tion 1.1.2.1.1. Multipli
ative redu
tion. The �rst two rules 
on
ern the intera
tionof two multipli
ative 
ells of the same arity.

• •
` ⊗

?ι ?ι

o

o
;m

o o

?ι

⊥
o

;m ε1where ε stands for the empty simple net (not to be 
onfused with the net
0 ∈ N〈∆〉, the empty sum, whi
h is not a simple net). The next two rules
on
ern the intera
tion between a binary and a nullary multipli
ative 
ell.

` 1
o

;m

?ι

o

?ι

o 1

!

;m

!o

ι

⊗ ⊥

!o

ι

?

⊥

8



2.1.2. Communi
ation redu
tion. This is in some sense the most funda-mental redu
tion of the system: from the pro
ess 
al
ulus viewpoint, it 
orre-sponds to a 
ommuni
ation between an input and an output pre�x whi
h havethe same subje
t.Let R ⊆ L. We have the following redu
tions if l, m ∈ R.
? !

ι ι?ι
;c,R

ι

l m2.1.3. Non-deterministi
 redu
tion. These rules will be used for imple-menting the non-determinism of the pro
ess 
al
ulus. Let R ⊆ L. We have thefollowing redu
tions if l ∈ R.
?

?

?

?

?ι

?ι?ι

!? +

l

l

;nd,R

?ι

l

ι
ι

?ι

?ι

ι ?ι

?ι

!

!

!

!

! ?
!o

+

l

l

;nd,R
l

o
o

!o

!o

!o

!o

o !o

!o

? !
ι ?ι

l
;nd,R 0 ! ?

o !o

l
;nd,R 0Remark 1 One 
an 
onsider a sum s1 + · · · + sn of several simple nets asa non-deterministi
 superposition, and then a redu
tion s ; s1 + · · · + sn
an be interpreted as meaning that all the redu
tions s ; s1,. . . ,s ; sn arepossible, but that the various out
omes si 
orrespond to semanti
ally distin
t
omputations. In that 
ase, there is an essential 
on�i
t between these various
hoi
es, as it should be 
lear in the rules above: in the two terms of the sums,we establish 
ompletely di�erent 
onne
tions in the net.On the other hand, by redu
ing various redexes in s, it is also possible toobtain various results: s ; T1,. . . ,s ; Tp, but these 
hoi
es of redexes in s
ommute with ea
h other (this is the main 
ontent of Theorem 2), and theresulting nets T1,. . . ,Tp are semanti
ally equivalent.One of the main features of di�erential intera
tion nets is that they reifythis distin
tion in the rewriting rules: in the �rst 
ase s redu
es to the net

s1 + · · ·+ sn whereas in the se
ond 
ase, s redu
es to ea
h of the nets T1,. . . ,Tp.Moreover, this rei�
ation is 
ompatible with (and a
tually, 
omes from) the de-notational semanti
s of di�erential linear logi
 (see e.g. [Ehr05℄), where these�non-deterministi
 sums� are interpreted as algebrai
 sums. Of 
ourse this dis-tin
tion between two kinds of redu
tion is not new (it is pervasive in rewritingtheory, in 
on
urren
y et
), what is new is its formalization in the present set-ting, using formal sums. 9



2.1.4. Stru
tural redu
tion. From the pro
ess 
al
ulus viewpoint, theserules implement the asso
iativity and 
ommutativity laws of parallel 
omposi-tion whi
h are impli
it in the Chemi
al Abstra
t Ma
hine [BB90℄, and in theabstra
t ma
hine of Se
tion 4.2. They also implement some of the laws asso-
iated with name restri
tion (s
ope extrusion in parti
ular). They are 
alled�stru
tural� be
ause they 
orrespond to the intera
tion between the stru
turaland the 
ostru
tural rules of di�erential linear logi
.
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?
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?ι

?ι

?ι
?ι

?ι
?ι

?ι
?ι

?ι

?ι
?ι

?ι
;s

!

! ?

?We use ∼s for the symmetri
 and transitive 
losure of ;s.2.1.5. Box redu
tion. Let R ⊆ L. We have the following redu
tions if
l, m ∈ R.

s!

m l
;b,R s

?ιι
?

ιObserve that the redu
tion rules are 
ompatible with the identi�
ation of the
oweakening 
ell with a promotion 
ell 
ontaining the 0 net. Observe also thatthe only rules whi
h do not admit a �symmetri
� rule are those whi
h involvea promotion 
ell. Indeed, promotion is the only asymmetri
 rule of di�erentiallinear logi
.2.1.6. Completeness of the redu
tion. One 
an 
he
k that we have pro-vided redu
tion rules for all redexes 
ompatible with our typing system: for anysimple net s made of two 
ells 
onne
ted through their prin
ipal ports, there isa redu
tion rule whose left member is s. This rule is unique, up to the 
hoi
e ofa set of labels, but this 
hoi
e has no in�uen
e on the right member of the rule.
10



2.1.7. Conditions on labeled nets. We say that a simple net s satis�es the
ondition on labels for simple nets if two labels asso
iated with distin
t 
ells5of s are either distin
t or equal to τ . As su
h, this 
ondition will not preservedunder redu
tion, due to the fa
t that promotion 
ells are dupli
ated. Therefore,we reinfor
e this 
ondition by requiring also that all the promotion 
ells of s belabeled by τ and all the labels o

urring in subnets of promotion 
ells of s beequal to τ . We shall refer to the 
onjun
tion of these 
onditions as to the CLB(
ondition on labels and boxes).One 
an also 
he
k, by simple inspe
tion of the rules that, if t is a simple netwhi
h satis�es the CLB and if t ; t1 + · · · + tn by one of our redu
tion rules,then all the simple nets ti satisfy the CLB.2.2. Con�uen
eTheorem 2 Let R, R′, R′′ ⊆ L. Let R ⊆ ∆ × N〈∆〉 be the union of some ofthe redu
tion relations ;c,R, ;nd,R′ , ;m, ;s and ;b,R′′ . The relation R∗ is
on�uent on N〈∆〉.The proof is essentially trivial sin
e the rewriting relation has no 
riti
al pair(see [ER06℄). Given R ⊆ L, we 
onsider in parti
ular the following redu
tion:
;R = ;m∪;c,{τ}∪;s∪;b,{τ}∪;nd,R. We set ;d = ;∅ (�d� for �determin-isti
�) and denote by ∼d the symmetri
 and transitive 
losure of this relation.Observe that, if s and S are nets with s simple and if s ;d S, then S is alsosimple.Some of the redu
tion rules we have de�ned depend on a set of labels. Thisdependen
e is 
learly monotone in the sense that the relation be
omes largerwhen the set of labels in
reases.2.3. A transition system of simple nets2.3.1. Restri
tion on simple nets. From now on, and until Se
tion 6, weassume that all simple nets satisfy the CLB; remember that, together, these
onditions are preserved under redu
tion. This will be su�
ient for dealingwith repli
ation-free pro
esses. The reason for this restri
tion is that the usefulLemmata 3 and 4 seem to depend on the uniqueness of label o

urren
es.2.3.2. {l, m}-neutrality. Let l and m be distin
t elements of L \ {τ}. We
all (l, m)-
ommuni
ation redex a 
ommuni
ation redex whose 
odereli
tion 
ellis labeled by l and whose dereli
tion 
ell is labeled by m.The following is a simple, but quite useful remark.Lemma 3 Let s0 be a simple net whi
h 
ontains an (l, m)-
ommuni
ation re-dex. If s0 ;

∗
{l,m} T0, then T0 is a simple net t0 whi
h 
ontains an (l, m)-
ommuni
ation redex and one has a
tually s0 ;

∗
d t0. Moreover, if s is the5This means that they 
an also o

ur in subnets asso
iated with promotion 
ells, at anydepth. 11



simple net resulting from the redu
tion of the (l, m)-
ommuni
ation redex in
s0, then s ;

∗
d t where t is the simple net resulting from the redu
tion of the

(l, m)-
ommuni
ation redex in t0.We say that a simple net s is {l, m}-neutral if, whenever s ;
∗
{l,m} S, noneof the simple summands of S 
ontains an (l, m)-
ommuni
ation redex.Lemma 4 Let s be a simple net. If s ;

∗
{l,m} S where all the simple summandsof S are {l, m}-neutral, then s is also {l, m}-neutral.The 
onverse impli
ation 
learly holds, but we do not use it.Proof. Assume, towards a 
ontradi
tion, that s ;

∗
{l,m} T = s1 + · · ·+ sn whereea
h si is simple and where s1 
ontains an (l, m)-
ommuni
ation redex. Bythe Chur
h-Rosser property of ;

∗
{l,m}, there is S′ su
h that T ;

∗
{l,m} S′ and

S ;
∗
{l,m} S′. By Lemma 3 applied to s1, S′ must have a summand 
ontainingan (l, m)-
ommuni
ation redex, 
ontradi
ting our hypothesis on S. 22.3.3. The transition system. We de�ne a labeled transition system DLwhose obje
ts are simple nets, and transitions are labeled by pairs of distin
telements of L \ {τ}. Let s and t be simple nets, we have s

lm
−→ t if the followingholds: s ;

∗
{l,m} s0 + s1 + · · · + sn where s0 is a simple net whi
h 
ontains an

(l, m)-
ommuni
ation redex and be
omes t when one redu
es this redex, andea
h si (for i > 0) is {l, m}-neutral.Remark 5 The simple nets s1, . . . , sn 
orrespond to other possible 
ommu-ni
ations, where typi
ally the 
odereli
tion labeled by l will meet a dereli
tionlabeled by some m′ 6= m, and similarly for the dereli
tion labeled by m. So theseterms are not garbage but 
orrespond to the bran
hes of the non-deterministi
redu
tions whi
h do not lead to a 
ommuni
ation between l and m. There aretwo restri
tions in our de�nition whi
h deserve further 
omments:
• The non-deterministi
 steps allowed in the redu
tion from s to s0 + s1 +
· · · + sn 
an involve only the 
odereli
tion and dereli
tion labeled by land m respe
tively. In pro
ess algebras, pre�xes 
ommuni
ate in onestep through a parallel 
omposition. This single step be
omes here asequen
e of many elementary steps and our restri
tion allows to avoid
onsidering the steps whi
h have nothing to do with the 
ommuni
ationwe are interested in.

• The se
ond restri
tion 
onsists in requiring the sis to be (l, m)-neutralfor i > 0 and seems to potentially prune out relevant (l, m) 
ommuni
a-tions from the LTS DL, and therefore to weaken Proposition 11 and hen
eTheorem 12.We think that Theorem 12 would hold even without these restri
tions in thede�nition of DL, whi
h are here only for making the proofs tra
table. In the12



�nal remark of the Con
lusion, we shortly argue that the se
ond restri
tion isnot essential. The �rst one 
an probably be weakened as well.Lemma 6 The relation ∼d ⊆ ∆ × ∆ is a strong bisimulation on DL.Proof. Let s, s′ ∈ ∆ and assume that s ∼d s′. Assume moreover that s
lm
−→ t,whi
h means that s ;

∗
{l,m} s0 + s1 + · · · + sn where ea
h si is simple, s0
ontains an (l, m)-
ommuni
ation redex, ea
h si is {l, m}-neutral for i ≥ 1 and

t results from the redu
tion of the (l, m)-
ommuni
ation redex of s0. By theChur
h-Rosser property of ;
∗
{l,m} (remember that ;d ⊆ ;

∗
{l,m}), there exists

U ∈ N〈∆〉 su
h that s0 + s1 + · · · + sn ;
∗
{l,m} U and s′ ;

∗
{l,m} U . But byLemmata 3 and 4, we have U = u0 + u1 + · · ·+ um with s0 ;
∗
d u0, u0 
ontainsan (l, m)-
ommuni
ation redex, and if we redu
e this redex, we obtain a net t′su
h that t ;

∗
d t′. 23. A toolbox for pro
ess 
al
uli interpretationWe introdu
e now a few families of simple nets, whi
h are built using thepreviously introdu
ed basi
 
ells. They will be used as basi
 modules for in-terpreting pro
esses. All of these nets, but the 
ommuni
ation areas, 
an be
onsidered as 
ompound 
ells : in redu
tion, they behave in the same way as
ells of intera
tion nets. We advise the reader a
quainted with the π-
al
ulusto have simultaneously a look at Se
tion 4.3 in order to �gure out how thesevarious stru
tures will be used.3.1. Compound 
ells3.1.1. Generalized 
ontra
tion and 
o
ontra
tion. A generalized 
on-tra
tion 
ell or 
ontra
tion tree is a simple net γ (with one prin
ipal port anda �nite number of auxiliary ports) whi
h is either a wire or a weakening 
ell ora 
ontra
tion 
ell whose auxiliary ports are 
onne
ted to the prin
ipal port ofother 
ontra
tion trees, whose auxiliary ports be
ome the auxiliary ports of γ.Generalized 
o
ontra
tion 
ells (
o
ontra
tion trees) are de�ned dually.We use the same graphi
al notations for generalized (
o)
ontra
tion 
ells asfor ordinary (
o)
ontra
tion 
ells, with a �∗� in supers
ript to the � !� or �?�symbols to avoid 
onfusions. Observe that there are in�nitely many generalized(
o)
ontra
tion 
ells of any given arity. Figure 3 gives an example of a ternarygeneralized 
o
ontra
tion 
ell.3.1.2. The dereli
tion-tensor and the 
odereli
tion-par 
ells. Let n bea non-negative integer. We de�ne an n-ary ?⊗ 
ompound 
ell as in Figure 4.It will be de
orated by the label of its dereli
tion 
ell (if di�erent from τ). Thenumber of tensor 
ells in this 
ompound 
ell is equal to n. We de�ne dually the

!` 
ompound 
ell. 13



!

!

!

! !∗Figure 3: A ternary generalized 
o
ontra
tion 
ell and its graphi
al representation (all orientedwires are typed with ?ι)
?⊗

!o

!o

?ι

⊗
⊗

⊗
1

?

!o

!o

!o

ι ?ι

•

•
•

•

=... l

lFigure 4: Dereli
tion-tensor 
ompound 
ell (the 
odereli
tion-par is dual)3.1.3. The pre�x 
ells. Now we 
an de�ne the 
ompound 
ells whi
h willplay the main role in the interpretation of pre�xes of the π-
al
ulus. Thanksto the above de�ned 
ells, all the oriented wires of the nets we shall de�ne willhave type ?ι or !o. Therefore, we adopt the following graphi
al 
onvention: thewires will have an orientation 
orresponding to the ?ι type.The n-ary input 
ell and the n-ary output 
ell are de�ned in Figure 5, theyhave n pairs of auxiliary ports. In Se
tion 6, we shall also use a version ofthe input pre�x where the 
odereli
tion 
ell has been removed. The main portof this pre-input 
ell has therefore type o (when oriented towards the outside)instead of !o. We use the same notation as for the input 
ell (Figure 5), withthe only di�eren
e that the symbol � !� will be repla
ed by the symbol �`�. Seean example in Figure 6.Pre�x 
ells are labeled by the label 
arried by their outermost ?⊗ or !`
ompound 
ell, if di�erent from τ , the other ?⊗ or !` 
ompound 
ells beingunlabeled (that is, labeled by τ).
!`

?⊗

?⊗

!

•• ......... =
ll

?

!`

!`

?⊗

•• ......... =
llFigure 5: Input and output 
ompound 
ells14



`

• oFigure 6: Identity3.1.4. Transistors and boxed identity. In order to implement the sequen-tiality 
orresponding to sequen
es of pre�xes in the π-
al
ulus, we shall use theunary output pre�x 
ell de�ned above as a kind of transistor, that is, as a kindof swit
h that one 
an put on a wire, and whi
h is 
ontrolled by another wire.This idea is strongly inspired by the translation of the π-
al
ulus in the solos
al
ulus 6.These swit
hes will be 
losed by �boxed identity 
ells�, whi
h are the uniqueuse we make of promotion in the present work (apart from the extension sket
hedin Se
tion 6). Let I be the �identity� net of Figure 6, whi
h uses a pre-input 
om-pound 
ell. Then we shall use the 
losed promotion 
ell labeled by I !: I ! .3.2. Communi
ation tools
3Figure 7: Area of order3

3.2.1. The 
ommuni
ation areas. Let n ≥ −2. Wede�ne a family of nets with 2(n + 2) free ports, 
alled
ommuni
ation areas of order n, that we shall draw usingre
tangles with beveled angles. Figure 7 shows how wepi
ture a 
ommuni
ation area of order 3.A 
ommuni
ation area of order n is made of n+2 pairsof (n + 1)-ary generalized 
o
ontra
tion and 
ontra
tion
ells (γ+
1 , γ−

1 ) ,. . . , (γ+
n+2, γ

−
n+2), with, for ea
h i and j su
h that 1 ≤ i < j ≤

n+ 2, a wire from an auxiliary port of γ+
i to an auxiliary port of γ−

j and a wirefrom an auxiliary port of γ−
i to an auxiliary port of γ+

j .So the 
ommuni
ation area of order −2 is the empty net ε, and 
ommu-ni
ation areas of order −1, 0, 1 and 2 are the stru
tures shown in Figure 8.3.2.2. Identi�
ation stru
tures. Let n, p ∈ N and let f : {1, . . . , p} →
{1, . . . , n} be a fun
tion. An f -identi�
ation net is a stru
ture with p + n pairsof free ports (p pairs 
orrespond to the domain of f and, in our pi
tures, willbe atta
hed to the non beveled side of the identi�
ation stru
ture, and n pairs
orrespond to the 
odomain of f , atta
hed to the beveled side of the stru
ture)as in Figure 9(a). Su
h a net is made of n 
ommuni
ation areas, and on the j-tharea, the j-th pair of wires of the 
odomain is 
onne
ted, as well as the pairsof wires of index i of the domain su
h that f(i) = j. For instan
e, if n = 4,6It is shown in [LV03℄ that one 
an en
ode the π-
al
ulus sequentiality indu
ed by pre�xnesting in the 
ompletely asyn
hronous solos formalism: the idea of su
h translations is toobserve that, in a solos pro
ess like P = νy (u(x, y) | y(. . . )) | Q, the se
ond solo 
annotintera
t with the environment Q before the �rst one.15
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!∗

!∗ ?∗

!∗?∗

!∗ ?∗

?∗ !∗

?∗!∗

!∗ ?∗

?∗ !∗

?∗!∗

?∗ !∗

Figure 8: Communi
ation areas of order −1, 0, 1 and 2

p = 3, f(1) = 2, f(2) = 3 and f(3) = 2, a 
orresponding identi�
ation stru
tureis made of four 
ommuni
ation areas, two of order −1, one of order 0 and oneof order 1, as in Figure 9(b).When we want to mention a parti
ular 
ommuni
ation area of su
h a stru
-ture, we refer to it as to the j-th 
ommuni
ation area (where j is the 
orre-sponding element of {1, . . . , n}).
1 . . .

. . .

f

p

n1(a) Notation −1

1

0−1(b) Example ;
∗
s

f

g

g ◦ f

. . .

. . .

. . .

. . .

. . .(
) Redu
tionFigure 9: Identi�
ation stru
tures3.3. Useful redu
tions.3.3.1. Aggregation of 
ommuni
ation areas. One of the ni
e propertiesof 
ommuni
ation areas is that, when one 
onne
ts two su
h areas through a pairof wires, one gets another 
ommuni
ation area; if the two areas are of respe
tiveorders p ≥ −1 and q ≥ −1, the resulting area is of order p + q, see Figure 10.16



p + q ...... p ;
∗
sq ... ...Figure 10: Aggregation, with p, q ≥ −13.3.2. Composition of identi�
ation stru
tures. In parti
ular, we getthe redu
tion of Figure 9(
).3.3.3. Port forwarding in a net. Let t be a net and p be a free port of t.We say that p is forwarded in t if there is a free port q of t su
h that t is of oneof the two shapes given in Figure 11. When a port is forwarded in a net, wemark this port with a small triangle, as in Figures 12 and 13.

p ...
· · ·

... ?∗
q

p

· · ·

...... !∗
qFigure 11: Port forwarding3.3.4. Communi
ation and forwarding of dereli
tions and 
odereli
-tions in 
ommuni
ation areas. The redu
tion of Figure 12 shows that dere-li
tions and 
odereli
tions 
an meet ea
h other, when 
onne
ted to a 
ommon
ommuni
ation area. More pre
isely, let l, m ∈ L, then we have the redu
tionof Figure 12, where N is a non-negative integer (a
tually, N = (p + 2)2) and, in

?

!

!

?

· · ·

p + 2
l m

;
∗
{l,m} ?!

p

· · ·

l m

+

N∑

i=1
?!

· · ·

l

mti
r r′Figure 12: Dereli
tion and 
odereli
tion 
ommuni
ating through a 
ommuni
ation area. Theforwarded ports are indi
ated by small triangles.ea
h simple net ti, both ports r and r′ are forwarded.17



3.3.5. General forwarding. Let l ∈ L. The more general but less informa-tive property shown in Figure 13 will also be used, where in ea
h simple net
?∗?

...... p
l

;
∗
{l}

?

... ui

...rlFigure 13: General forwarding
ui, the port r is forwarded (see 3.3.3). Of 
ourse one also has a dual redu
-tion (where the dereli
tion is repla
ed by a 
odereli
tion, and the generalized
ontra
tion by a generalized 
o
ontra
tion).3.3.6. Redu
tion of pre�xes. Let l, m ∈ L. If we 
onne
t an n-ary outputpre�x labeled by m to a p-ary input pre�x labeled by l, we obtain a net whi
hredu
es by ;c,{l,m} to a net u whi
h redu
es by ;

∗
{τ} to 0 if n 6= p and tosimple wires by ;

∗
∅, as in Figure 14(a), if n = p.3.3.7. Transistor triggering. A boxed identity 
onne
ted to the prin
ipalport of a unary output 
ell used as a �transistor� turns it into a simple wire asin Figure 14(b).

• •

!?
... ...

m

l

;c,{l,m} u ;
∗
∅

...(a) Pre�xes intera
tion I ! ?
•

;
∗
∅(b) Transistor trig-geringFigure 14: Pre�xes and transistors4. A polyadi
 �nitary π-
al
ulus and its en
odingThe pro
ess 
al
ulus we 
onsider is a fragment of the π-
al
ulus where wehave suppressed the following features: sums, repli
ation, re
ursive de�nitions,mat
h and mismat
h. This does not mean of 
ourse that di�erential intera
-tion nets 
annot interpret these features. We shortly dis
uss this point in theCon
lusion.It is well known that the monadi
 π-
al
ulus is as expressive as the polyadi
one. We nevertheless 
onsider a polyadi
 version of the π-
al
ulus be
ause ouren
oding 
an easily be adapted to other pro
ess algebras, and in parti
ular toasyn
hronous ones (su
h as the solos 
al
ulus), where polyadi
ity is essential for18



expressiveness. Moreover, polyadi
 
al
uli are more natural and widely used inthe pro
ess algebra 
ommunity.LetN be a 
ountable set of names. Our pro
esses are de�ned by the followingsyntax. We use the same set L of labels as before.
• nil is the empty pro
ess.
• If P1 and P2 are pro
esses, then P1 | P2 is a pro
ess.
• If P is a pro
ess and a ∈ N , then νa ·P is a pro
ess. The name a is boundin this pro
ess.
• If P is a pro
ess, a, b1, . . . , bn ∈ N , the bis being pairwise distin
t and if

l ∈ L, then Q = [l]a(b1 . . . bn) ·P is a pro
ess (pre�xed by an input a
tion,whose subje
t is a and whose obje
ts are the bis; the name a is free andea
h bi is bound in Q and hen
e a is distin
t from ea
h bi).
• If P is a pro
ess, a, b1, . . . , bn ∈ N and l ∈ L, then [l]a〈b1 . . . bn〉 · P isa pro
ess (pre�xed by an output a
tion, whose subje
t is a and whoseobje
ts are the bis). This 
onstru
tion does not bind the names bi, andwe do not require the bis to be distin
t. The name a 
an be equal to someof the bis.We introdu
e this labeling of pre�xes to distinguish the various o

urren
es ofnames as subje
t of pre�xes; these labels do not play any a
tive role in theredu
tion of pro
esses, they are here only for tra
ing purposes. The set FV(P )of free names of a pro
ess P is de�ned in the obvious way. The α-equivalen
erelation on pro
esses is de�ned as usual.A labeled pro
ess is a pro
ess where all pre�xes are labeled, by pairwisedistin
t labels, all these labels being di�erent from τ . If P is a labeled pro
ess,

L(P ) denotes the set of all labels o

urring in P . Observe that this set has anatural poset (forest a
tually) stru
ture (l < m if, in P , l labels a pre�x µ and
m o

urs in the pro
ess pre�xed by µ).All the pro
esses we 
onsider in this paper are labeled.4.1. Arity typing of pro
esses.Although not stri
tly ne
essary, it is 
onvenient to assume that our pro
essesare �typed� (one often speaks rather of �sorting� in this 
ontext) in the sensethat ea
h name is given with an arity, whi
h is a possibly empty list of arities.When a name of arity (ρ1, . . . , ρn) o

urs as subje
t, it is always assumed thatit has n obje
ts b1, . . . , bn, the arity of bi being ρi. This guarantees that, duringthe redu
tion, when an input pre�x 
ommuni
ates with an output pre�x, thenumbers of obje
ts of the two involved pre�xes 
oin
ide. Sin
e this is a standard
π-
al
ulus notion (see [SW01, Part III℄), we shall not say more about it, andwe shall simply assume that, during the redu
tion of pro
esses and states, thearities of 
ommuni
ating pre�xes always 
oin
ide.19



4.2. An exe
ution modelRather than 
onsidering a rewriting relation on pro
esses as one usually does,we prefer to de�ne an �environment ma
hine�, similar to the ma
hine introdu
edin [AC98, Chapter 16℄7, whi
h itself is based on the Chemi
al Abstra
t Ma
hineof Berry and Boudol [BB90℄. It is not di�
ult to show that this presentation ofthe π-
al
ulus is equivalent to more standard ones.An environment is a fun
tion e from a �nite subset Dom e of N to a �-nite subset Codom e of N . A 
losure is a pair (P, e) where P is a pro
essand e is an environment su
h that FV(P ) ⊆ Dom(e). A soup is a multiset
Γ = (P1, e1) · · · (PN , eN ) of 
losures (denoted by simple juxtaposition). The set
FV(Γ) of free names of a soup Γ is the union of the 
odomains of the envi-ronments of Γ. The soup Γ is labeled if all the Pis are labeled, with pairwisedisjoint sets of labels. A state is a pair (Γ, L) where Γ is a soup and L is a setof names (the names whi
h have to be 
onsidered as lo
al to the state) and weset FV(Γ, L) = FV(Γ) \ L. The state (Γ, L) is labeled if the soup Γ is labeled.All the states we 
onsider are labeled. We de�ne the poset L(Γ, L) of alllabels of the state (Γ, L) in the straightforward way, as the parallel 
ompositionof the posets asso
iated with the pro
esses of the 
losures of Γ.4.2.1. α-equivalen
e of states. Given a partial fun
tion f : N → N anda pro
ess P , we denote by f · P the pro
ess where ea
h free name a has beenrepla
ed by f(a) (if a ∈ Dom f) � this 
onstru
tion is not part of the syntax, itis a meta-operation like substitution in the lambda-
al
ulus. Of 
ourse, boundnames have to be renamed to avoid name 
lashes.Two 
losures (P1, e1) and (P2, e2) are α-equivalent (written (P1, e1) ∼α

(P2, e2)) if there is a bije
tion on names f su
h that f · P1 and P2 are α-equivalent, and e2 ◦ f = e1. Two soups Γ and ∆ are α-equivalent if Γ = γ1 . . . γNand ∆ = δ1 . . . δN with γi ∼α δi for ea
h i. Let f : N → N be a fun
-tion. If γ = (P, e) is a 
losure, one sets f · γ = (P, f ◦ e). And last,
f · (γ1 . . . γN ) = (f · γ1) · · · (f · γN ).Two states (Γ, L) and (∆, M) are α-equivalent if there is a bije
tion on names
f whi
h is the identity on N \ L and satis�es f(L) = M and f · Γ ∼α ∆.4.2.2. Canoni
al form of a state. We say that a pro
ess is guarded ifit starts with an input pre�x or an output pre�x. We say that a soup Γ =
(P1, e1) · · · (PN , eN) is 
anoni
al if ea
h Pi is guarded, and that a state (Γ, L) is
anoni
al if the soup Γ is 
anoni
al. We de�ne a rewriting relation ;can whi
h7The reason for this 
hoi
e is that the rewriting approa
h uses an operation whi
h 
onsistsin repla
ing a name by another name in a pro
ess. The 
orresponding operation on nets israther 
ompli
ated and we prefer not to de�ne it here.
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turns any state into a 
anoni
al one.
((nil, e)Γ, L) ;can (Γ, L)

((νa · P, e)Γ, L) ;can ((P, e[a 7→ a′])Γ, L ∪ {a′})

((P | Q, e)Γ, L) ;can ((P, e)(Q, e)Γ, L)where, in the se
ond rule, a′ ∈ N \ (L ∪ Codom(e) ∪ FV(Γ)). It is easy toshow that, up to α-equivalen
e, this redu
tion relation is 
on�uent, and it is
learly strongly normalizing. We denote by Can(Γ, L) the normal form of thestate (Γ, L) for this rewriting relation. Observe that if (Γ, L) ;can (∆, M) then
FV(∆, M) ⊆ FV(Γ, L).4.2.3. Transitions. Next, we de�ne a labeled transition system SL. Theobje
ts of this system are labeled 
anoni
al states and the transitions, labeledby pairs of labels, are de�ned as follows.

(([l]a(b1 . . . bn) · P, e)([m]a′〈b′1 . . . b′n〉 · P
′, e′)Γ, L)

lm
−→ Can((P, e[b1 7→ e′(b′1), . . . , bn 7→ e′(b′n)])(P ′, e′)Γ, L)if e(a) = e′(a′). Observe that if (Γ, L)

lm
−→ (∆, M) then FV(∆, M) ⊆ FV(Γ, L).4.3. Translation of pro
esses to di�erential intera
tion netsSin
e we do not work up to asso
iativity and 
ommutativity of 
ontra
tionand 
o
ontra
tion, it does not make sense to de�ne this translation as a fun
tionfrom pro
esses to nets. For ea
h repetition-free list of names a1, . . . , an, wede�ne a relation Ia1,...,an

from pro
esses whose free names are 
ontained in
{a1, . . . , an} to simple nets t whi
h have 2n + 1 free ports aι

1, a
o
1, . . . , a

ι
n, ao

n and
c as in Figure 15(a). The additional port c will be used for 
ontrolling thesequentiality of the redu
tion, thanks to transistors. Redu
ing the translationof a pro
ess will be possible only when a boxed identity 
ell is 
onne
ted to its
ontrol port. This is 
ompletely similar to the additional 
ontrol free name inthe translation of the π-
al
ulus in solos, in [LV03℄8.It will be possible to 
he
k that, if P and P ′ are α-equivalent, then P Ia1,...,an

s i� P ′ Ia1,...,an
s. We de�ne now the translation relation, by indu
tion onpro
esses. And next we de�ne the translation relation for states.4.3.1. Empty pro
ess. One has nil Ib1,...,bn

t if t is as in Figure 15(b).8There is a simple interpretation of solo diagrams into di�erential intera
tion nets, whi
huses only our toolbox without promotion so that solo diagrams 
an be seen as an interme-diate graphi
al language whi
h 
an be implemented in the low level di�erential syntax. Ourtranslation of the π-
al
ulus results from an analysis and a simpli�
ation of the 
omposedtranslation �π-
al
ulus → solo diagrams → di�erential nets�. The simpli�
ation results fromsome rewiring and from the use of the boxed identity 
ells whi
h are easily repli
able. Thetranslation of solos into di�erential nets leads to 
y
les (whi
h appear when a name is identi-�ed with itself) whi
h are avoided in the present dire
t translation. Well behaved 
onditionson solos for avoiding su
h 
y
les are introdu
ed and studied in [EL08℄.21
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?∗

(d) Parallel 
ompositionFigure 15: Translation of pro
esses: stru
tural 
onstru
tions, see Se
tion 4.34.3.2. Name restri
tion. One has νa ·P Ib1,...,bn
t i� t is as in Figure 15(
),with s satisfying P Ia,b1,...,bn

s.4.3.3. Parallel 
omposition. One has P1 | P2 Ib1,...,bn
t i� the simple net

t is as in Figure 15(d), where P1 Ib1,...,bn
t1, P2 Ib1,...,bn

t2 and γ1, . . . , γn are
ommuni
ation areas of order 1.4.3.4. Input pre�x. Let l ∈ L. Assume that a, b1, . . . , bn, c1, . . . , cp are pair-wise distin
t names and let Q = [l]a(b1 . . . bn) · P . One has Q Ia,c1,...,cp
t if t isas in Figure 16(a), where γ is a 
ommuni
ation area of order 1 and where s isa simple net whi
h satis�es P Ia,b1,...,bn,c1,...,cp

s. The 
ommuni
ation area γ isrequired to endow the 
hannel a with a further input 
ommuni
ation 
apabilityand making it available to the environment.4.3.5. Output pre�x. Let l ∈ L. Let b1, . . . , bn be a list of pairwise distin
tnames and let Q = [l]bf(0)〈bf(1) . . . bf(q)〉·P , where f : {0, 1, . . . , q} → {1, . . . , n}is a fun
tion (this fun
tion is uniquely determined by Q and by the enumeration
b1, . . . , bn). So b1, . . . , bn is a list of pairwise distin
t names 
ontaining all thenames of the pre�x we want to translate and the fun
tion f says where ea
hname o

urs in the pre�x; observe that some names of the list 
an be omittedin the pre�x (f is not ne
essarily surje
tive). One has Q Ib1,...,bn

t if t is asin Figure 16(b), where γ1, . . . , γn are 
ommuni
ation areas of order 1, δ is an
f -identi�
ation stru
ture and where s is a simple net whi
h satis�es P Ib1,...,bn

s. This identi�
ation stru
ture and the additional 
ommuni
ation areas arerequired be
ause the names o

urring in the output pre�x are not ne
essarily22
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Figure 17: State translation, see Se
tion 4.3distin
t from ea
h other, and the obje
t names are not bound by the outputpre�x: the identi�
ation stru
tures implement these equalities between namesand the 
ommuni
ation areas make the 
orresponding 
ommuni
ation 
hannelsavailable to the environment. These stru
tures are not required in an inputpre�x be
ause, in su
h a pre�x, the obje
t names are bound, pairwise distin
tand distin
t from the subje
t name whi
h is free in the pre�x.4.3.6. States. Let Γ = (P1, e1) . . . (PN , eN ) be a soup and b1, . . . , bn be arepetition-free list of names 
ontaining all the 
odomains of the environments
e1, . . . , eN (that is, 
ontaining FV(Γ)). We assume that the domains of theenvironments ei are pairwise disjoint, whi
h is possible up to α-equivalen
e. Let
a1, . . . , ap be a repetition-free enumeration of the elements of ⋃N

i=1 Dom ei, su
hthat there is a list of non-negative integers 0 = h0 ≤ h1 ≤ · · · ≤ hN = p su
hthat, for i = 1, . . . , N , the list ahi−1+1, . . . , ahi
is a repetition-free enumerationof the elements of Dom(ei). Let e : {1, . . . , p} → {1, . . . , n} be the map whi
his uniquely de�ned by the fa
t that, for ea
h i = 1, . . . , N and ea
h j su
h that

hi−1 + 1 ≤ j ≤ hi, one has ei(aj) = be(j).Then one has Γ Ib1,...,bn
t if t is a simple net of the shape shown in Figure 4.3,where s1,. . . , sN are simple nets su
h that Pi Iahi−1+1,...,ahi

si and δ is an e-identi�
ation stru
ture. 23



`?
?

!
ι

rδ
o

oFigure 18: A guarding path from the dereli
tion δ to the 
odereli
tion r.Last, if we are moreover given L ⊆ N and a repetition-free list of names
b1, . . . , bn 
ontaining all the free names of the state (Γ, L), one has (Γ, L) Ib1,...,bn

u if one has Γ Ib1,...,bn,c1,...,cp
t for some repetition-free enumeration c1, . . . , cpof L (assumed of 
ourse to be disjoint from b1, . . . , bn, whi
h is always possibleup to α-equivalen
e), and u is the simple net t with additional 
ommuni
ationareas of order −1 plugged on its pairs of free ports 
orresponding to the cjs.A simple inspe
tion of the translation above shows that, if (Γ, L) Ib1,...,bn

u,then the simple net u satis�es the CLB of 1.3.5.Before reading the following te
hni
al developments, it might be a good ideato have a look at Se
tion 7 where examples of our translation are given.5. Comparing the transition systems5.1. A diving lemmaWe �rst introdu
e the auxiliary notions of guarded 
ell and of a dereli
-tion or 
odereli
tion 
ell diving into a pro
ess. We then state and prove twolemmata whi
h will be 
ru
ial in proving Propositions 10 and 11. These propo-sitions express the two dire
tions in the main bisimulation result of the paper,Theorem 12.5.1.1. Guarded dereli
tion and 
odereli
tion 
ells. Let l, r ∈ L be dis-tin
t, r 6= τ and let s ∈ ∆. Let δ be a (
o)dereli
tion 
ell labeled by l in s. Wesay that δ is guarded by (the dereli
tion or 
odereli
tion 
ell labeled by) r in sif there is a sequen
e p1, . . . , pn of pairwise distin
t ports of s su
h that
• p1 is the auxiliary port of δ and p2 is its prin
ipal port;
• pn−1 is the auxiliary port of r and pn is its prin
ipal port;
• and for ea
h i with 1 < i < n − 1, either pi and pi+1 are the two ports ofa wire of s or there is a 
ell in s su
h that pi is an auxiliary port of that
ell and pi+1 is its prin
ipal port.Su
h a sequen
e of ports will be 
alled a guarding path from δ to r in s (observethat sin
e r 6= τ , there is no ambiguity on the (
o)dereli
tion 
ell labeled by rin s, whereas l 
an be equal to τ and so there might be several (
o)dereli
tion
ells labeled by l in s). See Figure 18 for an example of su
h a path.

24



?∗

?

· · · · · ·

s

· · ·

θ

t

c

l
· · ·

!∗

!

· · · · · ·

s

· · ·

θ

t

c

l
· · ·

Figure 19: Diving of dereli
tion and 
odereli
tion: initial 
on�gurations
?∗

. . . . . .
· · ·

...r′

Figure 20: Possible shape for the subnet θ of Figure 195.1.2. Persisten
y.Lemma 7 Let s be a simple net, let R ⊆ L, let l, r be labels whi
h are distin
t,with r 6= τ . Let δ be an l-labeled (
o)dereli
tion 
ell whi
h is guarded by r in
s and assume that s ;

∗
R s1 + · · · + sp where the si are simple. Then δ and ro

ur, and δ is guarded by r, in ea
h of the simple nets si.Proof. The proof is straightforward: the (
o)dereli
tion r 
an take part only innon-deterministi
 redu
tions during an ;R-redu
tion, and hen
e 
annot disap-pear (more pre
isely, its only way of disappearing is by turning to 0 the wholesimple net where it o

urs). Hen
e the guarding path from δ to r is preservedduring this redu
tion sin
e its 
ells are not involved in any redex. 25.1.3. Diving of dereli
tions and 
odereli
tions. Let l ∈ L \ {τ}, let ube a simple net, let P be a pro
ess. We say that l dives into P in u if there is arepetition-free list of names b1, . . . , bn and a simple net s su
h that P Ib1,...,bn

sand u is of one of the shapes (a

ording to whether l labels a dereli
tion or a
odereli
tion 
ell) shown in Figure 19, where θ is either a boxed identity 
ell ora net of the shape shown in Figure 20, 
onsisting of a labeled input or outputpre�x 
ompound 
ell, with a label r′ 6= τ .With these notations, our aim is here to prove the following property.Lemma 8 (Diving) Assume that l ∈ L \ {τ} dives into P in the simple net
u, and let m ∈ L \ {τ} be a label whi
h does not o

ur in P . Then u is {l, m}-neutral. 25
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Figure 21: Proof of Lemma 8The label m 
annot o

ur in P , but it 
an o

ur in the remainder of u; themeaning of the lemma is that, during the redu
tion, �l 
annot exit from P � or,more pre
isely, if it exits, it is by the 
ontrol port c. This lemma will be essentialin the proofs of Propositions 10 and 11 and seems to be a 
ru
ial property ofour translation.Proof. By indu
tion on P (and, in some 
ases, by 
ontradi
tion: in these 
ases,we assume that u ;
∗
{l,m} u1 + U and that u1 
ontains an (l, m)-
ommuni
ationredex).Assume �rst that P = nil. Assume that l is a dereli
tion. Then u has theshape shown in Figure 21. Thus u ;

∗
{l,m} 0 by 3.3.5. Hen
e by the Chur
h-Rosser property of ;∗

{l,m}, we must have u1+U ;
∗
{l,m} 0. But this is impossibleby Lemma 3 sin
e u1 has an (l, m)-
ommuni
ation redex. The 
ase where l is a
odereli
tion is similar.The 
ase P = P1 | P2 is handled similarly: using 3.3.5 and the indu
tivehypothesis, one shows that u ;

∗
{l,m} V where V is a sum of {l, m}-neutralsimple nets, and hen
e u is {l, m}-neutral by Lemma 4.If P = νa · Q, one applies dire
tly the indu
tive hypothesis.To 
on
lude, we 
onsider the 
ase where P = [r]bf(0)〈bf(1) . . . bf(p)〉 · Q.Assume �rst that l is a dereli
tion. Then u is of the shape shown in Figure 22(without loss of generality, we assume that the dereli
tion is 
onne
ted to a port
orresponding to the name bn), where s is a simple net satisfying Q Ib1,...,bn

s.Then, aggregating �rst the 
ommuni
ation area γn with the 
ommuni
ationarea of the f -identi�
ation stru
ture to whi
h it is 
onne
ted, we see that wehave u ;
∗
{l,m}

∑N
i=1 ui where ui is a simple net whi
h has the shape shown inFigure 23 and where, a

ording to 3.3.5, in vi, the prin
ipal port of l is forwarded(see the de�nition of this 
on
ept in 3.3.3 and remember that this is indi
atedpi
torially by a small triangle)1. to the port b+
n of s2. or to the prin
ipal port of the 
oweakening 
ell γ, in the 
ase where f(0) =

n3. or to one of the input auxiliary port of the 
ompound 
ell ϕ, 
orrespondingto an index j ∈ {1, . . . , q} su
h that f(j) = n.26
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Figure 24: Proof of Lemma 8For i satisfying (2), we have ui ;
∗
{l,m} 0. For i satisfying (3), l is guarded by

r 6= τ (the labeled dereli
tion 
ell of ϕ) in ui, and so ui is {l, m}-neutral byLemma 7. For i satisfying (1), the indu
tive hypothesis applies, showing that
ui is {l, m}-neutral. Therefore u is {l, m}-neutral by Lemma 4.Assume now that l is a 
odereli
tion, so that u has the shape shown inFigure 24 (with the same notations as above).As before, we have u ;

∗
{l,m}

∑N
i=1 ui where the uis have the same shape asbefore. Using the same notations, in vi, the prin
ipal port of l is forwarded1. to the port b−n of s2. or to the dotted auxiliary port of the transistor output 
ompound 
ell β,in the 
ase where f(0) = n3. or to one of the input auxiliary ports of the 
ompound 
ell ϕ, 
orrespondingto an index j ∈ {1, . . . , q} su
h that f(j) = n.The 
ases (1) and (3) are handled as before. So 
onsider an index i 
orre-sponding to 
ase (2). There are two possibilities, depending on the value of thenet θ.If θ is a boxed identity 
ell, then ui ;

∗
{l,m} u′where u′ is a simple net whi
h 
ontains the sub-net shown aside. ? !∗

!
r l...Sin
e we have r /∈ {l, m} (remember that we have assumed that m doesnot o

ur in P ), this subnet has no ;

∗
{l,m}-redex, and therefore, it will still bepresent in any simple summand of a net U su
h that u′

;
∗
{l,m} U . So u′ is

{l, m}-neutral, and so is u by Lemma 4.Assume last that θ 
onsists of an r′-labeled output or input pre�x 
ompound
ell (with r′ 6= τ) together with a generalized 
ontra
tion 
ell (se
ond possibilityfor θ in 5.1.3, see Figure 20). Here we 
an have r′ = m, but l is guarded by r′in u, and hen
e u is {l, m}-neutral by Lemma 7 and Lemma 4.The 
ase where P starts with an input pre�x is 
ompletely similar to thatof an output pre�x, and of 
ourse simpler. 228



Lemma 9 Let (Γ, L) be a state and let b1, . . . , bn be a repetition-free enumera-tion of the free names of (Γ, L). Let (∆, M) be the 
anoni
al form of (Γ, L) andlet s be a simple net su
h that (Γ, L) Ib1,...,bn
s. Then there exists a simple net

t su
h that (∆, M) Ib1,...,bn
t and s ∼s t.The equivalen
e relation ∼s is de�ned in 2.1.4. The proof is by simple inspe
tionof the de�nition of the interpretation relation, using 3.3.1.We establish now two results whi
h are the main ingredients towards ourbisimulation theorem.Proposition 10 Let (Γ, L) and (∆, M) be 
anoni
al states and let l, m ∈ L \

{τ}. Assume that (Γ, L)
lm
−→ (∆, M). Let s be a simple net and assume that

(Γ, L) Ib1,...,bn
s where b1, . . . , bn is a repetition-free list of names 
ontainingall the free names of (Γ, L). Then there are simple nets t0 and t su
h that

(∆, M) Ib1,...,bn
t, s

lm
−→ t0 and t0 ∼d t.Proof. We know that Γ must be of the shape

([l]a(c1 . . . cp) · P, e1)([m]df(0)〈df(1) . . . df(p)〉 · Q, e2)(P3, e3) · · · (PN , eN) (1)where we assume that the eis have pairwise disjoint domains, that a, cp+1,. . . ,
cp+q is a repetition-free enumeration of the domain of e1 (these names are as-sumed to be distin
t from the names c1, . . . , cp, whi
h are bound in the �rstpro
ess of the soup (1)), that d1, . . . , dr is a repetition-free enumeration of thedomain of e2, that h1, . . . , hm is a repetition-free enumeration of the union ofthe domains of e3,. . . ,eN , and f : {0, . . . , p} → {1, . . . , r} is a fun
tion, and wehave e1(a) = e2(df(0)). And (∆, M) = Can(Γ′, L) where

Γ′ = (P, e1[c1 7→ e2(df(1)), . . . , cp 7→ e2(df(p))])(Q, e2)(P3, e3) · · · (PN , eN) .Without loss of generality, we 
an assume that f(0) = 1. With these nota-tions, the simple net s is of the shape shown in Figure 25, where s1 is a simplenet su
h that P Ia,c1,...,cp+q
s1, s2 is a simple net su
h that Q Id1,...,dr

s2 and s′stands for the juxtaposition of simple nets sis su
h that Pi I ~hisi (for 3 ≤ i ≤ N)where ~hi stands for an enumeration of the domain of ei (so that the lists of names
~hi are pairwise disjoint, and their 
on
atenation is a repetition-free enumerationof the names h1, . . . , hm), with a boxed identity 
onne
ted to the 
ontrol portsof ea
h si. In this net, e is the fun
tion {1, . . . , r + q + m + 1} → {1, . . . , n}whi
h 
orresponds to the union of the fun
tions ei for i = 1, . . . , N . Observethat we have e(1) = e(r + 1) sin
e by hypothesis e1(a) = e2(d1).We have omitted in Figure 25 the pairs of free ports 
orresponding to
b1, . . . , bn, bn+1, . . . , bn+n′ , the names bi for i > n 
orresponding to the ele-ments of L; remember that they are there and that ea
h pair of frees port
orresponding to a bi with i > n is 
onne
ted to a 
ommuni
ation area of order
−1.Then we 
an redu
e the net of Figure 25 along the following steps.29
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• Observe �rst that the pairs of ports 1 and r + 1 (atta
hed to the domainof e) are 
onne
ted to a 
ommon 
ommuni
ation area δ1 in the identi�-
ation stru
ture labeled by e (see 3.2.2) sin
e e(1) = e(r + 1), and alsothat the 
odomain pair of ports 1 and the domain pair of ports 0 of theidenti�
ation stru
ture labeled by f are 
onne
ted to a 
ommon 
ommu-ni
ation area δ2 in this identi�
ation stru
ture, sin
e f(0) = 1. We applyredu
tion 3.3.1 to aggregate the 
ommuni
ation areas γ1, δ1, γ2 and δ2in a unique 
ommuni
ation area δ. Let u be the resulting simple net, wehave s ;

∗
{l,m} u.

• Apply redu
tion 3.3.7 to both transistors β1 and β2 and let u′ be theresulting simple net, we have u ;
∗
{l,m} u′.

• u′ 
ontains therefore the subnet v shown in Figure 26 where, for i =
−1, 0, . . . , g the pair of ports (r2i+3, r2i+4) is 
onne
ted either1. to the pair of ports a of s12. or to one of the pairs of ports cp+1, . . . , cp+q of s13. or to one of the pairs of ports h1, . . . , hm of s′4. or to a pair of ports of one of the 
ommuni
ation areas 
onne
ted to

d2, . . . , dr5. or to the pair of ports d16. or to one of the auxiliary pairs of ports of the output pre�x 
ompound
ell labeled by m 30
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. . . . . . . . .
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1 r r + 1 r + 2 r + q + mFigure 28: Proof of Proposition 107. or to one of the pairs of ports bh 
orresponding to 
odomain pairs ofports of the identi�
ation stru
ture e; these pairs of ports are eitherfree in s (and hen
e in u′) or 
onne
ted to a 
ommuni
ation area oforder −1.To v, we 
an apply redu
tion 3.3.4. This subnet redu
es by the ;

∗
{l,m}redu
tion to a sum v0 + v1 + · · · + vk where v0 is shown in Figure 27(a)and the vjs (j ≥ 1) are nets of the shape shown in Figure 27(b) where theprin
ipal port of l and m are forwarded to ports among r1, . . . , r2g+4. Wehave u′

;
∗
{l,m} u′

0 + u′
1 + · · · + u′

k where u′
j results from the repla
ementof the net v by the net vj in u′ (j = 0, . . . , k).

• We apply the (l, m)-
ommuni
ation redu
tion to u′
0, getting a simple net

t0 whi
h is ∼d equivalent to the simple net of Figure 28 where f ′ is therestri
tion of f to {1, . . . , p}. This net is ∼s equivalent to a simple net
t1 with (Γ′, L) Ib1,...,bn

t1 (upon applying 3.3.1 to the 
ommuni
ationareas of the identi�
ation stru
ture f ′, the ones whi
h are 
onne
ted tothe pairs of free ports di of s2 and those belonging to the identi�
ationstru
ture e). By Lemma 9, there is a simple net t su
h that t1 ∼s t and
(∆, M) Ib1,...,bn

t.To 
on
lude, we must 
he
k that, for j ≥ 1, u′
j is {l, m}-neutral. But, for ea
h31



of the two labels l and m, we are in one of the seven 
ases (1) to (7) above.Consider for instan
e label l. If we are in 
ase (1), (2), (3), (5), we 
an dire
tlyapply Lemma 8.Assume that we are in 
ase (4) and that,in u′
j , the 
odereli
tion labeled by l isforwarded to the 
ommuni
ation area
onne
ted to dr (so that r ≥ 2), we
an apply 3.3.5 and see that u′

j ;
∗
{l,m}

w1 + w2 where w1 and w2 are simple,and w1 
ontains a subnet of the shapeshown aside. Hen
e by Lemma 8, w1 is
{l, m}-neutral. !∗

!

?

•

I !

dr

. . .

. . .d1

s2

c

l

m ...On the other hand, in w2, l is 
onne
ted to the r-th 
ommuni
ation area(in the sense of 3.2.2) of the identi�
ation stru
ture labeled by f and the otherpairs of ports of that 
ommuni
ation area are 
onne
ted to auxiliary ports ofthe output pre�x 
ompound 
ell labeled by m. Therefore, by Lemmata 7 and 4,
w2 is {l, m}-neutral. So, by Lemma 4, u′

j is {l, m}-neutral.If we are in 
ase (6) then, in u′
j, l is guarded by m and hen
e u′

j is {l, m}-neutral by Lemma 7. Last assume we are in 
ase (7); in this 
ase, l is 
onne
tedto an auxiliary port of a generalized stru
tural 
ell whose prin
ipal port is free,or is 
onne
ted to a weakening 
ell. In both 
ases again it is 
lear that u′
j is

{l, m}-neutral 2We prove now a 
onverse statement. We explain in 7.4.3 that this statement,and hen
e also Theorem 12, 
an be strengthened.Proposition 11 Let (Γ, L) be a 
anoni
al state and b1, . . . , bn be a repetition-free list of names 
ontaining all the free names of (Γ, L). Let s be a simple netsu
h that (Γ, L) Ib1,...,bn
s. If t′0 is a simple net su
h that s

lm
−→ t′0, then there isa 
anoni
al state (∆, M) su
h that (Γ, L)

lm
−→ (∆, M) and there exists a simplenet t su
h that (∆, M) Ib1,...,bn

t and t ∼d t′0.Proof.We show �rst that both l and m must be minimal in the poset L(Γ, L) (seeSe
tion 4.2). Assume for instan
e that m is not minimal. Then the prin
ipalport of the dereli
tion 
ell labeled by m is 
onne
ted to an auxiliary port ofa transistor whose prin
ipal port is 
onne
ted to an auxiliary port of an inputor output pre�x 
ell, labeled say by m′, with m′ < m (a
tually, m′ is theprede
essor of m in the forest L(Γ, L)). Say for instan
e that the pre�x 
elllabeled by m′ is an input pre�x 
ell.Hen
e s 
ontains the subnet shownaside. So m is guarded by m′ in s andso, whenever s ;
∗
{l,m} s′, no simple netappearing in s′ 
an 
ontain an (l, m)-
ommuni
ation redex, in 
ontradi
tionwith our hypothesis that s

lm
−→ t′0. !

?
•

••

?

I !

I !

m′m

... ...
32



We have seen that l and m are minimal in the poset L(Γ, L) and this meansthat in Γ, the pre�xes labeled by l and m are the outermost pre�xes of P1 and
P2 where Γ = (P1, e1) · · · (PN , eN ) (and the 
hoi
e of P1 and P2 is uniquelydetermined by l and m), that is, Γ is of the form des
ribed by Formula (1) inthe proof of Proposition 10, P1 denoting the �rst pro
ess in that expression,whi
h is guarded by an l-labeled input pre�x, and P2 the se
ond one, whi
his guarded by an m-labeled output pre�x. Using the notations of Formula (1),we argue now that ne
essarily e1(a) = e2(df(0)) (we 
an refer to Figure 25 asdes
ribing s). But if this is not the 
ase, an inspe
tion of the interpretation ofinput pre�xes 4.3.4, of states 4.3.6 and of the identi�
ation stru
ture asso
iatedwith the �global environment� e (see 3.2.2) shows that s ;

∗
{l,m} S′ = s′1+· · ·+s′qwhere for ea
h i, s′i is simple and one of the following holds:1. in s′i, l is forwarded to a free port of S′2. or l dives into Pj in s′i for some j = 1, . . . , N . We denote by t the subnet of

s′i su
h that Pj Ic1,...,cr
t, where c1, . . . , cr is a repetition-free enumerationof the domain of ej .In 
ase (1), s′i is {l, m}-neutral. The same is true of s′i in 
ase (2) when theindex j is di�erent from 2 sin
e then Pj 
annot 
ontain the label m and we 
anapply Lemma 8. In the 
ase j = 2, using our assumption that e1(a) 6= e2(df(0)),we see that l dives into P2 through a free port whi
h does not 
orrespond to

df(0) and from this (and from an inspe
tion of the interpretation of outputpre�xes 4.3.5), we see that si ;
∗
{l,m} S′′ where S′′ is a sum of simple nets inwhi
h, either l is guarded by m, or l dives into Q in t where Q is the pro
essguarded by the m-labeled output pre�x of P2 (and therefore, Q does not 
ontainthe label m). Applying Lemma 7 in the �rst 
ase and Lemma 8 in the se
ond
ase, we see that ea
h simple summand of S′′ is {l, m}-neutral and therefore

si also is {l, m}-neutral by Lemma 4. Finally, by the same lemma, s itself is
{l, m}-neutral, 
ontradi
ting the hypothesis that s

lm
−→ t′0.So we must have e1(a) = e2(df(0)) and sin
e our pro
esses and states areimpli
itly arity-typed (see 4.1), we know that the number of obje
ts of the twoinvolved pre�xes 
oin
ide (the 
ommon value of these numbers is p, a

ordingto our notations).Using the same notations as in Proposition 10, and the statement itself ofthat proposition, we have (Γ, L)

lm
−→ (∆, M) and there are simple nets t and t0su
h that (∆, M) Ib1,...,bn

t, t ∼d t0 and s
lm
−→ t0. This means more pre
iselythat s ;

∗
{l,m} S′ = s0 + s1 + · · · + sp, with the sjs simple, su
h that s0 hasan (l, m)-
ommuni
ation redex and ea
h sj (for j ≥ 1) is {l, m}-neutral and t0is the simple net whi
h results from the redu
tion of the (l, m)-
ommuni
ationredex in s0.We 
on
lude by showing that t0 ∼d t′0.We know from our hypothesis that s ;

∗
{l,m} S′′ = s′0 +s′1+ · · ·+s′q, where s′0has an (l, m)-
ommuni
ation redex and ea
h s′j (for j ≥ 1) is {l, m}-neutral, and

t′0 is the simple net whi
h results from the redu
tion of the (l, m)-
ommuni
ationredex in s′0. 33



By the Chur
h Rosser property of ;
∗
{l,m}, there is a net U su
h that

S′
;

∗
{l,m} U and S′′

;
∗
{l,m} U . By Lemma 3, we have U = u0 + U ′ with

s0 ;
∗
d u0 and s′0 ;

∗
d u0, thanks also to the {l, m}-neutrality of sj and s′j for

j ≥ 1. Moreover (still by Lemma 3), u0 
ontains an (l, m)-
ommuni
ation redexas well, and if v0 is the net whi
h results from the redu
tion of the (l, m)-
ommuni
ation redex in u0, we have also t0 ;
∗
d v0 and t′0 ;

∗
d v0. So we have

t0 ∼d t′0. 2We are now ready to state a bisimulation theorem. Given a repetition-freelist b1, . . . , bn of names, we de�ne a relation Ĩb1,...,bn
between states and simplenets by: (Γ, L) Ĩb1,...,bn

s if there exists a simple net s0 su
h that (Γ, L) Ib1,...,bn

s0 and s0 ∼d s.Theorem 12 The relation Ĩb1,...,bn
is a strong bisimulation between the labeledtransition systems SL and DL.Proof. Let (Γ, L) be a 
anoni
al state and s1 be a simple net, and assume that

(Γ, L) Ĩb1,...,bn
s1. So there is a simple net s su
h that (Γ, L) Ib1,...,bn

s and
s ∼d s1.Assume �rst that (Γ, L)

lm
−→ (∆, M), with l, m two distin
t elements of L \

{τ}. By Proposition 10, there are simple nets t0 and t su
h that (∆, M) Ib1,...,bn

t0 ∼d t and s
lm
−→ t. By Lemma 6 (∼d is a bisimulation), there exists t1 su
hthat t ∼d t1 and s1

lm
−→ t1. We have (∆, M) Ĩb1,...,bn

t1.Conversely, assume that s1
lm
−→ t1. By Lemma 6, there exists t su
h that

t ∼d t1 and s
lm
−→ t. By Proposition 11, there is a 
anoni
al state (∆, M) anda simple net t0 su
h that (Γ, L)

lm
−→ (∆, M) and (∆, M) Ib1,...,bn

t0 ∼d t. Wehave (∆, M) Ĩb1,...,bn
t1. 26. Dealing with repli
ationWe extend our π-
al
ulus with the following 
onstru
tion9: if l ∈ L, if

a and b1, . . . , bn are pairwise distin
t names and if P is a pro
ess su
h that
FV(P ) ⊆ {b1, . . . , bn}, then [l]!a(b1, . . . , bn) · P is a pro
ess, whose only freename is a. This pro
ess is guarded, in the sense of 4.2.2. This extension has noin�uen
e on the de�nition of the relation ;can on the states of our environmentma
hine. The transition of the ma
hine has to be extended with the followingrule:

(([l]!a(b1 . . . bn) · P, e)([m]a′〈b′1 . . . b′n〉 · P
′, e′)Γ, L)

lm
−→ Can(([l]!a(b1 . . . bn) · P, e)

(P, e[b1 7→ e′(b′1), . . . , bn 7→ e′(b′n)])(P ′, e′)Γ, L)9This is a restri
ted form of repli
ation: all the free names of the repli
able pro
ess haveto be bound by the pre�x. 34
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. . .

bn
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o

I !

`(b) The subnet uFigure 29: Translation of input repli
ationWe extend now the translation relation I to the repli
ated input pro
ess.Let P be a pro
ess whose free names are 
ontained in the repetition-free list
b1, . . . , bn, and let a, a1, . . . , ap be a list of pairwise distin
t names. We set
[l]!a(b1 . . . bn) · P Ia,a1,...,ap

s if, for some simple net t su
h that P Ib1,...,bn
t, sis of the shape given by Figure 29(a). The promotion 
ell of that net 
ontainsthe net shown in Figure 29(b).When P Ib1,...,bn

t for a pro
ess with repli
ation P , the simple net t does notsatisfy the CLB (see 1.3.5) in general sin
e promotion 
ells will have labels 6= τ ,so that a bisimulation theorem will be harder to obtain (the transition systemof simple nets is de�ned only for nets satisfying the CLB in Se
tion 2.3). Oneshould label in a di�erent way the various 
opies of promotion 
ells, in the spiritof the geometry of intera
tion [Gir88a℄, with a similar dis
ipline for pro
essesas well.7. Examples and 
on
lusionWe give a few examples to illustrate some key features of 
ommuni
ation inthe π-
al
ulus as represented in di�erential intera
tion nets.7.1. Con
urrent 
ommuni
ationLet P be the pro
ess (the restri
tion is here only to illustrate its interpreta-tion in nets by a 
ommuni
ation area of order −1):
νa ·

((
[l]a() · nil | [m]a〈〉 · nil

)
| [r]a〈〉 · nil

)
.The simplest state 
ontaining P is (Γ, L) = ((P, ∅), ∅). We have (Γ, L) I s where

s is the simple net of Figure 30.By applying aggregations of 
ommuni
ation areas, we obtain the simple net
s1 of Figure 31. Thus s ;

∗
s s1. Sin
e P is in fa
t a CCS pro
ess (namely νa ·(a |

a | a)), we 
an remark how the translation into di�erential intera
tion nets isgiven by �rst a tree (with nodes represented with dashed boxes) 
orrespondingto the tree stru
ture of the CCS pro
ess (built from sequential and parallel
ompositions), and se
ond 
ommuni
ation areas for the identi�
ation of names.The simple net s1 redu
es to the net s2 (s1 ;
∗
d s2) of Figure 32, where35
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Figure 30: Con
urrent 
ommuni
ation in a CCS pro
ess
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ess: �rst step
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Figure 32: A CSS pro
ess: se
ond step
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Figure 33: A CSS pro
ess: �nal statethe 
hoi
e between a
tions ready to 
ommuni
ate will be done. This meansthat s2 redu
es to a sum of simple nets 
ontaining in parti
ular the net s3(s2 ;
∗
{l,m} s3 + · · · ) of Figure 33. If t results from the redu
tion of the (l, m)-
ommuni
ation redex in s3, we have s

lm
−→ t. This 
orresponds to (Γ, L) ;can

(([l]a() · nil, e)([m]a〈〉 · nil, e)([r]a〈〉 · nil, e), {a′})
lm
−→ (([r]a〈〉 · nil, e), {a′}) (with ede�ned only on {a} by e(a) = a′) in the environment ma
hine.7.2. SequentialityLet P be the pro
ess:

[l]a() · [l′]b() · nil | [m′]b〈〉 · nil | [m]a〈〉 · nilThe simplest state 
ontaining P is (Γ, L) = ((P, e), ∅) (with e de�ned on {a, b}by e(a) = a′ and e(b) = b′). We have (Γ, L) Ia′,b′ s with s ;
∗
s s1 (aggregations37
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Figure 34: Sequentiality: s1, translation of the pro
ess
P = [l]a() · [l′]b() · nil | [m′]b〈〉 · nil | [m]a〈〉 · nilof 
ommuni
ation areas) and s1 is the simple net of Figure 34; observe thatthere is a guarding path from l′ to l whi
h enfor
es sequentiality by preventing

l′ to intera
t with m. Sin
e P is again a CCS pro
ess (namely a · b | b | a), we
an see its tree stru
ture in the di�erential intera
tion net s1 of Figure 34.The simple net s1 redu
es to the simple net s2 of Figure 35 (s1 ;
∗
d s2),where the above mentioned guarding path is preserved.Then there exists a simple net s3 su
h that s2 ;

∗
{l,m} s3 + · · · and if tresults from the redu
tion of the (l, m)-
ommuni
ation redex in s3, we have

s
lm
−→ t. Moreover t redu
es to the net of Figure 36. This 
orresponds to

(Γ, L) ;can (([l]a() · [l′]b() · nil, e)([m′]b〈〉 · nil, e)([m]a〈〉 · nil, e), ∅)
lm
−→ (([l′]b() ·

nil, e)([m′]b〈〉 · nil, e), ∅) in the environment ma
hine.7.3. Name passingLet P , Q and R be pro
esses su
h that the free names of P are a and z, theonly free name of Q is y and the free names of R are x and b. Let P ′ be thepro
ess:
νz ·

(
[l]a〈z〉 · P | [l′]z(y) · Q

)
| [m]a(x) · [m′]x〈b〉 · R38
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a′Figure 37: Name passing: simple net s′
1
, translation of the pro
ess P ′ (after a few stru
turalredu
tions)The simplest state 
ontaining P ′ is (Γ, L) = ((P ′, e), ∅) (with e de�ned on {a, b}by e(a) = a′ and e(b) = b′). If P Ia,z s1, Q Iy s2 and R Ix,b s3, we have

(Γ, L) Ia′,b′ s′ with s′ ;
∗
s s′1 (aggregations of 
ommuni
ation areas) and s′1 isthe simple net of Figure 37.We have s′

ml
−→ t with t ;

∗
d s′2 and s′2 is the simple net of Figure 38, wherethe identi�
ation of the names z and x 
orresponds to the 
onne
tion of theasso
iated 
ommuni
ation areas.Finally t

l′m′

−→ t′ with t′ ;
∗
d s′3 and s′3 is the simple net of Figure 39 where yand b are also identi�ed.This 
orresponds to

(Γ, L) ;can (([l]a〈z〉 · P, e[z 7→ z′])([l′]z(y) · Q, e[z 7→ z′])

([m]a(x) · [m′]x〈b〉 · R, e), {z′})

ml
−→ ((P, e[z 7→ z′])([l′]z(y) · Q, e[z 7→ z′])

([m′]x〈b〉 · R, e[x 7→ z′]), {z′})

l′m′

−→ ((P, e[z 7→ z′])(Q, e[z 7→ z′, y 7→ b′])(R, e[x 7→ z′]), {z′})in the environment ma
hine.7.4. Con
lusionThe main goal of this work was not to de�ne one more translation of the
π-
al
ulus into yet another exoti
 formalism. We wanted to illustrate by ourbisimulation result that di�erential intera
tion nets are su�
iently expressivefor simulating 
on
urren
y and mobility, as formalized in the π-
al
ulus. Webelieve that di�erential intera
tion nets have their own interest and �nd a strong40
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mathemati
al and logi
al justi�
ation in their 
onne
tion with linear logi
, inthe existen
e of various denotational models and in the analogy between its ba-si
 
onstru
ts and fundamental mathemati
al operations su
h as di�erentiationand 
onvolution produ
t. The fa
t that di�erential intera
tion nets support
on
urren
y and mobility suggests that they might provide more 
onvenientmathemati
al and logi
al foundations to 
on
urrent 
omputing. In parti
ular,this work suggests that di�erential linear logi
 might be the logi
al side of aCurry-Howard 
orresponden
e for 
on
urren
y and mobility, but there is still alot of work to do for enfor
ing this idea. The following issues are 
ru
ial.7.4.1. Logi
al 
orre
tness. The nets whi
h result from our translation donot satisfy in general the Danos-Regnier a
y
li
ity 
riterion, so they 
annotalways be sequentialized into proofs of the sequent 
al
ulus of Se
tion 1.1. Wethink that the sequentializable nets are already quite expressive in terms of
on
urren
y and mobility, but this 
laim has to be enfor
ed by mathemati
alresults. One resear
h dire
tion here would be to try to identify a well-behavedand su�
iently expressive fragment of the π-
al
ulus, or of the solos 
al
ulus,whose pro
esses are translated into sequentializable nets.7.4.2. Typing. And then of 
ourse, there is the question of typing, whi
h isorthogonal to the sequentializabilty issue. The nets presented here are �weaklytyped�: they are typed using a type o whi
h satis�es the re
ursive equation
o = ?(o⊥)`o = (o ⇒ o). This is a typing system whi
h a

epts all untypedlambda-terms10, and hen
e does not 
onvey any information about terms, buthas two e�e
ts when used in our setting. First it prevents �
lashes� to appearduring the redu
tion of nets (for instan
e, the prin
ipal port of a tensor 
ell
onne
ted to the prin
ipal port of another tensor 
ell). Se
ond, it allows to in-terpret our nets in some denotational models of the untyped di�erential lambda-
al
ulus, su
h as the relational model presented in [BEM07℄. It is possible toadopt more informative typing dis
iplines, su
h as se
ond order propositionallinear logi
. The question is then again to understand if su
h typed and logi
ally
orre
t di�erential nets are still su�
iently expressive in terms of 
on
urren
yand mobility and to design typed and logi
ally 
orre
t pro
ess algebras asso-
iated with su
h nets. The su

ess of this resear
h program would lead to atrue extension of the Curry-Howard 
orresponden
e to 
on
urren
y. Of 
ourse,many other issues have to be addressed as well. Let us mention only a few ofthem.

• How should we handle the sum of pro
ess algebras in our setting, and howis it related to the additive 
onne
tives of linear logi
?
• What kind of repli
ation 
an we en
ode in our nets, using more general10Remember that the untyped lambda-
al
ulus 
an be translated into nets of multipli
ative-exponential linear logi
, whi
h are typed in this typing system, and satisfy the Danos-Regniera
y
li
ity 
riterion, see [Reg92℄. 42



instan
es of the promotion rule of linear logi
 than the 
losed promotionof Se
tion 6?
• Sin
e our nets belong to a di�erential extension of linear logi
 in whi
hthe lambda-
al
ulus 
an be faithfully represented as well, does our settingsuggest new ways of 
ombining 
on
urrent and fun
tional programming?
• Our nets admit denotational models, su
h as the relational model intro-du
ed in [BEM07℄. What kind of equivalen
e on pro
esses do su
h inter-pretations indu
e through our translation?7.4.3. Final remark. In the �nal revision pro
ess of this paper, we observedthat Proposition 11 
an be strengthened. Indeed, with the notations of thatproposition, if (Γ, L) Ib1,...,bn

s and if s ;
∗
{l,m} s0 + s1 + · · · + sn where s0 isa simple net whi
h 
ontains an (l, m)-
ommuni
ation redex, then si is {l, m}-neutral for ea
h i ≥ 1. This is a
tually a simple 
onsequen
e of Theorem 2 andof Proposition 10, observing �rst that we must have (Γ, L)

lm
−→ (∆, M) for some

(∆, M), as we did at the beginning of the proof of Proposition 11. This indi
atesthat Theorem 12 still holds if we remove the {l, m}-neutrality restri
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