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Abstract. We present and study a simple Call-By-Push-Value lambda-
calculus with fix-points and recursive types. We explain its connection
with Linear Logic by presenting a denotational interpretation of the lan-
guage in any model of Linear Logic equipped with a notion of embedding
retraction pairs. We consider the particular case of the Scott model of
Linear Logic from which we derive an intersection type system for our
calculus and prove an adequacy theorem. Last, we introduce a fully po-
larized version of this calculus which turns out to be a term language for
a large fragment of LLP and refines lambda-mu.

Introduction

Linear Logic (LL) has been introduced as a refinement of Intuitionistic Logic:
in [14], Girard proposed a very simple and natural translation of intuitionistic
logic and of the lambda-calculus in LL. From a categorical point of view, as
explained in [28], this translation corresponds to the construction of the Kleisli
category of the exponential comonad “!” of LL. An adequate categorical axiom-
atization of the denotational models of LL has been then provided in [3], see
also [26] for a very complete and detailed picture.

In [14], another possible translation of intuitionistic formulas strangely called
“boring” is mentioned. It appeared later that, just as the original Girard’s trans-
lation corresponds to the call-by-name (CBN) evaluation strategy of the lambda-
calculus, the “boring” translation corresponds to the call-by-value (CBV) reduc-
tion strategy, see in particular [24]. Indeed, a first observation is that this latter
translation does not preserve all β-reductions, but only those respecting a CBV
discipline. More deeply, domain-theoretic denotational models of the lambda-
calculus arising through the original Girard translation, that is, arising as Kleisli
categories of the exponential comonad, enjoy an adequacy property expressing
that a term reduces to a “value” (a head-normal term, say) iff its interpretation
is different from ⊥. A similar property holds for the CBV translation (now, a
closed value is an abstraction) with respect to the CBV reduction strategy.

Both translations give a particularly preeminent role to the Kleisli category
of the “!” comonad. This is obvious for the original CBN translation but it is
also true for the CBV translation if we consider that the “!” functor defines a



strong monad on the cartesian closed Kleisli category: then the CBV translation
coincides with Moggi’s interpretation of the CBV lambda-calculus in a CCC
equipped with a computational monad [27].

So LL provides a common setting where both CBN and CBV can be faith-
fully interpreted. In spite of its appealing symmetries and its high degree of
asynchrony, the syntax of LL proof nets is complex and does not seem to be a
convenient starting point for the design of programming languages; it is rather
a powerful tool for analyzing the operational and denotational properties of
programming languages. It seems therefore natural to look for lambda-calculi
admitting a translation in LL and where both CBN and CBV can be embedded,
factorizing the two translations mentioned above.

Levy introduced a lambda-calculus subsuming both CBN and CBV: the Call-
By-Push-Value lambda-calculus. We propose a similar functional calculus where
both CBN and CBV can be encoded and features a simple connection with LL.
For reasons which will become clear later, we call it half-polarized lambda-calculus
(ΛHP). Our calculus is actually isomorphic to (a sub-calculus) of SFPL [25]. It
bears some similarities with the adjoint calculus of [2], though we do not need
linear variables. It is also close to the Enriched Effect Calculus [10].

The LL exponential “!” allows to turn a term of type A into a term of type !A
which is duplicable and discardable, by means of an operation called promotion.
This discardability and duplicability is made possible by the structural rules
!A is equipped with. It was already observed by Girard in [15] (and probably
much earlier) that the property of “being equipped with structural rules” is
preserved by the ⊗ and ⊕ connectives of LL. This observation can be made
more accurate as follows: a “type equipped with structural rules” is a coalgebra
for the “!” connective, that is, an object of the Eilenberg-Moore category of
“!”, and this category admits ⊕ as coproduct and ⊗ as cartesian product. This
category is not a CCC in general but contains the CCC Kleisli category of “!”
as a full sub-category (remember that the Kleisli category is the category of free
!-coalgebras). The Eilenberg-Moore category of “!” was used crucially by Girard
to give a semantics to a classical sequent calculus and by other authors (see for
instance [21]) to interpret classical extensions of the lambda-calculus such as
Parigot’s λµ-calculus.

Replacing the Kleisli category with this larger Eilenberg-Moore category
when interpreting the lambda-calculus has other major benefits. Consider for
instance the interpretation of ordinary PCF in an LL-induced categorical model,
that is, in the Kleisli category of the “!” comonad of a categorical model L of LL.
The simplest and most natural interpretation for the type of natural numbers
is N = 1 ⊕ 1 ⊕ · · · (ω copies of the unit 1 of the tensor product). But 1 has
a canonical structure of !-coalgebra (because 1 = !> where > is the terminal
object of L) and this is therefore also true of N, as a coproduct of coalgebras.
This means that we have a well behaved morphism hN ∈ L(N, !N) which allows
to turn any morphism f ∈ L!(N, X) of the Kleisli CCC L! where we interpret
PCF into a linear morphism f hN ∈ L(N, X). Operationally, this means that, in
spite of the fact that PCF is a CBN language and that its interpretation in L!



is a CBN interpretation, we can deal with the terms of ground type in a CBV
fashion. For instance we can replace the ordinary PCF “if zero” conditional with
the following more sensible one:

P `M : ι P ` N : σ P, x : ι ` N ′ : σ

P ` if(M,N, x ·N ′) : σ

with the reduction rules

if(0, N, x ·N ′)→ N if(n+ 1, N, x ·N ′)→ N ′ [n/x]

M →M ′ ⇒ if(M,N, x ·N ′)→ if(M ′, N, x ·N ′)

The denotational interpretation of if(M,N, x · N ′) uses crucially the coalgebra
structure hN of N. This idea is also reminiscent of Krivine’s storage operators [20]
which allow a CBV discipline for data types in a globally CBN calculus.

Call-By-Push-Value and ΛHP generalize this idea. We consider two classes of
types: the positive types ϕ,ψ . . . and the larger class of general types σ, τ, . . .
Just as in [15], positive types correspond to objects of L! whereas general types
are just objects of L. Of course there is an obvious way of considering a positive
type as a general one by simply forgetting its coalgebra structure. There is also
a way of turning a general type into a positive one using “!”, and positive types
are stable under sums ⊕ and product ⊗. In Girard’s CBN translation, σ ⇒ τ
(where ⇒ is intuitionistic implication) becomes !σ ( τ : the main idea of ΛHP

is to generalize this idea by allowing to replace !σ with an arbitrary positive type
ϕ. Therefore, the implication of ΛHP is linear: all the required non-linearity is
provided by the positivity of the premise. Accordingly all variables have positive
types. This is also why we use a new notation 〈M〉N for the application of M
to N , to stress the fact that this application is linear.

There is however a subtlety which does not occur in CBN: consider a term
M of type σ with one free variable x of positive type ϕ. Consider also a closed
term N of type ϕ. The interpretation of M is a morphism f ∈ L(ϕ, σ) (identify-
ing types with their interpretation) and the interpretation of N is a morphism
g ∈ L(1, ϕ). There is no reason however for g to belong to L!(1, ϕ) and so we
cannot be sure that f g (we use simple juxtaposition to denote composition of
morphisms in L) will coincide with the interpretation of M [N/x]. Indeed, for
that substitutivity property to hold, we would need g to be duplicable and dis-
cardable which is the case if we can make sure that g ∈ L!(1, ϕ), but does not
hold in general. It is here that the syntactic notion of value comes in: if ϕ = !σ
then N is a value if N = R! (a promotion of a term R of type σ), if ϕ = ϕ1⊗ϕ2

then N is a value if N = 〈V1, V2〉 where Vi is a value of type ϕi, and similarly
for sums. The main property of values is that their interpretations are coalgebra
morphisms: if N is a value then g ∈ L!(1, ϕ). This is why, in ΛHP, β reduction
is restricted to the case where the argument is a value. This also means that in
〈λxϕM〉N we need to reduce N to a value before reducing the β-redex. If, for in-
stance, the reduction of N diverges without reaching a value then the reduction
of 〈λxϕM〉N diverges even if M does not use x, just as in CBV.



Positive types are also stable under fix-points if we assume that the objects of
L can be equipped with a notion of embedding-retraction pairs, which is usually
the case in categories of domains. Under the assumption that this new category
has all countable filtered colimits and that the functors interpreting types are
continuous, it is easy to prove that all “positive types with parameters” have
fix-points which are themselves positive types. The presence of “!” as an explicit
type constructor in ΛHP allows to define lazy recursive types such as ρ = ϕ⊗ !ρ
where ϕ is a given type: ρ is the type of streams of elements of type ϕ. At the
level of terms, the construction which introduces an “!” is the aforementioned
construction R! which corresponds to the well known (generalized) promotion of
LL aka exponential box ; this construction corresponds here to thunks or suspen-
sions. In this stream type ρ the box construction is crucially used to postpone
the evaluation of the tail of the stream. The box can be opened (that is, the
thunk can be forced) by means of an explicit dereliction syntactic construct
der(M) which can be applied to any term M of type !σ for some σ and which
corresponds exactly to the usual dereliction rule of LL.

Contents. We define a version of ΛHP featuring positive and ordinary types,
recursive positive types and a fix-point operator for terms. Since many data
types can be defined easily in this language (ordinary integers, lazy integers,
lists, streams, various kinds of finite and infinite trees. . . ), it widely encompasses
PCF and is closer to FPC [13], with the additional feature of allowing to freely
combine CBV and CBN. We define the syntax of the language, provide a typing
system and a simple operational semantics which is “weak” in the sense that
reduction is forbidden under λs and within boxes (more general reductions can
of course be defined but, just as in CBV, a let construction or new reduction
rules as in [4] should be added).

We do not describe the embeddings of the CBN and CBV lambda-calculi into
ΛHP because they are very similar to the corresponding embeddings into CBPV,
described in [22]. It will be fully described in a longer version of this paper.

Then we recall the general definition of a categorical model of LL (with fix-
point operators), of its Eilenberg-Moore category and we describe the additional
categorical structure which will allow to interpret recursive positive types. To
illustrate the connection of ΛHP with LL without introducing a syntax for LL
proofs1, we describe the interpretation of ΛHP in such a categorical model of LL
and state a Soundness Theorem.

This categorical semantics is a special case of Levy’s adjunction semantics
of [22] for CBPV. One of the interests of this LL-based semantics is that it admits
extensions in various exciting directions (Ludics, Differential LL, Light LL etc)
on which we think that ΛHP will shed a new light. There is another good reason
for considering this semantics: it gives a standard way of building the “category of
values” as L!, starting from a “linear” category L which is usually much simpler.
This is typically the case when L is the category of coherence spaces and linear
maps; in this case it is not easy to give a direct, domain-theoretic description of

1 This would be very interesting but would require more space.



L!. The Scott semantics described in Section 3 is a remarkable exception where
L! can be seen as a category of predomains and Scott continuous functions.

We also provide a description of this Scott semantical interpretation as a very
simple “intersection” typing system and prove an adequacy theorem (which can
be understood as a normalization theorem for this typing system). This result is
important as it shows that our weak reduction semantics for ΛHP is complete in
the sense that if a closed term is equivalent to a value in any equivalence relation
compatible with the denotational semantics, then it weakly reduces to a value.
Next we introduce a fully polarized version ΛLLP of our calculus, a system which is
closer to Levy’s original CBPV although it generalizes it by allowing “classical”
constructions borrowed from Parigot’s λµ-calculus and is deeply related with
Laurent’s Polarized Linear Logic LLP. Last we define an encoding of ΛHP into
ΛLLP and outline its basic features.

Our initial motivation for introducing ΛLLP was to combine our representa-
tion of data as !-coalgebra morphisms in ΛHP with the representation of stacks
(continuations) as !-coalgebra morphisms in the semantics of classical calculi
such as the CBN λµ-calculus. ΛLLP is presented in the λµµ̃ style [7] and further
developed in [8]. We think that it provides a satisfactory answer to our quest and
deserves further study. Independently, Pierre-Louis Curien introduced recently
in the unpublished note [5] a similar formalism for representing Levy’s original
CBPV (Curien’s calculus however is intuitionistic whereas ours is classical).

1 Syntax

Types are given by the following BNF syntax. We define by mutual induction
two kinds of types: positive types and general types, given type variables ζ, ξ. . . :

positive types ϕ,ψ, . . . := !σ | ϕ⊗ ψ | ϕ⊕ ψ | ζ | Fix ζ · ϕ (1)

general types types σ, τ . . . := ϕ | ϕ( σ | > (2)

More constructions could be added for general types, as in CBPV (such as
products or recursive types), we do not so here by lack of space. We consider the
types up to the equation Fix ζ · ϕ = ϕ [(Fix ζ · ϕ)/ζ].

Terms are given by the following BNF syntax, given variables x, y, . . . :

M,N . . . := x | M ! | 〈M,N〉 | in1M | in2M

| λxϕM | 〈M〉N | case(M,x1 ·N1, x2 ·N2)

| pr1M | pr2M | der(M) | fixx!σM

This calculus can be seen as a special case of Levy’s CBPV [22] in which the
type constructor F is kept implicit (and U is “!”). Section 4 proposes a version
of CBPV where F is “?”, taking benefit of this for introducing constructs related
to classical logic.

The notion of substitution is defined as usual. Figure 1 provides the typing
rules for these terms. A typing context is an expression P = (x1 : ϕ1, . . . , xk : ϕk)
where all types are positive and the xis are pairwise distinct variables.



P `M : σ

P `M ! : !σ

P `M1 : ϕ1 P `M2 : ϕ2

P ` 〈M1,M2〉 : ϕ1 ⊗ ϕ2

P `M : ϕi

P ` iniM : ϕ1 ⊕ ϕ2

P, x : ϕ ` x : ϕ
P, x : ϕ `M : σ

P ` λxϕM : ϕ( σ

P `M : ϕ( σ P ` N : ϕ

P ` 〈M〉N : σ

P `M : !σ
P ` der(M) : σ

P, x : !σ `M : σ

P ` fixx!σM : σ

P `M : ϕ1 ⊕ ϕ2 P, x1 : ϕ1 `M1 : σ P, x2 : ϕ2 `M2 : σ

P ` case(M,x1 ·M1, x2 ·M2) : σ

P `M : ϕ1 ⊗ ϕ2

P ` priM : ϕi

Fig. 1. Typing system for ΛHP

Remark 1. It might seem strange to the reader acquainted with LL that the
rules introducing the ⊗ connective and eliminating the ( connective have an
“additive” handling of typing contexts (the same typing context P occurs in both
premises): our contexts are not linear. The reason for this becomes clear in Sec-
tion 2 where positive types are interpreted as !-coalgebras, which are equipped
with morphisms allowing to interpret the structural rules of weakening and con-
traction. This is why typing contexts involve positive types only.

We define now a weak reduction relation on terms, meaning that we never
reduce within a “box” M ! or under a λ. Values are particular ΛHP terms (they
are not a new syntactic category) defined by the following BNF syntax:

V,W . . . := x | M ! | 〈V,W 〉 | in1V | in2V .

Remark 2. A closed value is simply a tree whose leaves are “boxes” or “thunks”
M ! (where the M ’s are arbitrary well typed closed terms) and whose internal
nodes are either unary nodes bearing an index 1 or 2, or ordered binary nodes.

Figure 2 defines weak reduction →w.

Proposition 1. The reduction→w enjoys subject reduction and Church-Rosser.

The first statement is a straightforward verification using a Substitution Lemma
that we do not state. The second one is easy: →w has the diamond property.

Proposition 2. Any value is →w-normal. If ϕ is a positive type, ` M : ϕ and
M is →w-normal, then M is a value.

This is easy. In the second statement M has to be closed (the term 〈der(x)〉V is
normal, is not a value and can be given a positive type).



der(M !)→w M 〈λxϕM〉V →w M [V/x] pri〈V1, V2〉 →w Vi

fixx!σM →w M
[
(fixx!σM)!/x

] M →w M
′

der(M)→w der(M ′)

M →w M
′

〈M〉N →w 〈M ′〉N
N →w N

′

〈M〉N →w 〈M〉N ′

M →w M
′

priM →w priM
′

M1 →w M
′
1

〈M1,M2〉 →w 〈M ′1,M2〉
M2 →w M

′
2

〈M1,M2〉 →w 〈M1,M
′
2〉

case(iniV, x1 ·M1, x2 ·M2)→w Mi [V/xi]
M →w M

′

iniM →w iniM
′

M →w M
′

case(M,x1 ·M1, x2 ·M2)→w case(M ′, x1 ·M1, x2 ·M2)

Fig. 2. Weak reduction axioms and rules for ΛHP

1.1 Examples

Given any type σ, we define Ωσ = fixx!σ der(x) which satisfies ` Ωσ : σ. It
is clear that Ωσ →w der((Ωσ)!) →w Ωσ so that we can consider Ωσ as the
ever-looping program of type σ.

Unit type and natural numbers. We define a unit type 1 by 1 = !>, and
we set ∗ = (Ω>)!. We define the type ι of unary natural numbers by ι = 1 ⊕ ι
(by this we mean that ι = Fix ζ · (1 ⊕ ζ)). We define 0 = in1∗ and n+ 1 = in2n
so that we have P ` n : ι for each n ∈ N.

Then, given a term M , we define the term suc(M) = in2M , so that we have

P `M : ι
P ` suc(M) : ι

Last, given terms M , N1 and N2 and a variable x, we define an “ifz” conditional
by if(M,N1, x ·N2) = case(M, z ·N1, x ·N2) where z is not free in N1, so that

P `M : ι P ` N1 : σ P, x : ι ` N2 : σ

P ` if(M,N1, x ·N2) : σ

Streams. Let ϕ be a positive type and Sϕ be the positive type defined by
Sϕ = ϕ ⊗ !Sϕ, that is Sϕ = Fix ζ · (ϕ ⊗ !ζ). We can define a term M such that
`M : Sϕ ( ι( ϕ which computes the nth element of a stream:

M = fix f !(Sϕ(ι(ϕ) λxSϕ λyι if(y, pr1x, z · 〈der(f)〉der(pr2x) z)

Conversely, we can define a term N such that ` N : !(ι( ϕ) ( Sϕ which
turns a function into a stream.

N = fixF !(!(ι(ϕ)(Sϕ) λf !(ι(ϕ) 〈〈der(f)〉0, (〈der(F )〉(λxι 〈der(f)〉suc(x))!)!〉



Observe that the recursive call of F is encapsulated into a box, which makes the
construction lazy.

Lists. There are various possibilities for defining a type of lists of elements of
a positive type ϕ. The simplest definition is λ0 = 1⊕ (ϕ⊗ λ0). This corresponds
to the ordinary ML type of lists. But we can also define λ1 = 1⊕ (ϕ⊗ !λ1) and
then we have a type of lazy lists (or terminable streams) where the tail of the
list is computed only when required.

We could also consider λ2 = 1⊕ (!σ ⊗ λ2) which allows to manipulate lists of
objects of type σ (which can be a general type) without accessing their elements.

2 Denotational Semantics

The kind of denotational models we are interested in in this paper are those
induced by a model of LL, in the spirit of Girard’s seminal work [15] on the
semantics of the classical system LC where positive formulas are interpreted as
⊗-comonoids; this interpretation is further developed e.g. in [21]. We use here
exactly the same idea for interpreting positive types.

We first recall the general categorical definition of a model of LL implicit
in [14], our main reference here is [26] to which we also refer for the rich bibli-
ography on this general topic.

2.1 Models of Linear Logic

A model of LL consists of the following data.

– A category L.
– A symmetric monoidal structure (⊗, 1, λ, ρ, α, σ) which is assumed to be

closed: ⊗ is a functor L2 → L, 1 an object of L, λX ∈ L(1 ⊗ X,X), ρX ∈
L(X ⊗ 1, X), αX,Y,Z ∈ L((X ⊗ Y ) ⊗ Z,X ⊗ (Y ⊗ Z)) and σX,Y ∈ L(X ⊗
Y, Y ⊗X) are natural isomorphisms satisfying coherence diagrams that we do
not record here. We use X ( Y for the object of linear morphisms from X
to Y , ev for the evaluation morphism which belongs to L((X ( Y )⊗X,Y )
and cur for the linear curryfication map L(Z ⊗X,Y )→ L(Z,X ( Y ).

– An object ⊥ of L such that the natural morphism ηX = cur(ev σX(⊥,X) ∈
L(X, (X ( ⊥) ( ⊥) is an iso for each object X (one says that L is a
∗-autonomous category2). We use X⊥ for the object X ( ⊥ of L.

– The category L is assumed to be cartesian. We use > for the terminal object,
& for the cartesian product and pri for the projections. It follows by ∗-
autonomy that L has also all finite coproducts. We use 0 for the initial
object, ⊕ for the coproduct and ini for the injections. Given an object X of
L, we use inX for the unique element of L(0, X).

2 Though not essential for interpreting ΛHP, this assumption is natural as it holds in
the concrete models we have in mind and it simplifies the interpretation of ΛLLP, the
calculus of Section 4



– We are also given a comonad ! : L → L with counit derX ∈ L(!X,X) (called
dereliction) and comultiplication digX ∈ L(!X, !!X) (called digging).

– And a strong symmetric monoidal structure for the functor ! , from the
symmetric monoidal category (L,&) to the symmetric monoidal category
(L,⊗). This means that we are given an iso m0 ∈ L(1, !>) and a natural iso
m2
X,Y ∈ L(!X ⊗ !Y , !(X & Y )) which satisfy commutations that we do not

record here. We also require a coherence condition relating m2 and dig.

We use ? for the “De Morgan dual” of ! : ?X = (!(X⊥))⊥ and similarly for
morphisms. It is a monad on L with unit der′X and multiplication dig′X defined
straightforwardly, using derY and digY .

Lax monoidality. It follows that we can define a lax symmetric monoidal
structure for the functor ! from the symmetric monoidal category (L,⊗) to
itself. This means that we can define a morphism µ0 ∈ L(1, !1) and a natural
transformation µ2

X,Y ∈ L(!X ⊗ !Y , !(X ⊗ Y )) which satisfy some coherence di-
agrams whose main consequence is that we can canonically extend this natural
transformation to the case of n-ary tensors:

µ
(n)
X1,...,XN

∈ L(!X1 ⊗ · · · ⊗ !Xn, !(X1 ⊗ · · · ⊗Xn))

in a way which is compatible with the symmetric monoidal structure of L (and
allows us to write things just as if ⊗ were strictly associative).

The Eilenberg-Moore category. It is then standard to define the category
L! of !-coalgebras. An object of this category is a pair P = (P ,hP ) where P ∈
Obj(L) and hP ∈ L(P , !P ) is such that derP hP = Id and digP hP = !hP hP .

Given two such coalgebras P and Q, an element of L!(P,Q) is an f ∈ L(P ,Q)
such that hQ f = !f hP . Identities and composition are defined in the obvious
way. The functor ! can then be seen as a functor from L to L!: this functor maps
X to the coalgebra (!X,digX) and a morphism f ∈ L(X,Y ) to the coalgebra
morphism !f ∈ L!((!X,digX), (!Y, digY )). This functor is right adjoint to the
forgetful functor U : L! → L which maps a !-coalgebra P to P and a morphism f
to itself. Given f ∈ L(P ,X), we use f ! ∈ L!(P, !X) for the morphism associated
with f by this adjunction, one has f ! = !f hP . If g ∈ L!(Q,P ), we have

f ! g = (f g)! (3)

The object 1 of L induces an object of L!, still denoted as 1, namely (1, µ0).
Given two objects P and Q of L!, one defines an object P⊗Q of L! by setting

P ⊗Q = P ⊗Q and by defining hP⊗Q as a composition of morphisms:

P ⊗Q !P ⊗ !Q !(P ⊗Q)
hP ⊗ hQ

µ2
P,Q

Any object P of L! can be equipped with a canonical structure of commuta-
tive comonoid. This means that we can define a morphism wP ∈ L!(P, 1) and a
morphism cP ∈ L!(P, P ⊗ P ) which satisfy the commutations of Figure 3.



P P ⊗ P

1⊗ P

P P ⊗ P (P ⊗ P )⊗ P

P ⊗ P P ⊗ (P ⊗ P )

P P ⊗ P

P ⊗ P

cP

wP ⊗ P
λP
−1

cP cP ⊗ P

cP αP,P,P

P ⊗ cP

cP

σP,PcP

Fig. 3. Commutative ⊗-comonoid

One can check a stronger property, namely that 1 is the terminal object of
L! and that P ⊗Q (equipped with projections defined in the obvious way using
wQ and wP ) is the cartesian product of P and Q in L!; the proof consists of
surprisingly long computations for which we refer again to [26].

It is also important to notice that, if the family (Pi)i∈I of objects of L! is
such that the family (Pi)i∈I admits a coproduct (

⊕
i∈I Pi, (ini)i∈I) in L, then

it admits a coproduct in L!. This coproduct P =
⊕

i∈I Pi is defined by P =⊕
i∈I Pi, with a structure map hP defined by the fact that, for each i ∈ I, hP ini

is the following composition of morphisms:

Pi !Pi !P
hPi !ini

Fix-point operators. For any object X, we assume to be given a morphism
fixX ∈ L(!(!X ( X), X) such that the following diagram commutes

!(!X ( X) !(!X ( X)⊗ !(!X ( X)

(!X ( X)⊗ !X

X

c!X

der!X(X ⊗ fix!
X

ev
fixX

Remark 3. It might seem natural to require stronger uniformity conditions in-
spired by the notion of Conway operator [30]. This does not seem to be necessary
as far as soundness of our semantics is concerned even if the fix-point operators
arising in concrete models satisfy these further properties.

2.2 Embedding-retraction pairs

We introduce the categorical assumptions used to interpret fix-points of types.
We assume that 0 and > are isomorphic; these isos being unique, we assume

that 0 and > are the same objects3.

3 This is true in many concrete models. It implies that any hom-set L(X,Y ) has a
distinguished element which coincides with the least element ⊥ in denotational mod-
els based on domains or games. So this identification is typical of models featuring
partial morphisms, which is required here because of the availability of fix-point
operators for types and for programs.



We assume to be given a category L⊆ such that Obj(L⊆) = Obj(L) together
with a functor F : L⊆ → Lop × L such that F(X) = (X,X) and for which we
use the notation (ϕ−, ϕ+) = F(ϕ). We assume that ϕ− ϕ+ = IdX . We define E
(for embedding) as the functor pr2 F : L⊆ → L. We assume moreover that the
following properties hold.

– The category L⊆ has all countable filtered colimits and these colimits are
preserved by E.

– 0 is initial in L⊆ with EθX = inX if θX is the unique element of L⊆(0, X).

– There is a continuous functor4 ⊗⊆ : L2
⊆ → L⊆ which behaves as ⊗ on objects

and satisfies (ϕ⊗⊆ ψ)+ = ϕ+ ⊗ ψ+ and (ϕ⊗⊆ ψ)− = ϕ− ⊗ ψ−. We use the
same notation ⊗ for the functor ⊗⊆. We make similar assumptions for ⊕
and ! .

– There is a continuous functor N : L⊆ → L⊆ such that N (X) = X⊥ ,
N (ϕ)+ = (ϕ−)⊥ and N (ϕ)− = (ϕ+)⊥ . We simply denote N (ϕ) as ϕ⊥ ;
remember that this operation is covariant.

So we can define a continuous covariant functor ( : L2
⊆ → L⊆ by X ( Y =

(X ⊗ Y ⊥)⊥ and ϕ ( ψ = (ϕ ⊗ ψ⊥)⊥ , so that (ϕ ( ψ)+ = ϕ− ( ψ+ and
(ϕ( ψ)− = ϕ+ ( ψ− in L.

We need to extend this notion of embedding-retraction pair to !-coalgebras
because we want to define fix-points of positive types. Let L!

⊆ be the category

whose objects are those of L! and where

L!
⊆(P,Q) = {ϕ ∈ L⊆(P ,Q) | ϕ+ ∈ L!(P,Q)} .

In this definition, it is important not to require ϕ− to be a coalgebra morphism.
We still use U for the obvious forgetful functor L!

⊆ → L⊆. Observe that ⊗ and

⊕ define functors (L!
⊆)2 → L!

⊆ and that ! defines a functor L⊆ → L!
⊆.

Let J be a countable filtered category and let E : J → L!
⊆ be a functor.

Let X be the colimit of the functor U E in L⊆ and let (ϕi ∈ L⊆(UE(i), X))i∈J
be the corresponding colimit cocone. We know that (ϕ+

i ∈ L(UE(i), X))i∈J is a
colimit cocone in L. In particular, to prove that two morphisms g, g′ ∈ L(X,Y )
are equal, it suffices to prove that g ϕ+

i = g′ ϕ+
i for each i ∈ J .

We want to equip X with a coalgebra structure h ∈ L(X, !X). For this, due to
this universal property, it suffices to define a cocone (fi ∈ L(UE(i), !X))i∈J . We
set fi = !ϕ+

i hE(i) and h is completely characterized by the fact that hϕ+
i = fi

for each i ∈ J .

Let us prove that derX h = IdX . We have derX hϕ+
i = derX !ϕ+

i hE(i) =

ϕ+
i derE(i) hE(i) = ϕ+

i and the result follows from the universal property. The

equation digX h = !hh is proven similarly: we have digX hϕ+
i = digX !ϕ+

i hE(i) =

!!ϕ+
i digE(i) hE(i) = !!ϕ+

i !hE(i) hE(i) = !fi hE(i) and !hhϕ+
i = !h !ϕ+

i hE(i) =

!fi hE(i).

4 That is, a directed colimits preserving functor.



So we have proven that E has a colimit in the category L! of coalgebras. A
functor Φ :M1 × · · · ×Mn →M (where M and the Mis belong to {L⊆,L!

⊆})
is continuous if it commutes with countable filtered colimits.

Proposition 3. The functors ⊗ and ⊕ from (L!
⊆)2 to L!

⊆ are continuous. The

functor ! : L⊆ → L!
⊆ is continuous. The functor ( : (L⊆)2 → L⊆ is continuous.

Immediate consequence of our hypotheses and of the above considerations.

Theorem 1. Let Φ : (L!
⊆)n+1 → L!

⊆ be continuous. There is a continuous

Fix(Φ) : (L!
⊆)n → L!

⊆ which is naturally isomorphic to Φ ◦ 〈Idn,Fix(Φ)〉.

Proof. Let P = (P1, . . . , Pn) be a tuple of objects of L!. Consider the functor
ΦP : L!

⊆ → L!
⊆ defined by ΦP (P ) = Φ(P , P ) and similarly for morphisms.

Consider the set of natural numbers equipped with the usual order relation as a
filtered category (N(n,m) has one element ln,m if n ≤ m and is empty otherwise).
We define a functor E : N→ L!

⊆ as follows. First, we set E(i) = ΦiP (0). For each

i, we define ϕ0 = θE(1) and then we set ϕi+1 = ΦP (ϕi). Then, given i, j ∈ N such
that i ≤ j, we set E(li,j) = ϕj−1 · · · ϕi. We define Fix(Φ)(P ) as the colimit of this
functor E in L!

⊆. By standard categorical methods using the universal property of

colimits, we extend this operation to a continuous functor Fix(Φ) : (L!
⊆)n → L!

⊆
which satisfies the required condition by continuity of Φ. 2

2.3 Interpreting types and terms

With any positive type ϕ and any repetition-free list ζ = (ζ1, . . . , ζn) of type
variables containing all free variables of ϕ we associate a continuous functor
[ϕ]!ζ : (L!

⊆)n → L!
⊆ and with any general type σ and any list ζ = (ζ1, . . . , ζn)

of pairwise distinct type variables containing all free variables of σ we associate
a continuous functor [σ]ζ : (L!

⊆)n → L⊆. We give the definition on objects, the
definition on morphisms being similar.

[ζi]
!
ζ(P ) = Pi [!σ]!ζ(P ) = !([σ]ζ(P ))

[ϕ⊗ ψ]!ζ(P ) = [ϕ]!ζ(P )⊗ [ψ]!ζ(P )

[ϕ⊕ ψ]!ζ(P ) = [ϕ]!ζ(P )⊕ [ψ]!ζ(P )

[Fix ζ · ϕ]!ζ = Fix([ϕ]!ζ,ζ) [>]ζ(P ) = > (the terminal object of L)

[ϕ]ζ = U [ϕ]!ζ [ϕ( σ]ζ(P ) = ([ϕ]!ζ(P )) ( ([σ]ζ(P ))

When we write [σ] or [ϕ]! (without subscript), we assume implicitly that the
types σ and ϕ have no free type variables. Then [σ] is an object of L and [ϕ]! is
an object of L!.

From now on, we assume that the only isos of L⊆ are the identity maps. This
means in particular that the isos resulting from Theorem 1 are identities. This
assumption is necessary because we have no roll/unroll syntactic constructs of
terms associated with fixpoints of types. It holds in many concrete models, and
in particular in the Scott model of Section 3.



Interpreting terms. Given a typing context P = (x1 : ϕ1, . . . , xn : ϕn), we
define [P]! as the object [ϕ1]!⊗· · ·⊗[ϕn]! of L!. Notice that [P]! = [ϕ1]⊗· · ·⊗[ϕn].
We denote this object of L as [P].

Given a term M , a typing context P = (x1 : ϕ1, . . . , xn : ϕn) and a type σ
such that P ` M : σ, we define [M ]P ∈ L([P], [σ]) by induction on the typing
derivation of M , that is, on M . Indeed, given a term M and a typing context P,
there is at most one type σ and one derivation of P `M : σ (and this derivation
is isomorphic to M).

Remark 4. A crucial observation is that L!([P]!, [ϕ]!) ⊆ L([P], [ϕ]) for any pos-
itive type ϕ. Hence, for a term M such that P ` M : ϕ, it may happen, but it
is not necessarily the case, that [M ]P ∈ L!([P]!, [ϕ]!). The terms M which have
this property are duplicable and discardable, and the main property of values
is that they belong to this semantically defined class of terms. Let us call such
terms L-regular.

We define [M ]P by induction on the typing derivation, that is, on M .
If M = xi for 1 ≤ i ≤ n, then [M ]P = pri ∈ L!([P]!, [Pi]

!). Remember
indeed that [P]! is the cartesian product of [P1]!,. . . ,[Pn]! in L!. Observe that M
is L-regular.

Assume that M = N ! and σ = !τ with P ` N : τ . By inductive hypothesis
we have [N ]P ∈ L([P]!, [τ ]) and hence we can set [M ]P = [N ]!P ∈ L!([P]!, ![τ ])
so that M is L-regular.

Assume that M = 〈M1,M2〉 and σ = ϕ1 ⊗ ϕ2 with P ` Mi : ϕi for i = 1, 2.
By inductive hypothesis we have defined [Mi]P ∈ L([P], [ϕi]) for i = 1, 2. Since
[P] = [P]! we have a contraction morphism c[P]! ∈ L!([P]!, [P]! ⊗ [P]!) so that
we can set [M ] = ([M1]P ⊗ [M2]P) c[P]! ∈ L([P], [σ]). Hence if M1 and M2 are
L-regular, then M is L-regular.

Assume that M = iniN (for i = 1 or i = 2)) and σ = ϕ1 ⊕ ϕ2. By inductive
hypothesis we have [N ]P ∈ L([P], [ϕi]) and since we have ini ∈ L!([ϕi]

!, [ϕ1]! ⊕
[ϕ2]!) it makes sense to set [M ]P = ini [N ]P ∈ L([P], [σ]). Observe that if N is
L-regular then so is M .

Assume that M = λxϕN and σ = ϕ ( τ with P, x : ϕ ` N : τ . By
inductive hypothesis we have [N ]P,x:ϕ ∈ L([P] ⊗ [ϕ], [τ ]) and we set [M ]P =
cur ([N ]P,x:ϕ) ∈ L([P], [ϕ] ( [τ ]). Of course, even if τ is positive and N is
L-regular, M is not L-regular, simply because its type is not positive.

Assume that M = 〈N〉R with P ` N : ϕ ( σ and P ` R : ϕ for some
positive type ϕ. By inductive hypothesis we have [N ]P ∈ L([P], [ϕ] ( [σ])
and [R]P ∈ L([P], [ϕ]). Since [P] = [P]! we have a contraction morphism c[P]! ∈
L!([P]!, [P]!⊗[P]!) so that we can set [M ]P = ev ([N ]P⊗[R]P) c[P]! ∈ L([P], [σ]).

Assume that M = case(N, x1 · R1, x2 · R2) with P ` N : ϕ1 ⊕ ϕ2 and
P, xi : ϕi ` Ri : σ for i = 1, 2. By inductive hypothesis we have [M ]P ∈
L([P], [ϕ1]⊕ [ϕ2]) and [Ri]P,xi:ϕi ∈ L([P]⊗ [ϕi], [σ]) for i = 1, 2. By the universal
property of the coproduct ⊕ in L and by the fact that the functor [P]⊗ is a left
adjoint, there is exactly one morphism f ∈ L([P] ⊗ ([ϕ1] ⊕ [ϕ2]), [σ]) such that
f ([P]⊗ ini) = [Ri]P,xi:ϕi

for i = 1, 2. Then we set [M ]P = f ([P]⊗ [N ]P) c[P]! .



Assume that M = priN and σ = ϕi for i = 1 or i = 2, with P ` N : ϕ1⊗ϕ2.
By inductive hypothesis we have [N ]P ∈ L([P], [ϕ1] ⊗ [ϕ2]). Then remember
that we have the projection pri ∈ L!([ϕ1]! ⊗ [ϕ2]!, [ϕi]

!) so that we can set
[M ]P = pri [N ]P ∈ L([P], [ϕi]).

Assume that M = der(N) with P ` N : !σ. Then we have der[σ] ∈ L(![σ], [σ])
so that we can set [M ]P = der[σ] [N ]P ∈ L([P], [σ]).

Assume that M = fixx!σ N so that P, x : !σ ` N : σ. By inductive hypoth-
esis we have cur([N ]P,x:!σ) ∈ L([P]!, ![σ] ( [σ]) and hence (cur([N ]P,x:!σ))! ∈
L!([P], !(![σ] ( [σ])) so that we can set [M ]P = fix (cur([N ]P,x:!σ))! ∈ L([P], [σ]).

Proposition 4. If P ` V : ϕ and V is a value, then V is L-regular, that is
[V ]P ∈ L!([P]!, [ϕ]!).

The proof is a straightforward verification (in the definition of the interpretation
of terms we have singled out the constructions which preserve L-regularity).
The main operational feature of L-regular terms is that they enjoy the following
substitutivity property.

Proposition 5 (Substitution Lemma). Assume that P, x : ϕ ` M : σ and
P ` N : ϕ, and assume that N is L-regular. Then we have

[M [N/x]]P = [M ]P,x:ϕ ([P]⊗ [N ]P) c[P]!

Proof. Induction on M using in an essential way the L-regularity of N . Let
us consider two cases to illustrate this point. Assume first that M = R! and
σ = !τ , with P, x : ϕ ` R : τ so that [R]P,x:ϕ ∈ L([P] ⊗ [ϕ], [σ]). Then we have

[M [N/x]]P = [R [N/x]
!
]P = ([R [N/x]]P)! = ([R]P,x:ϕ ([P] ⊗ [N ]P) c[P])

! by in-
ductive hypothesis. We obtain the contended equation by applying Equation (3)
and the fact that [P]⊗ [N ]P is a coalgebra morphism since N is L-regular, and
the fact that c[P] is also a coalgebra morphism.

Let us also consider the case M = 〈M1,M2〉 and σ = ϕ1⊗ϕ2 with P, x : ϕ `
Mi : ϕi for i = 1, 2 so that [Mi]P,x:ϕ ∈ L([P]⊗ [ϕ], [ϕi]) for i = 1, 2. We have

[M [N/x]]P = [〈M1 [N/x] ,M2 [N/x]〉]P
= ([M1 [N/x]]P ⊗ [M2 [N/x]]P) c[P]!⊗[ϕ]!

= (([M1]P,x:ϕ ([P]⊗ [N ]P))⊗ ([M2]P,x:ϕ ([P]⊗ [N ]P)))

c[P]!⊗[ϕ]!

= ([M1]P ⊗ [M2]P) c[P]! ([P]⊗ [N ]P)

using the inductive hypothesis, naturality of contraction in L! and the fact that
([P]⊗ [N ]P) is a coalgebra morphism since N is L-regular. The other cases are
handled similarly. 2

Theorem 2 (Soundness). If P `M : σ and M →w M
′ then [M ]P = [M ′]P .



Proof. By induction on the derivation that M →w M
′, using the Substitution

Lemma and the L-regularity of values. 2

3 Scott semantics

Usually, in a model L of LL, an object X of L can be endowed with several
different structures of !-coalgebras which makes the category L! difficult to de-
scribe simply (in contrast with the Kleisli category used for interpreting PCF;
its objects are those of L). In the Scott model of LL however, every object of
the linear category has exactly one structure of !-coalgebra as we shall see now.
This is certainly a distinctive feature of this model. Such a property does not
hold for instance in coherence spaces. A nice outcome of these observations will
be a very simple intersection typing system for ΛHP.

Remark 5. As explained in [11], this semantics of LL has been independently
discovered by several authors, see for instance [18, 31]. The same model is also
considered in [23] Section 5.5.4 to interpret may non-determinism in CBPV. Our
model allows therefore to interpret the corresponding non-deterministic exten-
sion of ΛHP and the proof of adequacy of Section 3.45 can easily be extended to
this language. This will be explained thoroughly in a forthcoming paper.

3.1 The Scott semantics of LL

We introduce a “linear” category Polr of preorders and relations. A preorder is
a pair S = (|S|,≤S) where |S| is an at most countable set and ≤S (written ≤
when no confusion is possible) is a preorder relation on |S|. Given two preorders
S and T , a morphism from S to T is a f ⊆ |S| × |T | such that, if (a, b) ∈ f and
(a′, b′) ∈ |S| × |T | satisfy a ≤S a′ and b′ ≤S b, then (a′, b′) ∈ f . The relational
composition of two morphisms is still a morphism and the identity morphism at
S is IdS = {(a, a′) | a′ ≤S a}.

Given an object S in Polr, the set Ini(S) of downwards closed subsets of
|S|, ordered by inclusion, is a complete lattice which is ω-prime-algebraic (and
all such lattices are of that shape up to iso). Polr is equivalent to the category
of ω-prime algebraic complete lattices and linear maps (functions preserving all
lubs).

Monoidal structure and cartesian product. The object 1 is ({∗},=) and
given preorders S and T we set S⊗T = (|S|×|T |,≤S×≤T ). The tensor product
of morphisms is defined in the obvious way. The isos defining the monoidal
structure are easy to define. Then one defines S ( T by |S ( T | = |S| × |T |
and (a′, b′) ≤S(T (a, b)) if a ≤ a′ and b′ ≤ b. The linear evaluation morphism
ev ∈ Polr((S ( T )⊗S, T ) is given by ev = {(((a′, b), a), b′) | b′ ≤ b and a′ ≤ a}.
5 This adequacy result can probably be seen as a special case of the general adequacy

results of [23].



If f ∈ Polr(U ⊗ S, T ) then cur(f) ∈ Polr(U, S ( T ) is defined by moving
parentheses. This shows that Polr is closed. It is *-autonomous, with ⊥ = 1 as
dualizing object. Observe that S⊥ is simply |S| equipped with ≥S as preorder
relation ≤S⊥ .

Given a countable family of objects (Si)i∈I , the cartesian product S is defined
by |S| =

⋃
i∈I{i} × |Si| with (i, a) ≤ (j, b) if i = j and a ≤ b. Projections are

defined by pri = {((i, a), a′) | a′ ≤ a}. Tupling of morphisms is defined as in
Rel. Coproducts are defined similarly.

Exponential. One sets !S = (Pfin(|S|),≤) with u ≤ u′ if ∀a ∈ u∃a′ ∈ u′ a ≤S
a′ (where Pfin(E) is the set of all finite subsets of E). Given f ∈ Polr(S, T ),
one defines !f as {(u, v) ∈ |!S| × |!T | | ∀b ∈ v ∃a ∈ u (a, b) ∈ f}. It is easy to
prove that this defines a functor Polr → Polr. Then one sets derS = {(u, a) |
∃a′ ∈ u a ≤ a′} ∈ Polr(!S, S) and digS = {(u, {u1, . . . , un}) | u1 ∪ · · · ∪ un ≤!S

u} ∈ Polr(!S, !!S). This defines a comonad Polr → Polr. The Seely isos are
given by m0 = {(∗, ∅)} ∈ Polr(1, !>) and m2

S,T = {((u, v), w) | w ≤!(S&T )

{1} × u ∪ {2} × v} ∈ Polr(!S ⊗ !T , !(S & T )).
Each object S has a fix-point operator fixS ∈ Polr(!(!S ( S), S) which is

defined as a least fix-point: fixS = {(w, a) | ∃(u′, a′) ∈ w a ≤ a′ and ∀a′′ ∈
u′ (w, a′′) ∈ fixS}.

3.2 The category of !-coalgebras

The first main observation is that each object of Polr has exactly one structure
of !-coalgebra. The proofs will be given in a longer version of this paper.

Theorem 3. Let S be an object of Polr. Then (S, pS) is a !-coalgebra, where
pS = {(a, u) ∈ |S| × |!S| | ∀a′ ∈ u a′ ≤ a}. Moreover, if P is a !-coalgebra, then
hP = pP .

Morphisms of !-coalgebras. Now that we know that the objects of Polr!

are those of Polr, we turn our attention to morphisms. When we consider a
preorder S as an object of Polr!, we always mean the object (S, pS) described
above.

With any preorder S, we have associated an ω-prime algebraic complete
lattice Ini(S). We associate now with such a preorder an ω-algebraic cpo Idl(S)
which is the ideal completion of S: an element of Idl(S) is a subset ξ of |S| such
that ξ is non-empty, downwards closed and directed (meaning that if a, a′ ∈ ξ
then there is a′′ ∈ ξ such that a, a′ ≤S a′′). We equip Idl(S) with the inclusion
partial order relation.

Lemma 1. For any preorder S, the partially ordered set Idl(S) is a cpo which
has countably many compact elements. Moreover, for any ξ ∈ Idl(S), the set of
compact elements ξ0 ∈ Idl(S) such that ξ0 ⊆ ξ is directed and ξ is the lub of that
set. In general, Idl(S) has no minimum element.



Theorem 4. Given preorders S and T , there is a bijective and functorial cor-
respondence between Polr!(S, T ) and the set of Scott continuous functions from
Idl(S) to Idl(T ). Moreover, this correspondence is an order isomorphism when
Scott-continuous functions are equipped with the usual pointwise ordering rela-
tion and Polr!(S, T ) is equipped with the inclusion order on relations.

Let Predom be the category whose objects are the preorders and where
a morphism from S to T is a Scott continuous function from Idl(S) to Idl(T ).
We have seen that Polr! and Predom are equivalent categories (isomorphic
indeed). It is easy to retrieve directly the fact that Predom has products and
sums: the product of S and T is S ⊗ T (and indeed, it is easy to check that
Idl(S⊗T ) ' Idl(S)×Idl(T )) and their sum is S⊕T and indeed Idl(S⊕T ) ' Idl(S)+
Idl(T ), the disjoint union of the predomains Idl(S) and Idl(T ). This predomain
has no minimum element as soon as |S| and |T | are non-empty. Observe also
that Idl(!S) = Ini(S): one retrieves the fact that the Kleisli category of the !
comonad is the category of preorders and Scott continuous functions between
the associated lattices.

Inclusions and embedding-retraction pairs. We define a category Polr⊆
as follows: the objects are those of Polr and Polr⊆(S, T ) is a singleton {ϕS,T }
if |S| ⊆ |T | and ∀a, a′ ∈ |S| a ≤S a′ ⇔ a ≤T a′ (and then we write S ⊆ T )
and is empty otherwise. So (Polr⊆,⊆) is a partially ordered class. The functor
F is defined as follows: if S ⊆ T then ϕ+

S,T = {(a, b) ∈ |S| × |T | | b ≤T a}
and ϕ−S,T = {(b, a) ∈ |T | × |S| | a ≤T b}; this definition is functorial and

ϕ−S,T ϕ
+
S,T = IdS . The partially ordered class Polr⊆ is complete in the sense

that any directed family of objects6 (Si)i∈J has a lub S given by |S| = ∪i∈J |Si|
and a ≤S a′ if a ≤Si

a′ for some i; we denote this preorder as ∪i∈JSi. The
operations ⊗, ⊕ and ! are monotone and Scott-continuous operations on this
partially ordered class.

Lemma 2. Assume that S1 ⊆ S2 and let fi ∈ Polr(Si, T ) for i = 1, 2. Then
f1 = f2 ϕ

+
S1,S2

iff f1 = f2 ∩ |S1 ( T |.

Given a directed family (Si)i∈J in Polr⊆ and setting S = ∪i∈JSi, one proves
easily using Lemma 2 that the cone (ϕ+

Si,S
∈ Polr(Si, S))i∈J is a colimit cone

in Polr. Consider indeed a family of morphisms (fi ∈ Polr(Si, T ))i∈J such that
i ≤ j ⇒ fi = fj ϕ

+
Si,Sj

, that is fi = fj ∩ |Si ( T |. Then f = ∪i∈Jfi is the

unique element of Polr(S, T ) such that f ϕ+
Si,S

= fi for each i ∈ J . So the
category Polr⊆ satisfies all the axioms of Section 2.2.

As explained in that section, this allows to define fixpoints of positive types.
As a first example consider the type of flat natural numbers ι = Fix ζ · (1 ⊕ ζ)
where 1 = !>, so that |1| = {∅}. Up to renaming we have |[ι]| = N and n ≤[ι] n

′

iff n = n′. The coalgebraic structure of this positive type is given by h[ι] =

6 Because we are dealing with a partially ordered class, we can replace general filtered
categories with directed posets.



{(n, ∅) | n ∈ N} ∪ {(n, {n}) | n ∈ N}. Consider now the type ρ = Fix ζ · (1 ⊕
(ι⊗ !ζ)) of lazy lists of flat natural numbers. The interpretation S of this type
is the least fix-point of the continuous functor (that is, the Scott continuous
functional) [1⊕ (ι⊗ !ζ)]ζ : Polr⊆ → Polr⊆. So |S| = ∪∞n=0Un where (Un)n∈N is
the monotone sequence of sets defined by U0 = ∅ and Un+1 = {∅}∪(N×Pfin(Un))
(this is a disjoint union). The preorder relation on |S| is given by: ∅ ≤S a iff
a = ∅ and (n, u) ≤S a iff a = (n, u′) and ∀b ∈ u∃b′ ∈ u′ b ≤S b′. This preorder
relation defines the coalgebraic structure of this positive type.

3.3 Scott semantics as a typing system

It is interesting to present the Scott semantics of terms as a typing system, in
the spirit of Coppo-Dezani Intersection Types, see [19]. A semantic context is
a sequence Φ = (x1 : a1 : ϕ1, . . . , xn : an : ϕn) where ai ∈ [ϕi] for each i, its
underlying typing context is Φ = (x1 : ϕ1, . . . , xn : ϕn) and its underlying tuple
is 〈Φ〉 = (a1, . . . , ak) ∈ [Φ]. The typing rules are given in Figure 4, the intended
meaning of these rules is made clear in Proposition 7.

a′ ≤[ϕ] a

Φ, x : a : ϕ ` x : a′ : ϕ

u ∈ Pfin(|[σ]|) ∀a ∈ u Φ `M : a : σ

Φ `M ! : u : !σ

Φ `M1 : a1 : ϕ1 Φ `M2 : a2 : ϕ2

Φ ` 〈M1,M2〉 : (a1, a2) : ϕ1 ⊗ ϕ2

Φ `M : a : ϕi

Φ ` iniM : (i, a) : ϕ1 ⊕ ϕ2

Φ `M : (a, b) : ϕ( σ Φ ` N : a : ϕ

Φ ` 〈M〉N : b : σ

Φ `M : (1, a) : ϕ1 ⊕ ϕ2 Φ, x1 : a : ϕ1 ` N1 : b : σ Φ, x2 : ϕ2 ` N2 : σ

Φ ` case(M,x1 ·N1, x2 ·N2) : b : σ

Φ `M : (2, a) : ϕ1 ⊕ ϕ2 Φ, x1 : ϕ1 ` N1 : σ Φ, x2 : a : ϕ2 ` N2 : b : σ

Φ ` case(M,x1 ·N1, x2 ·N2) : b : σ

Φ `M : (a1, a2) : ϕ1 ⊗ ϕ2

Φ ` priM : ai : ϕi

Φ `M : {a} : !σ

Φ ` der(M) : a : σ

Φ, x : u : !σ `M : a : σ ∀b ∈ u Φ ` fixx!σM : b : σ

Φ ` fixx!σM : a : σ

Fig. 4. Scott Semantics as a Typing System

A simple induction on typing derivation trees shows that this typing system
is “monotone” as usually for intersection type systems. We write Φ ≤ Φ′ if
Φ = (x1 : a1 : ϕ1, . . . , xn : an : ϕn), Φ′ = (x1 : a′1 : ϕ1, . . . , xn : a′n : ϕn) and
ai ≤[ϕi] a

′
i for i = 1, . . . , n.



|u|!σv = {N ! | N ∈
⋂
a∈u

|a|σ}

|(a1, a2)|ϕ1⊗ϕ2
v = {〈V1, V2〉 | Vi ∈ |ai|ϕi

v for i = 1, 2}

|(i, a)|ϕ1⊕ϕ2
v = {iniV | V ∈ |a|ϕi

v }
|a|ϕ = {M | `M : ϕ and ∃V ∈ |a|ϕv M →∗w V }

|(a, b)|ϕ(σ = {M | `M : ϕ( σ and ∀V ∈ |a|ϕv 〈M〉V ∈ |b|σ}

Fig. 5. Interpretation of points as sets of terms in ΛHP

Proposition 6. If Φ `M : a : σ, a′ ≤[σ] a and Φ ≤ Φ′ then Φ′ `M : a′ : σ.

Using this property, one can prove that this deduction system describes ex-
actly the Scott denotational semantics of ΛHP.

Proposition 7. Given a1 ∈ [ϕ1],. . . ,an ∈ [ϕn] and a ∈ [σ], one has
(a1, . . . , an, a) ∈ [M ]x1:σn,...,x1:σn

iff x1 : a1 : ϕ1, . . . , xn : an : ϕn `M : a : σ.

The proof also uses crucially the fact that all structural operations (weakening,
contraction, dereliction, promotion) admit a very simple description in terms of
the preorder relation on objects thanks to Theorem 3; for instance the contrac-
tion morphism of an object S (seen as an object of Polr!) is cS = {(a, (a1, a2)) |
ai ≤ a for i = 1, 2}.

3.4 Adequacy

Our goal now is to prove that, if a closed term M of positive type ϕ has a non-
empty interpretation, that is, if there is a ∈ |[ϕ]| such that `M : a : ϕ, then the
reduction →w starting from M terminates. We use a semantic method adapted
e.g. from the presentation of the reducibility method in [19].

Given a type σ and an a ∈ [σ], we define a set |a|σ of terms M such that
` M : σ (so these terms are all closed). The definition is by induction on the
structure of the point a (and not on the type σ, whose definition involves fix-
points and is therefore not well-founded in general).

Given a positive type ϕ and a ∈ [ϕ], we define |a|ϕv as a set of closed values V
such that ` V : ϕ and given a general type σ and a ∈ [σ], we define |a|σ as a set
of closed terms M such that ` M : σ. The definitions are by mutual induction
and are given in Figure 5. Observe that for a value V such that ` V : ϕ and
for a ∈ [ϕ], the statements V ∈ |a|ϕ and V ∈ |a|ϕv are equivalent because V is
normal for the →w reduction.

Lemma 3. If M →w M
′ ∈ |a|σ then M ∈ |a|σ.



Proof. By induction on the structure of a. If σ = ϕ, the property follows readily
from the definition. Assume that σ = ϕ ( τ and a = (b, c). Assume that
M →w M ′ ∈ |a|σ. Let V ∈ |b|ϕv , we have 〈M〉V →w 〈M ′〉V and 〈M ′〉V ∈
|c|τ by definition of |ϕ ( τ |(b,c). The announced property follows by inductive
hypothesis. 2

Lemma 4. Let σ be a type and let a, a′ ∈ |[σ]| be such that a ≤[σ] a
′. Then

|a|σ ⊇ |a′|σ. If σ is positive, we have |a|σv ⊇ |a′|σv

Theorem 5. Let Φ = (x1 : a1 : ϕ1, . . . , xk : ak : ϕk) and assume that Φ ` M :
a : σ. Then for any family of closed values (Vi)

k
i=1 such that Vi ∈ |ai|ϕi one has

M [V1/x1, . . . , Vk/xk] ∈ |a|σ.

So if ` M : ϕ and [M ] 6= ∅ we have M →∗w V for a value V . Let us say that
two closed terms M1, M2 such that ` Mi : σ for i = 1, 2 are observationally
equivalent if for all closed term C of type !σ ( 1, 〈C〉M !

1→∗w∗ iff 〈C〉M !
2→∗w∗.

As usual, Theorem 5 allows to prove that if [M1] = [M2] then M1 and M2 are
observationally equivalent.

Another important consequence of Theorem 5 is a “completeness” property
of the weak reduction of Figure 2 which can be stated as follows. Let ' be
an equivalence relation on terms which contains →∗w and is compatible with the
semantics of Section 2.3 in the sense that, if P `Mi : σ for i = 1, 2 and M1 'M2,
then [M1]P = [M2]P in any model L. Assume that ` M : ϕ and ` V : ϕ for a
closed term M and a closed value V , and assume that M ' V . Then M →∗w V ′
where V ′ is a value such that V ' V ′. Indeed [V ] is non-empty in the Scott
model of Section 3, let a ∈ [V ]. By our hypothesis we have a ∈ [M ] and hence
M ∈ |a|ϕ, meaning that M→∗wV ′ for some V ′ ∈ |ϕ|av . By our assumptions we
have M ' V ′ and hence V ′ ' V .

4 A fully polarized calculus

In ΛHP positive types are interpreted as !-coalgebras, and general types are sim-
ply interpreted as objects of the underlying linear category: in some sense, this
system is half-polarized and is intuitionistic for that reason. In a fully polarized
system we would expect non-positive types to be negative, that is, linear duals of
!-coalgebras. This system would feature syntactic constructions related to clas-
sical logic such as call/cc, the price to pay being a more complicated encoding
of data-types.

It is quite easy to turn our hierarchy of types (1), (2) into a polarized one:

ϕ,ψ, . . . := !σ | ϕ⊗ ψ | ϕ⊕ ψ | ζ | Fix ζ · ϕ (positive) (4)

σ, τ . . . := ?ϕ | ϕ( σ | > (negative) (5)



Accordingly we introduce a polarized syntax for expressions featuring five mu-
tually recursive syntactic categories.

P,Q . . . := x | N ! | 〈P1, P2〉 | iniP (positive terms)

M,N, . . . := derP | λxϕM | µασ c | fixx!σM (negative terms)

π, ρ . . . := α | η! | P · π (positive contexts)

η, θ . . . := der π | pri η | [η1, η2] | µ̃xϕ c (negative contexts)

c, d . . . := P ∗ η | M ∗ π (commands, cuts)

Intuitively, positive terms correspond to data, negative terms to programs, nega-
tive contexts to patterns (apart from the negative context µ̃xϕ c which generalizes
the concept of “closure”) and positive contexts to evaluation environments.

The typing rules correspond to a large fragment of LLP, see [21]7, and are
given in Figure 6.

Let us say that an expression e is well typed in typing contexts P = (x1 :
ϕ1, . . . , xn : ϕn), N = (α1 : σ1, . . . , αk : σk) if e is a positive term P and
P ` P : ϕ | N for some type ϕ, if e is a negative term M and P `M : σ | N for
some type σ, if e is a positive context π and P |π : σ ` N for some type σ, if e
is a negative context η and P | η : ϕ ` N for some type ϕ and if e is a command
c and P ` c | N . In the four first cases, ϕ (resp. σ) is the type of e. Observe that,
when it exists, this type is completely determined by e, P and N (the typing
rules are syntax-directed).

4.1 Operational semantics

The weak reduction rules are given in Figure 7. All redexes are commands and
it is crucial to observe that there are no critical pairs. Specifically, there is no
command which is simultaneously of shape M ∗ π and P ∗ µ̃xϕ c because in the
former the term is negative whereas it is positive in the latter. In particular the
“Lafont critical pair” µαθ c ∗ µ̃xθ d cannot occur since θ cannot be positive and
negative!.

Remark 6. In this weak reduction paradigm, we only reduce commands. A se-
quence of reduction alternates therefore sequences of positive commands of shape
P ∗ η where a piece of data P is explored by a pattern η with sequences of nega-
tive commands M ∗ π where a program M is executed in an evaluation context
π. The transition from the execution phase to the pattern-matching phase is re-
alized by the reduction rule (6) and the converse by (10). We retrieve the basic
idea of focusing of [1] and of Ludics, [16], that “positive” means passive and
“negative”, active (many other authors should be mentioned here of course).

7 In a Sequent Calculus presentation, with double-sided sequents contrarily to most
presentations of LLP in the literature. Our syntax is based on the λµµ̃ presentation
of sequent calculus-oriented classical lambda-calculi due to [7].



P, x : ϕ ` x : ϕ | N
P ` N : σ | N
P ` N ! : !σ | N

P ` P1 : ϕ1 | N P ` P1 : ϕ2 | N
P ` 〈P1, P2〉 : ϕ1 ⊗ ϕ2 | N

P ` P : ϕi | N
P ` iniP : ϕ1 ⊕ ϕ2 | N

P ` P : ϕ | N
P ` derP : ?ϕ | N

P, x : ϕ `M : σ | N
P ` λxϕM : ϕ( σ | N

P ` c |α : σ,N
P ` µασ c : σ | N

P, x : !σ `M : σ | N
P ` fixx!σM : σ | N

P |α : σ ` α : σ,N
P | η : ϕ ` N
P | η! : ?ϕ ` N

P ` P : ϕ | N P |π : σ ` N
P |P · π : ϕ( σ ` N

P |π : σ ` N
P | der π : !σ ` N

P | η : ϕi ` N
P | priη : ϕ1 ⊗ ϕ2 ` N

P | η1 : ϕ1 ` N P | η2 : ϕ2 ` N
P | [η1, η2] : ϕ1 ⊕ ϕ2 ` N

P, x : ϕ ` c | N
P | µ̃xϕ c : ϕ ` N

P ` P : ϕ | N P | η : ϕ ` N
P ` P ∗ η | N

P `M : σ | N P |π : σ ` N
P `M ∗ π | N

Fig. 6. Typing rules for ΛLLP: positive terms, negative terms, positive contexts, negative
contexts and commands

derP ∗ η! →w P ∗ η (6)

λxϕM ∗ P · π →w M [P/x] ∗ π (7)

µασ c ∗ π →w c [π/α] (8)

fixx!σM ∗ π →w M
[
(fixx!σM)

!
/x
]
∗ π (9)

M ! ∗ der π →w M ∗ π (10)

〈P1, P2〉 ∗ priη →w Pi ∗ η (11)

iniP ∗ [η1, η2]→w P ∗ ηi (12)

P ∗ µ̃xϕ c→w c [P/x] (13)

Fig. 7. Reduction rules for ΛLLP

We also consider a general reduction relation → on expressions which is
defined by allowing the application of the rules of Figure 7 anywhere in an
expression as well as the two following µη reduction rules: µασ (M ∗ α)→M if
α does not occur free in M and µ̃xϕ (x ∗ η)→ η if x does not occur free in η.

Proposition 8. If e is typable in contexts P, N and e → e′ then e′ is typable
in contexts P, N , belongs to the same syntactic category as e and has the same
type as e (when it applies).



[ζi]ζ(P ) = Pi [!σ]ζ(P ) = !(JσKζ(P )⊥)

[ϕ⊗ ψ]ζ(P ) = [ϕ]ζ(P )⊗ [ψ]ζ(P )

[ϕ⊕ ψ]ζ(P ) = [ϕ]ζ(P )⊕ [ψ]ζ(P )

[Fix ζ · ϕ]ζ = Fix([ϕ]ζ,ζ) J>Kζ(P ) = 0

J?ϕKζ(P ) = !([ϕ]ζ(P )⊥) Jϕ( σKζ(P ) = [ϕ]ζ(P )⊗ JσKζ(P )

Fig. 8. Semantics of types in ΛLLP

The proof is a straightforward verification. As usual one has first to state and
prove a Substitution Lemma.

The reduction → on ΛLLP enjoys Church-Rosser as we shall see in a longer
paper. The denotational semantics that we outline now gives us another proof
that this calculus is sound.

4.2 Denotational semantics

Assume to be given a model of LL L as specified in Section 2. With any positive
type ϕ, negative type σ and sequence of pairwise distinct type variables ζ =
(ζ1, . . . , ζn) containing all free variables of ϕ and σ, we associate the continuous
functors [ϕ]ζ , JσKζ : (L!

⊆)n → L!
⊆ defined in Figure 8 on objects, the definition on

morphisms being similar8. With any positive terms and contexts P and π with
P ` P : ϕ | N and P |π : σ ` N we associate coalgebra morphisms [P ]P,N ∈
L!([P]⊗ JN K, [ϕ]) and [π]P,N ∈ L!([P]⊗ JN K, JσK) and with any negative terms
and contexts M and η with P ` M : σ | N and P | η : ϕ ` N we associate

morphisms [M ]P,N ∈ L([P]⊗ JN K, JσK⊥) and [η]P,N ∈ L([P]⊗ JN K, [ϕ]
⊥

). Last,
with any command c such that P ` c | N we associate a morphism [c]P,N ∈
L([P]⊗ JN K,⊥).

The interpretation of positive terms is defined as for ΛHP (see 2.3). Negative
terms: the interpretation of derP uses the dereliction morphism in L([ϕ], ?[ϕ]),

the interpretation of λxϕM and of fixx!σM is defined as in ΛHP (replacing

[σ] with JσK⊥) and we provide the interpretation of µασ c: assume that P `
c | N , α : σ so that [c]P,N ,α:σ ∈ L([P] ⊗ JN K⊗ JσK,⊥) and we set [µασ c]P,N =
cur [c]P,N ,α:σ. Positive contexts: we deal only with one case. Assume that P `
P : ϕ | N and P |π : σ ` N . We have [P ]P,N ∈ L!([P]⊗ JN K, [ϕ]) and [π]P,N ∈
L!([P] ⊗ JN K, JσK) so that we can set [P · π]P,N = ([P ]P,N ⊗ [π]P,N ) c[P]⊗JN K
whose codomain is [ϕ] ⊗ JσK = Jϕ ( σK as required. The interpretation of
α uses a projection and the interpretation of η! uses a promotion. Negative
contexts: assume that P |π : σ ` N , then [π]P,N ∈ L!([P]⊗ JN K, JσK) so we set

8 Notice that the interpretation of a negative type is actually the semantics of its
linear negation; we adopt this convention in order to avoid the explicit introduction
of negative objects in the model. This is possible because we have assumed that L
is ∗-autonomous.



ζ+ = ζ (!σ)+ = !(σ−)

(ϕ1 ⊗ ϕ2)+ = ϕ+
1 ⊗ ϕ

+
2 (ϕ1 ⊕ ϕ2)+ = ϕ+

1 ⊕ ϕ
+
2

(Fix ζ · ϕ)+ = Fix ζ · ϕ+

ϕ− = ?(ϕ+) (ϕ( σ)− = ϕ+ ( σ−

Fig. 9. Translation of types

[der π]P,N = der′JσK [π]P,N ∈ L([P]⊗ JN K, ?JσK) which makes sense since ?JσK =

[!σ]
⊥

(see Figure 8). The interpretation of pri η uses pr⊥i ∈ L([ϕi]
⊥
, ([ϕ1] ⊗

[ϕ2])⊥). To define [[η1, η2]]P,N we simply use the pairing operation associated

with the cartesian product & of L (warning: not of L!!) which is the linear “De
Morgan” dual of the coproduct ⊕ of L. The interpretation of µ̃xϕ c uses a linear
curryfication. Commands: assume that P ` P : ϕ | N and P | η : ϕ ` N so that

[P ]P,N ∈ L!([P]⊗ JN K, [ϕ]) ⊆ L([P]⊗ JN K, [ϕ]) and [η]P,N ∈ L([P]⊗ JN K, [ϕ]
⊥

)
and we set [P ∗ η]P,N = ev ([η]P,N ⊗ [P ]P,N ) c[P]⊗JN K. The interpretation of
M ∗ π is similar.

Proposition 9. Assume that P ` P : ϕ | N and that e is a well-typed expression
in typing contexts x : ϕ,P, N . Then we have [e [P/x]]P,N = [e]x:ϕ,P,N ([P ]P,N ⊗
Id) c[P]⊗JN K. Assume that P |π : σ ` N and that e is a well-typed expression
in typing contexts P, N , α : σ. Then we have [e [π/α]]P,N = [e]P,N ,α:σ (Id ⊗
[π]P,N ) c[P]⊗JN K.

Theorem 6. If e is a well-typed expression in typing contexts P, N and if
e→ e′ then [e]P,N = [e′]P,N .

The proof is routine, using Proposition 9.
Given a negative type σ, observe that Ωσ = fixx!σ (µασ (x∗derα)) is a closed

negative term of type σ. A consequence of Theorem 6 is that ΛLLP is sound in the
sense that the reflexive and transitive closure of → does not equate e.g. the two
booleans in1(Ω>)! and in2(Ω>)! (closed positive terms of type !>⊕ !>). Indeed
it is easy to build models where these constants have distinct interpretations (for
instance the Scott model Polr of Section 3).

4.3 Translating ΛHP into ΛLLP

With any positive type ϕ of ΛHP we associate a positive type ϕ+ of ΛLLP and
with any general type σ we associate a negative type of ΛLLP. The translation
does almost nothing apart adding a few “?” to make sure that σ− is negative,
see Figure 9. Given a ΛHP typing context P = (x1 : ϕ1, . . . , xn : ϕn), we set
P+ = (x1 : ϕ+

1 , . . . , xn : ϕ+
n ). With any term M of ΛHP such that P `M : σ one

associates a term M− of ΛLLP such that P+ ` M− : σ− | . We give two cases of
this translation, the complete translation will be given in a longer paper.



If M = 〈N〉R with P ` N : ϕ ( σ and P ` R : ϕ then by inductive
hypothesis, P+ ` N− : ϕ+ ( σ− | and P+ ` R− : ?ϕ+ | . We have P+, x :
ϕ+ |x ·α : ϕ+ ( σ− ` α : σ−, hence P+, x : ϕ+ ` N− ∗ (x ·α) |α : σ−. Therefore

we have P+ |µxϕ+

N− ∗ (x · α) : ϕ+ ` α : σ− so that P+ | (µxϕ+

N− ∗ (x · α))
!
:

?ϕ+ ` α : σ− and we set 〈N〉R− = µασ
−

(R− ∗ (µxϕ
+

N− ∗ (x · α))
!
).

If M = 〈M1,M2〉 there are two possible translations (similar phenomena
occur in CPS translation, see for instance [29]), a left first translation and a right
first translation. We give the first one, the other one being obtained by swapping
the roles ofM1 andM2. We assume that P `Mi : ϕi and hence P+ `M−i : ?ϕ+

i |
for i = 1, 2. We have P+, x2 : ϕ+

2 | µ̃x
ϕ+

1
1 der 〈x1, x2〉 ∗ α : ϕ+

1 ` α : ?(ϕ+
1 ⊗ ϕ

+
2 ),

hence P+, x2 : ϕ+
2 `M

−
1 ∗ (µ̃x

ϕ+
1

1 der 〈x1, x2〉 ∗ α)
!

|α : ?(ϕ+
1 ⊗ϕ

+
2 ) and hence we

set 〈M1,M2〉− = µα?(ϕ+
1 ⊗ϕ

+
2 )M−2 ∗

(
µ̃x

ϕ+
2

2 M−1 ∗ (µ̃x
ϕ+

1
1 der 〈x1, x2〉 ∗ α)

!
)!

.

Given a ΛHP value V such that P ` V : ϕ, one defines straightforwardly a
positive term V + of ΛLLP such that P+ ` V + : ϕ+ | : one sets (M !)+ = (M−)!,
〈V1, V2〉+ = 〈V +

1 , V +
1 〉 and similarly for the other cases.

Lemma 5. If P ` V : ϕ in ΛHP and if V is a value then V − →∗w der (V +).

Lemma 6. If P, x : ϕ ` M : σ and P ` V : ϕ in ΛHP (with V being a value)
then M [V/x]

− →∗w M− [V +/x].

Proof. Induction on M , using Lemma 5 when M = x. 2

Theorem 7. If P ` M : σ in ΛHP then P+ ` M− : σ− | . Moreover, if M →w

M ′ then there is a negative term R of ΛLLP such that M− →∗ R and M ′− →∗ R.

As a consequence, using confluence of →∗ in ΛLLP, one proves that, if M →∗
M ′ in ΛHP there is a negative term R of ΛLLP such thatM− →∗ R andM ′− →∗ R
(induction on the length of the reduction M →∗ M ′). This shows that ΛHP em-
beds in ΛLLP by a translation M 7→M− which is compatible with the operational
semantics. In the long version of this paper, we will also describe a simple relation
between the semantics of M and of M−.

Conclusion. The half-polarized and fully polarized calculi proposed in this pa-
per admit LL-based models featuring non-trivial computational effects such as
non-deterministic or probabilistic computations [9] (with full abstraction prop-
erties [12]). One can accommodate other effects by extending the language with
monad type constructions interpreted as monads acting on L and featuring a
strength, in the spirit of [17], as we will explain in a forthcoming paper.

I would like to thank the referees for their insightful suggestions and com-
ments. I also would like to mention the work [6] which shares some features with
ours (in particular an emphasis on the resource modality “!”); these papers have
been written independently and simultaneously.

This work has been partly funded by the French-Chinese project ANR-11-
IS02-0002 and NSFC 61161130530 Locali.



5 Annex

5.1 Proof of Theorem 3

Proof. We check first that (S,pS) is a !-coalgebra. The relation pS is a morphism
in Polr: if (a, u) ∈ pS and (a′, u′) satisfy a ≤S a′ and u′ ≤!S u, then for all
b′ ∈ u′ there exists b ∈ u such that b′ ≤S b. Then we know that b ≤S a because
(a, u) ∈ pS and finally a ≤S a′ by our assumption. Hence b′ ≤S a′ and therefore
(a′, u′) ∈ pS as contended.

Let (a, a′) ∈ |S|× |S|. If (a, a′) ∈ derS pS then there exists u ∈ |!S| such that
∀b ∈ u b ≤S a, and there is b ∈ u such that a′ ≤S b. Therefore a′ ≤S a and it
follows that derS pS ⊆ IdS . Assume conversely that a′ ≤S a, taking u = {a} (or
u = {a′}), we see that (a, a′) ∈ derS pS , hence we have derS pS = IdS .

Let now (a,U) ∈ |S|× |!!S| with U = {u1, . . . , un}. Assume first that (a,U) ∈
digS pS . There is u ∈ |!S| such that ui ≤!S u for each i = 1, . . . , n, and b ≤S a
for each b ∈ u. It follows that (a, ui) ∈ pS for each i and hence ({a},U) ∈ !pS .
Since (a, {a}) ∈ pS it follows that (a,U) ∈ !pS pS . Assume conversely that
(a,U) ∈ !pS pS . So there is u ∈ |!S| such that b ≤S a for all b ∈ u and, for each
i, there exists bi ∈ u such that a′ ≤ bi for each a′ ∈ ui. So we have ui ≤!S u for
each i and hence (u,U) ∈ digS and hence (a,U) ∈ digS pS . This ends the proof
that (S,pS) is a !-coalgebra.

We come now to the second statement. Let P be a !-coalgebra and let S = P .
Let (a, u) ∈ hP , we prove that b ≤S a for all b ∈ u. Let b ∈ u, we have
(u, b) ∈ derS by definition of this morphism and hence (a, b) ∈ derS hP = IdS
and hence b ≤S a. This shows that hP ⊆ pS .

Before proving the converse inclusion, we make a useful observation. Let
b ∈ |S|. We have (b, b) ∈ IdS = derS hP and hence there exists u such that
(b, u) ∈ hP and (u, b) ∈ derS , which implies that there is b′ ∈ u such that
b ≤S b′, hence {b} ≤!S u. Since (b, u) ∈ hP ∈ Polr(S, !S), we have (b, {b}) ∈ hP .

Assume now that (a, u) ∈ pS with u = {a1, . . . , an}. We have seen that
(a, {a}) ∈ hP and hence (a, {ai}) for i = 1, . . . , n since ai ≤S a for each i.
Therefore ({a},U) ∈ !hP where U = {{a1}, . . . , {an}}. Hence (a,U) ∈ !hP hP =
digS hP . Hence there is u′ ∈ |!S| such that (a, u′) ∈ hP and (u′,U) ∈ digS . This
latter property means that u ≤!S u

′ and hence we have (a, u) ∈ hP as contended.
2

5.2 Proof of Theorem 4

Proof. Let f ∈ Polr!(S, T ). This means that pT f = !f pS . Let ξ ∈ Idl(S). We
prove that the set f ξ = {b | ∃a ∈ ξ (a, b) ∈ f} ⊆ |T | is ≤T -directed. Let indeed
b1, b2 ∈ f ξ. Let ai ∈ ξ be such that (ai, bi) ∈ f for i = 1, 2. Since ξ is directed,
there is a ∈ ξ such that ai ≤S a for i = 1, 2. Then we have (a, {a1, a2}) ∈ pS ,
and of course ({a1, a2}, {b1, b2}) ∈ !f . Since f is a !-morphism, we must have
(a, {b1, b2}) ∈ pT f . This means that there is b ∈ |T | such that (a, b) ∈ f and
bi ≤T b for i = 1, 2. Hence f ξ is directed as contended. The map ξ 7→ f ξ



is obviously Scott-continuous from Idl(S) to Idl(T ); we denote it as C(f). This
operation on morphisms is clearly functorial.

Conversely, let ϕ : Idl(S) → Idl(T ) be Scott continuous. We set A(ϕ) =
{(a, b) ∈ |S| × |T | | b ∈ ϕ(↓a)} and we prove that A(f) ∈ Polr!(S, T ). The first
thing to check is that A(ϕ) ∈ Polr(S, T ) but this results immediately from the
definition and from the fact that a Scott-continuous function is monotone. It
remains to prove that !A(ϕ) pS = pT A(ϕ). Let a ∈ |S| and v = {b1, . . . , bn} ∈
|!T |. Assume first that (a, v) ∈ !A(ϕ) pS . Let u ∈ |!S| be such that (a, u) ∈ pS
and (u, v) ∈ !A(ϕ). Then we have v ⊆

⋃
a′∈u ϕ(↓a′) ⊆ ϕ(↓a) by applying the

definitions and using the fact that ϕ is monotone. But ϕ(↓a) is directed in T
and v is finite. Hence there is b ∈ |T | such that (a, b) ∈ A(ϕ) and (b, v) ∈ hT as
required. Assume next that (a, v) ∈ pT A(ϕ). This means that there is b ∈ |T |
such that b ∈ ϕ(↓a) and (b, v) ∈ pT . So we have ∀b′ ∈ v (a, b′) ∈ A(ϕ) and hence
({a}, v) ∈ !A(ϕ). Since (a, {a}) ∈ pS we have (a, v) ∈ !A(ϕ) pS as required.

We prove now that these two operations are inverse of each other. Let first
f ∈ Polr!(S, T ) and let ϕ = C(f). Let (a, b) ∈ A(ϕ). This means that b ∈ ϕ(↓a),
that is b ∈ f ↓a and hence (a, b) ∈ f . Conversely let (a, b) ∈ f . Then we have
b ∈ f ↓a and hence (a, b) ∈ A(ϕ). We have proven that A(C(f)) = f . Let
ϕ : Idl(S) → Idl(T ) be Scott continuous. Let f = A(ϕ) ∈ Polr!(S, T ). Let
ξ ∈ Idl(S), we have C(f)(ξ) = f ξ = ∪a∈ξϕ(↓a). The set {↓a | a ∈ ξ} is a
directed subset of Idl(S) whose lub is ξ. Since ϕ is Scott continuous we have
C(f)(ξ) = ϕ(ξ), and since this is true for all ξ ∈ Idl(S) we have C(A(ϕ)) = ϕ.

Let f, f ′ ∈ Polr!(S, T ) be such that f ⊆ f ′. Let ξ ∈ Idl(S). Let b ∈ C(f)(ξ).
This means that b ∈ f ξ and hence b ∈ f ′ ξ, so we have C(f) ≤ C(f ′) for the
pointwise order of functions. Let ϕ,ϕ′ : Idl(S)→ Idl(T ) be such that ϕ ≤ ϕ′ for
that order on functions. Let (a, b) ∈ A(ϕ), this means that b ∈ ϕ(↓a). By our
assumption we have b ∈ ϕ′(↓a) and hence (a, b) ∈ A(ϕ′). So A(ϕ) ⊆ A(ϕ′). This
ends the proof of the theorem. 2

5.3 Proof of Lemma 2

Proof. Assume first that f1 = f2 ϕ
+
S1,S2

. Let (a, b) ∈ f1, we have (a, b) ∈
f2 ϕ

+
S1,S2

and so there is a′ ∈ |S2| such that (a, a′) ∈ ϕ+
S1,S2

(that is a′ ≤S2
a) and

(a′, b) ∈ f2. Since f2 ∈ Polr(S2, T ) we have (a, b) ∈ f2 so f1 ⊆ f2 ∩ |S1 ( T |.
Let now (a, b) ∈ f2 ∩ |S1 ( T |, we have (a, a) ∈ ϕ+

S1,S2
and hence (a, b) ∈ f1.

We prove now the converse implication, so assume that f1 = f2 ∩ |S1 ( T |.
Let (a, b) ∈ f1, we know that (a, b) ∈ f2 and that (a, a) ∈ ϕ+

S1,S2
and hence

(a, b) ∈ f2 ϕ
+
S1,S2

. Conversely let (a, b) ∈ f2 ϕ
+
S1,S2

. Let a′ ∈ |S2| be such that

(a, a′) ∈ ϕ+
S1,S2

(and hence a′ ≤S2
a) and (a′, b) ∈ f2. Since f2 ∈ Polr(S2, T ) we

have (a, b) ∈ f2 so (a, b) ∈ f2 ∩ |S1 ( T | = f1. 2

5.4 Proof of Lemma 4

Proof. We prove both statements by mutual induction on the structure of a
and a′.



Assume first that σ is a positive type that we prefer to denote as ϕ. Assume
that ϕ = !τ so that a, a′ ∈ Pfin(|[τ ]|) and ∀b ∈ a ∃b′ ∈ a′ b ≤[τ ] b

′. Let V ∈ |a′|ϕv so

that V = N ! where N ∈
⋂
b′∈a′ |b′|τ . Let b ∈ a. Let b′ ∈ a′ be such that b ≤[τ ] b

′,
we have N ∈ |b′|τ ⊆ |b|τ by inductive hypothesis, and hence N ∈

⋂
b∈a |b|τ ,

so V ∈ |a|ϕv . Let now M ′ ∈ |a′|ϕ, we know that there is V ′ ∈ |a′|ϕv such that
M ′ →∗ V ′. We have just seen that |a′|ϕv ⊆ |a|ϕv so V ′ ∈ |a|ϕv and therefore
M ′ ∈ |a|ϕ. Assume that ϕ = ϕ1 ⊗ ϕ2 (again, ϕ is positive) so that a = (a1, a2)
and a′ = (a′1, a

′
2) with ai ≤[ϕi] a

′
i for i = 1, 2. If V ′ ∈ |a′|ϕv then V ′ = 〈V ′1 , V ′2〉

with V ′i ∈ |a′i|ϕi
v for i = 1, 2. By inductive hypothesis V ′i ∈ |ai|ϕi

v and hence
V ∈ |a|ϕv . Just as above one proves that |a′|ϕ ⊆ |a|ϕ. The case where ϕ = ϕ1⊕ϕ2

is similar.

Assume last that σ = ϕ ( τ so that a = (b, c), a′ = (b′, c′) with b′ ≤[ϕ] b
and c ≤[τ ] c

′. Let M ′ ∈ |a′|σ, we have to prove that M ′ ∈ |a|σ. Let therefore
V ∈ |b|ϕv . By inductive hypothesis we have V ∈ |b′|ϕv and therefore 〈M ′〉V ∈ |c′|τ
so that 〈M ′〉V ∈ |c|τ by inductive hypothesis again. 2

5.5 Proof of Theorem 5

Proof. By induction on M . Let Vi be values such that Vi ∈ |ai|ϕi for i =
1, . . . , k. For any term R, we use R′ for R [V1/x1, . . . , Vk/xk]. We use the defini-
tion of →w, see Figure 2.

Assume first that M = xi for some i ∈ {1, . . . , k}; we know that a ≤[σi] ai.
Then M ′ = Vi and we have that M ′ ∈ |a|σ by Lemma 4.

Assume that M = N ! with σ = !τ , a = u ∈ Pfin(|[τ ]|), Φ ` N : b : τ for each
b ∈ u. By inductive hypothesis, we have N ′ ∈

⋂
b∈u |b|τ . Since M ′ = N ′!, and

hence M ′ →∗w N ′! in 0 steps, the announced property holds.

Assume that M = 〈N1, N2〉 with σ = ϕ1 ⊗ ϕ2, a = (a1, a2), Φ ` Ni : ai : ϕi
for i = 1, 2. By inductive hypothesis we have N ′i ∈ |ai|ϕi and hence there are Vi ∈
|ai|ϕi

v with N ′i →∗w Vi for i = 1, 2. It follows that M →∗w 〈V1, V2〉 ∈ |(a1, a2)|ϕ1⊗ϕ2
v .

Assume that M = iniN with σ = ϕ1 ⊕ ϕ2, a = (i, b) and Φ ` N : b : ϕi.
By inductive hypothesis, there exists V ∈ |b|ϕi

v such that N ′ →∗w V . We have
iniV ∈ |(i, b)|ϕ1⊕ϕ2

v and M ′ = iniN
′ →∗w iniV so that M ′ ∈ |(i, b)|ϕ1⊕ϕ2 .

Assume that M = priN with σ = ϕi, Φ ` N : (a1, a2) : ϕ1 ⊗ ϕ2 and
a = ai. By inductive hypothesis we have N ′ ∈ |(a1, a2)|ϕ1⊗ϕ2 and hence there
are Vi ∈ |ai|ϕi

v for i = 1, 2 such that N ′ →∗w 〈V1, V2〉. It follows that M ′ =
priN

′ →∗w pri〈V1, V2〉 →w Vi ∈ |ai|ϕi
v and hence M ′ ∈ |ai|ϕi as required.

Assume that M = case(N, x1 ·N1, x2 ·N2) with Φ ` N : (1, b) : ϕ1 ⊕ ϕ2 and
Φ, x1 : b : ϕ1 ` N1 : a : σ (and also Φ, x2 : ϕ2 ` N2 : σ). By inductive hypothesis
we have N ′ ∈ |(1, b)|ϕ1⊕ϕ2 . This means that there is V ∈ |b|ϕ1

v such that N ′ →∗w
in1V . Therefore we have M ′ = case(N ′, x1 ·N ′1, x2 ·N ′2)→∗w case(in1V, x1 ·N ′1, x2 ·
N ′2) →w N ′1 [V/x1]. By inductive hypothesis applied to N1, and because V ∈
|b|ϕ1

v , we have N ′1 [V/x1] ∈ |a|σ and hence M ′ ∈ |a|σ as expected.

Assume that M = 〈N〉R with Φ ` N : (b, a) : ϕ ( σ and Φ ` R : b : ϕ. By
inductive hypothesis we have N ′ ∈ |(b, a)|ϕ(σ and R′ ∈ |b|ϕ. Therefore there is



V ∈ |b|ϕv such that R′ →∗w V . Hence M ′ = 〈N ′〉R′ →∗w 〈N ′〉V ∈ |a|σ by definition
of |(b, a)|ϕ(σ and hence M ′ ∈ |a|σ by Lemma 3.

Assume that M = λxϕN with σ = ϕ( τ , a = (b, c) and Φ, x : b : ϕ ` N : c :
τ . We must prove that λxϕN ′ ∈ |(b, c)|ϕ(τ . So let V ∈ |b|ϕv , we must check that
〈λxϕN ′〉V ∈ |c|τ which results from the fact that 〈λxϕN ′〉V →w N

′ [V/x] ∈ |c|τ
by inductive hypothesis and from Lemma 3.

Assume last that M = fixx!σ N with Φ, x : u : !σ ` N : a : σ and ∀b ∈
u Φ ` fixx!σ N : b : σ. By inductive hypothesis we have fixx!σ N ′ ∈ |b|σ for each
b ∈ u and therefore V = (fixx!σ N ′)! ∈ |u|!σv . By inductive hypothesis again we
have N ′ [V/x] ∈ |a|σ. Since fixx!σ N ′ →w N ′ [V/x] we get fixx!σ N ′ ∈ |a|σ by
Lemma 3 as required. 2

5.6 Translation of ΛHP into ΛLLP

If M is a variable x typed by P, x : σ ` x : σ, we set

x− = der x .

If M = N ! with σ = !τ and P ` N : τ then by inductive hypothesis P+ `
N− : τ− | . Therefore P+ ` (N−)

!
: !(τ−) | and we set

(N !)− = (N−)
!
.

If M = der(N) and P ` N : !σ then by inductive hypothesis P+ ` N− :

?!σ− | . We have P+ |α : σ− ` α : σ− and hence P+ | (derα)
!

: ?!σ− ` α : σ−,
and we set

der(N)− = µασ
−

(N− ∗ (derα)
!
) .

If M = λxϕN with σ = ϕ ( τ and P, x : ϕ ` N : σ then inductive
hypothesis P+, x : ϕ+ ` N− : σ− | so that P+ ` λxϕ+

N− : ϕ+ ( σ− | and we

set (λxϕN)− = λxϕ
+

N−.
If M = 〈N〉R with P ` N : ϕ ( σ and P ` R : ϕ then by inductive

hypothesis, P+ ` N− : ϕ+ ( σ− | and P+ ` R− : ?ϕ+ | . We have P+, x :
ϕ+ |x ·α : ϕ+ ( σ− ` α : σ−, hence P+, x : ϕ+ ` N− ∗ (x ·α) |α : σ−. Therefore

we have P+ |µxϕ+

N− ∗ (x · α) : ϕ+ ` α : σ− so that P+ | (µxϕ+

N− ∗ (x · α))
!
:

?ϕ+ ` α : σ− and we set

〈N〉R− = µασ
−

(R− ∗ (µxϕ
+

N− ∗ (x · α))
!
) .

If M = iniN with P ` N : ϕi then by inductive hypothesis P+ ` N− :

?ϕ+
i | . One has P+ |µxϕ

+
i (inix ∗ α) : ϕ+

i ` α : ϕ+
1 ⊕ ϕ+

2 hence P+ ` N− ∗
(µxϕ

+
i (inix ∗ α))

!
|α : ϕ+

1 ⊕ ϕ
+
2 so

(iniN)− = der (µαϕ
+
1 ⊕ϕ

+
2 N− ∗ (µxϕ

+
i (inix ∗ α))

!
) .



If M = 〈M1,M2〉 there are two possible translations (similar phenomena
occur in CPS translation, see for instance [29]), a left first translation and a right
first translation. We give the first one, the other one being obtained by swapping
the roles ofM1 andM2. We assume that P `Mi : ϕi and hence P+ `M−i : ?ϕ+

i |
for i = 1, 2. We have P+, x2 : ϕ+

2 | µ̃x
ϕ+

1
1 der 〈x1, x2〉 ∗ α : ϕ+

1 ` α : ?(ϕ+
1 ⊗ ϕ

+
2 ),

hence P+, x2 : ϕ+
2 `M

−
1 ∗ (µ̃x

ϕ+
1

1 der 〈x1, x2〉 ∗ α)
!

|α : ?(ϕ+
1 ⊗ϕ

+
2 ) and hence we

set

〈M1,M2〉− = µα?(ϕ+
1 ⊗ϕ

+
2 )M−2 ∗

(
µ̃x

ϕ+
2

2 M−1 ∗ (µ̃x
ϕ+

1
1 der 〈x1, x2〉 ∗ α)

!
)!

.

If M = case(N, x1 ·M1, x2 ·M2) with P ` N : ϕ1 ⊕ ϕ2 and P, xi : ϕi `
Mi : σ then P+ ` N− : ?(ϕ+

1 ⊕ ϕ
+
2 ) | and P+, xi : ϕ+

i ` M
−
i : σ− | . We have

P+ | µ̃xϕ
+
i
i M−i ∗ α : ϕ+

i ` α : σ− and hence P+ |
[
µ̃x

ϕ+
1

1 M−1 ∗ α, µ̃x
ϕ+

2
2 M−2 ∗ α

]
:

ϕ+
1 ⊕ ϕ

+
2 ` α : σ− for i = 1, 2, so

case(N, x1 ·M1, x2 ·M2)− = µασ
−
N− ∗

[
µ̃x

ϕ+
1

1 M−1 ∗ α, µ̃x
ϕ+

2
2 M−2 ∗ α

]!
.

If M = priN where P ` N : ϕ1 ⊗ ϕ2 then P+ ` N− : ?(ϕ+
1 ⊗ ϕ

+
2 ) | . We

have P+ | µ̃xϕ
+
i (der x ∗ α) : ϕ+

i ` α : ?ϕ+
i so that P+ | (pri µ̃x

ϕ+
i (der x ∗ α))

!
:

?(ϕ+
1 ⊗ ϕ

+
2 ) ` α : ?ϕ+

i so

(priN)− = µα?ϕ+
i N− ∗ (pri µ̃x

ϕ+
i (der x ∗ α))

!
.

If M = fixx!σ N with P, x : !σ ` N : σ then P+, x : !(σ−) ` N− : σ− | , so

(fixx!σ N)− = fixx!(σ−)N−.

Given a ΛHP value V such that P ` V : ϕ, one can straightforwardly define
a positive ΛLLP term V + such that P+ ` V + : ϕ+ | as follows: x+ = x, (M !)+ =

(M−)
!
, 〈V1, V2〉+ = 〈V +

1 , V +
2 〉 and (iniV )+ = ini(V

+) for i = 1, 2.

5.7 Proof of Theorem 7

Proof. The first statement is essentially proven in the definition above of the
translation. The proof of the second statement is a simple inspection of the re-
duction rules of ΛHP. Let us consider two cases. Assume first that M = 〈λx N〉V ,

then M− = µα V − ∗ (µ̃x (λx N−) ∗ x · α)
! →∗ µα der V + ∗ (µ̃x (λx N−) ∗ x · α)

!

by Lemma 5. Hence M− →∗ N− [V +/x]. On the other hand we have M →w

N [V/x] in ΛHP, and N [V/x]
− →∗ N− [V +/x] by Lemma 6.

Assume nowM = pri〈V1, V2〉, we haveM− = µα 〈V1, V2〉−∗(pri µ̃x (der x ∗ α))
! →∗

µα der 〈V +
1 , V +

2 〉∗(pri µ̃x (der x ∗ α))
!→∗ der V +

i by Lemma 5. On the other hand
M →w Vi and V −i →∗ der V +

i by Lemma 6. The other cases are similar. 2
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26. Paul-André Melliès. Categorical semantics of linear logic. Panoramas et Synthèses,
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