Hypercoherences: a strongly stable model
of linear logic

Thomas Ehrhard
Laboratoire de Mathématiques Discretes
UPR 9016 du CNRS, 163 avenue de Luminy, case 930
F 13288 MARSEILLE CEDEX 9

ehrhard@Imd.univ-mrs.fr

Abstract

We present a model of classical linear logic based on the notion of
strong stability that was introduced in [BE], a work about sequentiality
written jointly with Antonio Bucciarelli.

Introduction

The present article is a new version of an article already published, with the
same title, in Mathematical Structures in Computer Science (1993), vol. 3,
pp- 365-385. It is identical to this previous version, except for a few minor
details.

In the denotational semantics of purely functional languages (such as PCF
[P, BCL]), types are interpreted as objects and programs as morphisms in a
cartesian closed category (CCC for short). Usually, the objects of this category
are at least Scott domains, and the morphisms are at least continuous func-
tions. The goal of denotational semantics is to express, in terms of “abstract”
properties of these functions, some interesting computational properties of the
language.

One of these abstract properties is “continuity”. It corresponds to the
basic fact that any computation that terminates can use only a finite amount
of data. The corresponding semantics of PCF is the continuous one, where
objects are Scott domains, and morphisms continuous functions.

But the continuous semantics does not capture an important property of
computations in PCF, namely “determinism”. Vuillemin and Milner are at the
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origin of the first (equivalent) definitions of sequentiality, a semantic notion cor-
responding to determinism. Kahn and Plotkin ([KP]) generalized this notion
of sequentiality. More precisely, they defined a category of “concrete domains”
(represented by “concrete data structures”) and of sequential functions.

We shall begin with an intuitive description of what sequentiality is, in the
framework of concrete data structures (CDS’s). A CDS D, very roughly, is a
Scott domain equipped with a notion of “places” or “cells”. An element of D
is a partial piece of data where some cells are filled, and others are not. A cell
can be filled, in general, by different values. (Think of the cartesian product
of two ground types: there are two cells corresponding to the two places one
can fill in a couple.) In a CDS, an element x is less than an element z’ if any
cell that is filled in x is also filled in z’, and by the same value. If D and E
are CDS’s, a sequential function f from D to F is a Scott continuous function
from D to FE such that, if # € D (that is, x is a partial data; some cells of
D may not be filled in ), for any cell d not filled in f(z), there exists a cell
¢ not filled in z and filled in any 2’ € D such that =’ > 2z and such that d
is filled in f(2'). This definition is a bit complicated, but the idea is simple.
Consider, in order to simplify a bit, the case where E has only one cell. If f(z)
is undefined, there is a cell ¢ not filled in x that must be filled in any data z’
more defined than x and such that f(z') is defined. This means the following:
if f(x) is undefined, then there is some “place” in « where the computation is
stuck by a lack of information. If we want the computation to go on, we must
fill the corresponding cell in z. So sequentiality is a way of speaking about
the determinism of programs, considering only their input-output behavior;
the basic rule of denotational semantics is that it is forbidden to look inside
programs.

The idea of sequentiality is beautiful, but the category of CDS’s and sequen-
tial functions has the bad taste to not be cartesian closed. The fundamental
reason for this phenomenon is that, in general, there is no reasonable notion
of cell for a domain of sequential functions.

The notion of “stability”, introduced by Berry [B1, B2] is a weakening
of the idea of sequentiality, that allows the definition of a model of PCF (a
CCC). A stable function is a continuous function which commutes to the glb’s
(greatest lower bounds) of finite, non-empty and bounded subsets of its do-
main. However, among stable maps, there are functions that are not sequential
(typically the so called Berry function), and so, even if it has nice mathemat-
ical properties, the stable model is not very satisfactory with respect to the
modelization of determinism. It should be noticed that stability has also been
used by Girard (see [G1]) to model system F. He used a very simple kind of
domains (qualitative domains), and he also observed that a subclass of these
domains (coherence spaces) has very good properties with respect to stability.
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This work gave rise to the first proof-theoretic model of classical linear logic.

Berry and Curien (see [BC, C]) defined a CCC where morphisms are se-
quential, but are not functions; they are sequential algorithms.

In [BE], a joint work with Antonio Bucciarelli, we introduced the notion of
strong stability in order to build a CCC where, at first order, the morphisms
are sequential functions. Our basic observation was the following: sequentiality
can be expressed as a preservation property similar to stability. More precisely,
let us say that a family zy,...,z, of points of a CDS is coherent if it has the
following property: any cell that is filled in all ;s is filled by the same value
in all z;’s. Then it can be proved that a function is sequential if and only if
it sends a coherent family to a coherent family, and commutes to the glb’s of
coherent families. (In fact, this holds only for “sequential” CDS’s.) In [BE],
we proved the corresponding result for coherence spaces, taking as set of cells
on a coherence space a suitable set of linear open subsets of this coherence
space, but the intuition is the same. The families that are coherent in the
sense described above will be called “linearly coherent” in the following. In
order to get a CCC (a model of PCF), we had to abandon the notion of cell
(since there is no known CCC of Kahn-Plotkin sequential functions), so we kept
the notion of coherence. This led us to define a category where objects are
qualitative domains' endowed with an additional structure called “coherence
of states”. A coherence of states is a set of non-empty and finite subsets of the
qualitative domain that has to satisty some closure properties. A qualitative
domain endowed with a coherence of states is called a qualitative domain with
coherence (QDC for short), and an element of the coherence of states of a QDC
is said to be a coherent subset of the qualitative domain. A morphism between
two QDC’s is a Scott-continuous function between the associated qualitative
domains, which, furthermore, maps any coherent set to a coherent set and
commutes to the intersections of coherent sets. Such a function is said to be
strongly stable. It turns out that the category of QDC’s and strongly stable
functions is cartesian closed.

Studying more precisely the coherences of states which are generated when
a model of PCF is built up starting from ground types interpreted as suitable
coherence spaces endowed with a linear coherence of states, it appears that
these coherences of states in fact satisfy stronger properties than the ones we
required in [BE].

Let us call “coherence of atoms” of a QDC the family of all coherent subsets
of the qualitative domain that are made of atoms. (So the coherence of atoms

LA qualitative domain is a domain whose elements are subsets of a given set called “web”
of the qualitative domain. These elements are ordered under inclusion, and any subset of
an element of a qualitative domain has to be an element of the qualitative domain. The
singleton elements of a qualitative domain are called “atoms”.
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is a subset of the coherence of states.)
Essentially, for the QDC’s that are obtained in the construction of a model
of PCF, we observe two main phenomena:

e When the coherence of atoms of the qualitative domain is known, the
whole coherence of states is known.

e When the coherence of atoms of the qualitative domain is known, the
set of all states of the qualitative domain is known: the states are simply
the hereditarily coherent subsets of the web. (That is, the subsets of
the web, any non-empty and finite subset of which is in the coherence of
atoms.)

The first of these observations is not so surprising; it simply means that the
coherence of states is in some sense “prime algebraic” (that is, here, “generated
by atoms”), as the qualitative domain itself. The second one is very strange,
because it says that the coherence of states is actually a more primitive notion
than the notion of state itself.

These observations lead to a simplification of the theory of strong stability.
Instead of considering qualitative domains with coherence as objects of the
category, we just have to consider a very simple kind of structure, which we
call “hypercoherence”. (Actually, hypercoherences are hypergraphs, this is
why we choose this name.) A hypercoherence is a set of finite subsets of a
given set which we call the “web” of the hypercoherence. This set of finite
parts of the web is intended to represent the coherence of atoms of a QDC.
There is no commitment to any primitive notion of state, since, in a qualitative
domain, we certainly want any singleton to be a state.

The only difference between hypercoherences and qualitative domains is
that we do not require the family of sets which defines a hypercoherence to be
hereditary (i.e. down-closed under inclusion).

This difference, which at first sight could seem innocuous, is, in fact, es-
sential, because it allows us to define the orthogonal of a hypercoherence as its
complement with respect to the set of all finite parts of its web. This operation
does not make any sense in the framework of qualitative domains, because the
complement of a down-closed set of subsets has no reason to be down-closed
(and usually, it is not).

Indeed, the category HCohL of hypercoherences equipped with a suitable
notion of linear morphisms, gives rise to a new model of full commutative
classical linear logic (with the exponential “of course” which categorically is a
comonad on HCohL).

Formally, hypercoherences are similar to coherence spaces in the sense that
the interpretations of the linear connectives in this model are similar to those
of Girard in coherence spaces (see [G2]), even if there are some surprises for
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the “with” and for the “of course” connectives. But this model seems to au-
thorize some considerations which were impossible with pure coherence spaces.
Specifically, it seems very natural to distinguish two classes of hypercoherences
that play dual roles: the hereditary ones and the antihereditary ones (many
hypercoherences are in neither of these classes). These two classes might be
connected to the notion of polarity that Girard introduced in his treatment of
classical logic (see [G3]).

This model of linear logic is compatible with the notion of strong stabil-
ity. Any hypercoherence gives rise canonically and injectively to a qualitative
domain with coherence. This object is defined accordingly to the two obser-
vations stated before. So we have a notion of strongly stable maps between
hypercoherences. Call the category of hypercoherences and strongly stable
maps HCohF'S. (The letters “FS” in HCohFS come from the french “forte-
ment stable” which means “strongly stable”.) It turns out that this category
is equivalent to the co-Kleisli category of the comonad “of course” which is
cartesian closed. Furthermore, HCohFS can be considered as a full subcate-
gory of the category of qualitative domains with coherence and strongly stable
functions, and in fact, it is a full sub-CCC. This means that the product and
exponential of the co-Kleisli category of the comonad “of course” are the same
as the ones we defined in [BE| for more general objects. This result can be
considered as a formal statement of the two observations we started from.

The remainder of the paper consists of seven sections. Section 1 is devoted
to some preliminaries. We recall the basic definitions concerning qualitative
domains and stable functions, and also the results of [BE] that we use later.
Section 2 gives the definition of hypercoherences and of (linear) morphisms of
hypercoherences. To simplify the presentation, morphisms are presented as
traces (a trace is a kind of graph) and not as functions. Section 3 presents
the model of linear logic from a purely formal point of view. In section 4, we
connect this model of linear logic with our previous work about strong stability.
Some acquaintance with [BE] could be useful for reading this section, though all
the results we need are (briefly) recalled in the preliminaries. Section 5 consists
of some definitions and very simple results about a notion of polarity that seems
natural in this new framework. Section 6 makes explicit a relation between
this model of linear logic and Girard’s model of coherence spaces. Section 7
makes explicit the connection between hypercoherences and sequentiality at
first order.

We have chosen this particular presentation, although it may not be very
intuitive, for two reasons: first, we hope that the above introduction has pro-
vided the reader with sufficient intuition; and second, the notion of hyperco-
herence is simpler than the notion of QDC and it is very easy and natural
to present the category of hypercoherences and linear morphisms in a purely
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self-contained way.

1 Preliminaries

If F is a set, we denote its cardinality by #F.

Let £ and F be two sets. If €' C E x F, we denote the first and second
projections of C' by (] and C, respectively. We say that C is a pairing of £
and Fif C; =F and Cy = F.

The disjoint union of £ and F will be denoted by F + F, and represented
by G=(Ex{1}HU(Fx{2}). fC C G, weuse C;y ={a € E|(a,1)€ C} for
its first component and Cy = {b € F | (b,2) € C} for its second component.

Definition 1 Let E and F be sets. Let R C E X F be a binary relation. Let
ACFE and B C F. We say that A and B are paired under R and write
AMX B mod(R) if (Ax B)N R is a pairing of A and B.

If R is the relation “€”, we say that A is a multisection of B and we write
A B. If the relation R is “C7, we say that A is Egli-Milner lower than B
and we write AC B.

So A < B means that A CJ B and that AN b is non empty for all b € B,
and A C B means that any element of A is a subset of an element of B and
any element of B is a superset of an element of A (this corresponds to the
Egli-Milner relation in power-domain theory).

Obviously, the relation C is a preorder on P (E). Furthermore, if A< B C
C then A« C.

If £ is a set, we use P, (E) to denote the set of its finite and non-empty
subsets. We write x C; E when z is a finite and non-empty subset of E.

The theory of hypercoherences is closely related to that of qualitative do-
mains, so let us recall some basic definitions and results from [G1].

Definition 2 A qualitative domain is a pair (|Q|, Q) where |Q] is a set (the
web) and Q) is a subset of P (|Q]) satisfying the following conditions:

e ) €Q and, if a € |Q|, then {a} € Q.
o ifx €@ andif y Cx theny € Q).
o if D C Q is directed with respect to inclusion, then |JD € Q).

The elements of ) are called states of the qualitative domain, and the quali-
tative domain itself will also be denoted Q) (for the web can be retrieved from

Q).
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Observe that a qualitative domain () can alternatively be presented as a
pair (|Q|,Qan) where |Q] is a set and Qg is a set of finite subsets of |Q|
satisfying all the conditions enumerated above except the last.

If ) is a qualitative domain, we call the set of its finite states Qgp.

Definition 3 A qualitative domain () is called coherence space when, for u C
| X|, if u satisfies
Va,beu {a,b} € Q ,

then u € Q).

Definition 4 Let Q and R be qualitative domains. A function f:Q — R is
stable if it is continuous and if

Ve,2'€@Q zU2' € Q= flzna')=flz)n f(z') .
Furthermore, f is linear if f() =0 and
Ve,2'€ @ zU2' € Q= f(zUz') = flz)U f(a') .

The adequate notion of order for stable functions is not the extensional
one, but the stable one, as observed by Berry (see [B1, B2]).

Definition 5 If f,g: R — () are two stable functions, f is stably less than ¢
(written [ < g) iff

Ve,2' €@ zCa' = f(x)=f(a")ng(a) .
If f:Q — R is a stable function, we define its trace tr (f) C Qan X |E| by
tr(f) = {(z,b) | b € f(z) and x minimal with this property },
giving
o Vo€ Q f(x) = {b] 3ro C 2 (a0,b) € tr (f)}
o if f,g:@Q — R are stable, then f < g iff tr(f) Ctr(g).

(See [G1] for more details about traces.)

A stable function f is linear iff all the elements of the first projection of
tr (f) are singletons. So the trace of a linear function @ — R will always be
considered as a subset of |Q] x |R].

Definition 6 Let () and R be qualitative domains. A rigid embedding of )
into R is an injection f:|Q| — |R| such that, for all w C |Q)|, one has u € Q

iff f(u) € R.
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It is the canonical notion of substructure for qualitative domains. (For more
details, see [GLT].)

Now we recall some definitions and results of [BE].

Definition 7 A qualitative domain with coherence (¢DC) is a pair (Q,C (Q))
where () is a qualitative domain and C(Q)) is a subset of Pg (Q) satisfying the
following properties:

o ifz €Q then {2} € C(Q),
o if AcC(Q) and if B € Pg,(Q) is such that BC A, then B € C(Q),

o ifDy,..., D, are directed subsets of () such that for anyx, € Dy,...,x, €
D, the family {xq,...,2,} is in C(Q), then the family {U Dy,...,U Dy}
is in C(Q).

An element of C (Q) will be called a coherent set of (). Such a ¢DC (Q,C (Q))
will be denoted by () simply.

The strongly stable functions are similar to stable functions, but they have
to preserve coherence as well as intersections of coherent sets of states, and
not just of bounded ones:

Definition 8 Let () and R be ¢DC’s. A strongly stable map f from ) to R
is a continuous function f: Q) — R such that, if A € C(Q), then f(A) € C(R)
and f(NA)=N[f(A).

The preservation of coherence (A € C(Q) = f(A) € C(R)) is as important
as the preservations of intersections of coherent families of states. It was not
present in the theory of stable functions, because a stable function has to be
monotone, and thus maps a bounded set of states to a bounded set of states.
Here there is no reason why the image of a coherent set of states should be
coherent.

Observe that any strongly stable map is stable, because, if () is a qDC
and if A C @ is finite, non-empty and bounded, then A € C(Q). Actually,
A C {z} for any upper bound z of A.

Definition 9 A strongly stable function is linear if it is linear as a stable
function.

In [BE] we have proved that the category QDC of qDC’s and strongly
stable maps is cartesian closed. Let us just recall the characterizations of
cartesian products and function spaces.
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Proposition 1 Let Q) and R be ¢qDC’s. Their cartesian product () x R in the
category QDC is (P,C (P)) where P is the usual product of the ¢D’s Q) and R
(that is, up to a canonical isomorphism, P is the cartesian product of the sets
Q) and R, equipped with the product order) and C (P) is the set of non-empty
and finite subsets C' of P such that Cy € C(Q) and Cy € C(R).

In the next propositions, if T is the trace of a strongly stable function, then
T denotes this function.

Proposition 2 Let Q and R be ¢DC’s. The function space FS(Q, R) of Q
and R in the category QDC is (P,C (P)) where P is the qualitative domain of
traces of strongly stable functions Q — R and C (P) is the set of all non-empty
and finite sets T of traces of strongly stable functions () — R such that, for
any A € C(Q) and for any pairing € of T and A, we have

{f7(2) [(T,z) € £} €C(R)

and

N @) [(T,2) € € = M7 4) .

Let us now recall how this notion of strong stability is connected to se-
quentiality.

Let () be a coherence space. The orthogonal Q* of () is the coherence
space whose web is || and such that, for a,b € |Q], we have {a,b} € Q* iff
a=bor {a,b} ¢ Q).

In this framework, we rephrase the definition of sequentiality outlined in
the introduction. The idea is to consider ()1 as a set of cells for (), and to say
that z € Q fills a« € Q* if N a # () (observe that, in that case, z N« is a
singleton).

Definition 10 Let () and R be coherence spaces. We say that a function
f @ — R is sequential iff it is continuous, and for any x € @), for any
B € R such that f(z)N B3 =0, there exists a« € Q* such that x Na = and
such that, for any ' € Q, if v C 2’ and f(z")N B # D, then ' Na £ 0.

Let ) be any coherence space. We endow () with its “linear coherence”
CY (Q) which is the set of non-empty and finite subsets {z1,...,z,} of Q such
that for any {a1,...,a,} € Q*,if a1 € x1,...,a, € T, then a1 = ... = a,. It
is easily checked that (Q,C"(Q)) is then a qDC.

Proposition 3 Let () and R be coherence spaces. A function f: Q) — R is
sequential iff it is strongly stable (Q,C" (Q)) — (R,C"(R)).
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2 Hypercoherences: basic definitions

Definition 11 A hypercoherence is a pair X = (|X|,I' (X)) where | X| is an
enumerable set and T'(X) is a subset of P (|X|) such that for any a € | X|,
{a} € T'(X). The set |X| is called web of X and T'(X) is called atomic

coherence of X.

If X is a hypercoherence, we note I'* (X)) the set of all w € I' (X)) such that
#u > 1. This set is called strict atomic coherence of X. A hypercoherence can
be described by its strict atomic coherence as well as by its atomic coherence.

Observe that the only difference between a hypercoherence and a qualita-
tive domain is that, if v € I'(X) and if v C u, we do not require that v be in
I'(X).

Definition 12 A hypercoherence X is hereditary if, for all uw € T' (X) and for
all v C, u, one hasv € T'(X).

Not all hypercoherences are hereditary.

We explain now how to build a qDC out of a hypercoherence.

Definition 13 Let X be a hypercoherence. We define qD (X) and C(X) as
follows:

aD(X)={x C|X||Vuli, |X| vCrx=uel(X)}
and
C(X)={AC,dD(X) |VuC;, | X|] udA=uel (X)}.

aD (X)) will be called the qualitative domain generated by X, and C (X) will be
called the state coherence generated by X. The couple (qD (X),C (X)) will be
noted qDC (X). The set of finite states of qD (X)) will be noted qDg, (X).

So, qDg, (X)) is the set of elements of I' (X)) which are hereditary, that is of
which any subset is either empty or in ' (X).
The following result justifies the terminology and notations:

Proposition 4 If X is a hypercoherence, then (qD (X),C (X)) is a qualitative
domain with coherence, and |qD (X)| = | X].

The proof is straightforward. The qualitative domain with coherence qDC (X)
will be called qualitative domain with coherence generated by X.

Observe that, for a hypercoherence X, the atomic coherence I' (X) can be
retrieved from C (X)) (and thus from qDC (X)). Namely, the elements of I' (X))
are the finite and non-empty subsets u of | X| such that {{a} | @ € u} be in
C (X). So the hypercoherences can be seen as certain gDC’s.
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We give now two important classes of examples of hypercoherences:

o If () is a qualitative domain, we can define a hereditary hypercoherence
X as follows: we take |X| = |Q| and T'(X) = Qgn \ {#}. Then it is easy
to see that qD (X) = @ and that C (X) is the set of all non-empty and
finite bounded subsets of ().

o If () is a coherence space, we can also define a hypercoherence Y as
follows: |Y| = |Q]| and a finite and non-empty subset of |@| is in T'(Y))
iff it is a singleton, or it contains distinct elements a and @’ of |@| such
that {a,a’} € Q. Then it is easily checked that qD(Y) = @ and that
c(v)=c(Q).

Now we have enough material to start the presentation of our model of
linear logic. To avoid boring and trivial categorical calculations, we shall use
the informal notion of “canonical isomorphism” between hypercoherences. An
isomorphism between two hypercoherences X and Y is a bijection f : |X| —
|Y| such that, for all v Cf, | X|, we have f(u) € T'(Y) iff u € T'(X). For us, a
canonical isomorphism is an isomorphism which corresponds to a bijection on
the webs which is standard and universal from the set-theoretic point of view.
A typical example is the bijection which corresponds to the associativity of
cartesian product of sets.

Definition 14 Let X and Y be hypercoherences. We call linear implication of
X andY and note X —o Y the hypercoherence defined by | X —o Y| = | X|x|Y|
and w € T'(X = Y) iff w is a non-empty and finite subset of | X —o Y| such
that

wy ET(X) = (w, €T (Y) and (#wz =1 = #w =1)) .
Equivalently, w € T'(X —o Y) iff w Cf, | X —o Y| and
w ET(X)=w €l (V) and wy €eI™(X)=w, e I*(Y) .
Of course, X —o Y satisfies the only axiom of hypercoherences.

Definition 15 Let X and Y be hypercoherences. A linear morphism X —o Y
is an element of qD (X —o Y).

We shall often write s : X —o Y instead of s € qD (X —o Y)).

Proposition 5 Let X, Y and Z be hypercoherences.

o The set Idy = {(a,a) | a € |X]} is in qD (X —o X).
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o Let seqD(X —oY) andt € qD(Y —o Z). Then the set
tos={(a,c)|3b(a,b) € s and (b,c) € t}
is in qD (X —o Z).

Proof: The fact that Idx € gD (X —o X) is obvious.

Observe first that if (a,¢) € t o s then there is exactly one b such that
(a,b) € s and (b,c¢) € t. Actually, if y is a non-empty and finite subset of
{6 ] (a,b) € s and (b,c) € t}, then y € T'(Y) because {a} € I'(X), and thus
#y = 1 because #{c} = 1.

Let w C to s be finite, non-empty and such that wy € I'(X). Let

u={(a,b) € s|3Jc€ws (a,c)€wand (bc) €t}

and
v={(bc) €t|dacwla,c)€wand (a,b) € s} .

Finiteness of u and v follows from the observation above. We clearly have
w1 C wy. Conversely, let a € wy. Let ¢ € wy be such that (a,¢) € w. By
definition, there is a b such that (a,b) € s and (b,¢) € ¢, so a € uy. Thus
uy = wy € I'(X). So uy € I'(Y). But clearly uy = vy. So vy € I'(7). We
conclude that wy € T'(Z) because vy = ws.

Assume furthermore that #w,; = 1. Then #v; = 1 and #u; = 1 and we
conclude. u

We have obviously defined a category, where objects are hypercoherences,
composition is o and the identity morphisms are the Idx’s. We note HCohL
this category.

3 A model of classical linear logic

The goal of this section is to interpret in the category HCohL the connectives
of classical linear logic. In fact, the linear implication has already been partially
treated in the previous section.

We note 1 the hypercoherence whose web is a singleton.

Definition 16 Let X and Y be hypercoherences. Their tensor product X @ Y
is the hypercoherence whose web is | X| x |Y| and whose atomic coherence is

defined by: w e T (X ®@Y) iff wy € T'(X) and wy € T (V).

The tensor product is in fact a functor HCohLL x HCohLL — HCohL. If
s: X —oX'and t:Y —o Y’ define s®t by

s@t={((a,b),(a',b")) | (a,a’) € s and (b,b") € t} .
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Let us check that s @t : X ®@Y —o X' ®@Y'. Let w Cf s ®@t and assume
that w; € T'(X ®Y), that is wy; € I'(X) and wy2 € ' (Y). Let us prove that
Wy € T (X/) Let

w' = {(a,d’) €s]3(b,¥) €t ((ab),(d b)) cw}.

We have w! Cf s and w} = wyy, w} = wy. Hence wy; € T (X'). Similarly
wyy € T'(Y'). Assume furthermore that #wy; = 1. Let (a’,b') be the unique
element of that set. Then wy; x {a'} = w, so #wy; = 1. Similarly #wyy = 1
and we conclude.

Proposition 6 The tensor product is, up to canonical isomorphisms, a com-
mutative and associative operation which admits 1 as neutral element. Fur-
thermore, the canonical isomorphisms associated to commutativity and asso-
ciativity satisfy the axioms of symmetric monoidal categories.

This is a purely formal verification. See [M] for details about monoidal cate-
gories.

Definition 17 Let X be a hypercoherence. We call orthogonal of X and
note X+ the hypercoherence whose web is |X| and whose atomic coherence

is Pi (IX]) \ T (X).
So that v € I'™* (XL) iff w is finite and non-empty and v ¢ T'(X).

Proposition 7 Let X be a hypercoherence. Then (XL)J' = X.
The proof is straightforward.

Proposition 8 Let X and Y be hypercoherences. Up to a canonical isomor-
phism,
Xt oY'=Y 0X.

Proof: Just contrapose the definition of X+ —o Y'*, "

If s : X —o Y, we note s the corresponding morphism Y+ —o X1, which
is simply {(b,a) | (a,b) € s}. This operation on morphisms is called trans-
position, and turns (-)~ into a contravariant and involutive endofunctor on

HCohL.

Definition 18 Let X and Y be hypercoherences. The par of X and Y is the
hypercoherence XpY = (X*+ @ YL)L.
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Proposition 9 Let X and Y be hypercoherences. We have | X pY | = | X|x|Y],
and w € I'* (X pY) iff w is non-empty and finite and satisfies wy € I'* (X) or

Easy calculation.

Observe that, because of propositions 8 and 6, the par is commutative,
associative and admits 1 as neutral element, because clearly 1+ = 1. This last
phenomenon is a drawback that this semantics of linear logic shares with the
coherence spaces semantics.

Proposition 10 Let X and Y be hypercoherences, then X —o Y = X1pY.

Proof:  Obviously, these hypercoherences have the same web. If w Cf,
| X| x |Y], then w € I'(X — Y) iff

w €N X)=wel'(Y) and wy €™ (X) = w, eI (Y)
that is
(wr €T (X*) orw, €T(Y)) and (wy €T (X*) or wy € T* (V)
and we conclude. .
As a corollary, we get:

Proposition 11 The category HCohL is monoidal closed with respect to the
tensor product @ and the function space —o. More precisely, if X, Y and Z
are hypercoherences, then, up to canonical isomorphisms:

(X®Y)—oZ=X —o(Y ©7).

Proof: This results from the associativity (up to canonical isomorphisms) of
par. .

Definition 19 Let X and Y be hypercoherences. We call with of X and Y
and note X XY the hypercoherence whose web is | X| + |Y| and whose atomic
coherence is the set of all w Cf, | X| 4 |Y| such that:

w=0=w el (Y) and wy=0=w, €T (X) .

Of course, this satisfies the axiom of hypercoherence.

In that definition, the contrast with coherence spaces appears clearly: as
soon as a (finite) subset of |X| + |Y| is such that both of its components
are non-empty, it is coherent, whereas in coherence spaces (or qualitative do-
mains), both of its components had to be coherent. This phenomenon has
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important consequences. Consider for instance the hypercoherence Bool =
{7, F},{{T},{F}}). Asubset u of ‘Boolg" = |Bool| x{1,2,3} isin I'* (BoolS)
iff there exist i,7 € {1,2,3} such that ¢ # j and u; # ) and u; # 0. As
a consequence, the set {{(T,1),(F,2)},{(T,2),(F,3)},{(T,3),(F,1)}} is in
C (BOOlB), whereas it is not bounded, and not even pairwise bounded. This is

why the stable but non sequential Berry’s function gD (B0013> — ¢D (Bool)
whose trace is:

{({(T,0), (F,2)},T), ({(T,2), (F,3)}, T), {(T,3), (F, 1)}, T)}

will not be in our model (see below). This definition of cartesian product is
strongly related to sequentiality.

Proposition 12 Let X and Y be hypercoherences. Then X x Y is the carte-
sian product of X and Y in the category HCohL.

The proof is straightforward. The projection 71 : X x Y —o X is {((a,1),a) |
a € |X|}, and similarly for 75. If s : Z —0 X and ¢t : Z —o Y are linear
morphisms, their pairing p: Z —o X x Y is

p={(e,(a,1)) [ (¢,a) € s} U{(¢,(5,2)) [ (¢,b) € 1} .

Definition 20 Let X and Y be hypercoherences. We call plus of X and Y
and note X @Y the hypercoherence (X+ x YJ‘)L.

Proposition 13 If X andY are hypercoherences, the web of XY is | X |+|Y|
and its atomic coherence is the set of all w Cf | X| 4 |Y| such that

wy =0 andwy, €T (Y) or wy=0andw, €T (X) .
Straightforward verification.
Definition 21 Let X be a hypercoherence. We define a hypercoherence ! X by
setting |'X| = qDg, (X) and by taking for I (1X) the restriction of C (X) to
D¢, (X). In other words, if A Cf, qDg, (X), then A € T (1X) iff

Vu Chn | X udA=uel(X) .

Proposition 14 An element of qD (!X) is a bounded subset of qDg, (X).
Proof: Let A € qD(1X). We can assume that A is finite. Let v Cf, U A.

Let B={z € Ajunaz #0}. Then BC; A, so BeT(!X). Sou eI (X),
since u <1 B by definition of B, and thus J A € qD (X). .
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Proposition 15 Let X and Y be hypercoherences. Up to a canonical isomor-
phism,
X xY)=1X®!Y.

Proof: It is a corollary of the forthcoming proposition 21. "

Definition 22 Let X be a hypercoherence. We define the hypercoherence TX
by
fRye
X =(01X) .

An element A of Pf, (qDﬁn (XL>> is in I'* (?7X) iff there exists u € T (X)
such that u < A.

We extend now the operation “!” into a functor HCohLL — HCohL and
we exhibit the comonad structure of this functor.

Proposition 16 Let X and Y be hypercoherences. Let t € qD(X —oY).
Then the set !t defined by

't = {(2,y) € aDgy (X) x qDg, (V) [ 2 Xy mod (1)}
is an element of qD (X —o 1Y').

Proof: Let U be any non-empty and finite subset of !t. Assume that U; €
I'(1X). Let v C |Y| be finite, non-empty and such that v < Us. Let

w={(a,b)et|bcvand Iz,y)eUa€x, bey}.

Then we have wy = v and wy; < Uy. Let us just check the second of those
statements. If @ € Uy, let y € Uy be such that (z,y) € U. Let b € v be
such that b € y. Since @ X y mod (¢), we can find some ¢ € x such that
(a,b) € t. Clearly, (a,b) € w, so a € w; and we have proven one direction
of the statement w; <1 U,, the second one being a direct consequence of the
definition of w.

Since w is finite, non-empty and satisfies w C t, we have w € I'(X —o Y').
But wy, € T'(X) since wy A U; € C(X), and thus wy € I'(Y), that is v € I'(Y).
This holds for any v < Uy, so Uy € T'(1.X).

Assume now that #U, = 1, say Uy = {y}. Take zq € U;. We prove that
for any x € Uy, we have xqg C x. This clearly will entail that #U; = 1. Let
ag € xg. Let b € y be such that (ag,b) € t. Let

u={a|(a,b)etand Iz € Uy a € z} .

One easily checks that u <1 Uy, so u € I' (X). But u x {b} C¢,s0 #u =1, but
ap € u, so u = {ag}. Hence, since u < Uy, for all x € U; one has ag € x, and
we conclude. "
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Proposition 17 Let X, Y and 7 be hypercoherences. Then !Idxy = Idix and
ifs: X oY andt:Y —o Z then (tos) =ltols.

Proof: Let us check that !(t o s) =!tols. First, let (2, z) €!(t 0 s). This means
that # X z mod (¢ 0 s). Let

y={b|Ja€xIce€z(a,b)€sand (bc)et}.

We have (z,y) €ls and (y,z) €!t. Let us prove the first of these statements,
the second being similar. Let a € z. Let ¢ € z be such that (a,¢) € t o s.
Let b be such that (a,b) € s and (b,¢) € t. We have b € y by definition of y.
Conversely, if b € y, we can find, by definition of y, a @ € x such that (a, b) € s.
So & My mod (s), that is (z,y) €!s.

Next, let (z,z) €ltols. Let y be such that (x,y) €ls and (y,z) €lt. Let
a € z. Let b € y be such that (a,b) € s. Since y X z mod (¢) we can find
a ¢ € z such that (b,¢) € t. So we have found a ¢ such that (a,c) € t o s.
Conversely, if ¢ € z, we can similarly find a @ € z such that (a,c) € t 0 s, and
this concludes the proof. "

So now we can consider the operation ! as an endofunctor on HCohL. We
show that it has a natural structure of comonad.

Let X be a hypercoherence. Let ex = {({a},a) | a € |X|}. Tt is clear that
ex € qD(1X —o X).

Let pux = {(z,{z1,...,2.}) | &,21,..., 2, € qDg, (X) and Ui, z; = z}.
Let us check that ux € qD (!X —o !!X). Let T'C ux be finite, non-empty and
such that 77 € T'(!1X). Let A C ¢Dg, (X) be such that A < T5. We clearly
have A C Ty and thus A € T'(!1X). So Ty € T'(!!X). If furthermore T3 is a
singleton, then T} is obviously also a singleton.

Proving that ¢ and p are the counit and comultiplication of a comonad
whose functor is ! is a straightforward verification.

For the notion of comonad, and of co-Kleisli category of a comonad, we

refer to [M].

Proposition 18 The co-Kleisli category coKI(!) of the comonad ! is cartesian
closed.

Proof: Remember that in this co-Kleisli category, the objects are the hy-
percoherences, and that a morphism X — Y is a linear morphism !X —o Y.
IfS:X —>Yand T :Y — Z are morphisms in coKI(!), their composition
ToS:X — Zis given by:

ToS="TolSoux

and the identity X — X is simply ex. Observe that in this last equation,
the symbol “o” has two different meanings: in the left-hand side, it denotes
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composition in coKI(!), whereas in the right-hand side, it denotes composition
in HCohL.
First, this category has products, the product of X and Y being X x Y.
For cartesian closedness, let X, Y and Z be hypercoherences. Up to canon-
ical isomorphisms we have, using proposition 15:

(XxY)—=7Z = (X xY)—oZ
(IX®!lY)—oZ

= X o (Y -o2)

= X—=(Y—>17).

To be more precise, these equalities correspond to canonical (and thus natural)
isomorphisms in HCohL which are easily transfered to coKI(!) using e. "

4 Hypercoherences and strong stability

The purpose of this section is to connect the model we just have presented to
the model of (simply typed) A-calculus presented in [BE]. The section is im-
portant because it contains the main intuitions at the origin of the construction
of HCohL, and it provides an “abstract” characterization of the morphisms
of this category.

Definition 23 The category HCohF'S of hypercoherences and strongly stable
functions is the category where the objects are the hypercoherences, and where
a morphism X — Y is a strongly stable function qDC (X) — qDC(Y).

Proposition 19 The categories coKI1(!) and HCohFS are equivalent.

Proof: On objects, this equivalence is simply the identity.

For morphisms, the proposition is mainly a characterization of the traces
of strongly stable functions.

It X and Y are hypercoherences, we recall that X — Y denotes the hyper-
coherence !X —o Y.

First, let 7" € qD (X — Y'). We prove that, by setting

(@)= {be V]| Jzo C a (a0,b) € T)

we define a function qD (X) — gD (V) that is strongly stable.
Let us prove that if z € qD (X), y = fT(z) € qD (Y)). We can assume that
z € qDg, (X). Let v Cf |Y| be such that v C y. Let U = {(20,0) € T | 2o C
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z and b € v}. We know that U € T'(X — Y), since U is non-empty and finite.
But U; is bounded by z, and thus U; € I' (!X). Thus Uy € ' (V). But Uy = v
and we are finished. So f7 is well defined, and Scott continuous by definition.

Let A € C(X). We prove that fT(A) € C(Y). Since fT is continuous,
we can assume that any element of A is finite. Let v C} |Y| be such that

v < fT(A). Let
U={(z0,0) e T |Jz € Azog Cxzand b€ v}.

Again, U is non-empty and finite, so U € I'(X — Y). We have U/; C A.
Actually, let z € A and let b € v be such that b € f7(z) (such a b can be found
since v <1 fT(A)). Let o C z be such that (z,b) € T. One has zo € U;. So
Uy €T (1X). So Uy € T'(Y), but Uy = v and we are finished.

Now, let b € N fT(A). We want to prove that b € f7( A). We can assume
again that any element of A is finite. Let

Ag={xo |z € A 2o Cx and (20,b) € T} .

Ag is finite and satisfies Ag C A, so Ag € I'(1.X), but U = Ag x {b} C T, thus
UeTl (X —=Y), and thus #A49 = 1. Let 21 be the unique element of Ag, we
have z; C (N A and (z1,b) € T, and we conclude that f7 is strongly stable.

Conversely, let f : qD(X) — gD (Y) be strongly stable. We shall prove
now that its trace 7" is in qD (X — Y'). Let U C T be finite, non-empty and
such that U; € I' (1X). We have f(Uy) € C(Y) and Uy < f(Uy), s0 Uy € T'(Y).
Assume furthermore that #U; = 1 and let b be the unique element of U,. We
have b € N f(U1) = f(NUh), so there exists an 1 C N Uy such that (z1,b) € T
But for xq € Uy, we have xo 2 (NU; 2 1 and thus, since f is stable, g = 21,
so Uy = {x1} and we conclude that U € T'(X — Y).

It is fairly obvious that tr (fT) = T and that f*) = f since this already
holds for stable functions.

It remains to prove that the correspondence we have just established is
functorial.

The identity X — X in coKI(!) is ex, that is {({a},a) | @ € |X|} which
clearly is the trace of the identity X — X in HCohF'S.

Let S: X =Y and T:Y — Z be morphisms in coKI(!). Remember that
ToS="TolSouyx, that is T o S is the set

{(z,e) | Fz1,..., 2, 3b1,..., bn,
U, 2, =2 and Vi (2;,b;) € S and ({b1,...,b.},c) €T},

so if z € qD (X)),

froS(z) = {c| a1, b1),..., (20, b,) €S Via; Cxand ({by,...,b,},¢c) €T},
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that is f7°%(x) = f7(f5(x)).
For the other direction, let f : X — Y and ¢ : Y — Z be morphisms in
HCohFS. We have

tr(gof) = {(z,¢)|c€g(f(z)), x minimal}

— {(,6) |3y y C f(2), (4,0) € tr(g), = minimal)
= tr(g)otr(f) (seeabove the computation of this trace)

From this result, we deduce that HCohF'S is cartesian closed.
Observe now that the stable function G : qD (Bool?’) — gD (Bool) whose
trace is

{({(T, 1), (£,2)},T), {(T,2), (F,3)},T), {(T,3), (F, 1)}, 1)}

is not in gD (Bool3 — Bool) since the set

(7, 1), (F,2)},{(T,2), (F,3)},{(T,3), (F, 1)}}
isin C (BOOlB)I as we have said before; the Berry’s function is not a morphism
in coKI(!).

As a corollary of the previous proposition, we get:

Proposition 20 The category HCohL is equivalent to the category of hyper-
coherences and linear strongly stable functions.

Proof: Just observe that if X is a hypercoherence, if ay,...,a, € |X|, then
Har}, ... {a,}} € C(X) iff {aq,...,a,} € T(X). .

We conclude the section with the proof that the product objects and in-
ternal arrow objects in HCohF'S are the same as in QDC.

Proposition 21 If X and Y are hypercoherences, then
gDC (X xY)=qDC(X) x gDC(Y) .

Proof: First, let z € qD (X xY), and let us prove that z; € qD (X). Let
u C z; be non-empty and finite. We have u x {1} C z and (u x {1}); = 0,
so u € I'(X). Similarly z; € gD (Y). The inclusion qD (X) x gD (V) C

gD (X x Y) is also trivial.

Now let ¢ € C (X x Y), and let us prove that C; € C(X). Let u be finite
and non-empty such that v < C;. We have u x {1} < C, and thus u € T' (X).
Similarly for Cs.

Finally, let C' be in the state coherence of gDC (X) x ¢DC (V). Let w be
finite and non-empty such that w <1 C'. Assume that wy, = (). Then certainly
wy; 4 Cy, so wy € T'(X), since C; € C(X). Similarly if w; = 0. So C €
C (X X Y). n
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Proposition 22 If X and Y are hypercoherences, then
gDC (X = Y)=FS(qDC(X),qDC(Y)) .

Proof: In proving proposition 19, we have shown that ¢DC (X — Y) and
FS (¢DC (X),qDC (Y)) have the same underlying qD. We prove now that they
have the same state coherence.

First, let 7 € C(X — Y). We want to prove that 7 is state coherent in
FS(qDC (X),qDC(Y)). Let A € C(X) and let £ be any pairing of 7 and A.
Let

B={f"(2)|(T,2) € &}.

We prove that B € C(Y). We can assume that any 7' € 7 and any = € A is
finite. Let v < B. Let

U= {(z0,b) | I(T,z) € € 29 Cz and (z0,b) € T and b € v} .

It is clear that U is non-empty and finite. Let T' € 7. Let € A be such
that (T,z) € €. Let b € v be such that b € fT(z). Let o C = be such that
(z0,b0) € T. We have (z¢,b) € U, and thus U 9 7. Thus U € I'(X — Y). By
the same kind of reasoning, we can check that U; C A and that U, = v. So
vel(Y).

Next we prove that B = fﬂT(ﬂ A). Let b€ N B. Let

Ag={2o | T, 2) € € 290 C x and (x0,b) € T} .

Again we can check easily that Ag x {b} < 7 and that Ag C A. So Ag is a
singleton {z1} and we get x; C N A and (x1,b) € N7, and we are finished.

Finally, let 7 C FS(qDC (X),qDC (Y)) be state coherent in that qDC.
Let U be finite, non-empty and such that U <1 7. We want to prove that
UeTl (X —Y),so assume that U; € C(X) and consider the set

E={(T,20) €T x U, | 3bE Uy (20,) eTAUY.

Clearly € is a pairing of 7 and U;. Let B = {fT(z0) | (T, z0) € £}. We know
that B € C(Y). But U; 4 B, so Uy € I'(Y). Suppose furthermore that U
is a singleton {b}. We certainly have b € (B, and thus b € fN7(N1). So
there exists 1 C N Uy such that (z1,b) € N7. If 20 is an element of Uy, then
(z0,b) € U (since Uy = {b}), and thus there is a T' € T such that (zq,b) € T
(since U 4 T). But we have seen that (x1,b) € T and that 1 C zq, so 1 = o,
and thus #U; = 1. This achieves the proof of the proposition. "

As a corollary, we get:

Proposition 23 The category coKI(!) is (equivalent to) a full sub-cartesian-
closed category of QDC.
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5 A notion of polarity in hypercoherences

This section contains some simple observations about two subcategories of
HCohL. We feel intuitively that these two classes of objects could be con-
nected to Girard’s polarities (cf. [G3]). There remain, however, some mis-
matches and this intuition could very well be misleading.

Definition 24 A hypercoherence X is positive if I'(X) is hereditary. It is
negative if X+ is positive.

So a positive hypercoherence can simply be seen as a qualitative domain.
There is a very natural direct characterization of negative hypercoherences:

Proposition 24 A hypercoherence X is negative iff I'* (X)) is antihereditary,
that is, if u € I'* (X)) and if v Cf | X| is such that u C v, then v € T (X).

The proof is straightforward.
The states of a negative hypercoherence have a very simple structure:

Proposition 25 If X is a negative hypercoherence, then qD (X)) is a coherence
space.

Proof: Let u C |X]| be such that for all a,a’ € u, {a,a’} € T'(X). Let
v Cf u. If #v =1, then v € T'(X). Suppose #v > 1. Let a,a’ € v be
such that a # ¢'. Since a,d’ € u, we know that {a,a’} € I (X). Since X is
antihereditary, and since {a,a’} C v, we have v € I'* (X). .

Of course, if X is a negative hypercoherence, it is impossible in general to
retrieve X from D (X) (in contrast with what happens for positive hyper-
coherences). This corresponds to the fact that, in that case, the elements of

C (X) are far from being only the bounded elements of Pg (qD (X)).

Proposition 26 Let X and Y be hypercoherences.
o If X and Y are positive, then so are X @Y and X @Y, and X+ is

negative.

o If X and Y are negative, then so are XY and X x Y, and X* is

positive.

The proof is straightforward.

Observe that it is almost true that, when X is positive, !X is positive too.
However, it is false, because any A Cj, qDg, (X) such that § € A belongs to
I'(!1X), and for such an A, the set A\ {}} can perfectly well not be in I (! X).
When A € T'(1X) is such that ) ¢ A, any non-empty subset B of Aisin I' (!1X)
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(for X positive). Here we have an important mismatch between this notion of
polarity and Girard’s; in his framework, ! A is always positive, even when A is
not.

This remark also suggests that the “of course” connective could be decom-
posed in two operations: one operation corresponding to contraction, and the
other one to weakening. We actually have, up to a canonical isomorphism:

X =1x C(X)

where C(X) is the hypercoherence having qDg, (X) \ {0} as web, and the
restriction of C (X) to this web as coherence. This decomposition is motivated
by the fact that the operation X — C(X) maps positive hypercoherences to
positive hypercoherences, whereas the operation X — 1 x X maps negative
hypercoherences to negative hypercoherences.

Definition 25 The full subcategory of HCohL whose objects are the positive
(respectively negative) hypercoherences is denoted by HCohL™ (respectively
HCohL™ ).

Now we define two coercions.

Definition 26 Let X be a hypercoherence. Its associated positive hypercoher-
ence is Xt defined by | XT| = |X| and

I(X*)={uel(X) | Chu vel(X)}.

L
Its associated negative hypercoherence is X~ = ((XJ')+) )

Clearly, Xt is positive and X~ negative. By definition of our polarities, X is
positive (respectively negative) iff it is equal to X* (respectively X ).

Proposition 27 If X is a hypercoherence, then
I (X7) = {uCp |X] T Cu vel(X)}.

The proof is a straightforward verification.

So the operation X +— XT appears as a restriction of T'(X), whereas,
dually, the operation X — X~ is a completion of T'(X).

Now we prove that the negative and positive coercions are functors that
act trivially on morphisms.

Proposition 28 Let X and Y be hypercoherences. Ift : X —o Y, then t :
Xt oYt andt: X~ oY~
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Proof: Tet¢: X —o Y and let w Cf t be such that wy € T'(X*). If
#Hwy = 1, then #w; = 1 because w Cf, t € qD (X —o Y). Let us prove that
wy € T (YT). Let v Cf,, wq and let w’ = {(a,b) € w | b € v}. Then w| Cf, wy,
and thus wj € I'(X), and thus, since v’ C, ¢, we have w) € I'(Y), that is
v € I'(Y). Since this holds for any v Cf_ w,, we have wy € I' (YT).

To prove that t : X~ —o Y, observe that 4 : Y1+ —o X, thus 't :
(YO = (X4)", thus {(*) : X~ —o Y, thatist: X~ — Y™, n

We shall denote by P the functor HCohLL — HCohL™ that maps X to X+
andt: X oY tot: Xt —o Y™, and by N the functor HCohLL — HCohL™
that maps X to X~ and¢: X oY tot: X~ —o Y™,

Now we prove that these functors have a universal property. Let It :
HCohLt — HCohL and I~ : HCohL™ — HCohL denote the inclusion

functors.
Proposition 29 The functor P is right adjoint to I™ and the functor N is
left adjoint to 1~ .

Proof: Let X be a positive hypercoherence and let Y be a hypercoherence.
Ift : X —Y, we know that ¢ : Xt —o Yt that is, since X is positive,
t: X —oY*t. Conversely, if t : X —o YT, we have t : X —0 Y simply because
I'(Y*t) C T(Y). So we have qD(X —Y) = qD (X —o V'), and the first
adjunction holds (in a very strong sense).

Now let X be a hypercoherence and let Y be a negative hypercoherence.
We have

t:X oY iff Yt o Xt
iff Yt —o (XY since Y is negative
iff  t: X" -V

and we conclude that qD (X —oY) =qD (X~ —o Y), and the second adjunc-
tion holds. u

Observe that HCohL™ is equivalent to the category of qualitative domains
and linear stable functions, and that HCohL™ is equivalent to (HCohL*)™,
this equivalence being defined by the functor (_)L, which acts on morphisms
by transposition.

6 A connection with the stable model of lin-
ear logic

We use CS to denote the category of coherence spaces and linear stable func-
tions, which is the well known model of linear logic discovered by Girard
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(see [G2]).

Consider the functor PN = PoN : HCohL. — HCohL". By our previous
observations, we can consider this functor as having CS as codomain. Actually,
if X is a hypercoherence, PN(X) is the hereditary hypercoherence whose web
is | X| and such that u € T'(PN(X)) iff v C} | X| and for all ¢, a’ € u, {a,d'} €
I' (X). (See proposition 25.) So PN(X) can be viewed as the coherence space
defined by: {a,a'} € PN(X) iff {a,a’'} € T'(X). Furthermore, if ¢t : X —0 Y is
a linear morphism in HCohL, then PN(¢) = ¢.

Now we consider CS as a model of linear logic, with linear connectives
interpreted as specified in [G2].

Proposition 30 The functor PN preserves all linear connectives except the
exponentials. More precisely, if X and Y are hypercoherences, then PN(X?)
is the orthogonal of the coherence space PN(X), PN(X ® Y) is the tensor
product of the coherence spaces PN(X) and PN(Y), and so on.

Furthermore, there is a natural rigid embedding from PN(1X) into 'PN(X)
and from PN(?X) into TPN(X)

Proof: Let {a,a'’} € PN(X*). This means that {a,a’} € I'(X*), that is
a=d' or {a,a'} ¢ T(X), but this exactly means that {a,a’} € PN(X)*.

Let {(a,b),(a',0)} € PN(X ® Y). This means that {a,a'} € T'(X) and
{b,'} € T'(Y) (because any coherent set with two elements or less is heredi-
tary), that is {a,a’} € PN(X) and {b,b'} € PN(Y), that is {(a,b),(a’,0")} €
PN(X) @ PN(Y).

Let {(c,2),(c',7)} € PN(X @ Y). This means that : = j and that, if
¢ =1, then {¢,¢'} € T'(X), and similarly for Y if j = 2. So we conclude. The
fact that the inclusion |PN(!X)| C |'PN(X)| defines a rigid embedding is a
corollary of propositions 14.

For the remainder of the connectives, simply use the De Morgan laws. =

It is easy to check that PN is right adjoint to the inclusion functor IT :
CS — HCohL.
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