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Abstract

We extend to the exponential connectives of linear logic the study initiated in [BE00]. We
define an indexed version of propositional linear logic and provide a sequent calculus for this
system. To a formula A of indexed linear logic, we associate an underlying formula A of linear
logic, and a family (A) of elements of |A], the interpretation of A in the category of sets and
relations. Then A is provable in indexed linear logic iff the family (A) is contained in the
interpretation of some proof of A. We extend to this setting the product phase semantics
of indexed multiplicative additive linear logic introduced in [BE0O], defining the symmetric
product phase spaces. We prove a soundness result for this truth-value semantics and show how
a denotational model of linear logic can be associated to any symmetric product phase space.

Considering a particular symmetric product phase space, we obtain a new coherence space
model of linear logic, which is non-uniform in the sense that the interpretation of a proof of
!1A — B contains informations about the behavior of this proof when applied to “chimeric”
arguments of type A (for instance: booleans whose value can change during the computation).
In this coherence semantics, an element of a web can be strictly coherent with itself, or two
distinct elements can be “neutral” (that is, neither strictly coherent, nor strictly incoherent).
Keywords: linear logic, denotational semantics, phase semantics, coherence spaces.

This is a preliminary version of a paper which will appear in Annals of Pure and Applied Logic,

North-Holland.

Introduction

Starting from a study of logical relations in a monoid-enriched coherence space model of linear
logic, we arrived in [BE0O] to the observation that, when logical relations satisfy certain conditions
(closure under restriction), they can be faithfully described in terms of phase semantics, the truth-
value semantics of linear logic. We observed also that, given a formula S of multiplicative additive
linear logic, a J-indexed family of elements of |S|, the set interpreting S in the category of sets



and relations!, can itself be seen as a formula A of an indexed system of multiplicative additive

linear logic. In this system, a formula has a domain: here, the domain of A is .J, the set of indices
of the corresponding family of points of |S|. The formula S itself can be retrieved from A, by
forgetting all domain informations. This system is designed in such a way that it has a natural
truth-value semantics in the product phase spaces? introduced for describing logical relations®. The
key property of this indexed system of multiplicative additive linear logic is that the provability
of A is equivalent to the existence of a proof of S (in multiplicative additive linear logic) whose
denotation in the model of sets and relations contains all the elements of the family of points of |S|
corresponding to A.

In the category of sets and relations, the formulae !S and 7S are interpreted as the set |1S| = |?5]
of all finite multisets? of elements of |S|. So a reasonable idea is to extend the indexed system of
multiplicative additive linear logic by adding exponentials, in such a way that the “key property”
mentioned above remain true for this extended system, with respect to the denotational semantics
of first order propositional linear logic in the category of sets and relations.

This is precisely what we do in the sections 1 and 2 of the present paper, assuming once and
for all given a global set of indices I which is infinite (and denumerable). Our definition of this
indexed logic LL(I) is based on the following observation. Given a set K C I and a formula S of
linear logic, a K-indexed family & = (&) ke of elements of |1S| = |75| can be described as follows:
for each k € K, it suffices to specify a finite subset J; of I and an enumeration o € |S|”* of the
elements of £ (taking repetitions into account). This can be done in such a way that the sets
Ji be pairwise disjoint. If we call J the disjoint union of the sets Ji, and if we denote by « the
element of |S|/ obtained by “gluing together” the families o and by u the function .J — K which
to each j € J associates the unique k& € K such that j € Ji, we see that the family (Jx, a*)rex
which describes the family & can also be presented as follows: it suffices to specify a set J C I, an
element o of |S|” and a function u : J — K in such a way that, for each k € K, the restriction
of @ to w1 (k) be an enumeration of the multiset &. Due to the finiteness of the multisets &, the
function u satisfies the following property: for all k& € K, the set u=! (k) is finite. Such a function
u will be called an almost injective function in the sequel and such a pair (o, u) will be called
a representative of £. Of course, £ admits in general an infinity of different such representatives
(v, w). If we admit that we have been able to represent the J-indexed family « of elements of | 5]
by a formula A of domain J in the system LL(/) that we aim at defining, then it is natural to
accept in this system both formulae !, A and 7, A of domain K, representing the K-indexed family
€ of elements of |!S]| = |75]. So the system LL(I) is defined exactly like the system MALL(Z), with
two additional ways of building indexed formulae: if J, K C I, if A is a formula of domain J and
u is an almost injective function from J to K, then !, A and 7,A are formulae of domain K. To
a formula A of domain J, we can associate easily an underlying formula A of linear logic, as well
as a J-indexed family (A) of elements of |A|. For any formula S of multiplicative additive linear
logic and any set .J, there is a bijection between the J-indexed families « of elements of |S| and

'This category is an extremely simple model of linear logic, where the orthogonal of an object is this object itself.

2A product phase space is a phase space of the shape (POI, 1) where Py is a commutative monoid which has an
absorbing element 0, P{ is the I-product of Py equipped with its product monoid structure induced by the monoid
structure of Py, and L is a non-empty subset of P¢ subject to the following condition: if p € L, any element of PJ
obtained by replacing some components of p by 0 must belong to L.

We also proved completeness for an extension of this notion of phase space.

*1t is an interesting piece of folklore that in this pure relational setting, one cannot replace multisets by sets like
in coherence semantics, where the exponentials admit two natural interpretations: the usual one, where the web of
|E is the set of all finite cliques of E, and the “co-free” one, where the web of |E is the set of all finite multicliques
of E.



the formulae A of MALL(I) whose common domain is J and which satisfy A = S. It is no more
the case in LL(]), but one checks easily that any J-indexed family of |S| can be represented by at
least one formula A of domain J with A = 5. We extend the sequent calculus MALL(I) to LL(I)
in such a way that the “key property” still holds for this extension: given a formula S of linear
logic and a J-indexed family a of elements of | S|, there exists a proof of S in linear logic whose
denotation contains the range of « if and only if there exists a formula A of LL(/) with A = S
and (A) = « and which is provable in this new sequent calculus (and then all such formulae A are
provable). The rules of LL(I) are indexed versions of the usual rules of the linear sequent calculus.
The “key property” expresses the fact that each rule of LL(I) describes in a proof-theoretic way
the denotational interpretation of the corresponding rule of the linear sequent calculus in its purely
relational model.

Then, in section 3, we consider the interpretation of the formulae of LL(/) in product phase
spaces. Given a product phase space M = (P{, 1), one defines for each J C I a local space
M(J) = (P, L(J)) where L(J) is obtained by projecting L on P;. Then a formula of domain .J is
interpreted as a fact of the local space M (.J). For interpreting the exponentials, one observes that,
given an almost injective function « : J — K, one can define a monoid morphism wu, : By — BF
by setting, for p € Py, (u«(p))r = Hjeu—l(k) pj, this definition making sense precisely because u is

almost injective. Then one interprets the formula !, A as (u*F)J‘J‘, where F is the fact interpreting
the formula A in M (J). We prove the soundness theorem which states that, if the formula A of
domain J is provable in LL(I), then the fact interpreting A in the local space M(J) contains the
unit of the monoid Pg. For proving this result, it is crucial to impose to the product phase space
M = (POI, 1) an additional symmetry condition which, roughly speaking, states that L has to be
invariant under all permutations of I.

Next, in section 4, given a symmetric product phase space M = (POI, 1), we construct a category
of M-spaces and endow this category with the structures required for being a denotational model
of linear logic. An M-space is a pair X = (| X], )?) where | X| is a set (the web), and X = ()?J)JQI
is a family of mappings )?J from the J-indexed families of elements of | X| to the facts of the local
phase space M (.J). We require this family to be natural in .J, with respect to injective reindexing®.
Then it is possible to define, for each logical connective of linear logic, a corresponding operation on
M-spaces. On the webs, this operation is simply the corresponding operation in the plain relational
semantics of linear logic: disjoint sums for the additives, cartesian product for the multiplicatives
and set of all finite multisets for the exponentials. As to the natural transformations, the idea is to
perform simply the corresponding operation in the phase space M, the only interesting case being
the exponential case. Given a family & = (&)rex of finite multisets of elements of | X, we take
an arbitrary representative (a,u) of ¢ (with a € |X|” and u : J — K almost injective, for some
J CI). Then, thanks to the naturality of )/(\', the fact !u()?‘](oz)) does not depend on the arbitrary
choices of J, u and a, but only on £, so that it makes sense to set 'X g (€) = 1. (X5(a)). We obtain
a category of M-spaces by defining a notion of clique of an M-space X: it is a subset x of | X| such
that, for any family o € | X|” of elements of z, the fact )?J(oe) contains the unit of the local monoid
P(;]. Then the morphisms from X to Y are defined in the usual way as cliques of X — Y.

We describe last a concrete example of this general construction of a categorical model of linear
logic from a symmetric product phase space, focusing our attention on the monoid Py = {0,1,7}
with 7 satisfying 77 = 7. We define L as the set of all elements p of P{ for which, if p; = 7,
then, p; = 0 for all ¢ # j. In this special setting, we show that the facts of M(J) can be described

®Indeed, reindexing a fact of M(J) by a function u : K — J gives rise to a subset of P{° which is generally not a
fact, unless u is injective.



as three-valued symmetric and anti-reflexive graphs with J as set of vertices. Then AM-spaces
can be described as some new kind of coherence spaces where two elements of the web can have
three different kinds of relation between them: coherence, neutrality and incoherence. The only
requirement on such a non-uniform coherence space is symmetry, and no kind of reflexivity is
necessary: a point of the web can be neutral, coherent or incoherent with itself. The cliques in
these spaces are the obvious generalization to this setting of the usual notion of clique in a coherence
space (in particular, a singleton {a} is not a clique if @ is incoherent with itself). We describe, for
each connective of linear logic, the corresponding operation on non-uniform coherence spaces, and
observe that they are completely similar to the usual ones, but for the exponentials, which are of
a different nature.

As already quoted in [BE00], the present work bears some similarities with a previous work by
Lamarche [Lam95], who had the idea of generalizing coherence spaces and hypercoherences to a
setting where coherence is not simply a boolean valued predicate, but a predicate taking its values
in a quantale (a generalization of phase spaces). The main difference between the present approach
and Lamarche’s constructions is that in our work, instead of associating truth values to sets of
points of the webs, we associate truth values to families thereof. Moreover, a symmetric product
phase space has an additional “horizontal” structure: its underlying monoid is the I-product of
a “l-dimensional” monoid F. This allows facts to be located at different places (sets of indexes)
in the phase space, a crucial feature for our interpretation of the additives, where the facts to be
combined must be located at disjoint places. Winskel in [Win94] considered a variation on the
theme of hypercoherences where coherent sets were replaced by coherent families. He obtained in
that way a model of intuitionistic linear logic (with a non-involutive negation). The notion of M-
space introduced in the present work can probably be seen as a phase-parameterized and logically
symmetrized version of Winskel’s hypercoherences. The importance of localization in the present
setting is reminiscent of analogous phenomena in Girard’s ludics [Gir99, Gir00b, Gir00a]. For
instance, in both settings, the “with” connective of linear logic can be considered as an intersection
or as a cartesian product. However, the precise connection between ludics and indexed linear logic
is yet to be explored. Also, M-spaces, which are webs (sets) endowed with relations of varying
arity subject to a naturality condition, present formal similarities with the setting of Kripke logical
relations of [JT93, OR95], although the precise connection, if any, is not clear yet.

The present paper requires from the reader a general knowledge of the phase semantics and of
the denotational semantics of linear logic, basic references for these topics being [Gir87, GLT89,
Gir95, AC98]. For a better understanding of the underlying intuitions, we advise the reader to
have a look at [BE0O].

1 Indexed linear logic

For us, a function is a triple (J, K, u) (notation u : J — K) where J and K are sets (the domain
and codomain of ) and u is a total functional relation on .J x K. Observe that u is not necessarily
surjective onto its codomain K.

Let J and K be two sets. A function u : J — K is almost injective if, for any k € K, the set
u~ (k) is finite.

Let I be an infinite denumerable set.

If £ and F are sets and o € E7 and 8 € F” (for some J C I), we denote by (a, 3) the element
of (E x F)? given by (, 8); = («;, ;) for each j € J. If L and R are disjoint sets, we denote by
L + R their union. If L, R C I are disjoint and if o € EX and 3 € EE, we denote by o + 3 the
element of F'tF defined by case: (av+ 8)(I) = a(l) if I € L and (a+ B)(r) = B(r) if r € R.



The logical system LL(I) is defined as follows. Each formula A has a domain d(A), which is a
subset of TI.

e The constants T and 0 are formulae of empty domain.
e If J C I, the constants L ; and 1 are formulae of domain .J.

If A and B are formulae of domain .J C I, then A® B and A ¥ B are formulae of domain .J.

If Ais a formula of domain .J and B is a formula of domain K, with J N K =, then A® B
and A & B are formulae of domain J 4+ K (the disjoint union of J and K).

If Ais a formula of domain J and u : J — K is an almost injective function, then !, A and

7.A are formulae of domain K.

The orthogonal A* of a formula A of domain J is the formula of domain .J obtained by applying
recursively the usual De Morgan laws between dual connectives, for instance (1, A)* = 2,(AL).

A sequent of LL(I) is an expression of the shape F; [' where J is a subset of [ and I' is a
(possibly empty) sequence (Ay,..., A,) of formulae of LL(I) such that each A; has domain J (a
sequence [' of formulae satisfying this condition will sometimes be called homogeneous, and we shall
denote by d(I') the common domain of the elements of I, when T" is not empty).

If Ais a formula of LL(Z) with d(A) = J, and if K C I, we define the restriction of A by K,
denoted by A|x, which is a formula of LL(I) with domain J N K, as follows:

e T|x =T and 0|g = 0.

o Lj|lx =Ljnk and 17| = ljnk.

e (A9 B)|lk = Alk®B|k, (A% B)|xk = Alxk ¥ Blr, (A® B)|x = Alk®B|k and (A & B)|x =
Al]{ & Bl]{.

o (LA)[k =1 (Alu—1(kns)) where v: u (K NJ)— KnN.J is obtained by co-restricting u. The
definition of (7, A)|x is similar.

If I' = (Ay,..., A,) is an homogeneous sequence of formulae, one defines I'|x = (Ay|k, ..., AnlK)
so that again, d(T'|x) = d(I') N K. Last, observe that trivially AL|x = (A|x)".

Lemma 1 Let A be a formula of LL(I) and let K and L be subsets of I. Then (A|x)|r. = AlknrL-

The proof is a straightforward induction.
When u: J — K is a bijection, one can define, for each formula A of domain J, a formula u, A
of domain K, as follows:

e u, T =T and u,0=0.
o u,ly= Llg and u,ly=1g.
o u.(A® B) = uA® ueB and u. (A% B) = us AW u.B.

o u.(AD B) =v.A® w.B where v: d(A) = u(d(A)) and w : d(B) — u(d(B)) are obtained by
restricting u (observe that K = u(d(A))+ u(d(B)) as u is bijective). The formula u.(A & B)

is defined in a similar way.



o u.(lyA) =l A and u. (7, A) = 7u0u Al

We describe a sequent calculus for these sequents.
We have the following axioms:

F7ly

and

Fo I, T

this latter making sense only under the assumption that I' is empty, or has empty domain.
The multiplicative rules are without surprises.

F; T
o, Ly

FyT,A F;AB
F)T,AA® B
-, T, A, B
F;T,AX B

In the introduction rules for &, observe that B must have an empty domain.

F;T,A F;T,A
F;T,AD B F;T,Bg A

Next we give the introduction rule for &. Assume that d(A) = L, d(B) = R with LN R = {),

and that d(I') = L + R.
Fr, F|L,A FRF|R,B

We give now the exponential rules. For A a formula of empty domain, 07 denoting the empty

function from () to J, the weakening rule is the following:

;T
FrT,%,A

For A a formula of domain .J, u an almost injective function from J to K, J; and J; two subsets
of J such that J = J; + Ja, u; (for i = 1,2) the almost injective function .J; — K obtained by

restricting u to J;, the contraction rule is the following:

|_I{ F, ?Ul (A|J1)7 ?UQ (A|J2)
'_]{ F, ?uA

Let w : J — K be a bijection. The dereliction rule is the following:

}_I{ F, U*A
F I, 7,A



Let (A;)i=1,...., be a family of formulae and let J; be the domain of A;. Let K be a subset of I
and, foreach i = 1,...,n, let u; be an almost injective function from .J; to K. Let A be a formula of
domain K and let v : K — L be an almost injective function. The promotion rule is the following;:

Fr 7w A, Tu, Ay, A
'_L ?uoulAh sy ?vounAny "UA

which makes sense, because the composite of two almost injective functions is almost injective.
The only structural rule is the exchange rule, which is

by AL, .., A,

|_J Aa(l)a R Aa(n)

where o is any permutation of {1,...,n}.
Last, the cut rule is standard.

FsT A FypA At
F;TLA
To any formula A of LL(T), we can associate in an obvious way a formula of linear logic, simply
by forgetting all the indexing sets and functions. We denote by A this formula of linear logic.

2 The relational denotational model of linear logic

The category of sets and relations is a (compact) model of linear logic, the various connectives
corresponding to the following operations on sets. Let X and Y be sets.

e 0=T=0.

e | = 1= {x} where % is an arbitrary distinguished element.

e Xt=X.

e X &Y =XaY = ({1} x X)U ({2} xY) is the disjoint union of X and Y.
e XRY=XRAY=XXY.

e !X =7X is the set of all finite multisets of elements of X.

In that way, one associates to each formula S of linear logic a set |S|. If & = (Sy,...,S5,) is a
sequence of formulae of linear logic, one defines |®| = |Sy| X - -+ X |S,].

To each proof m of a sequent = ® of linear logic, one associates a subset 7* of |®|. This is
done exactly like in the coherence semantics of linear logic (see [Gir87, AC98]), except that here,
when interpreting the contraction and promotion rules, there is no coherence restriction in building
multisets. We recall this interpretation of proofs in section 6.

If J is a finite set and « is a J-indexed family of elements of a set X, we denote by m(«) the
multiset of elements of X which maps each element of X to its number of occurrences in a:

m(a)(a) = #{j € J | aj = a},

that is, the multiset obtained by forgetting the indexes in the enumeration «. If « is a J-indexed
family of elements of a set X, and if K C J, we denote by «|xg the K-indexed family obtained by
restricting o to K.

To any formula A of LL(I), one associates an element (A) of |A|*?) as follows.



(0) = (T) is the empty family.

(Lg) = (1) is the J-indexed family which is constantly equal to *.
o (A& B)=(A® B) =(A) + (B) = v where we recall that

= { ot i
Tl (B ifedB)

(A®@B) = (A% B) = ((A),(B)) = v where we recall that v; = ((A);,(B);) for all j €
d(A) = d(B).

o (1,A); = (7, A); = m((A)|,~1(;)) which is well defined as u is almost injective.

When I’ = (A4, ..., A,) is a vector of formulae of LL(I) of domain .J, one defines v = (I') € ||’
as

vi = (A1), (An)j) -

Lemma 2 Let S be a formula of linear logic, J be a subsel of I, and let o € |S|J. Then there
exists a formula A of domain J of LL(I) such that A =S and (A) = .

The proof is a straightforward induction, using the obvious fact that, for any finite multiset m of
a set X, one can find a finite subset K of I and an element 8 of X® such that m(8) = m.

Lemma 3 Let I' be an homogeneous vector of formulae of LL(I) of domain J.
o Let K CJ. Then (I'|g) = (I')|k.
o Letu:J — L be a bijection. Then (u.l'); = (I'),-1() for each | € L.

Proof: Straightforward induction. We deal here only with the first part of the lemma, in the
exponential case. So let A be a formula of domain L and let w : L — J be a function. Let
L'=u"'(K) and let v: L' — K be the restriction of u to L’. By definition,

Ak =L(Al) -

Let £ = ((!4A)|k) and let k£ € K. We have

& = mAlz)lv-1(x)
= m(((4)[z)[s-1(x)) by inductive hypothesis
= m((A)],-1(x)) since v (k) C L'
= m({(Dlu1w)
- <‘uA>k
and we are done. .

Proposition 4 Let ® be a vector of formulae of linear logic. Let ® be a proof (resp. a cut-free
proof) of = ®, let J be a subset of I and let o € (7*)7. Let T be any vector of formulae of LL(I) of
domain J such that I = ® and (I') = ¢. Then -5 [ is provable (resp. cut-free provable) in LL(I).



Proof: By induction on w. The induction steps associated to the rules and axioms dealing with
constants are straightforward. The multiplicative rules are easy too. We consider only the additive
and exponential rules, as well as the cut rule.

Assume that the proof ends with

W, S FW,T
FU,S&T

Then ¢ can be written ¢ = (¥,7) where ¥ € |¥|7 and v € |S& T = (|S| +|T])7. We can
write, in a unique way, ¥ = a4 3 with a € |S|F and 38 = |T'|%, for two subsets L and R of .J such
that L + R = J and (¢[z,a) € (m*)X and (¢|gr,B) € (m*)E. Since L = (¥, S & T), we have
I'=(A,A& B), with A=V, A= 5 and B =T. By hypothesis, (I') = (¢,7), so by lemma 3 we
get
(AL, A) = (¢lz, @) and  (Alr, B) = (¢|r, ) .
By inductive hypothesis, the sequents 7, A|r, A and Fr A|g, B are provable and so, applying a
&-rule, the sequent 5 I' is provable.
Assume that the proof ends with a left plus rule:

L
P, S
LU, ST

Then ¢ can be written ¢ = (¢/,7) where ¢ € |T|” and v € |S @ T|” is such that there is a € |S|’
with v; = (1,«;) for each j € J and (y,a) € (m1*)7. As above, one has I' = (A, A @ B) with
A=U (A)=¢, A=S5,(A) =a, B=T and (B) = (. By inductive hypothesis, the sequent
F; I, A is provable, and so, applying a left @-rule, the sequent 7 I'; A @ B is provable.
Assume that the proof ends with a weakening rule:
T
Fw
Fw, 7S

Then ¢ can be written ¢ = (¢, () where ¢ € |¥|7 and ¢ € |?S]” is defined by ¢; = [] (the empty
multiset) for each j € J. As above, one has I' = (A, 7, A) with

A=T and (A)y=7

and

A=S and (7,4)=¢(

for some almost injective function w : d(A) — J. For each j € J, we must have m((A)|,-1¢;)) =[],
that is, w~1(j) must be the empty set. So d(A) = @) and u = 0; (the unique function from ) to .J,
whose graph is empty). We know moreover that ¢ € (7r1*)‘] so that by inductive hypothesis, the
sequent 7 A is provable. We conclude by applying a weakening rule in LL(7).

Assume that the proof ends with a contraction rule:

-
F W, 78,78
W, 25

9



Then ¢ can be written ¢ = (¢,¢) where ¢ € |¥|7, and ¢ € |7S|” is such that each (; can be
written ¢; = &; + &} (sum of multisets) in such a way that the J-indexed family (¢,&,£’) (whose

Jj-th element is (¢;,&;,&%)) belongs to (m1*)?. As above, one has I' = (A, ?, A) with
A=V and (A)=7

and

A=S and (7,4)=¢(

for some almost injective function w : d(A) — J. For each j € .J, we must have m({(A)[,-1(;)) =
& + &} So there exist two disjoint subsets L; and R; of u~!(j) such that L; + R; = u~1(j) and

m((A)z;) =& and m({A)|r,) =&,

that is (using lemma 3)

m((Alr,)) =& and m((Alg,)) =& .

L=JI; and R=|JR;

JE€J jeJ

We set

(observe that these unions are disjoint and that LNu=!(j) = L; for all j € J, and similarly for R).
Let v: L — J be obtained by restricting u to L and w : R — J be obtained by restricting u to R.
Then we clearly have

(7u(Al)) =¢ and  (7,(AlR)) =¢" .

By inductive hypothesis, the sequent -7 A, ?,(A|r), 7w (A|R) is provable and we conclude that the
sequent 7 I is provable by applying a contraction rule in LL(T).
Assume that the proof ends with a dereliction rule:

Ly
-, S
-, 28

Then ¢ can be written ¢ = (1, () where ¢ € |¥]7 and ¢ € |?5]” is such that each (; is a singleton
multiset, that is ¢; = [a;] for some a € |S|/. Moreover, the J-indexed family (¢, a) belongs to
(m1*)?. As above, one has I' = (A, 7, A) with

A=V and (A)=7

and

A=S and (7,4)=¢(

for some almost injective function u : d(A) — J. For each j € J, we must have m({A)[,~1(;)) = [a;].
So u~!(j) must be a singleton for each j € .J, and this means that u is a bijection® from d(A) to J.
So uxA is a formula of domain J, and one has (u.A); = «; for each j € J, by lemma 3. Hence, by
inductive hypothesis, the sequent 5 A, u, A is provable, and we conclude, applying a dereliction

rule in LL(7).

6This explains our choice for the indexed version of the promotion rule: the most obvious solution would have
been to introduce 714 A instead of ?, A (for an arbitrary bijection u), but then this step of the proof of proposition 4

would have been problematic.
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Assume that the proof ends with a promotion rule:

L
L7281 ...,725". S
28 ...,728m,18

Then ¢ can be written ¢ = (&',...,&", &) where, for [ = 1,...,n, ¢ = (f;')jeJ € |78Y7 and
€ =(&);e7 €'S|7. Since I = (?S1,...,257,1S), the sequence of formulae I is of the shape

T = (7, A", ..., 20, A", [LA).

Let us denote by L' the domain of A (for I = 1,...,n) and by K the domain of A, so that
w2 L' = J and v: K — J. For each j € .J, let us set

Lé- = ul_l(]) forl=1,...,n,and K; =v71(j).

We know that
m(<Al>|Lé) = 5; forl=1,...,n,and m((A)|x;) =¢&; .

Let a = (A) € |S|¥. By definition of the denotation of proofs, for each j € .J and each [ =1,...,n,
we can write f; as a sum of multisets indexed by K, f; = Ekek’] fé‘,kv in such a way that, for
each k € K, ( ]1-,,6, e, ;,kvo‘k) € m*. Each set Lé- can thus be written as a disjoint union Lé- =

EkeK] Lé-,k in such a way that m(<Al>|L§,k) = é,k foreachk € K;. Forl=1,...,n,let w;: 'S5 K

be the function which to r € L! associates the unique k € K such that r € ij(k) x- Then we clearly
have v ow; = u;. To conclude observe that

<(?w1 Ala SR ?wnAn’ A)> = (511)(]9)7k7 T fg(k%ka Oék)keK € (ﬂ-l*)K

so that by inductive hypothesis the sequent Fx 7,, Al ..., 7,, A" A is provable. Applying a
promotion rule in LL(I), we conclude that the sequent 7 ?,, A, ... 2, A" ! Ais provable.

The case where the proof ends with an exchange rule is trivial.

Last, assume that the proof ends with a cut rule

L 72
F®,S Fw, st
Fo, U

then ¢ = (x, %) where ¥ € |®]7 and ¢ € |¥]7, and we know that there exists a family o € |S|7
such that (x,@) € (m1*)7 and (¢,@) € (7). Then I' = (A,A) with A = &, A = ¥, (A) = x
and (A) = ¢. By lemma 2, there exists a formula A of LL(]) such that A = S and (4) = «. By
inductive hypothesis, the sequents -7 A, A and -7 A, AL are provable, so, applying a cut rule in
LL(I), the sequent ;5 A, A is provable. .

We now establish a converse to proposition 4.
Proposition 5 Let I' be a vector of formulae of LL(I) of domain J. To any proof (resp. cut-free

proof) o of the sequent 5 I' in LL(I), one can associate a proof (resp. a cul-free proof) o of the
sequent = T in LL such that (T') € (a*)7.

11



Proof: Of course, g is obtained by simply removing all domain informations (indexing sets and
functions associated to the exponentials) occurring in the proof ¢ of F; I'; one clearly obtains
in that way a proof of = ['. The proof of the proposition is just an essentially straightforward
verification.

Let us just check the promotion case. So assume that

['= (Zou, ALy oo Tuou, A, 1, A)

with d(A") = L' (for | = 1,...,n), d(A) = K and v : K — J, w : L' — K almost injective
functions. Let S' = A and S = A. Assume also that the proof ¢ of I' ends with a promotion rule:
01
Fr 2w AL 7, AT A
F7 Zvou A ooy Toou, A™, WA

Let ¢ = ((7,,AY,...,7,, A" A)) € |(?Sl,...,?S”,S)|K For each k € K, ¢ is a vector ¢ =

(h, .. 00, o) where @b € |2S!] (for I =1,...,n) and ¢} € |S|.
Then, by inductive hypothesis, ¢ € (ﬂ*)B. The proof ¢ in LL reads:

S0y
Fost .., 7578
F25t, . 25m 18

Since ¢ € (0,*)%, we have ¢ € (¢*)7 where ¢ is given by 1; = (1, ..., %, ) with, for each
j€J, ¥ =m((¢))rev-1(s)) and ¢} = D kev-1(j) @l for each [ = 1,...,n. But it is easily checked
that ¢» = (I') and we are done. .

From these propositions, and from the cut elimination theorem of linear logic (see [Gir87,
Gir95]), we derive a cheap proof of cut elimination for LL(I).

Proposition 6 Let I' be a sequence of formulae of LL(I) of domain J. If the sequent Fj T' is
provable in LL(I), it is cul-free provable in LL(I).

Proof: Assume that F; ' is provable in LL(/), with possibly some uses of the cut rule. By
proposition 5, there exists a proof 7 of - T in linear logic such that (I') € (7*)7. Let 7/ be obtained
from 7 by applying a cut-elimination procedure to 7, so that #'* = 7*. Then 7' is a cut-free proof
of F I in linear logic, and (I') € (71"*)‘], so by proposition 4, the sequent Fj I is cut-free provable
in LL(Z). .

3 Product phase spaces for LL(/)

We recall first the following notations: if U,V are subsets of a monoid @ (with multiplicative
notation), then UV denotes the set {qq' | ¢ € U and ¢’ € V}, and if ¢ € @), ¢V denotes the set
{a}V.

Let Z(I) be the category whose objects are the subsets of I and whose morphisms are the
injective functions between them.

Given a set E, we denote by Fampg the contravariant functor from Set to Set which to J
associates the set of all J-indexed families of elements of E: Fampg(J) = E7 and if u : J — K,
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Famp(u)(a) = aou, for any a € FX. In the sequel, we shall only consider the restriction of this
functor to Z(I) (which is a small subcategory of Set), and we shall denote Famg(u) by u*, according
to a well established tradition. In particular, if J is a subset of K and w is the corresponding
injection, the associated function u* is just the obvious projection function m; : X — EJ. If
u:.J — K is an injection and if V is a subset of EX| we set uw*V = {u*(a) | a € V}.

If () is a monoid, and if each set Q7 is equipped with the product structure of monoid, then the
functor Famg becomes a contravariant functor from Z(I) to the category of monoids and monoid
homomorphisms.

Let J and K be two subsets of I and let w : J — K be an almost injective function from J
to K. If Q is a commutative monoid, then one defines, in a covariant functorial way, a monoid
morphism u, : Q7 — Q¥ as follows:

(= I »

j€u=t(k)

for p € Q7 and k € K. In particular, when u is a bijection from J to K, one has u, = (uv™%)".
When U C Q7, we set u.l = {u«(p) | p € U}. These two functorial actions are related by the
following easy property.

Lemma 7 If the following diagram in Set is a pull-back

KU J
v’ v
K’ w J!

where K, J, K', J' C I and where u is almost injective, then u' is almost injective, and the following

diagram is commutative.
U,

QJ

Q K

1%

QI&'" ul* QJ'

We shall show that any (symmetric) I-product phase space gives naturally rise to a model of
LL(7), and we shall explore the connection between these phase spaces and the web-based denota-
tional semantics of LL.

We recall that a product phase space M is given by a commutative monoid Fy with an absorbing
element 0, together with a subset L of POI. For J C I, we denote by £ the characteristic function
of .J, that is, the element of B/ given by

(5J)i:{ 1 ified

0 otherwise

We assume moreover that ey L C L for each J C I (this condition will be called “closure under
restrictions”) and that L is not empty (that is, 0 € L). We recall then that any fact F' (we recall
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below what a fact is) of the phase space (POI, 1) satisfies the same closure property, namely that F
is not empty and that e;F C F for each J C I.

From now on, we assume given a product phase space M = (POI, 1).

Let J C I. We denote by L(J) the projection of L on By, L(J) = ms(L). Then (P, L(J))
can in turn be considered as a product phase space, that we call the local product phase space at J
associated to M, and denote by M (.J). We denote by 17 the unit of the monoid P@I, that is 1;-] = 1for

each j € J. When we use the notation U+ for a subset U of POJ, we always mean that the orthogonal
is taken in the local space M (.J), with respect to L(.J), thatis U+ = {p' € P | Vp € U, pp' € L(J)}.
We recall that a subset F of Py is a fact if F++ = F, and we recall also the following properties,
which hold in any phase space, and that we shall use tacitly in the sequel. Let U,V C Py.

o IfU CV then V1t C UL,
o Uttt = Ut

o (UUWV)t=UtnvVt

o (VLY = (UV)*.

In particular, U+ is always a fact, and for showing that U+ C F (when F is a fact), it suffices to
show that U C F.

Lemma 8 Let K C J C I. If F is a fact of M(J), then g (F) is a fact of M(K). Moreover,
(mx (F)* = 7 (F*).
Proof: It results easily from the closure under restriction condition fulfilled by L; see [BE00]. =

We now show how to interpret a formula of LL(I) in M. More precisely, we interpret a formula
A of domain J as a fact of M (.J). Rather than defining the interpretation of formulae by induction,
we shall directly define the logical operations on facts, which obviously amounts to the same thing.

o If J C I, one defines 1(.J) = L(J)*.
e T and 0 are defined as the only non-empty subset of ng (which is a singleton).

e If F and (G are two facts of M(.J), then F®@ G = (FG’)J‘J‘ and F &% G = (FJ‘GJ‘)J'.

e Let L and R be two disjoint subsets of I. Let I be a fact of M (L) and let G be a fact of
M(R). One defines

F&G = {pe PF | n1(p) € F and 7r(p) € G}
= 7 (F)Nmg'(G)
where 77, and wR are the projections from P({"FR to PF and PI respectively. This subset of
PR is indeed a fact of M (L + R). Identifying PLTF with PP x PR, one has F & G = FxG.

Then one sets

FoG=F'&GhH" .
One defines (1, : P — P(JL+R by

ifiel

otherwise

ati={ ¥
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Observe that this map is not a monoid morphism (it does not preserve the unit). And one
defines similarly (g : PF — PgﬁR, Then one easily checks that

F&G = (CL(F)UCr(@) " .
Indeed, ((F)* = 7' (FL).

o Let J,K C 1T and let u :J — K be an almost injective function. Let F' be a fact of M(.J).

Then one sets N

WF = (u,F)*t and ?2,F = (u,FL)™ .

In that way, we associate to any formula A of LL(I) of domain J C I a fact A* of M(J). If
[ = (Al,..., A") is a sequence of formulae having all the same domain .J C I, one defines as usual

its semantics as a fact of M (J) by ['* = (A1)* & ... % (A™)°.

Lemma 9 Let L, R and J be subsets of I such that L and R are disjoint. Let [l : L — J and
r: R — J be almost injective functions. Let I be a fact of M(L) and G be a fact of M(R). Then

WFeLG = !1+,« (F & G)

where [+7r : L+ R — J is the almost injective function defined by cases using l and r in the obvious
way (the “co-pairing” of | and r).

Proof: It is sufficient to show that
(LF)(rG)=(+7r) (F&G).
Let pe Fand g€ G. Let s = (p,q) € PLTR ~ Pl x BF, so that s € F & G. One has
L(p)ra(q) = (I +7).(s)

as easily checked, and the result follows. .

3.1 Projecting and reindexing facts

We first study the behavior of facts under projection.
Let K CJ CI. From lemma 8, one derives easily the following properties.

o 7 (L(J)) = L(K) and nx(1(J)) = 1(K).

o If " and (G are facts of M (K), then g (F®G) = g (F)@7k (G) and ng (F ¥ G) = 7 (F) ¥
7T_K'(G)

o If L+ R=J and F is a fact of M(L) and G is a fact of M (R), then 7 (F & G) = 7xnrn(F) &
ﬂ']{ﬂR(G) and ﬂ']{(F & G) = ﬂ']{ﬂL(F) & W]@'QR(G).

Let w : L — J be an almost injective function and let F' be a fact of M(L). Let R =
u ! (K) C L and let v : R — K be the restriction of u to R. Using lemma 7, one checks that
K (uF) = v (7R(F)), so by lemma 8, 7 (1, F) = L (7r(F)) and 7nx (7, F) = 7, (7r(F)).

Lemma 10 Let A be a formula of LL(I) of domain J C 1. Let K C .J. Then

A|K. = 7TK(A.) .
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It is a consequence of the observations above.

Definition 11 One says that M is symmetric if, for any J, K C I and any bijection « from .J to
K, one has u.(L(J)) = L(K).

Equivalently, M is symmetric iff for any two injections w,v : J — I, one has u* L = v* 1. This
condition is stronger than simply requiring that u,L = L for any bijection w : I — I, which would
be the most natural definition of symmetry. Consider for instance the case where Py = {0,1}. Then
P! = P(I), multiplication corresponding to set intersection. Take for L the set of all co-infinite
subsets J of I (that is, such that I'\ J is infinite). In that case, L is symmetric in the latter sense,
but not in the former: take J € L with infinite cardinality. Let u : J — I be a bijection and let
v:J — I be the inclusion of J into I. Then v*L = P(J) whereas u* L is the set of all subsets of .J
which are co-infinite relative to J.

Lemma 12 Assume that M is symmetric. Let J, K C I and let v :.J — K be a bijection.
o (w,U)t = u, (UL) for any subset U of P
o 2,F =u.F =!,F for any fact F of (P, L(J)).

Proof: We just prove the first statement, the second being an immediate consequence. It will
be enough to prove that u,(UL) C (u,U)" (indeed, using this inclusion for the set u, U/ and for
the bijection u~!, one derives the converse inclusion). So let p € Ut and let ¢ € U, we have
(usp) (uxq) = ux(pq), and pg € L(J). We conclude using the symmetry of M that (u.p)(u.q) €
J_(I{). n

Lemma 13 Assume that M is symmetric. Let v: K — J be an injection. If F is a fact of M(.J),
then v*F is a fact of M(K) and (v*F)* = v*(FY). Moreover, we have the following commutation
properties.

o v*(L(J)) = L(K) and v*(1(J)) = 1(K).
o IfF and G are facts of M(J), then v*(F @ G) = v*F @ v*G and v*(F ¥ G) = v*F ¥ v*G.

o IfJ=L+R,ifF isa fact of M(L) and G is a fact of M(R), then v*(F & G) = I"F & r*G
and v:(F& G) = 'F & r*G where | : v™ (L) = L and r : v"}(R) — R are the injections
obtained by restricting v.

o IfF isa fact of M(R), if u: R — J is almost injective and if L, v’ and v’ are such that the
following diagram is a pull-back (remember that v: K — J is an injection),

K —" J
u’ U
!
J R

then v' is injective, u' is almost injective, v* (1, F) = 1 (v""F) and v*(?,F) = 7, (v""F).
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Proof: Let v: K — J be an injection. Let L = v(K) C J and let w be the bijection K — L
induced by v. Then for any p € Py, one has

v*(p) = w (71 (p)) (1)

so that v*F is a fact of M(K) as soon as F' is a fact of M(J). For the other statements of the
lemma, in view of equation (1) and of the commutation properties of the projection operation with
respect to logical constructions on facts, it suffices to prove them in the case where v is a bijection.
This is done by applying straightforwardly lemma 12. "

As an immediate consequence, we obtain a reindexing lemma which will be essential in the
soundness proof.

Lemma 14 Let A be a formula of LL(I) of domain K C I. Let J C I and let w : K — J be a
bijection. If M is symmelric, one has

(usA)® = u (A%).

3.2 Soundness

We state and prove a soundness theorem for this phase semantics of LL(I).

Theorem 15 Let ' be a sequence of formulae having all the same domain J C I. If the sequent
Fy [ is provable in LL(I), then the fact I'* associated to this sequence of formulae in any symmetric
product phase model M = (P}, L) contains the unit of the monoid Py, that is 17 € T'*.

Proof: The proof is of course by induction on the proof 7 of I in LL(I). The multiplicative cases
are completely standard. The additives are handled like in [BE00], with the only difference that
we work here in the local phase space M (.J). We just deal with the exponential cases.
Assume first that the proof ends with a weakening rule, that is, I' = (A, 7, A) with d(A) =0,
and 7 is of the shape
L7
FrA
Fg A7, A
We have to prove that (A*)* C (29,A4)®, and we know by inductive hypothesis that (A*)* C L(.J).
So it is sufficient to show that L(J) C (?9,A)°*. But we have (05),A* = {17}, as A® is non-empty,
so (79,A)* = {1J}J' = 1(J) and we are done.
Assume now that the proof ends with a contraction rule, that is I' = (A, 71(A|r), 7, (AlRr)), u
is an almost injective function from L 4+ R to .JJ and [ and r are the restrictions of v to L and R
respectively. And 7 is of the shape

STy
Fr A 7(AlL), 7 (AlR)
Fr A, 7,A

It is sufficient to prove that

(CH(Al)* B (7 (AlR))* € (7uA)*

17



so by lemma 9, it is sufficient to prove that
7u((AlL)* @ (AlR)*) € 7u(A%)
and for this, it is clearly enough to prove that (A|r)* @ (A|r)* C A°®. But we have, by lemma 10,

CL(AlL)® = (L(rp(A®%)) =epA® C A®

and we are done.
Assume now that the last rule of the proof is a dereliction rule. So I' = (A, 7, A) where u is a
bijection from K = d(A) to J, and 7 is of the shape

L
Fr A, u A
Fr A, 7, A

It is enough to show that (u.A)® C (7,A4)°%, and this results immediately from lemmas 14 and 12.
Last, assume that the last rule of the proof is a promotion rule. So

['= (Zpowr AL, 0y Zhoun A", 1 A)
and 7 is of the shape
L7
Fr 2pAY . 70m A" A

1
F 2o AL o seun AT LA

By inductive hypothesis, we have, setting F; = A for [ = 1,...,nand G = A®,
W ®...0l0WF, CG,

that is
ul F . umF, CG .

So we have
v (u' W Fy . ouFy) C oG

that is
(vou') Fi...(vou™) F, Cv.G
hence
(vo ul)*Fl co(vou™) F, CLG
and we are done. n

Of course, this particular phase semantics of LL(I) is not complete for this system, as it is
already not complete for MALL(I) (see [BE0O]). We understand better in the present setting the
reason for this incompleteness. Any product phase space validates, for any formula A, the formula
A —o l1qA, which is not provable in LL(I). The second author of the present paper has developped
an extension of LL(I) in which this principle is provable, and for which a completeness theorem
holds with respect to the symmetric product phase spaces, see [Ehr00].
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4 The denotational semantics associated to a symmetric product
phase space

Given a symmetric product phase space M = (POI, 1), we define a category C(M) of M-spaces.
We denote by Fps the contravariant functor from Z(I) to Set which to J C I associates the set

Far(J) of all facts of the local phase model M(J) and which, when J, K C I, associates to each

injection u : J — K the map Fps(u) which to a fact F of M (K) associates the fact u*F of M(.J).

Definition 16 Let M = (P!, 1) be a symmetric product phase space. An M-space is a pair X =
(|X|, X) where | X| is a finite or denumerable set (the web of X) and X is a natural transformation

from the contravariant functor Fam x| to the contravariant functor Fps (both are contravariant
functors from Z(I) to Set).

Spelling out this definition, for any J C I, we are given a function X |X|7 = Fu(J), and
moreover, whenever u : K — .J is an injective function, we require that for any o € | X|7,

~

Xi(u*a) = v (Xs()).

Remark: Since |X|is at most denumerable and since [ is denumerable, there exists J C I and
o € | X |7 such that, for each a € |X|, the set a~'(a) is infinite. Now if K is any subset of I, and
if B € | X|¥, there exists an injection u : K — .J such that 8 = u*(a), and so X () = v*(Xs()).
So it appears that the whole natural transformation X is completely determined by the unique
fact )?J((,V) for such an “w-redundant” enumeration « of |X|. The problem is of course that there
is @ priori no canonical such enumeration of |X|, and that is why an M-space is equipped with a
natural transformation, and not simply with a single fact of sufficiently large arity.

Definition 17 Let X be an M-space. A clique of X is a subset z of | X| such that, for any J C 1
and any o € 27 (that is, any J-indexed family a of elements of z), one has 17 € Xj(a). We denote
by CI(X) the set of all cliques of X.

The set CI(X) contains (), is closed under subsets (if z € CI(X) and y C z, then y € CI(X)),
but has no reason to be closed under directed unions, so that the least fix-point operators which
allow usually to accommodate general recursion in denotational semantics will not be available in
general. One can mention however that, if | satisfies the following property:

if egp € L for each finite subset J of I, then p € L,

then the set of cliques of any M-space is closed under directed unions.

Definition 18 Let X and Y be M-spaces. A morphism from X to Y is a clique of X — Y (see
below the definition of this space).

We now show how to associate an M-space to any formula of linear logic. More precisely, for
any connector of linear logic, we define a corresponding construction of M-spaces (with the same
notations).

If X is an M-space, X+ denotes the M-space defined by |X+| = |X| and, when J C T and

o€ | X7, }IJ(OZ) = )/(\'J(oz)J_. This defines a natural transformation by lemma 13.
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4.1 Additives

One sets |0] = 0, and since (7 is non-empty iff J is empty, one defines entirely 0 by setting
04(0) = {0} (the unique fact of the local model M()). One defines T in the same way, so that
T=0.

Now let X and Y be M-spaces, onesets [ X Y| =|X & Y| = ({1} x | X|)U ({2} x |Y]). Let
v €| X @Y|’. As usual, the family v determines in a unique way two disjoint subsets L and R of
J such that J = L 4+ R and two families, o € |X|"” and 8 € |Y|® such that v = a + 8. Then one
has )?L(oz) € Fum(L) and fR(ﬂ) € Fu(R), and one sets @/J('y) = )/(:L(oz) oy ?R(ﬂ) € Fu(J).

With the same notations, one sets of course )mj('y) = X1(0) & Yr(8) € Fu(J).

4.2 Multiplicatives

One sets |1| = |L| = {*}. Then IJ(*J) = L (J) and 15(*”7) = 1(J) (where %’ denotes the .J-indexed
family which is constantly equal to #).

If X and Y are M-spaces, one sets |[ X @ Y| = |X 3 Y| = |X| x |Y]. If (o, 3) € (| X]| x |Y])7,
one sets mj(oe, 8) = Xs(a) @ Ys(3) and mj(oe, 8) = Xs(a) B Ys(8).

4.3 Exponentials

Let X be an M-space. Then the sets |!X| and |?X| are both equal to the set of all finite multisets of
elements of | X|. Let J C I,and let ¢ € |'X|7. Let K C I, u: K — .J be an almost injective function

and a € | X|¥ be such that, for each j € .J, one has §; = m(oz|u_1 ))- Such a pair (@, u) always exists

and will be called a representative of £&. Then one sets X 76 = LW(Xk(a) = (u*()(K(a)))J—L

This definition does not depend on the choice of a representative of £. Indeed, let (3, v) be another
representative, with v : L — .J almost injective and 3 € |X|". Then there exists a bijection
w: L — K such that wow = v and w*a = 3. We have u, ()?K(oz)) = v ()?L(ﬁ)) since, by naturality
of X, and by the fact that w is a morphism in the category Z(I), one has )?L(ﬂ) = w*()A(K(oz_))
(one also uses the fact that w* = w;!).

Now we prove that the operation IX so defined is a natural transformation. So let u : J/' — .J
be an injection, let & € ['X |7, and let (o, v) with v : K — J and o € |X|¥ be a representative of
&. Considering |!X| as a commutative monoid (for the addition of finite multisets), and identifying
| X'| with the subset of |!X| containing the singleton multisets, saying that («, v) is a representative
of & simply means that v,a = & Now let K/ C T and v’ : K — K, v': K" — J' be such that the

diagram
v

K J
u! u
L

be a pull-back. We have U*&J( ) u
of X, one has u*IX;(¢) = v(Xki(u

v o = uru,a = u*E, so that (v o, v ) is a representative of u*£. Hence u*'/)zj(f) = &J;(u*f)

(1 (XB( ) = !U:(u’*X'K(a)) by lemma 13. So by naturality
1%

4

By lemma 7 one has

applied to the monoid |!X|,
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4.4 The category of M-spaces

When X and Y are M-spaces, the space X —o Y is defined in the usual way: X Y = X1 Y.
A morphism from X to Y in the category C(M) is by definition a subset f of | X —o Y| such that,
for any J C I and any (o, 3) € f7, one has 17 € X/—O\YJ(a,ﬁ), that is )?J(OZ) C i}](/@) It is clear
that one defines in that way a category, with the usual identity morphism (the diagonal) and the
relational composition operation.

One checks easily also that T is the terminal object of this category. We check that X &
Y, together with the two projections 73 = {((1,¢),a) | @« € |X|} C |(X &Y) — X| and 7y =
{((2,0),b) | be |Y]} C (X &Y) — X]| is the cartesian product of the M-spaces X and Y. First,
71 is a morphism. Indeed, let v € (m)” for some J C I. Then v = (§,a), with a € |X|/, and
§ € |X & Y|’ given by §; = (1,«;). Then Am‘](é) = X;(a) by definition of X & Y, and we
are done. Similarly, 75 is a morphism. Now let Z be an M-space. The pairing of two morphisms
f:Z—Xandg:Z—Y inC(M)is given by (f,g) ={(c,(1,a)) | (¢,a) € fTU{(c, (2,0)) ] (¢c,b) €
g}. One checks that it is indeed a morphism of C(M). So let J C I and let § € (f,g)’. Then
one can write, in a unique way, § = (v, a+ () for a unique decomposition J = L+ R, a € |X L
and 3 = |Y|® and v € |Z|”. One has to show that 2](7) C )?L(oz) & }/}R(ﬁ) For this purpose,
it suffices to show that ﬂ'L(Z](')/)) C )?L(a) and similarly for R, but by naturality of Z, one has
7.(Zs(v)) = Zi(z1v), and since (71v,a) € fL and f is a morphism in C(M), we conclude. It
remains to check that if 4 is a morphism Z — X & Y in C(M) such that myoh = f and myoh =g
then h = (f,g), but this is obvious. So the category C(M) is cartesian.

Let f: X — X' and g : Y — Y’ be two morphisms in C(M). We show that f ® g =
{((a,b), (d",V) | (a,d') € f and (b,0') € g} is a morphism X ® Y — X' ®@ Y’ in C(M). So let
J C I and let ((ov, B), (!, 3')) € (f @ g)7, then we have X;(a) C X';(a') and Y;(3) C Y';(3)
since (o, o) € f7 and (8, 8) € g7, and therefore X (o) @ Y7(8) € X'5(e/) @ Y7 5(f') as required.
Checking that the operation @ is functorial and satisfies the required isomorphisms for defining
a symmetric monoidal structure on C(M) is easy. The neutral element for the tensor product is

the M-space 1. The monoidal category so defined is easily seen to be closed, the objects of arrows
from X to Y being of course X — Y. It is also x-autonomous, because X — | is isomorphic to
X+t and Xt = X.

We turn now the exponential ! into a functorial operation from C(M) to itself. Solet f: X - Y
be a morphism in C(M). One defines as usual !f C [!X| x |!'Y] as the set of all pairs (p,v) of
multisets such that there is a finite family (as, bs)s=1,...» of elements of f such that p = [aq, ..., ay]
and v = [by,...,b,]. Let J C I and let ((,€) € (1f)7. Then one can find K C I, an almost
injective function « : K — J, and two families o € |X|® and g € |Y|® such that («,8) € fK,
(o, u) is a representative of ¢ and (3, u) is a representative of €. So '/XJ(C) = (u*)?K(a)_)LL and
E/\J(f) = (u*?K(ﬂ)_)J—J—. One concludes that BZ'J(C) C '/Y\J(f) since we know that )?K(a) C Yk (8)
as we know that f is a morphism in C(M). Checking that the operation on morphisms f +— !f is
indeed functorial is done like in the category of sets and relations.

We exhibit next the comonad structure of this endofunctor. Let X be an M-space. Dereliction
is defined as dx = {([a],a) | « € |X|} C |'X| x |X|. It is a morphism !X — X in C(X). Indeed,
let J C I and let (¢,a) € d¥, that is, a € |X|7 and ¢; = [a;] for each j € J. Then one checks
easily that '/)?J(C) = XJ((,V), for Id, = Id and (e, 1d) is obviously a representative of {. Digging is
defined as px = {(p1 + -+ fn, (1, -« s pon])) | 1y pon € X} C |'X| x [NX], one must prove
that px is a morphism from !X to !'X in the category C(M). So let J C I and let (§,Z) € pgf.
Let K C I, u: K — J be almost injective and ¢ € |'X|¥ be such that (¢,u) is a representative

21



of Z. Then, by definition of px, we have {; = Zu(k):j (x for each 7 € J. Let L C I and
v: L — K be such that (a,v) is a representative of (. Then one checks easily that (a,uov) is a

representative of £&. Therefore, &J(f) = (u*v*)?L(oz))J—J—. But v*)?L(oz_) C (v*)?L(a))LL = 62]&(()

. —~ 1l
So !X 7(€) C (u!Xk(¢)) ="Xs(E) and we are done.

The maps dx and px define natural transformations making commutative the usual comonad
diagrams (see for instance [Lan71]). Moreover, the canonical bijection between |!(X & Y)| and
I'X ®!Y| is an isomorphism in C(M) between the M-spaces (X & Y) and !X ®!Y, due to lemma 9.
This isomorphism is of course natural in X and Y.

So the x-autonomous category C(M), equipped with the comonad !, is a model of linear logic.

Remark: One should be more precise here, invoking typically the work of Bierman [Bie95] who
has stated precisely the categorical axioms to be satisfied by a denotational model of linear logic
(the convenient notion here seems to be the notion of a new-Seely category). The precise checking
that these conditions hold involves two kinds of verifications.

e One must exhibit the morphisms required for making the adjunction between C(M) and the
co-Kleisli category of the comonad ! monoidal. The required morphisms are present here
because they are defined using the canonical isomorphism in C(M) between (X & Y) and
X ®!Y.

e One must check the commutation of a number of diagrams. We do not need to check these
commutations: we know that they hold because the x-autonomous category of sets and rela-
tions (with cartesian product as tensor product and as object of morphisms), together with
the comonad of finite multisets, is a Lafont category in the sense of [Bie95]7, and because, at
the level of webs of M-spaces and of morphisms in C(M) (which are relations between webs),
the operations we define for interpreting linear logic are exactly the same as those which make
the Lafont category of sets and relations a denotational model of linear logic.

Let us insist on that point which makes the non uniform models considered here particularly
simple. Given a formula S of ordinary linear logic, the web |S3;| of its interpretation S}, in C(M)
(defined using inductively the constructions above) does not depend® on M, and is equal to the
interpretation of S in the purely relational model described in section 2. This also holds for proofs:
if 7 is a proof of a sequent = ® in ordinary linear logic, then the interpretation 73, that one obtains
using the categorical operations described above is just the interpretation 7* C |S| of 7 in the
purely relational model, computed as described in section 6. What we have shown is that, for any
symmetric product phase space M, this subset 7 of |S| will always be a clique of S};; each phase
space M singles out a certain class of subsets (M-cliques) of the interpretations of formulae in the
relational model, and this class contains the definable subsets. The situation is thus completely
similar to what happens with logical relations over a fixed semantics, e.g. in [Sie92]: there, by
tuning a relation at type 0 (that is, over finite products of the flat domain of natural numbers), one
determines various classes of accepted elements (called “invariant” elements in this setting) of the
Scott domains interpreting the types. From this viewpoint, the result proven above (each definable
element is an M-clique) is the analogue of the so-called “fundamental lemma of logical relations”.

The connection between these constructions of spaces in the category C(M) and the interpre-
tation of LL(I) formulae in the phase model M is easy to describe. Let A be an LL([) formula

"We do not know who observed for the first time that the category of sets and relations is a model of linear logic,
and we do not know either if this result has ever been published; it is probably a typical piece of folklore in the field.

®In ordinary coherence spaces, the coherence relation is used for constructing webs of the exponentials, this is not
the case here.
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of domain J C I. Then to the underlying linear logic formula A, we associate its M-space in-
terpretation Aj;. As explained above, |A| = |A};]. Moreover, a simple induction on A shows
that

(A3r) 5 ((A)) = A*.

So if the class of symmetric product phase spaces were a complete semantics of LL(I), proposi-
tion 4 (together with lemma 2) would imply that, given a formula S of linear logic, a subset of |S]|
which is an M-clique for all symmetric product phase spaces M is contained in the interpretation
of a proof of S (a form of denotational completeness). The completeness result mentioned at the
end of section 3 indicates that such a denotational completeness result might hold for a reasonable
extension of linear logic (still to be defined).

5 Example: a non uniform coherence semantics

We shall show how this phase semantics can be used for defining a non uniform version of the
standard coherence semantics of linear logic. Uniformity is a feature that most denotational models
of typed A-calculi share. It corresponds to the fact that a function can only be applied to an
argument which is “accepted” by the model (a clique in the sense of definition 17, in the present
setting). In the (multiset-based) coherent semantics for instance, the web of !X is the set of all
finite multicliques of X and not the set of all finite multisets, like in the category of M-spaces. So
for instance the boolean-PCF? term

Az : Bool . if z then (if z then true else false) else (if = then true else false)

will have different uniform and non-uniform semantics. Intuitively, the non-uniform semantics of
this term will contain informations about its behavior when applied to an unreliable “boolean”
which takes the value true the first time it is used and false the second time (in that case, the
resulting value is false) and also when applied to a “boolean” returning first false and then true
(and in that case, the resulting value is true); this information will be absent from the uniform
interpretation. In ordinary coherence spaces, this term will just be interpreted as a version of the
identity function which uses twice its argument. This example will be studied in section 5.3.

5.1 The product phase space Coh;

We start with a simple general observation on phase semantics (see [Laf97]).

Let @ and @' be two commutative monoids and let A :  — @' be a surjective monoid homo-
morphism. Let L be a subset of ' (so that we consider (@', L) as a phase model). We regard
also (Q,h™'1) as a phase model. Then for any subset U of @, one has U+ = A~ ((RU)*). As
a consequence, the map F +— h~1F is a bijective correspondence from the facts of (@', L) to the
facts of (Q,h71L), and one has A~} (F1) = (h_lF)J' and Y (F®G) = (h1F) @ (h~1G), for any
facts F' and G of (@', L1).

Let Py be the three elements monoid {0, 1, 7}, defined by the following equation: 77 = 7. Let
1" ={0,1} C Py. Then the phase space (Fy, L') has exactly three facts, namely

e C = {0}, that we shall call incoherence,

9Boolean-PCF is a simply typed lambda-calculus with Bool as single ground type, two constants true and false of
type Bool and a conditional construction, with obvious typing and conversion rules. This example can also be carried
out in the linear sequent calculus, with Bool represented by the formula 1 & 1.
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e E={0,1}, that we shall call neutrality
e and C = {0, 1,7}, that we shall call coherence.

One checks easily that C* = C and that E* = E and that the tensor and par operations on these
facts are given by the following tables.

and

3
C
E

O m O®
's e Nalle]
A m of|m
sl ala s
sl e Nalle]
A m of|m
sl alalis

@)

Now let n be a non zero integer. Let h : P — Py be given by h(p1,...,pn) = P1...pn, this
function is a surjective monoid homomorphism. So the phase space (Fy, L"), where L" = h11l,
has three facts, namely 2~'C, h~'C and A~'E, that we simply denote by C, C and E, and the tensor
and par operations on these facts are still given by the two tables above.

We define | C P{ as follows: an element p of P{ belongs to L iff, for any family iy,...,1,
of pairwise distinct elements of I, the n-tuple (p;,,...,p;,) belongs to L”, that is, iff the product
pi, - -.p;, is different from 7. Then one checks easily that (P{, L) is indeed a symmetric product
phase space, that we denote by Coh,,.

Continuing along these lines, we would arrive to a n-ary hypergraphical version of coherence
spaces, similar to hypercoherences. For the sake of simplicity, we restrict our attention to the case
n = 2. In that case, an element p of POI belongs to L iff, as soon as p; = 7 for some ¢ € I, one has
p; = 0 for all j # . We first study the structure of facts in a local space Cohy(J) for J C I, and
show that these facts admit a simple graphical description.

Definition 19 A coherence graph G on a set of vertices F is given by two disjoint subsets of the
set of unordered pairs of distinct elements of F called coherence and incoherence of G. Let e,e' € F
be distinct. We write e —~¢ €’ when {e, ¢’} belongs to the coherence of G and e —g ¢’ when {e, €'}
belongs to the incoherence of G. We write € ng ¢’ when {e, ¢’} belongs neither to the coherence nor
to the incoherence of G, and in that case, we say that the pair {e, €'} is neutral.

The following notations are standard in the theory of coherence spaces. Let e,e¢’ € E be distinct.
One writes € &g €' if € ~g € or e ng €', and one writes e <g ¢’ if e —g ¢’ or e ng €. A coherence
graph G on F can be completely described by giving any of the following pairs of symmetric
relations, subject to the following conditions (again, e and ¢’ are distinct elements of E):

e —~¢ and —g with e ~g ¢ = (not e —¢ €')

e —~¢g and ng with e ~¢g ¢’ = (not e ng ¢')

e —¢ and ng with e —g €' = (not e ng €)

e —~¢ and "¢ withe ~ge =>ege

o —¢ and =g withe—ge = e =g¢€

e "¢ and ng withenge = e g€

e =g and ng witheng e = e =ge€.
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Let J C I and let F be a fact of Cohy(J). If j,j' € J are distinct, we denote by =, ; the
projection Py — P2 which maps p to (pj,p;j7). Then by lemma 13, we know that m; ;»F is a fact
of (PZ,m;;L). But clearly (since j # j'), m; ;7L = 1% so that 7; #F can take one of the three
different values E, C or C. Observe also that, since these tree facts are symmetrical (in the sense
that they are invariant under the transposition of the two components of the product PZ), one
has 7; #F = 7 ;F. So we associate to F' the coherence graph g(F) on J given by j ~g(F) ghif
mipF =Cand j—gp jlif mjF = C for 4,5 € J with j # j'. Clearly j ngry J' iff m; i F = E.

Conversely, let G be a coherence graph on J. If j, j’ are two distinct elements of .J, we denote
by €; ; (resp. 7; ;1) the element of Py which takes the value 0 for all element of .J, but for j and j/,
where it takes the value 1 (resp. 7). We associate to G the following subset fy(G) of Péj:

fo(G) = {7 | 4,5 € J, j#3" and j ~g j}U{e;j | ;5" € J,j # j and ing j}
and then we associate to G the fact f(G) = fo(G)*.

Lemma 20 Let J CI. If F is a fact of Cohy(J), thenf(g(F)) = F, and if G is a coherence graph
on J, then g(f(G)) = G.

Proof: We content ourselves with observing that an element p of Py belongs to f(G) iff, for any
distinct 7,5 € J, B
j=gj = mypeC
ingj' = miypek
Then the proof of the lemma follows easily, using the definition of L in terms of 1.2 = E, and with
the help of lemma 8. "
Through this bijective correspondence, any operation on facts in the product phase space
Coh;(J) can be translated into an operation on coherence graphs. We describe now the corre-

sponding operations on coherence graphs (with the usual logical notations). We deal first with the
multiplicative and additive connectives.

e Let J C I and let G be a coherence graph on .J. Then then G1 is the coherence graph on J
defined by: j ~g1 j'if j—g j and j—g1 j'if j ~g j.

e Let J C I. The coherence graph L; on J is defined by j n, , j' for any j,j' € J with j # j.
And the coherence graph 1; is identical to L.

e Let J C I andlet G and H be two coherence graphs on J. Then G® H is the coherence graph
on J defined as follows: j Tggw j' iff j Og j" and j Oy j', and j ngga j' iff j ng j and
Jny g for j, 5" € J with j # 5.

e [et J C I and let G and H be two coherence graphs on J. Then G &% H is the coherence
graph on J defined as follows: j —gny j'iff j —~g j' or j —y j', and j ngxy j' iff j ng j'
and j ny j' for 5,5 € J with j # 5.

e Both 0 and T are the unique coherence graph with empty set of vertices.

e Let I and R be two disjoint subsets of I, let G and H be coherence graphs on L and R
respectively. Then G @& H is the coherence graph on J = L + R defined as follows (for
J,j € Ly with j # j"): j Soen j'iff (4,7 € L and j &g j') or (j,j' € R and j &y j'), and
Jngen J iff (4,7 € L and jng j') or (4,7 € R and j ny j').

25



e Let L and R be two disjoint subsets of I, let G and H be coherence graphs on L and R
respectively. Then G & # is the coherence graph on J = L + R defined as follows (for
Jy3h e J, with i £ 4): j =gen 7' (j,7' € L and j =g j') or (4,7 € R and j =y j'), and
Jngen 7 iff (4,7 € L and jng ') or (4,5 € R and j ny j').

Now we turn to the exponentials. We need a definition and an easy lemma.

Definition 21 Let let G be a coherence graph on a subset J of I. One says that G is a clique if
for any distinct j,j’ € J, one has j "¢ j7'. One says that G is a star-shaped clique if G is a clique
and if, moreover, there exists an element j € J such that j —~¢g j' for any j' € J, with j # j'.

These definitions are motivated by the following easy lemma.

Lemma 22 Let J C I and let F be a fact of Cohy(J).
o g(F) is a clique iff 17 € F

o g(F) is a star-shaped clique iff F' contains an element p such that HjeJ p; = 7, that is such
that p; # 0 for all j € J, and there exists j € J such that p; = T.

Given a coherence graph G on J C I and an almost injective function w : J — K (where K C I),
we have to define a coherence graph !,G on K. Let F be the fact of Cohy(.J) corresponding to G
(thatis F =f(G)). Then the coherence graph !, G is given by !,G = g(!, F'). We describe this graph
explicitly.

So let k,1 € K be two distinct elements of K. Let Ky = u~!(k) and Ky = u~1(l). We have

mrt(WF) ={([] i [[ i) Ip € Py

€K €K

Let L = K1+ K3 and let H be the coherence graph obtained by restricting G to L. By lemma 22,
k <,¢ Liff H is a clique, and k£ —~y g [ iff H is a star-shaped clique. To summarize,

o Let u:.J — K be almost injective (with J, K C I) and let G be a coherence graph on .J.
Then !,G is the coherence graph on K defined as follows (for k,1 € K with k #1): k ©i1,¢ 1if
the restriction of G to u=({k,}) is a clique, and k —~1,¢g [ if the restriction of G to ™ ({k,1})
is a star-shaped clique.

5.2 Non uniform coherence spaces

We give now a direct description of the category C(Coh;) induced by this symmetric product phase
space Cohs.

Definition 23 A non-uniform coherence space is a triple £ = (|E|, ~g , —g ) where |F]| is a
finite or denumerable set (the web of F') and —~p and —pg are two binary symmetric relations
on |E| called respectively coherence and incoherence. The only requirement on these relations is
that they must have an empty intersection: one cannot have simultaneously ¢ ~g ¢’ and a — g o/,
when a,a’ € |F|.
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Observe in particular that we do not require these relations to be anti-reflexive, as in the standard
coherence semantics of linear logic. Later, we shall exhibit situations where these relations are
neither reflexive, nor anti-reflexive. Coherence graphs and non-uniform coherence space are almost
the same notions, they differ only by the fact that, in a non-uniform coherence space, the relations
are not restricted to pairs of distinct elements of the web.

We adopt for non-uniform coherence spaces exactly the same notational conventions as for
coherence graphs, and we observe that, in the same way, they can be specified by giving various
pairs of relations on the web.

Definition 24 Let E be a non-uniform coherence space. A cligue of F is a subset x of |E| such
that, for any a,a’ € z, one has a Tp d'.

Observe in particular that if z is a clique of F and if @ € z, one must have a CF a.

e If F is a non-uniform coherence space, F* is the non-uniform coherence space defined by
|EL| = |E], and @ ~p1 @' iff @ —g @’ and @ —p1 o iff @ ~g @'. So that in particular
angL d iff ang d'.

e If ¥ and F are non-uniform coherence space, one defines a non-uniform coherence space
FE — F as follows: |E — F| = |E| x |F|, and when (a,b), (a/,t') € |EF — F|, one says that
(a,b) ng_p (a/,b") iff @ ng @' and b np V', and one says that (a,b) ~p_r (¢',V) iff « — 5
orb —~pb.

Observe that if  is a clique of E and z/ is a clique of E*, the set « Nz’ can have more than one
element. However, if a,a’ € 2 N a', then a ng o.

We define now the category nuCS of non-uniform coherence spaces. Its objects are the non-
uniform coherence spaces, and if £ and F are non-uniform coherence spaces, a morphism from F
to F is a clique of the non-uniform coherence space ' — F defined above. The identity at F is
as usual the diagonal subset {(a,a) | a« € |E|}, and if s is a clique of £ — F and ¢ is a clique of
F — G (where E, F and G are non-uniform coherence spaces), one defines as usual

tos=A{(a,c) €|F —G||3be|F| (a,b) € sand (bc) €t} .

One checks easily that the identity and that ¢ o s are cliques in the corresponding non-uniform
coherence spaces. When s is a clique of F¥ — F, one writes s: . — F.

We construct an isomorphism between the category C(Coh;y) and the category nuCS.

First, given a non-uniform coherence space E, we define for each J C I a function ps : |E|7 —
Fcon, (J). If a € |E|7, we define the coherence graph G, on .J as follows: when j, j' € .J are distinct,
the relation between j and j' in G, is the same as the relation between «; and o in E. Then
we set py(@) = f(Ga). One checks that the family of functions (ps)scr is a natural transformation
from the functor Fam g to the functor Foon, (from the category I(Ij to the category Set), that is,
when u : K — J is injective one has u*f(G,) = f(Gyuro). We denote by ET the Cohy-space (|F], p).

Conversely, let X be a Cohjy-space. We define a non-uniform coherence space X~ as follows.
First, |[X~| = |X|. Then, let a,a’ € |X|. Let 4,5 € I be distinct. Then {(j,a), (§,a')} € | X|{"}
and so )/(\'{jﬁj/}({(j, a), (j',a’)}) is a fact of the local phase space Cohy({7,j'}), which is isomorphic
to the phase space (P2, 1?). So we decide that ¢ —~x- o' if X{j,j/}({(j, a),(4,a")}) = C and that
a—x-da if )?{j,j/}({(j, a), (j,a')}) = C. By the naturality requirement on X, this definition does
not depend on the choice of j and j'.
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Lemma 25 If E is a non-uniform coherence space, then (Et)” = F and if X is a Cohy-space
then (X_)+ =X.

Proof: We just check that (X_)+ = X. Solet J C T and let a € |[X|?. Denoting by G, the
coherence graph associated to ain the non-uniform coherence space X, it will be enough to show
that G, = g(X(a)). So let j,j' € J be distinct. Then j —~g,_ j’ holds iff a; —~x- «j/, which in
turn holds iff )A({j,j/}({(j, a;), (7', a;1)}) = C. Denoting by u the injection of {j, 7'} in J induced by
the inclusion {j,j'} C J, this latter equation holds iff X; ;n(u*a) = C, that is, iff u* X (o) = C by
naturality of X. Now this latter equation is equivalent to j “e(X () j', as announced. Of course,
the same reasoning applies to j —¢_ j' and to j ng, j'. .

Moreover, the notions of clique associated to non-uniform coherence spaces and to Cohs-spaces
coincide. More precisely:

Lemma 26 Lelt E be a non-uniform coherence space. Let x C |E|. If x is a clique of the non-
uniform coherence space E, then x is a clique of the Cohy-space Et. Let X be a Cohy-space and
let x C|X|. If x is a cliqgue of the Cohy-space X, then x is a clique of the non-uniform coherence
space X ~.

The proof is a straightforward verification.

So these two operations define an isomorphism between the categories nuCS and C(Coh,).
The category nuCS inherits, through this isomorphism, the structures and properties which make
C(Cohy) a model of linear logic. We describe directly some of the corresponding space construc-
tions.

Let F and F be non-uniform coherence spaces. The tensor product E® F is given by |E® F| =
|E| x |F|, and when (a,b), (a/,b’) € |E ® F|, one says that (a,b) nggr (¢/,b") iff a ng o’ and bng ¥V,
and one says that (a,b) Spgr (¢/,V) iff « ©p ¢ and b TF b,

If £ and F are non-uniform coherence spaces, one defines Fy & FE, by |E1 & Fz| = ({1} x
|Eq|)U ({2} X | E2|), and then, for (7, a), (j,b) € |Ey & Esl, one says that (¢,a) ng, &5, (j,0) ff ¢ =j
and @ ng, b, and that (¢,a) — g5, (j,0) iff ¢ = j and @ —g, b.

If F'is a non-uniform coherence space, one defines !F as the non-uniform coherence space having
as web the set of all finite multisets of elements of |F/|. This makes the main difference between
the non-uniform coherence space semantics and the standard coherence semantics of linear logic.

Definition 27 Let F be a non-uniform coherence space and let g be a multiset of elements of
|E|. Let J be a set and let @ € |E|’ be such that m(a) = p (that is, « is an enumeration of y).
Then let G, be the coherence graph on J defined by (for j,j" € J such that j # j') j —~¢, ' iff
a; —~g aj and j —g¢, j iff aj —g aj. One says that p is a multiclique if the coherence graph G, is
a clique, and one says that p is a star-shaped multiclique if G, is a star-shaped clique. If g € |E|K
is another enumeration of the same multiset u, the coherence graphs G, and Gg are isomorphic, so
this definition does not depend on the choice of the particular enumeration « of pu.

Observe that if [ay, ..., a,] is a multiclique of F, then {ay,...,a,} is not necessarily a clique of
E (the converse is true). For instance, if @ € |E|, then [a] is always a star-shaped multiclique of F,
even if @ is not coherent with itself. In that latter case, of course, [a, a] is not even a multiclique.

We obtain the following definition of coherence in !E (expressed with many redundancies). Let
w,v € |'E|, then

e 1 Cp v if p+ v is a multiclique,
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o iy —~ypvif p+vis astar-shaped multiclique,
o ungvif g+ v is a multiclique which is not star-shaped and
e i —pvif p+ v is not a multiclique.

Just for playing a little with this definition, we check directly that pg = {(3°,_, w1, [, - -+ o)) |
Eise-oyfin € |'E|} C|'E — 'E| is indeed a clique in |E — 'E.

let fi1y v oy by fpg1 - - fin € |'E], and assume that 77, i D012, 44 pr- This simply means
that Y7, w is a multiclique in £. We have to prove that [uq,..., ;] Tug [frs1 - - - fn], that is,
that [py, ..., its] is a multiclique in !F. But this holds, since clearly, for &,/ € {1,...,n} with k # [,
one has that pr 4 g is a multiclique of E, since Y,y is a multiclique in E. Assume moreover
that >_ i g Z?:r-l—l pi. This means that Y ),y is a star-shaped multiclique in E. Let J
be a set and « € |E|” be an enumeration of the multiset Y, 7. One can find pairwise distinct
subsets Ji, ..., J, of J such that };—, J; = J and such that, for each [ € {1,...,n}, the restriction
of o to J; be an enumeration of y;. Let ¢ € J be such that, for any j € J with j # ¢, one has
a; —~g «;. Let k be the unique element of {1,...,n} such that ¢ € Ji. Then for any [ € {1,...,n}
with [ # k, it is clear that uy + p; is a star-shaped multiclique of F, that is ur —~ig i, and so
[i41, - - -y ftp] is & star-shaped multiclique of !F, as required.

5.3 Concrete examples

To illustrate the difference between the standard coherence semantics and the non-uniform coher-
ence semantics presented above, we describe a few simple concrete spaces.

The first thing to observe is that, as long as a formula S of linear logic does not contain
exponentials, the non-uniform coherence space F associated to S satisfies the following property:
for any a,a’ € |F|, one has a ng o’ if and only if « = @, so that F can be considered as a standard
coherence space, and is actually identical to the coherence space associated to S by the usual
coherence semantics.

However, as soon as S contains exponentials, its semantics in non-uniform coherence spaces
becomes radically different from its standard interpretation in coherence spaces, where, thanks
to uniformity, neutrality and equality are identical, even in the presence of exponentials. This is
illustrated by the two following examples.

e The non-uniform coherence space F as well as the coherence space E' interpreting the formula
'1 have the set of all non negative integers N as web. For n,m € N, one has n —g/ m as
soon as n # m. But n —~g m if n 4+ m = 1, and, in all other cases, n ng m. So already in
that simple case, ng is not an equivalence relation (but is reflexive).

e In the non-uniform coherence space F interpreting !(1 & 1), whose web is (in bijection with)
N x N, one has (n,n') —g (n,n’) as soon as n # 0 and n’ # 0, so in that case, the set
{(n,n")} is not a clique of F.

The next example illustrates why the possibility for elements of webs of being incoherent with
themselves is essential in this non-uniform setting. By Bool, we denote the space of booleans, whose
web is {true, false} with each point neutral with itself and true —p, false. The boolean-PCF term

t = Az : Bool . if z then (if 2 then true else false) else (if  then true else false)
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will be interpreted as a clique of 'Bool — Bool. For computing this clique, consider first the
“linearized” version of this term

t' = Az, y : Bool . if z then (if y then true else false) else (if y then true else false)
whose semantics is the following clique in 'Bool ® !Bool — Bool:

{(([true], [true]), true), (([true], [false]), false), (([false], [true]), true), (([false], [false]), false) } .

The interpretation of ¢ is obtained by composing ¢’ with the contraction morphism ¢ : !Bool —o
'Bool ® 'Bool, and it is here that the difference between uniformity and non-uniformity appears
(the interpretation of ¢ in uniform and non-uniform coherence spaces are indeed identical). The
non-uniform version of ¢ is

o = {([true, true], ([true], [true])), ([true, false], ([true], [false])),
([false, true], ([false], [true])), ([false, false], ([false], [false])) }

where we have written “[true, false]” and “[false, true]” just for pedagogical reasons, but of course,
these multisets are equal. The uniform version of c¢ is

co = {([true,true], ([true], [true])), ([false, false], ([false], [false]))}

simply because [true, false] does not belong to the web of the standard (uniform) coherence space
interpretation of !Bool. So the non-uniform interpretation of ¢ is

t* = {(([true, true]), true), (([true, false]), false), (([false, true]), true), (([false, false]), false) } ,
whereas its uniform interpretation is

{(([true, true]), true), (([false, false]), false)} .

Although true —p,) false, the set t* is a clique, and this is possible (in view of the coherence
in !Bool —o Bool) only because [true, false] “— g0l [true, false].

We have seen in this example a difference between uniformity and non-uniformity which results
from the difference between the interpretations of the contraction rule in both setting. Similar
example can be obtained using the difference between the uniform and the non-uniform interpre-
tations of the promotion rule. All the other rules are interpreted in the same way in both settings.

6 Appendix: the interpretation of proofs in the category of sets
and relations

To each proof 7 of a sequent in first order propositional linear logic - ®, we associate a subset of
7 of the set |®| defined in section 2, by induction on 7.

Tensor unit: if the proof 7 is

F1
then 7* = {x}.
With unit: if the proof 7 is

Fo, T
then 7 = (.
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With: if the proof 7 is

- )
-0, S U, T
FU,S&T

then 7 = {(¢, (1,a)) | (¢,a) € m*)} U {(c, (2,b)) | (¢,b) € m*)}.
Left plus: if the proof 7 is
-
FW,S
EEY
then 7* = {(¢, (1,a)) | (¢,a) € m1*)}. And similarly if 7 ends with a right plus rule.
Par unit: if the proof 7 is

.ﬂ-l

-
FUo L
then 7* = {(¢, %) | ¢ € m*}.
Par: if the proof 7 is
7
FWU,S,T
FU,.SH¥T
then 7* = {(¢, (a,b)) ]| (¢, a,b) € 71*}.
Tensor: if the proof 7 is
X 7
Fw, S FOe,T
FU.,0,5T

then 7* = {(¢,d, (a,b)) | (¢,a) € m1*) and (d,b) € 7*}.
Weakening: if the proof 7 is

.ﬂ-l

-
Fw, 78
then 7* = {(¢,[]) | ¢ € 7 *}.
Contraction: if the proof 7 is
: ™
-w,78,79
Fw, 78

then 7* = {(c,z +y) | (¢, z,y) € m1*} where & + y denotes the sum of the multisets z and y.
Dereliction: if the proof 7 is
-
FW,S
Fw, 7S
then 7 = {(¢,[a]) | (¢,a) € m1*}.
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Promotion: if the proof 7 is

LT
Fost ... 78k s
k28t ..., 28k 18

then 7* is the set of all k¥ + 1-tuples of the shape ( ?:1 m}, .. .,Z;;l ac;?, [a1,...,a,]) where

((le, .. .,x;?, a;))j=1,..n is any finite family of elements of 7 *.

The exchange rule does not deserve particular mention.

Cut: if the proof 7 is

L 72
Fw,S Fo,st
FU,0

then 7* = {(¢,d) | Ja (c,a) € 71* and (d, a) € m3*}.
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