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Abstract. Models of the untyped λ-calculus may be defined either as
applicative structures satisfying a bunch of first order axioms, known
as “λ-models”, or as (structures arising from) any reflexive object in
a cartesian closed category (ccc, for brevity). These notions are tightly
linked in the sense that: given a λ-model A, one may define a ccc in which
A (the carrier set) is a reflexive object; conversely, if U is a reflexive
object in a ccc C, having enough points, then C(1, U) may be turned
into a λ-model.
It is well known that, if C does not have enough points, then the ap-
plicative structure C(1, U) is not a λ-model in general.
This paper:
(i) shows that this mismatch can be avoided by choosing appropriately

the carrier set of the λ-model associated with U ;
(ii) provides an example of an extensional reflexive object D in a ccc

without enough points: the Kleisli-category of the comonad “finite
multisets” on Rel;

(iii) presents some algebraic properties of the λ-model associated with
D by (i) which make it suitable for dealing with non-deterministic
extensions of the untyped λ-calculus.

Keywords: λ-calculus, cartesian closed categories, λ-models, relational
model.

1 Introduction

The following citation from [4, Pag. 107] may be used to introduce this paper:
“In this section it will be shown that in arbitrary cartesian closed categories

reflexive objects give rise to λ-algebras and to all of them. The λ-models are then
those λ-algebras that come from categories “with enough points”. The method
is due to Koymans [...] and is based on work of Scott.”

The point of the present work, in its first part, is to argue that the “enough
points” condition can be relaxed, thus obtaining a λ-model from any reflexive
object in a cartesian closed category (ccc, for short), via a definition of the carrier
set of this λ-model which is somehow “more generous” than the canonical one.

Let us recall briefly what λ-algebras and λ-models are, taking for granted
the notion of combinatory algebra (A, ·,k, s):
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– A λ-algebra is a combinatory algebra satisfying the five combinatory axioms
of Curry [4, Thm. 5.2.5].

– A λ-model is a λ-algebra satisfying the Meyer-Scott (or weak extensionality)
axiom: ∀x (a·x = b·x) ⇒ ε·a = ε·b where ε is the combinator s·(k·((s·k)·k)).

Of course, weak extensionality is subsumed by extensionality, expressed by
the axiom ∀x (a · x = b · x) ⇒ a = b, so the notions of extensional λ-algebra and
extensional λ-model coincide.

We claim that any reflexive object in an arbitrary ccc gives rise to a λ-model,
by an appropriate choice of the underlying combinatory algebra.

Before going further, let us remark that our construction does not give any-
thing new for the categories of domains generally used to solve the domain
inequality U⇒U C U (see, e.g., [20, 19, 18]), which do have enough points.

In order to illustrate our claim, let us recall the classic construction of the
λ-algebra associated with a reflexive object, and point out where the “enough
points” hypothesis comes into play. We recall [4, Pag. 108] that an object U has
enough points if for all f, g ∈ C(U, U), whenever f 6= g there exists a morphism
h ∈ C(1, U) such that f ◦ h 6= g ◦ h.

If U = (U, Ap, λ) is a reflexive object in a small ccc C, and A is an object
of C, then AU = C(A, U), may be equipped with the following application
operator: a • b = ev ◦ 〈Ap ◦ a, b〉. The applicative structure (AU , •) is canonically
endowed with constants k, s in such a way that (AU , •,k, s) is a λ-algebra, and
this algebra is a λ-model if U has enough points.

Hence, the choice A = 1 appears as canonical (and it is actually adopted
for instance in [4, 1]) if U has enough points, since in that case the Meyer-Scott
axiom holds independently from the choice of A.

In the general case, keeping the above definition of application, we can prove
weak extensionality if A is chosen in such a way that the following diagram is
“quasi-commutative”, in the sense expressed by Lemma 1, for some f, g:

A
〈Id,g〉 // A × U

A × U

f

OO

Id
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The terminal object is no longer a candidate, neither are the finite products Un,
despite the fact that Un is a retract of U , since the use of an encoding in the
definition of f , forces to pair g with the correspondent decoding instead of Id.

We will show in Section 3 that a suitable choice is:

– A = UVar: the countable product of U indexed by the variables of the λ-
calculus, whose elements may intuitively be thought of as environments,

– g = πz : the projection corresponding to a variable z,

– f = ηz: an “updating” morphism which leaves unchanged the values of all
the variables, but z whose new value is determined by applying π2.



This approach asks for countable products in C. In practice, this hypothesis
does not seem to be very restrictive. Nevertheless, we do claim full generality for
this construction. The price to pay is having a quotient over

⋃

n∈NC(Un, U) as
carrier set of the λ-model (this approach is sketched in Section 3.2).

Having set up the framework allowing to associate a reflexive object (without
enough points) of a ccc with a λ-model, we discuss in Section 5 a paradigmatic
example to which it can be applied.

In denotational semantics, ccc’s without enough points arise naturally when
morphisms are not simply functions, but carry some “intensional” information,
like for instance sequential algorithms or strategies in various categories of games
[6, 2, 16]. The original motivation for these constructions was the semantic char-
acterization of sequentiality, in the simply typed case. As far as we know, most
often the study of reflexive objects in the corresponding ccc’s has not been under-
taken. Notable exceptions are [11] and [17], where reflexive objects in categories
of games yielding the λ-theories H∗ and B, respectively, are defined.

This deserves probably a short digression, from the perspective of the present
work: there is of course no absolute need of considering the combinatory algebra
associated with a reflexive object, in order to study the λ-theory thereof; it is
often a matter of taste whether to use categorical or algebraic notations. What
we are proposing here is simply an algebraic counterpart of any categorical model
which satisfies weak extensionality.

A framework simpler than game semantics, where reflexive objects cannot
have enough points is the following: given the category Rel of sets and relations,
consider the comonad Mf (−) of “finite multisets”. MRel, the Kleisli category
of Mf (−), is a ccc which has been studied in particular as a semantic framework
for linear logic [12, 3, 7].

An even simpler framework, based on Rel, would be provided by the functor
“finite sets” instead of “finite multisets”. The point is that the former is not
a comonad. Nevertheless, a ccc may eventually be obtained in this case too,
via a “quasi Kleisli” construction [15]. Interestingly, from the perspective of
the present work, these Kleisli categories over Rel are advocated in [15] as the
“natural” framework in which standard models of the λ-calculus like Engeler’s
model, and graph models [5] in general, should live.

As a matter of fact, in Section 5 we define a relational version, in MRel, of
another classical model: Scott’s D∞. Instead of the inverse limit construction,
we get our reflexive object D by an iterated completion operation similar to the
canonical completion of graph models. In this case D is isomorphic to D⇒D by
construction.

Finally, in Section 6 we show that the λ-model MD associated with D by
the construction described above has a rich algebraic structure. In particular,
we define two operations of sum and product making the carrier set of MD a
commutative semiring, which are left distributive with respect to the application.
This opens the way to the interpretation of conjunctive-disjunctive λ-calculi [9]
in the relational framework.



2 Preliminaries

To keep this article self-contained, we summarize some definitions and results
used in the paper. With regard to the λ-calculus we follow the notation and
terminology of [4]. Our main reference for category theory is [1].

2.1 Generalities

Let S be a set. We denote by P(S) the collection of all subsets of S and we write
A ⊂f S if A is a finite subset of S. A multiset m over S can be defined as an
unordered list m = [a1, a2, . . .] with repetitions such that ai ∈ S for all i. For
each a ∈ S the multiplicity of a in m is the number of occurrences of a in m.
Given a multiset m over S, its support is the set of elements of S belonging to
m. A multiset m is called finite if it is a finite list. We write [] for the empty
multiset and m1 ] m2 for the union of the multisets m1 and m2. The set of all
finite multisets over S will be denoted by Mf (S).

We denote by N the set of natural numbers. A N-indexed sequence σ =
(m1, m2, . . . ) of multisets is quasi-finite if mi = [] holds for all but a finite
number of indices i; σi denotes the i-th element of σ. If S is a set, we denote by
Mf (S)(ω) the set of all quasi-finite N-indexed sequences of multisets over S. We
write ∗ for the N-indexed family of empty multisets, i.e., ∗ is the only inhabitant
of Mf(∅)(ω).

2.2 Cartesian closed categories

Throughout the paper, C is a small cartesian closed category (ccc, for short).
Let A, B, C be arbitrary objects of C. We denote by A&B the product3 of A
and B, by π1 ∈ C(A&B, A), π2 ∈ C(A&B, B) the associated projections and,
given a pair of arrows f ∈ C(C, A) and g ∈ C(C, B), by 〈f, g〉 ∈ C(C, A&B) the
unique arrow such that π1 ◦ 〈f, g〉 = f and π2 ◦ 〈f, g〉 = g. We will write A⇒B
for the exponential object and evAB ∈ C((A⇒B) & A, B) for the evaluation
morphism4. Moreover, for any object C and arrow f ∈ C(C &A, B) we write
Λ(f) ∈ C(C, A⇒B) for the (unique) morphism such that evAB ◦ (Λ(f)&IdA) =
f . Finally, 1 denotes the terminal object and !A the only morphism in C(A,1).
We recall that in every ccc the following equalities hold:

(pair) 〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉 Λ(f) ◦ g = Λ(f ◦ (g × Id)) (Curry)
(beta) ev ◦ 〈Λ(f), g〉 = f ◦ 〈Id, g〉 Λ(ev) = Id (Id-Curry)

We say that C has enough points if, for all f, g ∈ C(A, B), whenever f 6= g,
there exists a morphism h ∈ C(1, A) such that f ◦ h 6= g ◦ h.

3 We use the symbol & instead of × because, in the example we are interested in, the
categorical product is the disjoint union. The usual notation is kept to denote the
set-theoretical product.

4 We simply write ev when A and B are clear from the context.



2.3 The pure λ-calculus and its models

The set Λ of λ-terms over a countable set Var of variables is constructed as
usual: every variable is a λ-term; if P and Q are λ-terms, then also are PQ and
λz.P for each variable z.

It is well known [4, Ch. 5] that there are, essentially, two tightly linked notions
of model of λ-calculus. The former is connected with category theory (categorical
models) and the latter is related to combinatory algebras (λ-models).

Categorical models. A categorical model of λ-calculus is a reflexive object in
a ccc C, that is, a triple U = (U, Ap, λ) such that U is an object of C, and
λ ∈ C(U ⇒U, U) and Ap ∈ C(U, U ⇒U) satisfy Ap ◦ λ = IdU⇒U . In this case
we write U ⇒ U C U . When moreover λ ◦ Ap = IdU , the model U is called
extensional.

In the sequel we always suppose that x = (x1, . . . , xn) is a finite ordered
sequence of variables without repetitions of length n. Given an arbitrary λ-term
M and a sequence x, we say that x is adequate for M if x contains all the free
variables of M . We simply say that x is adequate whenever M is clear from the
context.

Given a categorical model U = (U, Ap, λ), for all M ∈ Λ and for all adequate
x, the interpretation of M (in x) is a morphism |M |x ∈ C(Un, U) defined by
structural induction on M as follows:

– If M ≡ z, then |z|x = πi, if z occurs in i-th position in the sequence x.
– If M ≡ PQ, then by inductive hypothesis we have defined |P |x, |Q|x ∈

C(Un, U). So we set |PQ|x = ev ◦ 〈Ap ◦ |P |x, |Q|x〉 ∈ C(Un, U).
– If M ≡ λz.P , by inductive hypothesis we have defined |P |x,z ∈ C(Un&U, U)

and so we set |λz.P |x = λ ◦ Λ(|P |x,z).

It is routine to check that, if M and N are β-equivalent, then |M |x = |N |x
for all x adequate for M and N . If the reflexive object U is extensional, then
|M |x = |N |x holds as soon as M and N are βη-equivalent.

Combinatory algebras and λ-models An applicative structure A = (A, ·) is
an algebra where · is a binary operation on A called application. We may write
it infix as s · t, or even drop it and write st. Application associates to the left.

A combinatory algebra C = (C, ·,k, s) is an applicative structure for a signa-
ture with two constants k and s, such that kxy = x and sxyz = xz(yz) for all
x, y, and z. See, e.g., [8] for a full treatment.

We call k and s the basic combinators. In the equational language of com-
binatory algebras the derived combinators i and ε are defined as i ≡ skk and
ε ≡ s(ki). It is not hard to verify that every combinatory algebra satisfies the
identities ix = x and εxy = xy.

We say that c ∈ C represents a function f : C → C (and that f is repre-
sentable) if cz = f(z) for all z ∈ C. Two elements c, d ∈ C are extensionally



equal when they represent the same function in C. For example, c and εc are
always extensionally equal.

The axioms of an elementary subclass of combinatory algebras, called λ-
models, were expressly chosen to make coherent the definition of interpretation
of λ-terms (see [4, Def. 5.2.1]). The Meyer-Scott axiom is the most important
axiom in the definition of a λ-model. In the first-order language of combinatory
algebras it becomes: ∀x∀y(∀z(xz = yz) ⇒ εx = εy).

The combinator ε becomes an inner choice operator, that makes coherent
the interpretation of an abstraction λ-term. A λ-model is said extensional if,
moreover, we have that ∀x∀y(∀z(xz = yz) ⇒ x = y).

3 From reflexive objects to λ-models.

In the common belief, probably coming from [4, Prop. 5.5.7], a reflexive object
U in a ccc C may be turned in a λ-model if, and only if, U has enough points,
i.e., for all f, g ∈ C(U, U), whenever f 6= g there exists a morphism h ∈ C(1, U)
such that f ◦ h 6= g ◦ h. This trivially holds if C has enough points.

In the main result of this section we show that this hypothesis is unnecessary
if we choose appropriately the associated λ-model and in Section 5 we will also
provide a concrete example.

3.1 Syntactical λ-models

We give now the definition of “syntactical λ-models” [13]. Recall that, by [4,
Thm. 5.3.6], λ-models are equal to syntactical λ-models, up to isomorphism.

Given an applicative structure A, we let EnvA be the set of environments
ρ mapping the set Var of variables of λ-calculus into A. For every x ∈ Var and
a ∈ A we denote by ρ[x := a] the environment ρ′ which coincides with ρ, except
on x, where ρ′ takes the value a.

Definition 1. A syntactical λ-model is a pair (A, [− ]) where, A is an applica-
tive structure and [− ] : Λ × EnvA → A satisfies the following conditions:

(i) [z]ρ = ρ(z),
(ii) [PQ]ρ = [P ]ρ · [Q]ρ,
(iii) [λz.P ]ρ · a = [P ]ρ[z:=a],

(iv) ρ�FV (M)= ρ′�FV (M)⇒ [M ]ρ = [M ]ρ′ ,
(v) ∀a ∈ A, [M ]ρ[z:=a] = [N ]ρ[z:=a] ⇒ [λz.M ]ρ = [λz.N ]ρ
A syntactical λ-model is extensional if, moreover, ∀a∀b(∀x(a·x = b·x) ⇒ a = b).

Let us fix a reflexive object U = (U, Ap, λ) in a ccc C having countable
products5. The set C(UVar, U), where Var is the set of the variables of λ-calculus,

5 Note that this hypothesis is not so restrictive. All the underlying categories of the
models present in the literature, e.g., the Scott continuous semantics [20] and its
refinements, satisfy this requirement.



can be naturally seen as an applicative structure whose application is defined by
u•v = ev◦〈Ap ◦ u, v〉. Moreover, the categorical interpretation |M |x of a λ-term
M , can be intuitively viewed as a morphism in C(UVar, U) only depending from
a finite number of variables.

In order to capture this informal idea, we now focus our attention on the set
AU whose elements are the “finitary” morphisms in C(UVar, U).

A morphism f ∈ C(UVar, U) is finitary if there exist a finite set J of variables,
and a morphism fJ ∈ C(UJ , U) such that f = fJ ◦ πJ , where πJ denotes the
canonical projection of UVar onto UJ . In this case we say that the pair (fJ , J)
is adequate for f , and we write (fJ , J) ∈ Ad(f).

Given two finitary morphisms f, g it is easy to see that if (fJ , J) ∈ Ad(f) and
(gI , I) ∈ Ad(g), then also f•g is finitary and ((fJ◦πJ)•(gI◦πI), J∪I) ∈ Ad(f•g).

We are going to show that the applicative structure AU = (AU , •), associated
with the reflexive object U , gives rise to a syntactical λ-model MU which is
extensional if, and only if, λ ◦ Ap = IdU . To begin with, let us define this
applicative structure.

Definition 2. Let U be a reflexive object in a ccc C. The applicative structure
associated with U is defined by AU = (AU , •), where:

– AU = {f ∈ C(UVar, U) : ∃J ⊂f Var, ∃fJ ∈ C(UJ , U) such that f = fJ ◦πJ},
– a • b = ev ◦ 〈Ap ◦ a, b〉.

The following technical lemma will be used for defining the syntactical λ-
model MU associated with AU .

Lemma 1. Let f1, . . . , fn ∈ AU and (f ′
k, Jk) ∈ Ad(fk) for all 1 ≤ k ≤ n. Given

z ∈ Var such that z /∈
⋃

k≤n Jk, and ηz ∈ C(UVar&U, UVar) defined by:

ηx
z =

{

π2 if x = z,
πx ◦ π1 otherwise,

the following diagram commutes:

UVar
〈Id,πz〉// UVar&U

〈f1,...,fn〉×Id // Un&U

UVar&U

ηz

OO

Id

88qqqqqqqqqq

Proof. Starting by (〈f1, . . . , fn〉× Id)◦ 〈Id, πz〉◦ηz , we get 〈〈f1, . . . , fn〉 ◦ ηz, π2〉
via easy calculations. Hence, it is sufficient to prove that 〈f1, . . . , fn〉 ◦ ηz =
〈f1, . . . , fn〉◦π1. We show that this equality holds componentwise. By hypothesis,
we have that, for all 1 ≤ k ≤ n, fk ◦ηz = f ′

k ◦πJk
◦ηz . Since z 6∈ Jk, we have that

πJk
◦ηz = πJk

◦π1 (computing componentwise in πJk
and applying the definition

of ηz). To conclude, we note that f ′
k ◦ πJk

◦ ηz = f ′
k ◦ πJk

◦ π1 = fk ◦ π1. �

As a matter of notation, given a sequence x of variables and an environment
ρ ∈ EnvAU , we denote by ρ(x) the morphism 〈ρ(x1), . . . , ρ(xn)〉 ∈ C(UVar, Un).



Lemma 2. For all λ-terms M , environments ρ and sequences x, y adequate for
M , we have that |M |x ◦ ρ(x) = |M |y ◦ ρ(y).

Proof. The proof is by structural induction on M .
If M ≡ z, then z occurs in, say, i-th position in x and j-th position in y. Then
|z|x ◦ ρ(x) = πi ◦ ρ(x) = ρ(z) = πj ◦ ρ(y) = |z|y ◦ ρ(y).
If M ≡ PQ, then |PQ|x ◦ ρ(x) = ev ◦ 〈Ap ◦ |P |x, |Q|x〉 ◦ ρ(x). By (pair), this
is equal to ev ◦ 〈Ap ◦ |P |x ◦ ρ(x), |Q|x ◦ ρ(x)〉 which is, by inductive hypothesis,
ev ◦ 〈Ap ◦ |P |y ◦ ρ(y), |Q|y ◦ ρ(y)〉 = |PQ|y ◦ ρ(y).
If M ≡ λz.N , then |λz.N |x◦ρ(x) = λ◦Λ(|N |x,z)◦ρ(x) and by (Curry), we obtain
λ ◦ Λ(|N |x,z ◦ (ρ(x) × Id)). Let (ρ1, J1) ∈ Ad(ρ(x1)), . . . , (ρn, Jn) ∈ Ad(ρ(xn)).
By α-conversion we can suppose that z /∈

⋃

k≤n Jk, hence by Lemma 1 we obtain
λ◦Λ(|N |x,z◦(ρ(x)×Id)◦〈Id, πz〉◦ηz) = λ◦Λ(|N |x,z◦ρ[z := πz](x, z)◦ηz). This is
equal, by inductive hypothesis, to λ◦Λ(|N |y,z◦ρ[z := πz](y, z)◦ηz) = |λz.N |y. �

As a consequence of Lemma 2 we have that the following definition is sound.

Definition 3. MU = (AU , [− ]), where [M ]ρ = |M |x ◦ ρ(x) for some adequate
sequence x.

We are going to prove that MU is a syntactical λ-model, which is extensional
if, and only if, U is extensional.

For this second property we need another categorical lemma. Remark that the
morphism ιJ,x ∈ C(UJ∪{x}, UVar) defined below is a sort of canonical injection.
In particular, the morphism λ ◦ Λ(IdU )◦!UJ∪{x} does not play any role in the
rest of the argument.

Lemma 3. Let f ∈ AU , (fJ , J) ∈ Ad(f), x /∈ J and ιJ,x defined as follows:

ιzJ,x =

{

πz if z ∈ J ∪ {x},
λ ◦ Λ(IdU )◦!UJ∪{x} otherwise.

Then the following diagram commutes:

UVar&U
f×Id

++XXXXXXXXXXXXXXXXXXXXXXXXXXX

πJ×Id// UJ &U ' UJ∪{x}
ιJ,x // UVar

〈f,πx〉

��
U &U

Proof. Since by hypothesis f = fJ◦πJ , this is equivalent to ask that the following
diagram commutes, and this is obvious from the definition of ιJ,x.

UVar&U
πJ×Id// UJ &U ' UJ∪{x}

fJ×Id

''OOOOOOOOOOOO

ιJ,x // UVar

〈πJ ,πx〉

$$JJJJJJJJJ

U &U UJ∪{x}
fJ×Id
oo �



Theorem 1. Let U be a reflexive object in a ccc C. Then:

1) MU is a syntactical λ-model,
2) MU is extensional if, and only if, U is.

Proof. 1) In the following x is any adequate sequence and the items correspond
to those in Definition 1.
(i) [z]ρ = |z|x ◦ ρ(x) = πz ◦ ρ(x) = ρ(z).
(ii) [PQ]ρ = |PQ|x ◦ ρ(x) = (|P |x • |Q|x) ◦ ρ(x) = ev ◦ 〈Ap ◦ |P |x, |Q|x〉 ◦ ρ(x).
By (pair) this is equal to ev ◦ 〈Ap ◦ |P |x ◦ ρ(x), |Q|x ◦ ρ(x)〉 = [P ]ρ • [Q]ρ.
(iii) [λz.P ]ρ • a = (|λz.P |x ◦ ρ(x)) • a = ev ◦ 〈Ap ◦ λ ◦ Λ(|P |x,z) ◦ ρ(x), a〉. Since
Ap◦λ = IdU⇒U and by applying the rules (Curry) and (beta) we obtain |P |x,z ◦
(ρ(x) × Id) ◦ 〈Id, a〉. Finally, by (pair) we get |P |x,z ◦ 〈ρ(x), a〉 = [P ]ρ[z:=a].

(iv) Obvious since, by Lemma 2, [M ]ρ = |M |x ◦ ρ(x) where x are exactly the
free variables of M .
(v) [λz.M ]ρ = |λz.M |x ◦ ρ(x) = λ ◦ Λ(|M |x,z ◦ (ρ(x) × Id)). Let (ρ1, J1) ∈
Ad(ρ(x1)), . . . , (ρn, Jn) ∈ Ad(ρ(xn)). Without loss of generality we can suppose
that z /∈

⋃

k≤n Jk. Hence, by Lemma 1 we obtain λ ◦ Λ(|M |x,z ◦ (ρ(x) × Id) ◦
〈Id, πz〉◦ηz). By (pair), this is λ◦Λ(|M |x,z ◦〈ρ(x), πz〉◦ηz) = λ◦Λ([M ]ρ[z:=πz ] ◦

ηz) which is equal to λ ◦ Λ([N ]ρ[z:=πz ] ◦ ηz) since, by hypothesis, [M ]ρ[z:=a] =[N ]ρ[z:=a] for all a ∈ AU . It is, now, routine to check that λ◦Λ([N ]ρ[z:=πz]◦ηz) =[λz.N ]ρ.
2) (⇒) Let x ∈ Var and πx ∈ C(UVar, U). For all a ∈ AU we have (λ◦Ap◦πx)•a =
ev ◦ 〈Ap ◦ λ ◦ Ap ◦ πx, a〉 = ev ◦ 〈Ap ◦ πx, a〉 = πx • a. If MU is extensional, this
implies λ ◦ Ap ◦ πx = πx. Since πx is an epimorphism, we get λ ◦ Ap = IdU .
(⇐) Let a, b ∈ AU , then there exist (aJ , J) ∈ Ad(a) and (bI , I) ∈ Ad(b) such
that I = J . Let us set ϕ = ιJ,x ◦ (πJ × Id) where x /∈ J and ιJ,x is defined in
Lemma 3. Suppose that for all c ∈ AU we have (a • c = b • c) then, in particular,
ev ◦ 〈Ap ◦ a, πx〉 = ev ◦ 〈Ap ◦ b, πx〉 and this implies that 〈Ap ◦ a, πx〉 ◦ ϕ =
〈Ap ◦ b, πx〉 ◦ ϕ. By applying Lemma 3, we get 〈Ap ◦ a, πx〉 ◦ ϕ = (Ap ◦ a) × Id
and 〈Ap ◦ b, πx〉 ◦ ϕ = (Ap ◦ b) × Id. Then Ap ◦ a = Ap ◦ b which implies
λ ◦ Ap ◦ a = λ ◦ Ap ◦ b. We conclude since λ ◦ Ap = IdU . �

Note that, by using a particular environment ρ̂, it is possible to “recover” the
categorical interpretation |M |x from the interpretation [M ]ρ in the syntactical λ-
model. Let us fix the environment ρ̂(x) = πx for all x ∈ Var. Then [M ]ρ̂ = |M |x◦

〈πx1
, . . . , πxn

〉, i.e., it is the morphism |M |x “viewed” as element of C(UVar, U).

3.2 Working without countable products

The construction provided in the previous section works if the underlying cate-
gory C has countable products. We remark, once again, that this hypothesis is
not really restrictive since all the categories used in the literature in order to ob-
tain models of λ-calculus satisfy this requirement. Nevertheless, there exists an
alternative, but less simple and natural, construction to turn a reflexive object U



into a syntactical λ-model M′
U , which does not need this additional hypothesis.

We give here the basic ideas of this approach.
Let us consider the set A =

⋃

I⊂fVar C(U I , U) and the equivalence relation

∼ on A defined as follows: if f ∈ C(UJ , U) and g ∈ C(U I , U), then f ∼ g if,
and only if, f ◦ πJ = g ◦ πI where πJ ∈ C(U I∪J , UJ) and πI ∈ C(U I∪J , U I).
The candidate for the applicative structure A′

U associated with U is the set A/∼
together with a suitable application operator.

We claim that M′
U = (A′

U , [− ]), where [− ] is an appropriate interpretation
map, is a syntactical λ-model.

4 A cartesian closed category of sets and relations

It is quite well known [12, 3, 15, 7] that, by endowing the monoidal closed category
Rel with a suitable comonad, one gets a ccc via the co-Kleisli construction. In
this section we present the ccc obtained by using the comonad Mf(−), without
explicitly going through the monoidal structure of Rel.

Hence we define directly the category MRel as follows:

– The objects of MRel are all the sets.
– Given two sets S and T , a morphism from S to T is a relation from Mf (S)

to T , in other words, MRel(S, T ) = P(Mf (S) × T ).
– The identity morphism of S is the relation:

IdS = {([a], a) : a ∈ S} ∈ MRel(S, S) .

– Given two morphisms s ∈ MRel(S, T ) and t ∈ MRel(T, U), we define:
t ◦ s = {(m, c) : ∃(m1, b1), . . . , (mk, bk) ∈ s such that

m = m1 ] . . . ] mk and ([b1, . . . , bk], c) ∈ t}.

It is easy to check that this composition law is associative, and that the
identity morphisms defined above are neutral for this composition.

Theorem 2. The category MRel is cartesian closed.

Proof. The terminal object 1 is the empty set ∅, and the unique element of
MRel(S, ∅) is the empty relation.

Given two sets S1 and S2, their cartesian product S1 &S2 in MRel is their
disjoint union:

S1&S2 = ({1} × S1) ∪ ({2} × S2)

and the projections π1, π2 are given by:

πi = {([(i, a)], a) : a ∈ Si} ∈ MRel(S1&S2, Si), for i = 1, 2.

It is easy to check that this is actually the cartesian product of S1 and S2 in
MRel; given s ∈ MRel(U, S1) and t ∈ MRel(U, S2), the corresponding mor-
phism 〈s, t〉 ∈ MRel(U, S1&S2) is given by:

〈s, t〉 = {(m, (1, a)) : (m, a) ∈ s} ∪ {(m, (2, b)) : (m, b) ∈ t} .



We will consider the canonical bijection between Mf (S1) × Mf (S2) and
Mf (S1 &S2) as an equality, hence we will still denote by (m1, m2) the corres-
ponding element of Mf (S1&S2).

Given two objects S and T the exponential object S⇒T is Mf (S) × T and
the evaluation morphism is given by:

evST = {(([(m, b)], m), b) : m ∈ Mf(S) and b ∈ T } ∈ MRel((S⇒T )&S, T ) .

Again, it is easy to check that in this way we defined an exponentiation. Indeed,
given any set U and any morphism s ∈ MRel(U &S, T ), there is exactly one
morphism Λ(s) ∈ MRel(U, S⇒T ) such that:

evST ◦ 〈Λ(s), IdS〉 = s.

where Λ(s) = {(p, (m, b)) : ((p, m), b) ∈ s}. �

Here, the points of an object S, i.e., the elements of MRel(1, S), are relations
between Mf(∅) and S. These are, up to isomorphism, the subsets of S.

In the next section we will present an extensional model of λ-calculus living
in MRel which is a strongly non extensional ccc in the following sense. It is, in
fact, possible to prove not only that MRel has not enough points but that there
exists no object U 6= 1 of MRel having enough points.

In fact we can always find t1, t2 ∈ MRel(U, U) such that t1 6= t2 and, for all
s ∈ MRel(1, U), t1 ◦s = t2 ◦s. Recall that, by definition of composition, t1 ◦s =
{([], b) : ∃a1, . . . , an ∈ U ([], ai) ∈ s ([a1, . . . , an], b) ∈ t1} ∈ MRel(1, U), and
similarly for t2 ◦ s. Hence it is sufficient to choose t1 = {(m1, b)} and t2 =
{(m2, b)} such that m1, m2 are different multisets with the same support.

5 An extensional relational model of λ-calculus

In this section we build a reflexive object in MRel, which is extensional by
construction.

5.1 Constructing an extensional reflexive object.

We build a family of sets (Dn)n∈N as follows6:

– D0 = ∅,
– Dn+1 = Mf (Dn)(ω).

Since the operation S 7→ Mf(S)(ω) is monotonic on sets, and since D0 ⊆ D1,
we have Dn ⊆ Dn+1 for all n ∈ N. Finally, we set D =

⋃

n∈NDn.
So we have D0 = ∅ and D1 = {∗} = {([], [], . . . )}. The elements of D2 are

quasi-finite sequences of multisets over a singleton, i.e., quasi-finite sequences of
natural numbers. More generally, an element of D can be represented as a finite
tree which alternates two kinds of layers:

6 Note that, in greater generality, we can start from a set A of “atoms” and take:
D0 = ∅, Dn+1 = Mf (Dn)(ω)

× A. Nevertheless the set of atoms A is not essential
to produce a non-trivial model of λ-calculus.



– ordered nodes (the quasi-finite sequences), where immediate subtrees are
indexed by a possibly empty finite set of natural numbers,

– unordered nodes where subtrees are organised in a non-empty multiset.

In order to define an isomorphism in MRel between D and D⇒D (which is
equal to Mf (D)×D) just remark that every element σ ∈ D stands for the pair
(σ0, (σ1, σ2...)) and vice versa. Given σ ∈ D and m ∈ Mf (D), we write m · σ
for the element τ ∈ D such that τ1 = m and τi+1 = σi. This defines a bijection
between Mf(D) × D and D, and hence an isomorphism in MRel as follows:

Proposition 1. The triple D = (D, Ap, λ) where:

– λ = {([(m, σ)], m · σ) : m ∈ Mf (D), σ ∈ D} ∈ MRel(D⇒D, D),

– Ap = {([m · σ], (m, σ)) : m ∈ Mf (D), σ ∈ D} ∈ MRel(D, D⇒D),
is an extensional categorical model of λ-calculus.

Proof. It is easy to check that λ ◦ Ap = IdD and Ap ◦ λ = IdD⇒D. �

5.2 Interpreting the untyped λ-calculus in D

In Section 2.3, we have recalled how a λ-term is interpreted when a reflexive ob-
ject is given, in any ccc. We provide the result of the corresponding computation,
when it is performed in the present structure D.

Given a λ-term M and a sequence x of length n, which is adequate for M , the
interpretation |M |x is an element of MRel(Dn, D), where Dn = D & ... & D,
i.e., a subset of Mf (D)n ×D. This set is defined by structural induction on M .

– |xi|x = {(([], . . . , [], [σ], [], . . . , []), σ) : σ ∈ D}, where the only non-empty
multiset stands in i-th position.

– |NP |x = {((m1, . . . , mn), σ) : ∃k ∈ N
∃(mj

1, . . . , m
j
n) ∈ Mf(D)n for j = 0...k

∃σ1, . . . , σk ∈ D such that
mi = m0

i ] . . . ] mk
i for i = 1...n

((m0
1, . . . , m

0
n), [σ1, . . . , σk] · σ) ∈ |N |x

((mj
1, . . . , m

j
n), σj) ∈ |P |x for j = 1...k}

– |λz.P |x = {((m1, . . . , mn), m · σ) : ((m, m1, . . . , mn), σ) ∈ |P |x,z}, where we
assume that z does not occur in x.

Since D is extensional, if M =βη N then M and N have the same interpretation
in the model. Note that if M is a closed λ-terms then it is simply interpreted, in
the empty sequence, by a subset of D. If M is moreover a solvable term, i.e., if
it is β-convertible to a term of the shape λx1 . . . xn.xiM1 · · ·Mk (n, k ≥ 0), then
its interpretation is non-empty. It is quite clear, in fact, that [] · · · [] · [∗] · ∗ ∈ |M |
(where [∗] stands in i-th position).



6 Modelling non-determinism

Since MRel has countable products, the construction given in Section 3.1 pro-
vides an applicative structure AD = (AD, •), whose elements are the finitary
morphisms in MRel(DVar, D), and the associated λ-model MD = (AD , [ − ]).
This λ-model is extensional by Theorem 1(2).

We are going to define two operations of sum and product on AD; in order to
show easily that these operations are well defined, we provide a characterization
of the finitary elements of MRel(DVar, D).

Proposition 2. Let f ∈ MRel(DVar, D) and J ⊂f Var. Then there exists fJ

such that (fJ , J) ∈ Ad(f) if, and only if, for all (m, σ) ∈ f and for all x 6∈ J ,
πx(m) = [].

Proof. Straightforward.

Hence, the union of finitary elements is still a finitary element. As a matter
of notation, we will write a ⊕ b for a ∪ b.

We now recall the definition of semilinear applicative structure given in [10].

Definition 4. A semilinear applicative structure is a pair ((A, ·), +) such that:

(i) (A, ·) is an applicative structure.
(ii) + : A2 → A is an idempotent, commutative and associative operation.
(iii) ∀x, y, z ∈ A (x + y) · z = (x · z) + (y · z).

Straightforwardly, the union operation makes AD semilinear.

Proposition 3. (AD,⊕) is a semilinear applicative structure.

Moreover, the syntactic interpretation of Definition 1 may be extended to
the non-deterministic λ-calculus Λ⊕ of [10], by stipulating that [M ⊕ N ]ρ =[M ]ρ ⊕ [N ]ρ. Hence, we get that (AD,⊕, [ − ]) is an extensional syntactical
model of Λ⊕ in the sense of [10]. The operation ⊕ can be seen intuitively as a
non-deterministic choice.

We define another binary operation on AD, which can be thought of as par-
allel composition.

Definition 5.

– Given σ, τ ∈ D, we set σ � τ = (σ1 ] τ1, . . . , σn ] τn, . . .).
– Given a, b ∈ AD, we set a�b = {(m1]m2, σ�τ) : (m1, σ) ∈ a, (m2, τ) ∈ b}.

Once again, it is easy to see that � produces finitary elements when applied
to finitary elements.

Note that AD, equipped with �, is not a semilinear applicative structure,
simply because the operator � is not idempotent. Nevertheless, the left distribu-
tivity with respect to the application is satisfied.

Proposition 4. For all a, b, c ∈ AD, (a � b) • c = (a • c) � (b • c).



Proof. Straightforward.

The units of the operations ⊕ and � are 0 = ∅ and 1 = {([], ∗)}, respectively;
(AD,⊕, 0) and (AD,�, 1) are commutative monoids. Moreover 0 annihilates �,
and multiplication distributes over addition. Summing up, the following propo-
sition holds.

Proposition 5.

– (AD,⊕,�, 0, 1) is a commutative semiring.
– ⊕ and � are left distributive over •.
– ⊕ is idempotent.

7 Conclusions and Further works

We have proposed a general method for getting a λ-model out of a reflexive
object of a ccc, which does not rely on the fact that the object has enough
points. We have applied this construction to an extensional reflexive object D
of MRel, the Kleisli category of the comonad “finite multisets” on Rel, and
showed some algebraic properties of the resulting λ-model MD. A first natural
question about MD concerns its theory. We know that it is extensional, and
that MD can be “stratified” following the construction of D =

⋃

n∈N Dn given
in Section 5.1. Not surprisingly, the theory of MD turns out to be H∗, the
maximal consistent sensible λ-theory. In a forthcoming paper, we show how the
proof method based on the approximation theorem, due to Hyland [14], can be
adapted to all suitably defined “stratified λ-models” in order to prove that their
theory is H∗.

Proposition 5 shows that MD has a quite rich algebraic structure. In order to
interpret conjunctive-disjunctive λ-calculi, endowed with both “non-deterministic
choice” and “parallel composition”, a notion of λ-lattice have been introduced in
[9]. It is interesting to notice that our structure (AD,⊆, •,⊕,�) does not gives
rise to a real λ-lattice essentially because � is not idempotent. Roughly speak-
ing, this means that in the model MD of the conjunctive-disjunctive calculus[M ||M ] 6= [M ], i.e., that the model is “resource sensible”. We aim to investigate
full abstraction results for must/may semantics in MD.

A concluding remark: for historical reasons, most of the work on models of
untyped λ-calculus, and its extensions, has been carried out in subcategories of
CPO. A posteriori, we can propose two motivations:

(i) because of the seminal work of Scott, the Scott-continuity of morphisms has
been seen as the canonical way of getting U⇒U C U .

(ii) the classic result relating algebraic and categorical models of pure λ-calculus
asks for reflexive objects with enough points.

Our proposal allows to overcome (ii). It remains to be proved that, working
in categories like MRel allows to get new interesting classes of models.
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