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A finitary and monadic w-calculus. Names a,b,aq,...

e Empty process: x

e Restriction: va -7 (a is bound)

e Parallel composition: mwq | ™o

e Reception: a(b) -m (b is bound)

e Emission: a(b) -7 (b is not bound)



Operational semantics: a machine.

e Closure: ¢ = (m,e) where e is a finite function from the free
names of w to names;

e Soup: multiset S =cq...cp Of closures;

e State: (S,P) where P is a finite set of names, the private
names of the state [the names in P must be considered as
bound].

A soup is canonical if all its processes start with an input or
output prefix.



A Mmachine: reduction rules

¢ ((*7 6)3,7’7) ~~7can (577))

¢ ((7-‘-1 | 7-‘-276)‘977)) ~~7can ((77176)(77276)977))

e ((va-m,e)S,P) ~can ((m,e[la — a])S,P U {a}) with a a fresh
name

o ((a1(b)-m1,e1)(@a(c)-m2,e2)S, P)~ ((m1,e1[b+— ea(c)])(m2,e2)S,P)
if e1(a1) = ex(az).



It is a simple way of presenting the usual reduction rules and
congruence of the w-calculus (cf. the abstract machine of Amadio
and Curien’s book).



Pure polarized exponential differential logic.
e Positive formulae: + and 'N where N is negative
e Negative formulae: ?P where P is positive

e Equation on formulae: . = (u1) [cf. D = D = D in pure
lambda-calculus]

Set o = 7., so that o = L

Up to equality of formulae, there are only two formulae in this
logic:

. (or “+") and o (or “—").



Pure polarized exponential differential logic: a sequent cal-
culus.

Identity rules:

Fl,o Fu, A
o, -, A
Negative rules (structural rules and dereliction):
=T FT,0,0 ol )

HFT,o0 FT,o HFT,0



Pure polarized exponential differential logic: a sequent cal-
culus (cont.)

Positive rules (costructural rules and codereliction):

FT,e FA,L HFT,o0
¢ |—|_,A,L |—|_,L
Mix rule:
- FA
= A



Differential interaction nets: interaction nets for this logic.

1
0 + 1 0 0
e
—_— —_— 9—2 —_—

weakening dereliction contraction
1
1 <
D—Oe 9—{>—Oé~ >_Oe
+
2
CO-weakening co-contraction

Arrow convention: the arrows we put on wires correspond to
the typing of all wires by the o (“=") type.



Differential interaction nets: desquentialization.

Any proof of the sequent calculus above can be “desequential-
ized” into a unique interaction net structure with these cells, just
like in MLL.



Differential interaction nets: correctness criterion.

Adaptation of the Girard or Danos-Regnier MLL criterion, but
only for acyclicity. Connexity is not required.

Cocontraction is handled like a tensor link, contraction is handled
like a par link.

Fact: a net structure which satisfies the criterion is the de-
sequentialization of a proof of the sequent calculus of the (/o
logic.
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Differential interaction nets: structural rewriting rules. Cor-
respond to the fact that each type !'!A has the structure of a

bialgebra.
~> (multiplicative nothing)
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Differential interaction nets: structural rewriting rules (cont.)

+
! ~
+

e
<
~<
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Differential interaction nets: structural rewriting rules (cont.)

IR i =
e X
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Differential interaction nets: structural rewriting rules (cont.)

Structural rules include the Rétoré rules which express the neu-
trality of weakening wrt. contraction, and of coweakening wrt. co-
contraction.

We must also work up to associativity of contraction and cocon-
traction.

Strangely enough, neither commutativity of cocontraction nor
cocommutativity of contraction seem to be necessary for trans-
lating replication-free processes.
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Differential interaction nets: non-deterministic rewriting
rules.

Describe the behaviour of linearity and differentiation — which
have some kind of duality — wrt. costructural and structural
cells.

e -

“Applying a linear function to O vields 0.”

] - ¢

“Derivating a constant function yields 0.”
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Differential interaction nets: non-deterministic rewriting
rules (cont.)

“Derivating f(x,x) wrt. z yields a sum of two partial derivatives.”
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Differential interaction nets: non-deterministic rewriting
rules (cont.)

< -

“Applying a linear function to a sum yields a sum.”
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Differential interaction nets: communication rewriting rule

(cont.)
>+< ~> —

“The value of the derivative of a linear function at any point is
that function.”
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Broadcast areas.

A family of nets Br,, forn = —1,0,1,2,..., with 2n+4 free ports.
The most interesting is Bryq:

I
<X
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Broadcast areas (cont.)

Br_q is

and Brg is
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Broadcast areas: associativity.

Br,, ) ( Br,,

using only structural reduction rules.
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Interpreting processes: principle.

Let @ be a process, A a set of names containing all the free
names of .

Define [r] 4, @ net with two free ports at and a— for each a ¢ A:
if A={aq,...,an}:

B
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Interpreting processes: empty process.

[x] 4 is the juxtaposition of nets

one for each a € A.
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Interpreting processes: name restriction.

a: a generic element of A, b: a name with b & A. Then [vb- ]y
IS

[W]{b}uA J
TN
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Interpreting processes: parallel composition.

a: a generic element of A, then [mq | wp]4 iS

[ 1] J [ 2] J
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Interpreting processes: reception.

a. a generic element of A, ¢ and d two distinct names, ¢ € A and
d¢ A. Then [c(d) - 7] 4 is
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Interpreting processes: emission.

a. a generic element of A, ¢ and d two distinct names, ¢ € A and
d¢ A. Then [¢{d) - 7] 4 is

|
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Interpreting states.
T his translation extends easily to states.

Fact: the interpretations of processes and of states are “weakly
correct” nets (that is: they can contain switching cycles, but all
these cycles pass through dereliction or codereliction cells, or:
none of these cycles is oriented, with our arrow convention).
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Key reductions in process interpretations: prefix/prefix.

T he following reductions hold in nets:

29



Key reduction in process interpretations: prefix/broadcast.

The following reduction (as well as its dual) holds in nets:




Simulation theorem.

If we interpret a reduction of nets ¢ ~ t1 + --- 4+ ¢, (where ¢
and the t;'s are not sums) as the fact that ¢t ~ tq,..., t ~ iy
non-deterministically, then:

(S, P) ~ (S, P") = [(S,P)] ~ [(S, P")]

where [(S,P)] is the net associated to the state (S,P) of our
machine. This holds in the localized mw-calculus.

BUT the converse is false!
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Example.

The interpretation of a(b) - x reduces to

M E 4
So the interpretation of va - (a(b) - *x | a(c) - ) reduces to

N

assuming that b is not free in .
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Example (cont.)

Which reduces to

and this net corresponds to va - w[b/c|] if we admit that = has no
reception capabilities on chanel ¢, which is the case if we are in
the localized mw-calculus.

33



Example (cont.)

Consider now the interpretation of va - (a(b) - * | d(e) - a(c) - ©');

this net reduces to
| C

d
—_——
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Taking into account the sequentiality of prefixes of pro-
cesses.

e Impose some sequentiality to differential interaction nets by
forbidding that certain communication reductions occur be-
fore others (like Girard’'s jumps in MALL proof nets). Draw-
back: no clean denotational semantics known yet, whereas
standard differential interaction nets have a lot of nice mod-
els.

e Instead of the w-calculus, consider a completely asynchronous
calculus, translate this calculus to differential interaction nets,
and encode the w-calculus in this asynchronous calculus using
process calculi techniques.
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Related works.

e Berger, Honda, Laurent, Yoshida

e Beffara and Maurel

e Mazza
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