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F-75205 Paris, France

Abstract—We proved recently that the extensional collapse of
the relational model of linear logic coincides with its Scott model,
whose objects are preorders and morphisms are downwards
closed relations. This result is obtained by the construction of
a new model whose objects can be understood as preorders
equipped with a realizability predicate. We present this model,
which features a new duality, and explain how to use it for
reducing normalization results in idempotent intersection types
(usually proved by reducibility) to purely combinatorial methods.
We illustrate this approach in the case of the call-by-value
lambda-calculus, for which we introduce a new resource calculus.

INTRODUCTION

Denotational semantics allows to embed syntactical com-
putational formalisms, which feature many arbitrary choices,
into much more canonical settings where basic constructs are
defined in a quite abstract and universal way. Of course, a
lot of information about syntax are lost in the interpretation
process, and full abstraction rarely holds. Very often, this
abstract and wider setting provides new intuitions about syntax
and suggests interesting extensions.

The present paper deals with two very simple models
of the lambda-calculus: the relational model and the Scott
model. The relational model has been introduced implicitly
by Girard in [Gir88] as a model of the lambda-calculus and
recognized only later as a model of linear logic (LL) by several
authors independently. Its objects are sets (without additional
structure) and a morphism from X to Y is not a function but
a relation, that is, a subset of X × Y . This model is often
despised and considered as degenerate because it identifies
many logical constructions of LL: most dramatically, the linear
negation of X is X . This model is nevertheless extremely in-
teresting because it preserves many relevant information about
programs: it is quantitative in the sense that the interpretation
of functions allows to recover how many times an argument is
used to compute a given result. For that reason, computation
time can be recovered from the interpretation of terms, as
shown in [DC08], [dCPdF11]. Also, it has been shown recently
by De Carvalho and Tortora de Falco that the interpretation
function is essentially injective on normal proof-nets.

The constructs of this model underly the interpretation of
types and terms in stable models (such as coherence spaces
or hypercoherence spaces). Arbitrary fixpoints of types are
quite easy to compute and therefore many interesting relational
models of the pure lambda-calculus and of its variants and

extensions (call-by-value lambda-calculus, lambda-mu calcu-
lus etc) are available. Also, the relational model provides a
natural interpretation of the differential and resource lambda-
calculi and LL [ER03], [ER04], [ER05], [Tra08]. See in
particular [PR10] where the relational model is explicitly
considered as a model of the resource (differential) lambda-
calculus and adequacy properties are proved. Remember that
adequacy results express that, if a term has a non-empty
interpretation (or an interpretation 6= ⊥) normalizes in some
sense (typically: head reduction terminates).

Scott semantics is of course older. It has been recognized
as a model of LL a few years after Girard’s discovery of
LL, by Michel Huth, see [Hut93], [HJK00] and indepen-
dently by Glynn Winskel [Win98], [Win04]. In this model,
types are interpreted by prime algebraic complete lattices,
or equivalently by preorders: indeed, any such lattice can
be presented as the set of downwards closed subsets of a
preorder and it is much more convenient to deal with preorders
than with lattices for interpreting types and terms. The Kleisli
category associated with this model of LL is (equivalent to)
the category of prime-algebraic complete lattices and Scott-
continuous functions. This model is less “degenerate” than
the model of sets and relation, for instance the dual S⊥ of
a preorder S has the same underlying set, but the opposit
preorder relation. This model however forgets much more
information about programs than the relational model: it is
a purely qualitative model in the sense that the interpretation
of a function tells which arguments are used to compute a
given result, but not how many times they are used.

This difference between the relational model and the Scott
model of LL materializes itself in the fact that the Kleisli
category of the second model is well-pointed, whereas the
Kleisli category of the first model is not. Due to the simplicity
and naturality of these models, it is tempting to think that the
extensional collapse of the relational model of the lambda-
calculus could be its Scott model, and indeed, this is exactly
what we proved in [Ehr11]. Our approach is based on the
following observation. An object in Rel (the relational model)
is a simple set and an object in Pol (the preorder model) is
a structure S = (|S|,≤S) where |S| is a set (the web) and
≤S is a preorder relation on |S|. We can define the Scott
semantics of all LL connectives in such a way that the web of
the Pol object interpreting a formula coincide with the Rel
object (set) interpreting the same formula. We build therefore
a model whose objects are pairs E = (〈E〉,D(E)) where 〈E〉
is a preorder and D(E) is a subset of P(|〈E〉|) which satisfies
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a closure property defined by an orthogonality relation. In this
model, a formula A is interpreted by such an object E (such
that 〈E〉 coincides with the interpretation of A in Pol and |〈E〉|
coincides with the interpretation of A in Rel), and a closed
proof π of that formula is interpreted by an element u of D(E).
Moreover, this set u coincides with the interpretation of π in
Rel, and, thanks to the closure properties of the sets D(F ), it
can be shown that the interpretation of π in Pol coincides with
↓u (where the downwards closure is taken wrt. the preorder
relation of 〈E〉), which in turn means essentially that “Pol is
the extensional collapse of Rel” (in [Ehr11], we try to give a
precise meaning to this statement).

Content: Just as Rel and Pol, this new category Pop
is a model of LL where all types have least fixpoints (for
a suitable notion of inclusion between these structures). In
the present paper, we use this property to prove an adequacy
result for a Scott model of the call-by-value lambda-calculus,
which is defined as the least fixpoint US (for a suitable order
relation on preorders) of the operation S 7→ !S ( !S. We
can solve the same domain equation in Pop and we get an
object UP for which it is not difficult to check that 〈UP〉 = US
and that UR = |〈UP〉| satisfies UR = !UR ( !UR in Rel.
Given a term M of the call-by-value lambda-calculus, that we
assume to be closed for simplicity, we can therefore compute
its relational interpretation [M ]R which is a subset of UR
which belongs to D(UP) and its Scott interpretation [M ]S,
which is a downwards closed subset of UR = |〈UP〉| (for
the preorder relation of 〈UP〉 = US). By induction on M ,
and using crucially the properties of the model Pop, one
can show then that [M ]S = ↓[M ]R: this is an application of
the “extensional collapse property” of the model Pop. Now,
adequacy of UR for the call-by-value lambda-calculus (that
is: if [M ]S 6= ∅ then M reduces to a value) can be proved
purely combinatorially, introducing a call-by-value resource
lambda-calculus and the fact that Rel satisfies a version of
the Taylor formula. If [M ]S 6= ∅ then [M ]R 6= ∅ since
[M ]S = ↓[M ]R and so M reduces to a value. Whereas the
standard proofs of this kind of results for Scott semantics are
based on reducibility, the present approach provides a purely
semantical reduction of this result to a combinatorial argument
(we also give a reducibility proof in the Appendix to illustrate
the difference between the two approaches). In some sense, all
the reducibility argument has been encapsulated in the model
Pop. The interesting feature of this approach is that it can
be used for many different calculi (standard lambda-calculus,
PCF, lambda-mu calculus. . . ) without modifying the model
Pop whereas, when reducibility is used, a new reducibility
proof has to be designed for each calculus. In our approach,
a new resource calculus has to be designed each time.

The work presented here can also be understood as relating
usual idempotent intersection typing systems (points in the
Pol model can be seen as idempotent intersection types) with
non-idempotent ones (using points of the Rel model). From
this viewpoint, it might be related with [BL11], and there
might be a connection between the objects E = (〈E〉,D(E))
of our extensional collapse and the orthogonality models
presented in that paper, but the connection is not clear atall
yet.

NOTATIONS

Given k ∈ N, we use k for the set {1, . . . , k}. Given a
sequence I1, . . . , In of subsets of k which are pairwise disjoint
and such that I1 ∪ · · · ∪ In = k (condition that we summarize
by I1 + · · · + In = k, using + to denote disjoint union), we
define a permutation f = 〈I1, . . . , In〉 ∈ Sk as the unique
function f : k → k such, for each i, the restriction of f to
Ii is strictly monotone and maps Ii to the set {#I1 + · · · +
#Ii−1 + 1, . . . ,#I1 + · · ·+ #Ii−1 + #Ii}.

We use [a1, . . . , an] for the multiset made of a1, . . . , an,
taking multiplicities into account. We use [] for the empty
multiset and standard algebraic notations such as m + m′ of∑
imi for sums of multisets. We use |m| for the support of

the multiset m, which is the set of elements which appear at
least once in m.

I. CATEGORICAL SEMANTICS OF LL IN A NUTSHELL

Our main reference for categorical models of LL is [Mel09].
Let C be a Seely category. We recall briefly that such a

structure consists of a category C, whose morphisms should
be thought of as linear maps, equipped with a symmetric
monoidal structure for which it is closed and ∗-autonomous
wrt. a dualizing object ⊥. The monoidal product, called
tensor product, is denoted as ⊗, the linear function space
object from X to Y is denoted as X ( Y . We use
ev ∈ C((X ( Y ) ⊗ X,Y ) for the linear evaluation morphism
and λ(f) ∈ C(Z,X ( Y ) for the “linear curryfication” of a
morphism f ∈ C(Z ⊗ X,Y ). The dual object X ( ⊥ is
denoted as X⊥. Given an object X of C and a permutation
f ∈ Sn, we use σf to denote the induced automorphism of
X⊗n in C; the operation f → σf is a group homomorphism
from the symmetric group Sn to the group of automorphisms
of X⊗n in C.

We also assume that C is cartesian, with a cartesian product
denoted as & and a terminal object >. By ∗-autonomy, this
implies that C is also cocartesian; we use ⊕ for the coproduct
and 0 for the initial object. In any cartesian and cocartesian
category, there is a canonical morphism a ∈ C(0,>) and a
canonical natural transformation aX,Y ∈ C(X ⊕ Y,X & Y ).
On says that the category is additive if these morphisms
are isomorphisms. In that case, each homset C(X,Y ) is
equipped with a structure of commutative monoid, and all
operations defined so far (composition, tensor product, linear
currification) are linear wrt. this structure.

If C has cartesian products of all countable families (Xi)i∈I
of objects, we say that it is countably cartesian, and in that
case, C is also countably cocartesian. If the canonical mor-
phism a(X)i∈I ∈ C(

⊕
i∈I Xi,

˘
i∈I Xi) is an isomorphism,

we say that C is countably additive. In that case, homsets
have countable sums and composition as well as all monoidal
operations commute with these sums.

Last, we assume that C is equipped with an endofunctor !
which has a structure of comonad (unit dX ∈ C(!X,X) called
dereliction, multiplication pX ∈ C(!X, !!X) called digging).
Moreover, this functor must be equipped with a monoidal
structure which turns it into a symmetric monoidal functor
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from the symmetric monoidal category (C,&) to the symmet-
ric monoidal category (C,⊗): the corresponding isomorphisms
m : !> → 1 and mX,Y : !(X & Y ) → !X ⊗ !Y are often
called Seely isomorphisms. The following diagram is moreover
required to be commutative.

!X ⊗ !Y
mX,Y //

pX⊗pY

��

!(X & Y )

pX&Y
��

!!(X & Y )

!〈!π1,!π2〉��
!!X ⊗ !!Y

m!X,!Y // !(!X & !Y )

A. Structural natural transformations

Using these structures, we can define a weakening natural
transformation wX ∈ C(!X, 1) and a contraction natural
transformation cX ∈ C(!X, !X ⊗ !X) as follows. Since >
is terminal, there is a canonical morphism tX ∈ C(X,>)
and we set wX = m−1 !tX . Similarly, we have a diagonal
natural transformation ∆X ∈ C(X,X & X) and we set
cX = m−1

X,X !∆X .
One can also prove that the Kleisli category C! of the

comonad ! is cartesian closed, with & as cartesian product
and !X ( Y as function space object: this is a categorical
version of Girard’s translation of intuitionistic logic into linear
logic.

We use cnX : !X⊗n → !X⊗n ⊗ !X⊗n for the generalized
contraction morphism which is defined as the following com-
position

(!X)⊗n
(cX)⊗n

// (!X ⊗ !X)⊗n
σf // (!X)⊗n ⊗ (!X)⊗n

where f = 〈{1, 3, . . . , 2n− 1}, {2, 4, . . . , 2n}〉 ∈ S2n.
Similarly, we define a generalized weakening morphism wnX

as the composition

(!X)⊗n
(wX)⊗n

// (1)⊗n
λ // 1

where λ is the unique canonical isomorphism induced by the
monoidal structure.

Given f ∈ C((!X)⊗n, X), it is standard to define f ! ∈
C((!X)⊗n, !X), using the comonad and the monoidal structure
of the functor ! . This operation is usually called promotion
in linear logic.

Lemma 1 For f ∈ C((!X)⊗n, X), we have

wX f
! = wnX

cX f
! = (f ! ⊗ f !) cnX

dX f
! = f

For f ∈ C((!X)⊗n ⊗ !X,X) and g ∈ C((!X)⊗p, X) we have

f ! ((!X)⊗n ⊗ g!) = (f ((!X)⊗n ⊗ g!))
!
.

Notice that both equated morphisms belong to
C((!X)⊗(n+p), !X).

Given two LL models C and D, an LL functor from C to
D is a functor from F : C → D which preserves all the

structure defined above. For instance, we must have F (f ⊗
g) = F (f) ⊗ F (g), F (pX) = pF (X) etc.

B. Weak differential LL models

The notion of categorical model recalled above allows to
interpret standard classical linear logic. If one wishes to
interpret differential constructs as well (in the spirit of the
differential lambda-calculus or of differential linear logic),
more structure and hypotheses are required. Basically, we
need:
• that the cartesian and cocartesian category C be additive
• and that the model be equipped with a codereliction nat-

ural transformation dX ∈ C(X, !X) such that dX dX =
IdX .

More conditions are required if one wants to interpret the full
differential lambda-calculus of [ER03] or full differential LL
as presented in e.g. [Pag09]: these conditions are a categorical
axiomatization of the usual chain rule of calculus, but this rule
is not required here, see [Fio07] for a complete axiomatization.
When these additional conditions hold, we say that the chain
rule holds in C.

If C is a weak differential LL model, we can define a
coweakening morphism wX ∈ C(1, !X) and a cocontraction
morphism cX ∈ C(!X ⊗ !X, !X) as we did for wX and cX .
Similarly we also define cnX ∈ C((!X)⊗n, !X). Due to the
naturality of dX we have wX dX = 0 and cX dX = dX ⊗
wX +wX ⊗ dX . We also define dnX = d⊗nX cnX ∈ C(!X,X⊗n)

and d
n

X = cnX d
⊗n
X ∈ C(X⊗n, !X).

C. The Taylor formula

Let C be a weak differential LL model which is countably
additive. Remember that each homset C(X,Y ) is endowed
with a canonical structure of commutative monoid in which
countable families are summable. We assume moreover that
these monoids are idempotent. This means that, if f ∈
C(X,Y ), then f + f = f .

We say that the Taylor formula holds in C if, for any
morphism f ∈ C(X,Y ), we have

!f =

∞∑
n=0

d
n

Y f
⊗n dnX

Remark 2 If the idempotency condition does not hold, one
has to require the homsets to have a rig structure over the
non-negative real numbers, and the Taylor condition must be
written in the more familiar way !f =

∑∞
n=0

1
n!d

n

Y f
⊗n dnX .

Remark 3 If the chain rule holds in C, the Taylor condition
reduces to the particular case of identity morphisms: one has
just to require that !IdX =

∑∞
n=0 d

n

XdnX .

II. THE EXTENSIONAL COLLAPSE

We present the extensional collapse construction developped
in [Ehr11].
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A. The relational model of LL

The model: The base category is Rel, the category
of sets and relations. Identities are diagonal relations and
composition is the standard composition of relations. In this
category, the isomorphisms are the bijections. The symmetric
monoidal structure is given by 1 = {∗} (arbitrary singleton
set) and X ⊗ Y = X × Y , we do not give the monoidal
isomorphisms which are obvious. This symmetric monoidal
category (SMC) is closed, with X ( Y = X × Y and
ev = {(((a, b), a), b) | a ∈ X and b ∈ Y }. It is ∗-autonomous
with dualizing object ⊥ = 1 so that X⊥ = X up to an obvious
isomorphism.
Rel is countably cartesian with

˘
i∈I Xi =

⋃
i∈I{i} ×Xi

(disjoint union) and projections πi = {((i, a), a) | a ∈ Xi}.
It is also countably additive with

⊕
i∈I Xi =

˘
i∈I Xi. The

sum of a countable family of elements of Rel(X,Y ) is its
union, so that hom sets are idempotent monoids.

The exponential functor is given by !X = Mfin(X)
(finite multisets of elements of X) and, if R ∈ Rel(X,Y ),
one sets !R = {([a1, . . . , an], [b1, . . . , bn]) | n ∈
N and (a1, b1), . . . , (an, bn) ∈ R}. The Seely isomor-
phism m ∈ Rel(1, !>) is {(∗, [])} and the Seely nat-
ural isomorphism mX,Y ∈ Rel(!X ⊗ !Y , !(X & Y ))
is the bijection which maps ([a1, . . . , an], [b1, . . . , bp])
to [(1, a1), . . . , (1, an), (2, b1), . . . , (2, bp)])}. Dereliction is
dX ∈ Rel(!X,X) defined by dX = {([a], a) | a ∈ X} and
digging is pX ∈ Rel(!X, !!X) defined by pX = {(m1 + · · ·+
mk, [m1, . . . ,mk]) | m1, . . . ,mk ∈ !X}.

As easily checked, weakening is given by wX = {([], ∗)} ∈
Rel(!X, 1) and binary contraction is cX = {(m1 +
m2, (m1,m2))) | m1,m2 ∈ !X}.

This structure can also be extended to a weak differential
LL model, codereliction being defined as dX = {(a, [a]) | a ∈
X} ∈ Rel(X, !X). In this model, the Taylor formula holds
as easily checked.

Fixpoints of types: Let Rel⊆ be the class of sets, ordere
by inclusion. It is closed under arbitrary unions. A functional
class (Rel⊆)n → Rel⊆ is continuous if it is monotone
wrt. inclusion and preserves all directe lubs. Any continuous
functional class Φ : Rel⊆ → Rel⊆ admits a least fixpoint
defined as usual as

⋃
n∈N Φn(∅). All the LL constructions

defined above are continuous functional classes.

B. The Scott model of LL

The model: A preordered set is a pair S = (|S|,≤S)
where |S| is a countable set and ≤S is a transitive and reflexive
binary relation on |S|. We denote as I(S) the set of all subsets
of |S| which are downwards closed wrt. the ≤S relation. We
set Sop = (|S|,≥S). We use S × T for the product preorder.

Scott semantics can also be presented as a model of LL.
The base category is Pol, the category whose objects are pre-
ordered sets and where Pol(S, T ) = I(Sop×T ). The identity
morphism at S is IdS = {(a, a′) ∈ |S| × |S| | a′ ≤S a}.
Composition is just the usual composition of relations.

Lemma 4 There is an order isomorphism from Pol(S, T )
to the set functions I(S) → I(T ) which preserve arbitrary

unions, ordered under the pointwise order. This isomorphisms
maps the relation R to the function ξ 7→ Rξ = {b ∈ |T | |
∃a ∈ ξ (a, b) ∈ R}.

This is quite easy to prove, and this mapping from relation
to functions is functorial. We equip Pol with a symmetric
monoidal structure, taking 1 = ({∗},=) and S ⊗ T = S × T
(product preorder).

One checks easily that if two prerorders S and S′ are
isomorphic as preorders through a bijection ϕ : |S| → |S′|,
then they are isomorphic in Pol by the relation {(a, a′) |
a′ ≤S′ ϕ(a)}. The converse is not true, for instance if I is
any non-empty countable set, then (I, I×I) is isomorphic to 1
in Pol. In the first case we say that ϕ is a strong isomorphism
from S to S′. The isomorphisms of the symmetric monoidal
structure of Pol are the obvious strong ones. This SMC
is closed, with S ( T = Sop × T and linear evaluation
ev ∈ Pol((S ( T ) ⊗ S, T ) given by ev = {(((a′, b), a), b′) |
a′ ≤S a and b′ ≤T b}. Pol is is ∗-autonomous with dualizing
object ⊥ = 1, so that, up to an obvious strong isomorphism,
S⊥ = Sop. Observe that as in Rel, the cotensor product `
coincides with the tensor product ⊗; both categories Rel and
Pol are compact closed.

Pol is countably cartesian: the cartesian product of a
countable family (Si)i∈I of preorders is S =

˘
i∈I Si defined

by |S| =
⋃
i∈I{i}×|Si| preordered as follows: (i, a) ≤S (j, b)

if i = j and a ≤Si b. The projections are πi = {((i, a), a′) |
a′ ≤Si

a}. In particular, the terminal object is (∅, ∅). The
category Pol is therefore also cocartesian, and it is countably
additive with sums of morphisms defined as unions.

We define the exponential functor by !S = (Mfin(|S|),≤!S)
where the preorder is defined as follows: p ≤!S q if ∀a ∈
|p| ∃b ∈ |q| a ≤S b. Given R ∈ Pol(S, T ), we set

!R = {(p, q) ∈ |!S| × |!T | | ∀b ∈ |q| ∃a ∈ |p| (a, b) ∈ R}

and it is quite easy to check that !R ∈ Pol(!S, !T ), and that
this operation is functorial.

Remark 5 There is another possible definition, for which we
use another notation: we can set !sS = (Pfin(|S|),≤!sS), with
preorder defined just as above: µ ≤!S ν if ∀a ∈ µ∃b ∈
ν a ≤S b. But observe that !S and !sS are isomorphic
through the relation eS ∈ Pol(!S, !sS) defined by eS =
{(µ, µ′) | ∀a′ ∈ µ′ ∃a ∈ |µ| a′ ≤S a} (whose inverse has
a similar definition). The important point is that this natural
isomorphism is compatible with all the structures of both
exponentials, so that (in a sense which is intuitively clear but
should be made more precise) the models defined by these
exponentials are equivalent. We prefer to use the multiset-
based construction to present the model because it is closer to
the exponential of the relational model: this simplifies greatly
the presentation of the extensional collapse as we shall see,
but keep in mind that we could give the same definitions with
the other version (simply, replace everywhere “· · · ∈ |µ|” by
“· · · ∈ µ”!).

The Seely isomorphism m ∈ Pol(1, !>) is {(∗, [])}
and the Seely natural isomorphism mS1,S2

∈ Pol(!S1 ⊗



5

!S2, !(S & T )) is {((p1, p2), q) | (i, a) ∈ |q| ⇒ ∃a′ ∈
|pi| a ≤Si a

′}. Dereliction dS ∈ Pol(!S, S) is dS = {(p, a) |
∃a′ ∈ |p| a ≤S a′} and digging pS ∈ Pol(!S, !!S) is
pS = {(p, [p1, . . . , pn] | i ∈ N and ∀i pi ≤!S p}.

As easily checked, weakening is given by wS = {(p, ∗) |
p ∈ |!S|} ∈ Rel(!S, 1) and binary contraction is cS =
{(p, (p1, p2))) | p, p1, p2 ∈ |!S| p1 + p2 ≤!S p}.

Unlike the relational model, this structure cannot be ex-
tended into a weak differential LL model.

Proposition 6 There is no natural transformation dS ∈
Pol(S, !S) such that dS dS = IdS .

Proof. We prove first that necessarily dS = {(a, p) ∈ |S| ×
|!S| | p ≤!S [a]}. First, let (a, p) ∈ dS . Let a′ ∈ |p|. By
definition of dS , we have (p, a′) ∈ dS , and hence (a, a′) ∈
dS dS = IdS . Therefore a′ ≤S a and hence p ≤!S [a].
Conversely, let a ∈ |S|. We have (a, a) ∈ IdS and therefore
there exists p such that (a, p) ∈ dS and (p, a) ∈ dS . By the
second property, we can find a′ ∈ |p| such that a ≤S a′.
We have [a] ≤!S p and (a, p) ∈ dS ∈ Pol(S, !S). Therefore
(a, [a]) ∈ dS . It follows that, for any p such that p ≤!S [a],
one has (a, p) ∈ dS .

Let S = ({0},=) and T = ({1, 2},=). Let R =
{(0, 1), (0, 2)}, we have R ∈ Pol(S, T ). Observe that
([0], [1, 2]) ∈ !R (warning: this is of course not true in Rel)
so that (0, [1, 2]) ∈ !R dS . But there is no b ∈ |T | such that
(b, [1, 2]) ∈ dT and hence we do not have (0, [1, 2]) ∈ dT R,
and this shows that dS is not a natural transformation. 2

Observe however that the inclusion dT R ⊆ !R dS holds, so
that dS enjoys a lax naturality property.

Fixpoints of types: Let S and T be preorders, we write
S ⊆ T if |S| ⊆ |T | and, for any a, a′ ∈ |S|, one has a ≤S a′
iff a ≤T a′. This defines an order relation on the class of
preorders and we use Pol⊆ for this partially ordered class. It is
clear that any countable directed family in Pol⊆ has a lub and
that all the LL constructions presented above are continuous. It
is also clear that any continuous functional Φ : Pol⊆ → Pol⊆

has a least fixpoint.

C. The collapsing model of LL

The last model that we consider combines the two models
above. It is based on a new duality that we introduce now.

The model: Let S be a preorder and let u, u′ ⊆ |S|.
We write u ⊥ u′ if u ∩ u′ = ∅ ⇒ (↓Su) ∩ u′ = ∅; this
means intuitively that u′ cannot separate u from its downwards
closure.

Observe that (↓Su)∩u′ = ∅ holds iff (↓Su)∩ (↓Sopu′) = ∅
so that u ⊥ u′ holds relatively to S iff u′ ⊥ u holds relatively
to Sop. Given D ⊆ P(|S|), we define D⊥(S) ⊆ P(|S|) by
D⊥(S) = {u′ ⊆ |S| | ∀u ∈ D u ⊥ u′}. It is clear that
D ⊆ D⊥(S)⊥(Sop) and that D1 ⊆ D2 ⇒ D2

⊥(S) ⊆ D1
⊥(S),

so that D⊥(S) = D⊥(S)⊥(Sop)⊥(S). Observe that I(Sop) ⊆
D⊥(S) ⊆ P(|S|) so that, when D is “closed” in the sense that
D = D⊥(S)⊥(Sop), one has I(S) ⊆ D ⊆ P(|S|).

The objects of the model are called preorders with projec-
tions and are pairs E = (〈E〉,D(E)) where 〈E〉 is a preorder

and D(E) ⊆ P(|〈E〉|) satisfies (D(E))
⊥(〈E〉)⊥(〈E〉op) ⊆

D(E), that is (D(E))
⊥(〈E〉)⊥(〈E〉op)

= D(E). If E is
a preorder with projections, we set of course E⊥ =
(〈E〉op, (D(E))

⊥(〈E〉)
).

Let E and F be prorders with projections. One defines
E ⊗ F by 〈E ⊗ F 〉 = 〈E〉 × 〈F 〉 and D (E ⊗ F ) =

{u× v | u ∈ D(E) and v ∈ D(F )}⊥(〈E〉×〈F 〉)⊥(〈E⊥〉×〈F⊥〉).
Let E ( F = (E ⊗ F⊥)

⊥.

Lemma 7 Let R ⊆ |〈E ( F 〉|. One has R ∈ D(E ( F ) iff
any of the following equivalent conditions holds.
• For any u ∈ D(E) and any v′ ∈ D(F⊥), one has R ∩

(u× v′) = ∅ ⇒ R ∩ (↓〈E〉u× ↑〈F 〉v′) = ∅.
• For any u ∈ D(E), one has Ru ∈ D(F ) and R ↓u ⊆
↓(Ru).

• For any u ∈ D(E), one has Ru ∈ D(F ) and ↓(Ru) =
(↓〈E〉(〈F 〉R) (↓u).

Proof. See [Ehr11]. 2

The category Pop of preorders with projections has the
structures defined above as objects, and Pop(E,F ) =
D(E ( F ). By Lemma 7 IdE = {(a, a) | a ∈ |〈E〉|} ∈
Pop(E,E), and if Q ∈ Pop(E,F ) and P ∈ Pop(F,G),
then P Q ∈ Pop(E,G) and so identities and composition of
Pop are defined in the usual relational way.

This category is ∗-autonomous: we have already seen the
definition of the tensor product on objects. On morphisms, it
is defined just as in Rel. The internal hom object E ( F
has also been defined above, and the linear evaluation relation
is defined as in Rel again. Of course, one has to check
carefully that all these relations are Pop morphisms, this done
in [Ehr11]. Notice that, as shown in that paper, this category
is not compact closed.

The category Pop is countably cartesian, E =
˘
i∈I Ei is

defined by 〈E〉 =
˘
i∈I〈Ei〉 and w ⊆ D(E) iff πi w ∈ D(Ei)

for each i ∈ I (where πi is the ith projection in the relational
model). The projections morphism in Pop are those of the
relational model. The category Pop is therefore also countably
cocartesian, and one checks easily that it is countably additive.

We define now the exponential !E of a preorder with
projection E. One sets 〈!E〉 = !〈E〉 and therefore, we have
|〈!E〉| = !|〈E〉| =Mfin(|〈E〉|) by our definition of !E based on
multisets and not on sets, see Remark 5. We set D(!E) =

{u! | u ∈ D(E)}⊥(〈!E〉)⊥(〈!E〉op), where u! = Mfin(u). The
main tool for dealing with this construction is the following
property.

Proposition 8 Let E and F be preorders with projections and
let R ∈ Rel(|〈E〉|, |〈F 〉|). One has R ∈ Pop(!E,F ) iff, for any
u ∈ D(E)

• Ru! ∈ D(F )
• R (↓〈E〉u)

! ⊆ ↓〈F 〉(Ru!).

Proof. See [Ehr11]. 2

The Seely isomorphisms, and the dereliction and digging
natural transformations are defined exactly as in Rel. One
uses Proposition 8 to prove that they are indeed morphisms in
Pop.
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Fixpoints of types: Let E and F be preorders with
projections. We write E ⊆ F if 〈E〉 ⊆ 〈F 〉, D(E) ⊆ D(F )
and, for any v ∈ D(F ), one has v ∩ |〈E〉| ∈ D(E) and
↓〈F 〉v ∩ |〈E〉| ⊆ ↓|〈E〉|(v ∩ |〈E〉|). This is an order relation on
the class of preorders with projections, and we write Pop⊆

for the corresponding partially ordered class. It is shown
in [Ehr11] that this this partially ordered class is complete
(all directed lubs exist) and we define as usual the notion of
continuous functional (Pop⊆)n → Pop⊆, one checks that all
constructions of linear logic are continuous functionals, and
that any continuous functional Φ : Pop⊆ → Pop⊆ admits a
least fixpoint

⋃∞
n=0 Φn(∅).

Forgetful LL functors: There is an obvious functor ρ :
Pop→ Rel defined on objects by ρ(E) = |〈E〉| and which is
the identity on morphisms. With a preorder with projection E,
we can also associate a preorder σ(E) = 〈E〉. This operation
is extended to morphisms as follows: let R ∈ Pop(E,F ), we
set σ(R) = ↓〈E〉(〈F 〉R.

Lemma 9 Both ρ and σ are LL functors.

The proof can be found in [Ehr11], the statement concerning
ρ being straightforward. Concerning σ, LL functoriality is
made possible by the presence of the sets D(E). For instance
functoriality results directly from Lemma 7 and Lemma 4,
but it is clear that, given preorders S, S′ and S′′ and relations
R ∈ Rel(|S|, |S′|) and R′ ∈ Rel(|S′|, |S′′|), the inclusion
(↓S′(S′′R

′) (↓S(S′R) ⊆ ↓S(S′′(R
′R) does not hold in

general.

Lemma 10 When restricted to inclusions, ρ induces a con-
tinuous function Pop⊆ → Rel⊆ and σ induces a continuous
functional Pop⊆ → Rel⊆.

III. THE CALL-BY-VALUE LAMBDA-CALCULUS

Our syntax for the call-by-value lambda-calculus is a slight
modification of the ordinary lambda-calculus syntax. Indeed,
with these notations, denotational semantics can be defined in
a very natural way.
• If V is a value, then 〈V 〉 is a term
• if M and N are terms, then M N is a term
• if x is a variable, then x is a value
• if M is a term and x is a variable, then λxM is a value.
As usual, we work up to α-equivalence, which means that

we make no difference between λxM and λy (M [y/x]) as
soon as y does not occur free in M . We use Λt for the set of
terms, Λv for the set of values and Λe for the disjoint union
of these two sets, whose elements will be called expressions
and denoted with letters P,Q, . . . .

A. General reduction relation

We define now a reduction relation βV on these expressions,
by the following rules. More precisely, this reduction relation
can be seen as the disjoint union of two reduction relations,
βV ⊆ (Λt × Λt) ∪ (Λv × Λv).

〈λxM〉 〈V 〉 βV M [V/x]
M βV M

′

M N βV M
′N

N βV N
′

M N βV M N ′
M βV M

′

λxM βV λxM
′

We use β∗V for the transitive closure of βV.

B. Confluence
We prove now a confluence property for this calculus. For

this purpose, we adapt the standard Tait-Martin-Löf technique
of parallel reduction. We define the parallel reduction relation
ρV by the following rules

P ρV P
M ρV M

′ V ρV V
′

〈λxM〉 〈V 〉 ρV M ′ [V ′/x]
M ρV M

′ N ρV N
′

M N ρV M
′N ′

M ρV M
′

λxM ρV λxM
′

Observe again that ρV ⊆ (Λt × Λt) ∪ (Λv × Λv).

Lemma 11 ρV ⊆ β∗V
Proof. By induction on the ρV-deduction tree leading to P ρV
P ′, we prove that P β∗V P ′. The only case which deserves
comment is when P = 〈λxM〉 〈V 〉, P ′ = M ′ [V ′/x] and the
deduction tree ends with the rule

M ρV M
′ V ρV V

′

P = 〈λxM〉 〈V 〉 ρV P ′ = M ′ [V ′/x]

By inductive hypothesis we have M β∗V M ′ and V β∗V V ′.
Therefore 〈λxM〉 〈V 〉 β∗V 〈λxM ′〉 〈V ′〉 βV M ′ [V ′/x]. 2

It is also clear that βV ⊆ ρV and hence ρ∗V = β∗V.

Lemma 12 If P ρV P ′ and V ρV V ′, then P [V/x] ρV
P ′ [V ′/x].

Proof. By induction on the ρV-deduction tree leading to
P ρV P

′. The only interesting case is when P = (λyM)〈W 〉
and P ′ = M ′ [W ′/y] with M ρV M ′ and W ρV W ′

(we can assume that y 6= x). Then we have P [V/x] =
(λyM [V/x])〈W [V/x]〉. Moreover, by inductive hypothesis
we have M [V/x] ρV M

′ [V ′/x] and W [V/x] ρV W
′ [V ′/x],

and hence, applying the definition of ρV, we get P [V/x] ρV
M ′ [V ′/x] [W ′ [V ′/x]/y] = P ′ [V ′/x] since we can assume
that y does not occur free in W ′. 2

Theorem 13 If P ρV Pi for i = 1, 2 then there exists P ′ such
that Pi ρV P ′ for i = 1, 2.

Proof. If Pi = E for i = 1 or i = 2 then one concludes
immediately.

Assume that P = M N and Pi = MiNi with M ρV Mi

and N ρV Ni for i = 1, 2. In that case the inductive hypothesis
applies immediately. There is a similar case with P = λxM .

Assume next that P = (λxM)〈V 〉, that M ρV Mi and
V ρV Vi, P1 = (λxM1)〈V1〉 and P2 = M2 [V2/x]. By induc-
tive hypothesis we can find M ′ and V ′ such that Mi ρV M

′

and Vi ρV V ′ for i = 1, 2. By definition of ρV we have
P1 ρV M

′ [V ′/x]. By Lemma 12 we have P2 ρV M
′ [V ′/x].

Up to symmetries, the last case is when P = (λxM)〈V 〉,
M ρV Mi and V ρV Vi, and Pi = Mi [Vi/x] for i = 1, 2. We
conclude similarly, applying twice Lemma 12. 2
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C. Weak reduction

We define now a reduction relation β̂V which is included in
βV and which consists in reducing only redexes not occurring
inside a value (that is, under a λ). It plays the same role as
head reduction in the standard λ-calculus. It is defined by the
following rules.

(λxM)〈V 〉 β̂V M [V/x]
M β̂V M

′

M N β̂V M
′N

N β̂V N
′

M N β̂V M N ′

IV. LINEAR-LOGIC BASED MODELS

We present here a general notion of model for this calculus,
which corresponds to a translation of intuitionistic logic into
linear logic alluded to by Girard in [Gir87] and called by him
“boring”. This interpretation is compatible with the translation
of the call-by-value lambda-calculus into linear logic given
in [MOTW99]. Let C be an LL model.

A. Interpretation of the calculus

We define a C-model of call-by-value as a triple
(U, app, lam) where U is an object of C, and app ∈ C(U, !U (
!U) and lam ∈ C(!U ( !U,U) are such that app lam =
Id!U(!U .

We give the interpretation of expressions in such a struc-
ture. Given an expression P and a sequence of variables
~x = (x1, . . . , xn) adapted to P (this means that the sequence
is repetition-free and contains all the free variables of P ), we
define [P ]~x ∈ C((!U)⊗n, X) where X = U if P is a value
and X = !U if P is a term. The definition is by induction on
P , and we consider first the cases where P is a term.

Assume first that P = 〈V 〉. By inductive hypothesis we
have [V ]~x : (!U)⊗(n) → U , and we set [P ]~x = ([V ]~x)

!
:

(!U)⊗(n) → !U .
Assume next that P = M N . By inductive hypothesis, we

have [M ]~x, [N ]~x ∈ C((!U)⊗n, !U). Therefore app dU [M ]~x ∈
C((!U)⊗n, !U ( !U). So we set

[P ]~x = ev ((app dU [M ]~x) ⊗ [N ]~x) cnU ∈ C((!U)⊗n, !U)

Now we interpret values. Assume first that P is a variable,
so that P = xi for an uniquely determined i ∈ {1, . . . , n}.
Then we have w

⊗(i−1)
U ⊗ dU ⊗ w

⊗(n−i)
U : (!U)⊗n →

1⊗(i−1) ⊗ U ⊗ (1)⊗(n−i) ' U (we keep this isomorphism
implicit). We set [M ]~x = w

⊗(i−1)
U ⊗ dU ⊗ w

⊗(n−i)
U .

Assume last that P = λxM . We can assume that x does
not occur in ~x. By inductive hypothesis, we have [M ]~x,x ∈
C((!U)⊗n ⊗ !U, !U) and hence λ([M ]~x,x) ∈ C((!U)⊗n, !U (
!U) and therefore we set

[P ]~x = (lamλ([P ]~x,x)) ∈ C((!U)⊗n, U) .

Lemma 14 (Substitution Lemma) Let P be an expression,
x a variable and V a value. Let ~x which does not contain
x, is adapted to V and such that ~x, x is adapted to E. We
have [P [V/x]]~x = [P ]~x,x ((!U)⊗n ⊗ ([V ]~x)

!
) cnU where n is

the length of ~x.

Proof. By induction on P . We deal first with the cases where
P is a term. Assume that P = M N . We have

[P ]~x,x (Id⊗n!U ⊗ ([V ]~x)
!
) cnU

= ev ((app dU [M ]~x,x) ⊗ [N ]~x,x) cn+1
U (Id⊗n!U ⊗ ([V ]~x)

!
) cnU

= ev ((app dU [M ]~x,x) ⊗ [N ]~x,x)

((Id⊗n!U ⊗ [V ]~x) ⊗ (Id⊗n!U ⊗ [V ]~x)) (cnU ⊗ cnU ) cnU
by Lemma 1 and by the definition of cnU

= ev ((app dU [M [V/x]]~x) ⊗ [N [V/x]]~x) cnU
by inductive hypothesis.

Assume now that P = 〈W 〉. Then [P ]~x = ([W ]~x,x)
!

so that

[P ]~x,x (Id⊗n!U ⊗ ([V ]~x)
!
) cnU = ([W ]~x,x)

!
(Id⊗n!U ⊗ ([V ]~x)

!
) cnU

= ([W ]~x,x (Id⊗n!U ⊗ ([V ]~x)
!
))

!

cnU by Lemma 1

= ([W ]~x,x (Id⊗n!U ⊗ ([V ]~x)
!
) cnU )

!

by definition of cnU

= ([W [V/x]]~x)
!

by inductive hypothesis.

= [P [V/x]]~x

We consider now the cases where P is a value. Assume
first that P = x. Then [P ]~x,x = w⊗nU ⊗ dU and hence
[P ]~x,x ((!U)⊗n ⊗ ([V ]~x)

!
) cnU = [V ]~x by Lemma 1.

Assume next that P = xi for an uniquely determined i ∈
{1, . . . , n}. Then

[P ]~x,x (Id⊗n!U ⊗ ([V ]~x)
!
) cnU

= ((w
⊗(i−1)
U ⊗ dU ⊗ w

⊗(n−i)
U ) ⊗ wU ) (Id⊗n!U ⊗ ([V ]~x)

!
) cnU

= ((w
⊗(i−1)
U ⊗ dU ⊗ w

⊗(n−i)
U ) ⊗ w⊗nU ) cnU by Lemma 1

= w
⊗(i−1)
U ⊗ dU ⊗ w

⊗(n−i)
U

by neutrality of weakening wrt. contraction

= [xi]
~x as required.

Assume last that E = λyM with y not occurring in ~x, x.

[P ]~x,x (Id⊗n!U ⊗ ([V ]~x)
!
) cnU

= lamλ([M ]~x,x,y) (Id⊗n!U ⊗ ([V ]~x)
!
) cnU

= lamλ([M ]~x,x,y (Id⊗n!U ⊗ ([V ]~x)
! ⊗ Id!U )) cnU

by monoidal closedness

= lamλ([M ]~x,y,x (Id⊗n!U ⊗ Id!U ⊗ ([V ]~x)
!
)) cnU

= lamλ([M ]~x,y,x (Id⊗n!U ⊗ Id!U ⊗ ([V ]~x)
!
) cn+1
U )

by monoidal closedness

= lamλ([M [V/x]]~x,y) by inductive hypothesis 2

Theorem 15 Let ~x be adapted to the expressions P and P ′

and assume that P βV P
′. Then [P ]~x = [P ′]~x.

Proof. By induction on the βV-deduction tree leading to P βV
P ′. As usual, n denotes the length of ~x.
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Assume that P = (〈λxM〉)〈V 〉 and that P ′ = M [V/x].

[P ]~x = ev ((app dU ([λxM ]~x)
!
) ⊗ ([V ]~x)

!
) cnU

= ev ((app lamλ([M ]~x,x)) ⊗ ([V ]~x)
!
) cnU

= ev ((λ([M ]~x,x)) ⊗ ([V ]~x)
!
) cnU since app lam = Id

= [M ]~x,x ((!U)⊗n ⊗ ([V ]~x)
!
) cnU by mon. closedness

= [M ′]~x by Lemma 14.

In the other cases, one applies directly the inductive hypoth-
esis. 2

V. A RELATIONAL MODEL AND THE ASSOCIATED TYPE
SYSTEM

Let ΦR : Rel⊆ → Rel⊆ be the continuous functional
defined by ΦR(X) = !X ( !X . Let UR be its least fixpoint,
then we have UR = !UR ( !UR so that UR is a Rel-model of
call-by-value with app = lam = Id.

A. Non-idempotent intersection types

We introduce a typing system for deriving judgments of
shape Γ ` M : m where M is a term, m ∈ !UR and Γ
is a context, that is, a finite partial function from variables
to !UR where the xis are pairwise distinct variables and
m1, . . . ,mn ∈ !U , and judgments of shape Γ ` V : a where
V is a value and a ∈ UR. The sum of contexts Γ+∆ is defined
pointwise (using the sum of multisets), when Γ and ∆ have
the same domain. The typing rules for terms are

Γ `M : [(p, q)] ∆ ` N : p

Γ + ∆ `M N : q
Γ1 ` V : a1 · · · Γk ` V : ak

Γ1 + · · ·+ Γk ` 〈V 〉 : [a1, . . . , ak]

and the typing rules for values are

x1 : [], . . . , xn : [], x : [a] ` x : a
Γ, x : p `M : q

Γ ` λxM : (p, q)

Proposition 16 Let P be an expression and let ~x =
(x1, . . . , xn) be a list of variables adapted to P . Let ~p ∈
(!UR)n and let α ∈ X (where X = UR if P is a value and
X = !UR if P is a term). Then one has (~p, α) ∈ [P ]~xR iff the
typing judgment x1 : p1, . . . , xn : pn ` P : α is derivable.

The proof is a simple verification, by induction on the structure
of P .

B. A resource calculus

We introduce a resource calculus whose terms can be used
to denote typing derivations in the typing system described
above.

1) Notation: given a finite family (ai)i∈I and a predicate
P on I , we use [ai | P (i)] for the multiset whose elements are
the ai such that P (i) holds, taking multiplicities into account.

2) Syntax: we describe first the syntax of our resource
calculus.
• If s and t are terms, then s t is a term.
• If v1, . . . , vn are values, then 〈v1, . . . , vn〉 is a term.
• If x is a variable, then x is a value.
• If x is a variable and s is a term, then λx s is a value.

We call terms and values simple expressions. An expression
is a set of simple expressions1, that we write as sums to
insist on the algebraic flavor of the definitions. The above
syntactic constructs are extended to non simple expressions,
by linearity. For instance, if v =

∑n
i=1 vi and w =

∑m
j=1 wj

are sets of simple values, the expression 〈v, w〉 denotes the
set
∑n,m
i=1,j=1 〈vi, wj〉. And if s =

∑n
i=1 si is a set of simple

terms, then λx s denotes
∑n
i=1 λx si, which is a set of simple

values.
Given a simple expression e and simple values v1, . . . , vn,

we define the linear substitution ∂x(e; v1, . . . , vn) by

∂x(e; v1, . . . , vn) =


∑
f∈Sn

e
[
v1/xf(1), . . . , vn/xf(n)

]
if n = degxe

0 otherwise

where degxe is the number of free occurrences of x in e and
x1, . . . , xn are these occurrences (in the case n = degxe).

3) Reduction rules: we can give now the reduction rules
of the calculus. We define a reduction relation denoted as δ
from simple expressions to expressions by the following rules.

〈λx s〉 〈v1, . . . , vn〉 δ ∂x(s; v1, . . . , vn)

if n 6= 1
〈v1, . . . , vn〉 t δ 0

s δ s′

λx s δ λx s′

s δ s′

s t δ s′ t
t δ t′

s t δ s t′
v δ v′

〈v, v1, . . . , vn〉 δ 〈v′, v1, . . . , vn〉
This reduction is extended as usual to non simple expres-

sions: we define a reduction relation δ̃ on non simple terms
by the following rule.

e1 δ e
′
1, . . . , en δ e

′
n∑n

i=1 ei + f δ̃
∑n
i=1 e

′
i + f

Lemma 17 Let e be a simple expression and let v1, . . . , vn
be simple values. If e δ e′, then ∂x(e; v1, . . . , vn) δ̃
∂x(e′; v1, . . . , vn), and if v1 δ v

′
1, then ∂x(e; v1, v2, . . . , vn) δ̃

∂x(e′; v′1, v2, . . . , vn).

The proof is straightforward.

Theorem 18 The reduction relation δ̃ satisfies the diamond
property.

Proof. It suffices to prove that, if e is a simple expression and
if e δ ei for i = 1, 2, there exists e′ such that ei δ̃ e′ for
i = 1, 2. The proof is by induction on e.

1Linear combinations should be used more generally, but this particular
case will be sufficient for the present paper.
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The only non trivial case is when e = 〈λx s〉 〈v1, . . . , vn〉,
e1 = ∂x(s; v1, . . . , vn) and e2 is of shape e2 =
〈λx s′〉 〈v1, . . . , vn〉 with s δ s′ or e2 = 〈λx s〉 〈v′1, v2, . . . , vn〉
with v1 δ v

′
1. In both cases, we simply apply Lemma 17. 2

Lemma 19 There is no infinite sequence (ei)i∈N+ of simple
expressions such that, for each i, ei δ̃ e′ with ei+1 ∈ e′.

Proof. One defines a size function on expressions. For instance
we can set |x| = 1, |λx s| = |s|, |s t| = |s| + |t| and
|〈v1, . . . , vk〉| =

∑k
j=1 |vj |. In other words |e| is the number

of occurrences of variables in e. 2

C. Categorical denotational semantics

Let U be a C-model of call-by-value, where we assume
moreover that C is a weak differential LL model which is
countably additive and where homsets have idempotent sums.
We show how to interpret the call-by-value resource calculus
in such a structure.

We introduce first a convenient notation. Let g1, . . . , gk ∈
C((!U)⊗n, U). We set 〈g1, . . . , gk〉 = d

k

U (g1 ⊗ · · · ⊗ gk) cn,kU ,
where cn,kU ∈ C((!U)⊗n, ((!U)⊗n)⊗k) is an obvious general-
ization of cnU .

Given a simple expression e and an adapted sequence of
variables ~x, we define [e]~x ∈ C((!U)⊗n, X) where X = U
if e is a value and X = !U if e is a term. The definition is
by induction on e. For the syntactical constructs which are
similar to those of the call-by-value lambda-calculus (namely:
variables, application and abstraction), the interpretation is
the same as in Section IV-A. To complete the definition we
have just to define the semantics of 〈v1, . . . , vk〉. By inductive
hypothesis we have defined gj = [vj ]

~x ∈ C((!U)⊗n, U) and
we set [〈v1, . . . , vk〉]~x = 〈g1, . . . , gk〉. If e is an expression,
that is a set of simple expressions e =

∑
i∈I ei and a list

of variables ~x adapted to all xis, we set [e]~x =
∑
i∈I [ei]

~x

which is well defined because we have assumed that the sum
of morphisms is idempotent in C.

Lemma 20 If e δ e′ and ~x is adapted to e and e′, then [e]~x =
[e′]~x.

Proof. It suffices to prove the result in the case where e is
simple, by induction on e. The proof uses the following prop-
erty of linear substitution wrt. the interpretation (substitution
lemma). Let e be a simple expression and v1, . . . , vk be simple
values. Let ~x, x a sequence of variable adapted to e and to all
vjs. Let n be the length of ~x. Then we have

[∂x(e; v1, . . . , vk)]~x = [e]~x,x (!U⊗n ⊗
〈
[v1]~x, . . . , [v1]~x

〉
) cnU

and this is proved by a simple induction on e. 2

For any expression P of the call-by-value lambda-calculus,
we define a set T (P ) of simple expressions by induction.

T (x) = {x} T (λxM) = {λx s | s ∈ T (M)}
T (M N) = {s t | s ∈ T (M) and t ∈ T (N)}
T (〈V 〉) = {〈v1, . . . , vk〉 | k ∈ N and ∀i vi ∈ T (V )}

Lemma 21 Let P be an expression and let V be a value. Let
e ∈ T (P ) and v1, . . . , vk ∈ T (V ). Then ∂x(e; v1, . . . , vk) ⊆
T (P [V/x]).

Proof. Easy induction on P . 2

Lemma 22 If the Taylor formula holds in C then for any
expression P and any ~x adapted to P we have [P ]~x =∑
e∈T (P )[e]

~x.

Proof. Easy induction on P . 2

D. Adequacy in Rel

Lemma 23 Let P, P ′ be expressions and let e ∈ T (P ). If
P β̂V P

′ then there exists e′ ⊆ T (P ′) such that e δ e′.

Proof. Simple inspection, using Lemma 21. 2

Theorem 24 Let P be an expression. Let ~x be adapted to P
and let n be the length of ~x. Let m1, . . . ,mn ∈ !UR and let
α ∈ X where X = UR if P is a value and X = !UR if P is a
term. If x1 : m1, . . . , xn : mn ` P : α then P is β̂V strongly
normalizing.

Proof. By Proposition 16, our hypothesis means that (~m,α) ∈
[P ]~x. By Lemma 22 there exists e ∈ T (P ) such that (~m,α) ∈
[e]~x. If P β̂V P

′ there then there exists f ⊆ T (P ′) such that
e δ f by Lemma 23. By Lemma 20 we have (~m,α) ∈ [f ]~x and
hence there exists e′ ∈ f such that (~m,α) ∈ [e′]~x. Therefore,
for any reduction P = P1 β̂V P2 . . . β̂V Pl we can find e1 ∈
T (P1), . . . , el ∈ T (Pl) with |e1| > |e2| > · · · > |el|. 2

VI. A SCOTT MODEL AND THE ASSOCIATED TYPE SYSTEM

Let ΦS : Pol⊆ → Pol⊆ be the continuous functional
defined by ΦS(S) = !S ( !S. Let US be the least fixpoint
of ΦS, then US (equipped with two identity morphisms) is a
Pol⊆-model of the call-by-value lambda-calculus. We use ≤
for the preorder ≤US .

A. Idempotent intersection types

We introduce a typing system for deriving judgments of
shape Γ `S M : m where M is a term, m ∈ |!US| and Γ
is a context, that is, a finite partial function from variables
to |!US| where the xis are pairwise distinct variables and
m1, . . . ,mn ∈ |!US|, and judgments of shape Γ `S V : a
where V is a value and a ∈ |US|. The typing rules for terms
are

Γ `S M : [(p, q)] Γ `S N : p

Γ `S M N : q
Γ `S V : a1 · · · Γ `S V : ak

Γ `S 〈V 〉 : [a1, . . . , ak]

and the typing rules for values are

[a] ≤ m
Γ, x : m `S x : a

Γ, x : p `S M : q

Γ `S λxM : (p, q)
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Proposition 25 Let P be an expression and let ~x =
(x1, . . . , xn) be a list of variables adapted to P . Let ~m ∈
(|!US|)n and let α ∈ |S| (where S = US if P is a value and
S = !US if P is a term). Then one has (~m,α) ∈ [P ]~xS iff the
typing judgment x1 : m1, . . . , xn : mn ` P : α is derivable.

The proof is a simple verification, by induction on the structure
of P .

B. Adequacy in the idempotent case

One can prove an analog of Theorem 24 for this idempotent
typing system, but the same technique does not apply because,
as we have seen with Proposition 6, Pol is no a model of the
call-by-value resource calculus. The standard method to prove
adequacy in this model is by reducibility, we give an example
of such a proof in the Appendix section.

Theorem 26 Let P be an expression. Let ~x be adapted to P
and let n be the length of ~x. Let m1, . . . ,mn ∈ |!US| and let
α ∈ |X| where X = US if P is a value and X = !US if P is a
term. If x1 : m1, . . . , xn : mn `S P : α then P is β̂V strongly
normalizing.

C. Adequacy, using preorders with projections

Let ΦP : Pop⊆ → Pop⊆ be the continuous functional
defined by ΦP(E) = !E ( !E. Let UP be the least fixpoint
of ΦP, then UP (equipped with two identity morphisms) is a
Pop-model of the call-by-value lambda-calculus.

By Lemma 10, we have ρ(UP) = UR and σ(UP) = US.
Let P be an expression and let ~x be a sequence of variables

adapted to P , let n be the length of ~x. Because ρ is an
LL functor, we have [P ]~xP = ρ([P ]~xP) = [P ]~xR, and similarly
we have σ([P ]~xP) = [P ]~xS . These properties are proved by a
straightforward induction on P . As a consequence, using the
definition of the functor σ, we get the following result, which
relates the relational semantics of an expression to its Scott
semantics.

Theorem 27 Let P be an expression and let ~x be a sequence
of variables of length n, adapted to P . Then [P ]~xS = ↓[P ]~xR
where the downwards closure is taken in (!US)⊗n ( S (with
S = US if P is a value and S = !US if P is a term).

This gives us an alternative proof of Theorem 26. We deal
with the case of a term, but the proof is of course similar for
values. So assume that x1 : m1, . . . , xk : mk `S M : m which
means that (~m,m) ∈ [M ]~xS where m1, . . . ,mn,m ∈ |!US|.
Then by Theorem 27, we can find m′1, . . . ,m

′
n,m

′ ∈ |!US| =
UR with m′i ≤ mi and m ≤ m′ (where ≤ is the preorder on
US) and such that (m′1, . . . ,m

′
n,m

′) ∈ [M ]~xR. By Theorem 24,
M is β̂V strongly normalizing.

CONCLUSION

We have shown how to use a purely semantical construction
(the model Pop) to reduce the proof of an adequacy theorem
usually proved by reducibility to a purely combinatorial argu-
ment and we have illustrated this approach in the call-by-value

lambda-calculus. In further work, we’ll apply this approach to
other languages and other notion of normalization (e.g. strong
normalization for the general β-reduction), in order to under-
stand better how the reducibility structure (interpretation of
types etc) in encoded in the model.
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APPENDIX

Lemma 28 If M1M2 β̂∗V 〈V 〉 then there is a term N and
a value W such that M1 β̂∗V 〈λxN〉, M2 β̂∗V 〈W 〉 and
N [W/x] β̂∗V V .

Proof. Straightforward induction on the length of the reduction
M1M2 β̂

∗
V 〈V 〉. Notice that the base case holds trivially. 2

Lemma 29 If M β̂∗V 〈V 〉 and M β̂V M
′, then M ′ β̂∗V 〈V 〉.

Proof. The proof is by induction on M . Since M β̂V M ′,
M must be of shape M = M1M2 (in the other cases, the
property holds trivially). We have three cases to consider.

If M1 = 〈λxN〉 and M2 = 〈W 〉, we must have M ′ =
N [W/x] and the reduction M β̂∗V 〈V 〉 is M β̂V M

′ β̂∗V 〈V 〉;
the announced property holds.

In the other cases, we know by Lemma 28 that M1 β̂∗V
〈λxN〉, M2 β̂

∗
V 〈W 〉 and N [W/x] β̂∗V 〈V 〉.

If M ′ = M ′1M2 with M1 β̂V M ′1, we know by in-
ductive hypothesis that M ′1 β̂∗V 〈λxN〉. Therefore M ′ β̂∗V
〈λxN〉 〈W 〉 β̂∗V Q.

If M ′ = M1M
′
2 with M2 β̂V M

′
2, we know by inductive hy-

pothesis that M ′2 β̂
∗
V 〈W 〉. Therefore M ′ β̂∗V 〈λxN〉 〈W 〉 β̂∗V

V and we are done. 2

Let N be the set of all terms M such that M β̂∗V 〈V 〉 for a
value V . Let L be the following term:

L = L0 L0 where L0 = 〈λx 〈λy 〈x〉 〈x〉〉〉 .

Observe that L ∈ N and that, for any value V , we have
L 〈V 〉 β̂∗V L. We could use any term with the same properties
instead of L.

We say that a set X of terms is saturated if it satisfies the
following properties

1) X ⊆ N .
2) For any terms M and N such that M β̂V N , one has

M ∈ X iff N ∈ X .
3) L ∈ X .

Lemma 30 The set N is saturated.

Proof. The only non straightforward property is that, if M β̂V
M ′ and M ∈ N , then M ′ ∈ N . This results from Lemma 29.

2

Lemma 31 If (Xi)i∈I is a family of saturated sets, with I 6=
∅, then

⋂
i∈I Xi is saturated.

The proof is straightforward.
Given two sets of lambda-terms X and Y , we set as usual

X ( Y = {M | ∀N ∈ X M N ∈ Y} .

Lemma 32 If X and Y are saturated, then X ( Y is
saturated.

Proof. Let M ∈ X ( Y . Since L ∈ X , we have M L ∈ Y
and hence M L ∈ N . If M /∈ N , then any term N such that
M L β̂∗V N is of shape N = M ′ L′ with M β̂∗V M ′ (and of

course M ′ /∈ N ) and L β̂∗V L′: this contradicts the fact that
M L ∈ N . So we have M ∈ N and hence X ( Y ⊆ N .

Let M and M ′ be terms such that M β̂V M
′. Let N ∈ X ,

we have M N β̂V M
′N and hence, since Y is saturated, we

have M N ∈ Y iff M ′N ∈ Y . Therefore M ∈ X ( Y iff
M ′ ∈ X ( Y .

Last, we check that L ∈ X ( Y . Let M ∈ X . Since
X ⊆ N , we have M β̂∗V 〈V 〉 where V is a value. Therefore
LM β̂∗V L 〈V 〉 βV L ∈ Y . Since Y is saturated, we have
therefore LM ∈ Y . 2

Given a ∈ |US| and m ∈ |!US|, we define sets a• and m•

of terms. The definition is by induction on the size. We set

(p, q)• = p• ( q•

[a1, . . . , an]• = N ∩ a•1 ∩ · · · ∩ a•n .

It results from lemmas 31 and 32, that these sets a• and
m• are saturated.

Lemma 33 Let a, a′ ∈ |US|. If a ≤ a′, then a′• ⊆ a•. Let
m,m′ ∈ |!US|. If m ≤ m′ (in !US) then m′• ⊆ m•.

Proof. By induction in the size of a and of m. Assume first
that a ≤ a′. By definition of US, we must have a = (p, q) and
a′ = (p′, q′) with q ≤ q′ and p′ ≤ p (in !US). By inductive
hypothesis we have p• ⊆ p′• and q′• ⊆ q•. It follows easily
that a′• = p′• ( q′• ⊆ p• ( q• = a•, as required. Assume
now that m ≤ m′ (in !US). Let M ∈ m′•, and let us prove
that M ∈ m• =

⋂
a∈|m| a

•. So let a ∈ |m|. We know that
there exists a′ ∈ |m′| such that a ≤ a′ because m ≤ m′. By
inductive hypothesis we have a′• ⊆ a•. By definition of m′•

we have m′• ⊆ a′• and we conclude that M ∈ a• because
M ∈ m′•. 2

We can now prove the main property.

Proposition 34 If x1 : r1, . . . , xn : rn ` P : α and if
V1, . . . , Vn are values such that 〈Vi〉 ∈ r•i for i = 1, . . . , n,
then we have P [V1/x1, . . . , Vn/xn] ∈ α• if P is a term and
〈P [V1/x1, . . . , Vn/xn]〉 ∈ α• if P is a value.

Proof. By induction on the deduction of x1 : r1, . . . , xn :
rn ` P : α. Given any expression Q, we use Q′ to denote the
expression Q [V1/x1, . . . , Vn/xn].

Assume first that P = xn and that the deduction consists
of the axiom

x1 : r1, . . . , xn−1 : rn−1, xn : rn `S xn : a

where we have [a] ≤ rn. By Lemma 33 we have therefore
r•n ⊆ a•. But 〈V 〉 ∈ r•n by assumption and hence P ′ = 〈V 〉 ∈
a• as required,

Assume next that the deduction ends with
Γ `S M : [(p, q)] Γ `S N : p

Γ `S M N : q

with P = M N (so P is a term) and Γ = (x1 : r1, . . . , xn :
rn) = Γ and α = q. For each i = 1, . . . , n, we have 〈Vi〉 ∈ r•i
and hence by inductive hypothesis M ′ ∈ (p, q)• and N ′ ∈ p•.
Since (p, q)• = p• ( q•, we get P ′ = M ′N ′ ∈ q• as
required, since P is a term and α = q.
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Assume next that the proof ends with

Γ `S V : a1 · · · Γ `S V : ak
Γ `S 〈V 〉 : [a1, . . . , ak]

with P = 〈V 〉 and Γ = (x1 : r1, . . . , xn : rn) = Γ. For each
j ∈ {1, . . . , k} we have by inductive hypothesis 〈V ′〉 ∈ a•j .
Hence 〈V ′〉 ∈

⋂k
j=1 a

•
j . Last, we obviously have 〈V ′〉 ∈ N

and hence P ′ = 〈V ′〉 ∈ α•.
Assume last that the proof ends with

Γ, x : p `S M : q

Γ `S λxM : (p, q)

with P = λxM (so that P is a value) and α = (p, q). We
must prove that 〈P ′〉 = 〈λxM ′〉 ∈ p• ( q•. Let N ∈ p•,
we must prove that 〈λxM ′〉N ∈ q•. Since N ∈ p• ⊆ N ,
we know that N β̂∗V 〈W 〉 for some value W . Moreover, since
p• is saturated and since N ∈ p•, we have 〈W 〉 ∈ p•. By
inductive hypothesis we have therefore M ′ [W/x] ∈ q•. Now
〈λxM ′〉N β̂∗V 〈λxM ′〉 〈W 〉 β̂V M ′ [W/x] ∈ q• and hence
〈λxM ′〉N ∈ q• because q• is saturated. 2

Theorem 26 follows, using Proposition 34 and the fact that
any saturated set is included in N .


