Higher-Order Model Checking:
from Semantics to Algorithmics

Luke Ong
University of Oxford
http://www.cs.ox.ac.uk/people/luke.ong/personal/
http://mjolnir.cs.ox.ac.uk

CurienFest, 9-11 September 2013, Venice
Higher-Order Model Checking is the model checking of infinite (term-)trees generated by recursion schemes for the formal analysis of higher-order computation.

Recursion schemes = programs of simply-typed λ-calculus + recursion, generated from uninterpreted alphabet Σ of 1st-order symbols.

MSO Model-Checking Problem for Recursion Schemes [KNU01/02]

- **INSTANCE:** An order-n recursion scheme G, and an MSO formula φ
- **QUESTION:** Does the generated tree, $\text{tree}(G)$, satisfy φ?

This problem is decidable. Various proofs:

1. Game semantics [O. LICS06]
2. Collapsible PDA [Hague, Murawski, O. & Serre LICS08]
3. Intersection refinement types [Kobayashi POPL09; K. & O. LICS09]
4. Krivine machine [Salvati & Walukiewicz ICALP11]

The problem is hyper-exponential (n-EXPTIME complete). How practical are these model-checking algorithms?
A Type System Characterising MSO Definability

Theorem (Kobayashi + O. LiCS 2009)

Given an alternating parity tree automaton (APT) \(A \) (or, equivalently, an MSO formula), there is a type system \(\mathcal{K}_A \) such that for every recursion scheme \(G \), \(\text{tree}(G) \) is accepted by \(A \) iff \(G \) is \(\mathcal{K}_A \)-typable.

- Correctness properties given by APT or MSO formula or Mu-Calculus:

\[
\begin{align*}
\text{MSOL} & \xrightarrow{(1)} \text{Mu-Calculus} \\
\text{Parity Games} & \xleftarrow{(2)} \Rightarrow \xrightarrow{(3)} \text{APT}
\end{align*}
\]

- (1) + (3) MSOL, mu-calculus and APT are effectively equi-expressive for tree languages. [Niwinski / Emerson & Jutla FoCS 91]
- (2) Mu-calculus Model Checking Problem and PARITY are inter-reducible [Streett & Emerson 1989]
- MSO model checking reduces to type inference.
A parity tree automaton is a tuple $\mathcal{A} = \langle \Sigma, Q, \Delta, q_I, \Omega \rangle$ where
1. Q is a finite set of states, and $q_I \in Q$ is the initial state
2. $\Delta \subseteq Q \times \Sigma \times Q \times Q$ is a transition relation
3. $\Omega : Q \rightarrow \{0, 1, \cdots, p\}$ is a priority map.

A tree $t : \{1, 2\}^* \rightarrow \Sigma$ is accepted by \mathcal{A} just if there is a run of the automaton (i.e. a state-annotation of the tree t that respects the transition relation Δ) that satisfies

Parity: for every infinite path π in the run tree, the least priority that occurs infinitely often in π is even.

Example. $\Sigma = \{a, b\}$. A parity tree automaton that recognises

$$\{ t \mid \text{every path through } t \text{ has only finitely many } a \text{'s} \}$$

uses q_a, q_b to signal reading of a and b, with $\Omega(a) = 1$ and $\Omega(b) = 2$. [The least infinitely occurring priority in a path is odd iff a occurs infinitely often.]
Refinement types embedded with states and priorities

Fix an (alternating) parity tree automaton $\mathcal{A} = (\Sigma, Q, \delta, q_I, \Omega)$. Construct refinement types from states $q \in Q$ and priorities $m_i \in \{0, \cdots, p\}$.

Refinement type
\[\theta ::= q \mid \tau \rightarrow \theta \]

Intersection
\[\tau ::= \bigwedge_{i=1}^{l}(\theta_i, m_i) \quad l \geq 0 \]

Thus a refinement type has the form
\[\tau_1 \rightarrow \cdots \rightarrow \tau_n \rightarrow q \]

where each τ_i is an intersection.

Write $\top = \bigwedge \emptyset$.

Extend Ω to a priority map on refinement types:
\[\Omega(\tau_1 \rightarrow \cdots \rightarrow \tau_n \rightarrow q) := \Omega(q). \]
Intuition

Regard automaton states as the base types i.e. types of trees [Kobayashi POPL09]

- q is the type of trees accepted by the automaton from state q
- $q_1 \land q_2$ is the type of trees accepted from both q_1 and q_2
- $\tau \rightarrow q$ is the type of functions that take a tree of type τ and return a tree of type q

E.g. a tree function described by $(q_1, m_1) \land (q_2, m_2) \rightarrow q$.
Typing judgments \(\Gamma \vdash t : \theta \)

where environment \(\Gamma \) is a finite set of bindings of the form \(F : (\theta, m) \) or \(x : (\theta, m) \), where \(F \) ranges over function symbols of the scheme \(G \).

Typing System \(\mathcal{K}_A \): Validity is defined by induction over four rules.

\[
\frac{x : (\theta, \Omega(\theta)) \vdash x : \theta}{(T-\text{VAR})}
\]

\[
\frac{\Gamma, x : \bigwedge_{i \in I}(\theta_i, m_i) \vdash t : \theta \quad I \subseteq J}{\Gamma \vdash \lambda x.t : \bigwedge_{i \in J}(\theta_i, m_i) \to \theta} \quad (T-\text{ABS})
\]

\[
\frac{\Gamma_0 \vdash s : \bigwedge_{i=1}^k(\theta_i, m_i) \to \theta \quad \Gamma_i \vdash t : \theta_i \ (\forall i \in \{1, \ldots, k\})}{\Gamma_0 \cup (\Gamma_1 \uparrow m_1) \cup \cdots \cup (\Gamma_k \uparrow m_k) \vdash s \ t : \theta} \quad (T-\text{APP})
\]

where \(\Gamma \uparrow m := \{ F : (\theta, \max(m, m')) \mid F : (\theta, m') \in \Gamma \} \).

Note: multiplicative flavour; no weakening.
A Typing Parity Game: Assume HORS $G \& APT \mathcal{A} = \langle \Sigma, Q, \delta, q_I, \Omega \rangle$

DEF. We say that G is typable just if Verifier has a winning strategy in (finite) parity game $G(\mathcal{K}_A)$.

Idea: Verifier asserts (valid) typing judgements $\Gamma \vdash s : \theta$; Refuter challenges the assumptions (i.e. type bindings) in Γ.

- **Start** position: $S : (q_I, \Omega(q_I))$.
- Given a binding $F : (\theta, m)$, **Verifier** chooses an environment Γ such that $\Gamma \vdash \text{rhs}(F) : \theta$ is valid.
- Given Γ, **Refuter** chooses a binding $F : (\theta, m)$ in Γ, and challenges Verifier to prove that F has refinement type θ.

Verifier **wins** just if every infinite play satisfies parity condition.

Typability is decidable because finite parity games are solvable (given G and \mathcal{A}, there are only finitely many refinement types).
Theorem (Reduction)

Given an APT \(\mathcal{A} \) there is a type system \(\mathcal{K}_\mathcal{A} \) such that for every HORS \(G \), \(\text{tree}(G) \) is accepted by \(\mathcal{A} \) iff \(G \) is \(\mathcal{K}_\mathcal{A} \)-typable.

Parameterised complexity: There is a fixed-parameter polytime (in the size of HORS) type inference algorithm for \(\mathcal{K}_\mathcal{A} \).

Using an upper bound for PARITY, the runtime\(^1\) is

\[
O(r^{1+\lfloor p/2 \rfloor} \exp_n((a \cdot |Q| \cdot p)^{1+\epsilon}))
\]

where

- \(n \) and \(r \) are respectively the order and number of rules of the HORS
- \(a \) is largest arity of the types of the HORS
- \(p \) and \(|Q| \) are resp. the number of priority and states of the APT.

\(^1\) \(\exp_0(x) = x; \exp_{k+1}(x) := 2^{\exp_k(x)} \).
Verification Problem: “Does \(P \) satisfy specification \(\varphi \)?”

Safety Verification by Reduction to Higher-Order Model Checking
[Kobayashi POPL09]

This method is fully automatic, sound and complete for
- functional boolean programs (simply-typed \(\lambda \)-calculus + recursion + finite base types)
- many verification problems; e.g. resource usage, reachability, control flow analysis and strictness analysis.
Brute-force search of the state space will not work!
Assume a 2-state automaton.

<table>
<thead>
<tr>
<th>Order</th>
<th>Types</th>
<th># Refinement Types of κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>o</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>$o \rightarrow o$</td>
<td>$2^2 \times 2 = 8$</td>
</tr>
<tr>
<td>2</td>
<td>$(o \rightarrow o) \rightarrow o$</td>
<td>$2^8 \times 2 = 512$</td>
</tr>
<tr>
<td>3</td>
<td>$((o \rightarrow o) \rightarrow o) \rightarrow o$</td>
<td>$2^{513} \approx 10^{154} >> #$ atoms in universe!</td>
</tr>
</tbody>
</table>

Note: $\rho(\kappa_1 \rightarrow \kappa_2) := 2^{\rho(\kappa_1)} \times \rho(\kappa_2)$; $\rho(o) = 2$

An active and competitive research topic: are there practical algorithms for model checking HORS?

Working Hypothesis: The worst-case complexity is realised only by pathological or contrived examples, not by programs that humans write.

On realistic examples, algorithm terminates in minutes rather than months or years.
Recall different proofs of the MSO decidability of HORS:

(G) Game semantics [O. LICS06]
(C) Collapsible PDA [Hague, Murawski, O. & Serre LICS08]
(T) Intersection refinement types [Kobayashi POPL09; K. & O. LICS09]
(K) Krivine machine [Salvati & Walukiewicz ICALP11]

G, C and T are basis of attempts to build practical algorithms.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Basis</th>
<th>Properties</th>
<th>Propagation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRecS</td>
<td>T</td>
<td>trivial automata</td>
<td>forward</td>
<td>Tohoku, 2009</td>
</tr>
<tr>
<td>GTRRecS1, 2</td>
<td>G</td>
<td>trivial</td>
<td>forward</td>
<td>Tohoku, 2011</td>
</tr>
<tr>
<td>TravMC</td>
<td>G</td>
<td>trivial</td>
<td>forward</td>
<td>Oxford, 2012</td>
</tr>
<tr>
<td>C-SHORe</td>
<td>C</td>
<td>co-trivial</td>
<td>backward</td>
<td>LIAFA/RHL/TUM ’13</td>
</tr>
<tr>
<td>HorSat</td>
<td>C</td>
<td>co-trivial</td>
<td>backward</td>
<td>Tokyo, 2013</td>
</tr>
<tr>
<td>HorSatT</td>
<td>C/T</td>
<td>trivial</td>
<td>mixed</td>
<td>Tokyo, 2013</td>
</tr>
</tbody>
</table>

None of the above can scale robustly beyond HORS of a few hundred rules!
Based on refinement types, but uses abstraction refinement.

Idea: Converge on the solution from both sides, by reasoning about acceptance by \(\mathcal{A} \) and acceptance by \(\neg \mathcal{A} \) *simultaneously*.

Input: HORS \(G \), alternating trivial automaton \(\mathcal{A} = \langle \Sigma, Q, \delta, q_I \rangle \)

Output: YES if \(\mathcal{A} \) accepts tree(\(G \)); NO otherwise.

Preface constructs an eventually stable sequence of environment pairs

\[
\langle \Gamma^0_\exists, \Gamma^0_\forall \rangle, \langle \Gamma^1_\exists, \Gamma^1_\forall \rangle, \langle \Gamma^2_\exists, \Gamma^2_\forall \rangle, \cdots
\]

with limit \(C = \langle \Gamma_\exists, \Gamma_\forall \rangle \).

If \(S : q_I \in \Gamma_\exists \) return YES; return NO otherwise.

Invariant: For each \(k \geq 0 \)

- Verifier has a winning strategy in typing parity game \((\Gamma^k_\exists, \mathcal{A}) \).
- Verifier has a winning strategy in typing parity game \((\Gamma^k_\forall, \neg \mathcal{A}) \).
Category 1 Benchmarks from MoCHi (Times in seconds.)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Rules</th>
<th>Order</th>
<th>Decision</th>
<th>PREFACE</th>
<th>TRecS</th>
</tr>
</thead>
<tbody>
<tr>
<td>map_filter-e</td>
<td>64</td>
<td>5</td>
<td>R</td>
<td>0.53</td>
<td>0.01</td>
</tr>
<tr>
<td>fold_left</td>
<td>65</td>
<td>4</td>
<td>A</td>
<td>0.39</td>
<td>0.03</td>
</tr>
<tr>
<td>fold_right</td>
<td>65</td>
<td>4</td>
<td>A</td>
<td>0.39</td>
<td>0.03</td>
</tr>
<tr>
<td>forall_eq_pair</td>
<td>66</td>
<td>4</td>
<td>A</td>
<td>0.39</td>
<td>0.03</td>
</tr>
<tr>
<td>forall_leq</td>
<td>66</td>
<td>4</td>
<td>A</td>
<td>0.39</td>
<td>0.03</td>
</tr>
<tr>
<td>a-cppr</td>
<td>74</td>
<td>3</td>
<td>R</td>
<td>0.38</td>
<td>0.01</td>
</tr>
<tr>
<td>search-e</td>
<td>96</td>
<td>5</td>
<td>R</td>
<td>0.90</td>
<td>0.01</td>
</tr>
<tr>
<td>search</td>
<td>119</td>
<td>4</td>
<td>A</td>
<td>0.46</td>
<td>1.04</td>
</tr>
<tr>
<td>map_filter</td>
<td>143</td>
<td>5</td>
<td>A</td>
<td>0.51</td>
<td>0.13</td>
</tr>
<tr>
<td>risers</td>
<td>148</td>
<td>5</td>
<td>A</td>
<td>0.44</td>
<td>0.33</td>
</tr>
<tr>
<td>r-file</td>
<td>156</td>
<td>2</td>
<td>A</td>
<td>0.82</td>
<td>1.50</td>
</tr>
<tr>
<td>fold_fun_list</td>
<td>197</td>
<td>6</td>
<td>A</td>
<td>0.44</td>
<td>0.89</td>
</tr>
<tr>
<td>zip</td>
<td>210</td>
<td>3</td>
<td>A</td>
<td>0.58</td>
<td>15.10</td>
</tr>
</tbody>
</table>

JIT compilation of F# on Mono incurs a performance overhead. When compiled ahead-of-time on Windows, PREFACE solves all the above in < 0.05 sec, though still slightly slower than TRecS.

General Trend: PREFACE overtakes TRecS for larger HORS (> 200 rules).
Category 2 Benchmarks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Rules</th>
<th>Order</th>
<th>PREFACE</th>
<th>HorSat</th>
<th>HorSatT</th>
<th>C-SHORE</th>
<th>GTRecS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>cfa-psdes</td>
<td>237</td>
<td>7</td>
<td>0.51</td>
<td>0.28</td>
<td>1.81</td>
<td>3.44</td>
<td>⊥</td>
</tr>
<tr>
<td>cfa-matrix-1</td>
<td>383</td>
<td>8</td>
<td>0.61</td>
<td>0.73</td>
<td>6.30</td>
<td>18.58</td>
<td>⊥</td>
</tr>
<tr>
<td>cfa-life2</td>
<td>898</td>
<td>14</td>
<td>1.46</td>
<td>5.94</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

Instances arising from a control flow analysis tool. cfs-life2 has arity 29!

Category 3 Benchmarks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Rules</th>
<th>Order</th>
<th>PREFACE</th>
<th>HorSat</th>
<th>HorSatT</th>
<th>C-SHORE</th>
<th>GTRecS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp2-1600</td>
<td>1606</td>
<td>2</td>
<td>8.39</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>10.47</td>
</tr>
<tr>
<td>exp2-3200</td>
<td>3206</td>
<td>2</td>
<td>17.51</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>59.13</td>
</tr>
<tr>
<td>exp2-6400</td>
<td>6406</td>
<td>2</td>
<td>39.58</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>exp2-12800</td>
<td>12806</td>
<td>2</td>
<td>92.19</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>exp4-400</td>
<td>408</td>
<td>4</td>
<td>14.12</td>
<td>⊥</td>
<td>106.53</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>exp4-800</td>
<td>808</td>
<td>4</td>
<td>30.55</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>exp4-1600</td>
<td>1608</td>
<td>4</td>
<td>71.06</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>exp4-3200</td>
<td>3208</td>
<td>4</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

These order-\(n\) RS generate \(\exp_n\)-sized trees (hence exercising their full power); their certificates are proportional to the number of rules.

“⊥” means out of time (set to 2 mins) or other resources.

Conclusion: PREFACE scales readily to thousands of rules, well-beyond the capabilities of state-of-the-art HOMC tools.
Reality check: How far are we from verifying all of (say) Haskell?

HORS do not model:

1. algebraic data types and infinite data structures (e.g. integers)
2. function definition by pattern matching.

An approach based on pattern-matching recursion schemes (PMRS) [O. & Ramsay POPL11, ICFP12]

- PMRS is a good model of functional programs: PMRS is essentially the IR of Glasgow Haskell Compiler less the F_ω-types
- Verification problem is undecidable: use static (flow) analysis + higher-order model checking + CEGAR loop.

Realistic Goal: Verify thousands of SLOC in seconds; or verify Haskell libraries in tens of seconds.

Questions: How does the model checking compare with (i) other approaches to verify functional programs? (ii) model checking of C programs?
Further Directions

1. **Composing Parity Games**
 Model checking is typically a whole program analysis: in higher-order computation, model checking only addresses terms of ground type, and not arbitrary higher types.

 Goal: Build a cartesian closed category of parity games, by analysing [Kobayashi & O LICS09].

2. **HOMC Algorithm Design**
 Redesign the Preface algorithm so that type extraction is uniformly more aggressive in each iteration.
 Extend the algorithm to model check HORS with respect to APT.
Conclusions

- Higher-order model checking is challenging and worthwhile.
- HORS are a robust and highly expressive grammar for infinite trees. They have rich algorithmic properties.
- Recent progress in the theory have benefitted from semantic methods (game semantics and types), in conjunction with more standard techniques from algorithmic verification.
- Despite prohibitive (hyper-exponential) complexity, there is growing evidence that practical HOMC algorithms are possible.
- Broadbent & O: On global model checking trees generated by higher-order recursion schemes. FoSSaCS 2009.
- Kobayashi & O: A type theory equivalent to the model checking of higher-order recursion schemes. LiCS 2009.
- O & Tsukada: Two-Level Game Semantics, Intersection Types, and Recursion Schemes. ICALP, 2012
- Neatherway, Ramsay & O: A traversal-based algorithm for higher-order model checking. ICFP, 2012
- O & Ramsay: Verifying higher-order functional programs with pattern-matching algebraic data types. POPL 2011
- Broadbent, Carayol, O & Serre: Recursion Schemes and Logical Reflection. LICS 2010