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Abstract

Game semantics has renewed denotational semantics. It offers among other things an attractive classification
of programming features, and has brought a bunch of new definability results. In parallel, in the denotational
semantics of proof theory, several full completeness results have been shown since the early nineties. In
this note, we review the relation between definability and full abstraction, and we put a few old and recent
results of this kind in perspective.

Keywords: operational semantics, denotational semantics, sequentiality.

1 Introduction

In the semantics of programming languages, full abstraction studies started with the
two papers on PCF by Robin Milner [44] and Gordon Plotkin [49], respectively (see
also [50]). Milner showed the uniqueness (up to isomorphism) of the fully abstract
(cpo) model of PCF, and constructed it as a suitable quotient of syntax. Plotkin
showed that the continuous model of PCF (the only one available at the time) is not
fully abstract, but he showed that it becomes fully abstract for an extension of PCF
with “parallel or” (actually, originally, “parallel if”, see [18] for the more natural
variant with parallel or). From there on, two choices were open for investigations
on full abstraction:

• vary the language to fit an intended model,
• vary the model to fit an intended language.

Plotkin’s result was a result of the first kind. It was followed by a result of Berry
and Curien [10], who showed that their model of sequential algorithms [9] (devel-
oped with the motivation of solving the full abstraction problem for the original
language PCF) is fully abstract for the (kernel CDS01 of the) language CDS – a
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functional language based on Kahn and Plotkin’s concrete data structures (origi-
nally called “information matrices”) [33]. Later, in [13] (see also [12,19]), the same
model was shown to be fully abstract for a more “standard” language called SPCF
(an extension of PCF with a control operator called catch). At the end of my
“Thèse d’Etat”, I showed a few counterexamples that witnessed the gap separating
a model based on sequential algorithms from full abstraction with respect to the
original language PCF [17].

The whole subject restarted with the advent of game semantics, and in the light
of linear logic, which taught us in the meantime about the decomposition A →
B = !A ( B: Such a decomposition for sequential algorithms (and an associated
reading of the model in terms of games) was found [37,20]. Shortly after, the two
teams now known as HO (Martin Hyland and Luke Ong, to whom one should add
the name of Hanno Nickau [45] who worked out the same model independently) and
AJM (Samson Abramsky, Radha Jagadeesan and Pasquale Malacaria) came up with
syntax independent descriptions of the term model of PCF (based on appropriate
Böhm trees, which I have proposed to call PCF Böhm trees [7]). They found
two models of games and strategies, similar in spirit to the model of sequential
algorithms (but with different underlying constructions of the “!” operation) for
which the interpretation of PCF Böhm trees was both injective and surjective.
Surjectivity was by far the most interesting property, and it is best understood as
the question of characterizing the image of the interpretation. Both teams thus
showed very important definability results.

Both results came after a similar surjectivity property was obtained by the same
teams in the realm of the semantics of (multiplicative linear logic) proofs, under the
name of full completeness [3,31]. Since then, a number of full completeness, or
denotational completeness (a terminology introduced by Girard [27]) results for the
semantics of various fragments of linear logic in various models have appeared. But
let us come back to the semantics of PCF and related languages.

The HO characterization, which proved to be more flexible, was the following:
every innocent and well-bracketed strategy is the (unique) image of a PCF Böhm
tree by the interpretation. It was then natural to ask what happens if one removes
either of these conditions. It turned out that innocent (and not necessarily well-
bracketed) strategies characterize the image of the interpretation of programs in an
extension of PCF with control [34], while well-bracketed (not necessarily innocent)
strategies characterize the image of the interpretation of a version of Idealized Algol
[5]. (Roughly, this version of Idealized Algol is “PCF + first-order references”.)
Moreover, the latter result yields a full abstraction result (almost) without quotient.

In this short note, we recast the relation between definability and full abstrac-
tion, and examine the status of older and more recent results with respect to these
two related notions. Morally, once definability holds, a fully abstract model can be
constructed via a quotient that mimics the operational equivalence at the seman-
tic level. Of course, such full abstraction results are somewhat “cheap” (while the
definability results that guide the construction of the model are in general all but
easy), but in some cases, fortunately, one does not need a quotient, when the model



has enough separating capabilities. This happened in the following three instances:

• when the model is extensional (Plotkin’s result for the continuous model and
PCF+ por);

• for the model of sequential algorithms, with respect to CDS01 (Berry-Curien),
and to PCF+catch (Cartwright-Curien-Felleisen);

• for the model of well-bracketed strategies with respect to (a variant of) Idealized
Algol (Abramsky-McCusker).

We explain this in more detail in the sequel.

2 Full abstraction from definable separation

The gap between definability and full abstraction is governed by a very simple
sufficient condition, which we give below. It is the very purpose of this paper
to stress the elementary fact that these properties are not the same. Somehow,
the profusion of various terminologies such as full completeness or denotational
completeness (cf. above), or intensional full abstraction [4], contributed to obscure
the difference.

I do not need to enter in the specificities of PCF or of its various extensions. It
will be enough to fix some typed (sequential) applicative (i.e. admitting function
types and function application) language L, together with a collection of observable
types and values, and an operational semantics for closed programs of observable
type. One writes M →∗ v to denote the fact that the evaluation of M terminates
with an observable value v.

The models interpret types and terms as objects and morphisms of a category.
An element d of type A of the model (that is, a morphism from 1 to [[A]]) is definable
if there is a closed term M of type A such that [[M ]] = d.

Most models satisfy the so-called computational adequacy property, which states
that, for all closed terms M of observable type, M →∗ v if and only if [[M ]] = v.
In particular, observable values receive their “standard” interpretation [[v]] = v –
this notation meaning also that every element of the model at an observable type
is definable.

Thus, there is perfect match between the syntax and the semantics at observable
types. Computational adequacy is usually proved by a variant of the computabil-
ity/realisability method.

The property of full abstraction allows us to formulate a correspondence between
syntax and semantics for arbitrary terms, not necessarily closed nor of observable
type. Its formulation relies on the notion of contextual (operational) equivalence,
which is the following:

M =op N ⇔ (∀C C[M ] →∗ v ⇔ C[N ] →∗ v) ,

where C ranges over contexts (terms with a hole) such that both C[M ] (C in which
the whole is filled with M) and C[N ] are closed and of observable type. Then the



model is called fully abstract with respect to L if for all M,N (of the same type):

[[M ]] = [[N ]] ⇔ M =op N .

The left-to-right direction is called adequacy (or “abstraction”) and is an easy con-
sequence of computational adequacy. The other direction is the hard one, and
corresponds to the full of full abstraction or the complète of “complète adéquation”
(the French term used for full abstraction). A nice explanation of why this is the
hard side of the equivalence comes from the theory of intersection types [15] and of
“domains in logical form” [2], which recasts the denotational side of the correspon-
dence as the side of “proofs”, and the operational side as the side of “models”. Then,
under these glasses, fullness/completeness goes in the right direction: if |= M = N

(i.e., if M =op N), then ` M = N (i.e., [[M ]] = [[N ]]).
Now we can state the criterion around which this note is organized. We assume

for simplicity that there is only one observable base type o, but of course the same
holds in presence of several observable types (for example, PCF has two observable
types: nat and bool).

Criterion 2.1 If the model is such that for every distinct (definable) f, g of the
same type A there exists a definable h of type A → o such that hf 6= hg, then it is
fully abstract.

Proof. If [[M ]] 6= [[N ]], let h be given by our assumption, and let P be such that
[[P ]] = h, v1 = h([[M ]]), v2 = h([[N ]]), and C = P [ ]. Then C[M ] →∗ v1 and
C[M ] →∗ v2, and hence M 6=op N . 2

I propose to call this sufficient property for full abstraction the definable sepa-
rability property. To be best of my knowledge, the first proofs of full abstraction
based on definable separability were:

• (in an untyped setting) the one relating the model D∞ of the untyped lambda-
calculus and the notion of head normal form [30,53] (see [21] for a concise and
“interactive” account), and

• in the present typed setting, the proof of full abstraction of the model of sequential
algorithms with respect to PCF+catch [13].

Criterion 2.2 Under the assumptions that the type hierarchy is the simple type
hierarchy and that the model is enriched over algebraic complete partial orders, a
sufficient condition for definable separability (and hence for full abstraction) is the
conjunction of the following two properties of the model:

(i) compact definability: all compact elements at all types are definable, and

(ii) extensionality: the elements of the model at function types are functions (in
category-theoretical terms, the model has enough points).

Proof. We may write an arbitrary type A as A1 → . . . → An → o. Let f 6= g. By
extensionality and algebraicity, there exist compact d1, . . . , dn such that fd1 . . . dn 6=



gd1 . . . dn. Let Pi be such that di = [[Pi]] (1 ≤ i ≤ n). Let h = [[λx.xP1 . . . Pn]]. Then
hf 6= hg. 2

Of course, one can prove directly (ie. without going through definable separabil-
ity) that an extensional model enjoying the definability property is fully abstract (in
the proof above, instead of defining h, one directly defines the context [ ] P1 . . . Pn).
This is how Plotkin proved that the continuous model is fully abstract for PCF+por.

Examples of models matching the first criterion and not the second are, again,
D∞ (which does not satisfy compact definability) and the model of sequential algo-
rithms (which is not extensional).

Let us make here a short digression. In [49], a further extension of PCF is also
presented, such that every computable element of the model at all types becomes
definable – a property which Plotkin called universality.

Coming back to compact definability, Milner proved a converse to the second
criterion above: the fully abstract cpo model of PCF has to be (and hence is charac-
terized by the property of being) order-extensional and to enjoy the compact defin-
ability property. (A model is called order-extensional when not only the elements
of function types are functions, but also their ordering is the pointwise ordering.)
The long quest for a fully abstract model started from there. First, Berry defined
the stable model [8], which is extensional but not order-extensional. Then Berry
and myself constructed the model of sequential algorithms, which is not extensional
(although it can be made extensional by enlarging the set of observable values with
one error element). More importantly, in these models, compact definability with
respect to PCF fails:

• A famous counterexample witnessing the failure of compact stable functions to
be all definable is the Gustave, or Berry-Kleene function (see, e.g. [7]).

• The counter-examples to compact definability for the model of sequential algo-
rithms in [18] turned out to be influential in the genesis of the AJM game model.

The works on game semantics departed quite radically from this line of work, by
renouncing extensionality more decisively. The HO and AJM game semantics for
PCF (restricted to the type hierarchy of PCF) amount to syntax-free descriptions of
PCF Böhm trees. The game models thus satisfy a fortiori the compact definability
property (because the bijection between strategies and PCF Böhm trees restricts to
a bijection between finite (= compact) strategies and finite PCF Böhm trees, and
because the latter are essentially PCF terms in some canonical form). However,
the HO and AJM models fail to be extensional, and they also fail to satisfy the
definable separability property.

But there is an “abstract non sense” machinery that forces the definable sepa-
rability property. One equates any f and g of type A (for all A interpreting a type
of the syntax) which cannot be separated by an h, i.e. we set f =op g whenever
hf = hg for all h of type A → o. The only delicate point is in verifying that the
quotient is still a model (and can in particular interpret the fixpoint construction
of PCF).



We stress here that this abstract construction does not exploit any feature of
the game model, and as a matter of fact can be applied as well to the model of PCF
Böhm trees (which is isomorphic to the HO and AJM models on the finite type
hierarchy), yielding a version of Milner’s original construction of the fully abstract
model of PCF (which was also a quotient of syntax, defined in a slightly different
way).

In other words, despite their title, the key contribution of each of the seminal
HO and AJM papers is a definability result. In some sense, it is the best one could
hope for, since it was shown by Loader [39] that the operational equivalence for
PCF is not effective (and undecidable for finitary PCF, the version of PCF where
the only basic type is the finite type of booleans). This negative result closed the
search for a “direct”, unquotiented construction of the fully abstract model of PCF,
since if such a construction existed, it would surely lead to an effective presentation.

Laird’s model of control of innocent (and not necessarily well-bracketed) strate-
gies also enjoys definability, but not definable separability, for the same reason as
the original HO model: the candidate h for separating f and g is a strategy which
is not innocent in general. So, his model needs quotienting, and as a matter of fact
Laird has shown how to obtain the model of sequential algorithms as a quotient of
his model [36].

Once innocence is removed, then (a variant of) definable separability holds.
A variant is needed, as the candidate h is in general not well-bracketed either,
but when f and g differ at least in one of their well-bracketed plays, then a well-
bracketed h can be found. In the well-bracketed model of Idealized Algol, it holds
that M =op N if and only if [[M ]] and [[N ]] have the same well-bracketed (complete,
in the terminology of [5]) plays.

The following table summarizes the definability and full abstraction results dis-
cussed in this section.

Language Model Definability Full abstraction

PCF + por Cont Yes Yes

PCF + catch SA ≈ (Ginn/ =op) Yes Yes

PCF PCFBT/ =op Yes Yes

PCF GAJM ,GHO ,PCFBT Yes No

PCF + control Ginn Yes No

Idealized Algol Gwb Yes Yes



where Cont , SA, PCFBT , GAJM , GHO , Ginn , and Gwb stand for the continuous
model, the model of sequential algorithms, the PCF Böhm tree model, the AJM
model, the HO model, the model of innocent strategies, and the model of well-
bracketed strategies, respectively. (Recall that the three models PCFBT , GAJM ,
GHO are isomorphic when restricted to the finite type hierarchy.)

3 On the notion of observables

In the table concluding the last section, all languages considered share the same no-
tion of observable. One could also (not exhaustively) add two other full abstraction
results to the list:

• Longley’s model of sequentially realizable functionals, or, equivalently, Bucciarelli
and Ehrhard’s model of strongly stable functions [11] – both these models coincide
with the extensional collapse of the model of sequential algorithms – is fully
abstract for an extension of PCF with a certain operator H [40].

• Paolini has shown that the stable model is fully abstract for an extension of PCF
with two operators, one of which is some Gustave like operator [48].

More generally, when varying the language, one could also think of varying the
observable types and values. We mention here only one example, close enough to
PCF, and however sharply differing in its properties. Unary PCF is the variant of
PCF where the only basic type has only one (non bottom) element, and in which
the conditional construct of PCF “degenerates” to a conjunction if M then N .
Loader has shown that the operational equivalence for this language is decidable
[38], in sharp constract to the (even finitary) PCF case. As a matter of fact, Laird’s
model of bistable functions is fully abstract for unary PCF [35].

4 Concluding remarks

The full abstraction problem for PCF has triggered a lot of work, and is to be
celebrated for its “side effects”.

• The stable model (reinvented by Girard) gave rise to linear logic [26], whose
enormous influence in our community should be recounted elsewhere.

• The model of sequential algorithms led me to take cartesian closed categories
seriously as a syntax, and from there to the categorical abstract machine [16],
and then to explicit substitutions [1].

• The full abstraction problem boosted also the study of logical relations [51,52,46],
and motivated extensional accounts of sequentiality (cf. section 3).

• Game semantics proved remarkably flexible. Beyond control and first-order ref-
erences (discussed above), game semantical accounts of a variety of programming
features have been given, including subtyping [14], non-determinism [28], proba-
bilistic choice [22], higher-order references [6], call-by-value [29], or concurrency
[25].



• Malacaria and Hankin applied game semantics to program analysis [41,42,43].
In a similar vein, applications of game semantics to effective proofs of program
equivalences and inequivalences, and more generally to abstract interpretation
and model-checking are being developed [24,47,23] under the name of algorithmic
game semantics.

Let us mention finally that full abstraction is also of pervasive importance in
the theory of process calculi. There, the notion of operational equivalence is bisim-
ulation under many variants, and the notion of model is given by a target calculus:
one thus studies fully abstract translations of a language into another, in a sense
faithful to the original definition of full abstraction.
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