Sequential algorithms and innocent strategies

share the same execution mechanism

Pierre-Louis Curien
(IRIF, πr^{2}, CNRS - Paris $7-$ INRIA)
April 2019, Galop workshop, Prague

PLAN of the TALK

1. Geometric abstract machine "in the abstract" : tree interaction and pointer interaction (designed in the setting of Curien-Herbelin's abstract Böhm trees)
2. Turbo-reminder on sequential algorithms (3 flavours, with focus on two : as programs, and abstract)
3. Geometric abstract machine in action
4. Turbo-reminder on HO innnocent strategies for PCF types (2 flavours, "meager and fat" = views versus plays)
5. Geometric abstract machine in action
6. (Inconclusive !) conclusion : the message is : "il y a quelque chose à gratter"

Tree interaction

Setting of alternating 2-players' games where Opponent starts. Strategies as trees (or forests) branching after each Player's move Interaction by tree superposition : STRATEGIES EXECUTION

$$
\begin{array}{ll}
x a\left\{\begin{array}{l}
b c \\
b^{\prime} \ldots
\end{array}\right. & \langle x, \mathbf{1}\rangle a\left\{\begin{array}{l}
\langle b, \mathbf{3}\rangle c \\
b^{\prime} \ldots
\end{array}\right. \\
a b\left\{\begin{array}{l}
c \ldots \\
d \ldots
\end{array}\right. & \langle a, \mathbf{2}\rangle b\left\{\begin{array}{l}
\langle c, \mathbf{4}\rangle \ldots \\
d \ldots
\end{array}\right.
\end{array}
$$

The trace of the interaction is the "common branch" $x a b c$:
Step n of the machine played in one of the strategies always followed by step $(n+1)^{\prime}$ in the same strategy. Next move $(n+1)$ is played in the other strategy (choice of branch dictated by $\left.(n+1)^{\prime}\right)$.

Pointer interaction

Now, in addition, Player's moves are equipped with a pointer to an ancestor Opponent's move.

STRATEGIES EXECUTION

$$
\begin{aligned}
& x a\left\{\begin{array}{l}
b[c, \stackrel{0}{\hookleftarrow}] \\
b^{\prime} \ldots
\end{array}\right. \\
& \langle x, \mathbf{1}\rangle a\left\{\begin{array}{l}
\langle b, \mathbf{3}\rangle[c, \stackrel{0}{\hookleftarrow}] \\
\left\langle b^{\prime}, \mathbf{5}\right\rangle \ldots
\end{array}\right. \\
& a[b, \stackrel{0}{\hookleftarrow}]\left\{\begin{array}{l}
c\left[b^{\prime}, \stackrel{1}{\hookleftarrow}\right] \\
d \ldots
\end{array}\right. \\
& \langle a, \mathbf{2}\rangle[b, \stackrel{0}{\hookleftarrow}]\left\{\begin{array}{l}
\langle c, 4\rangle\left[b^{\prime}, \stackrel{1}{\hookleftarrow}\right] \\
d \ldots
\end{array}\right.
\end{aligned}
$$

If $(n+1)^{\prime}$ points to m, then $(n+1)$ should be played under m^{\prime}.

Concrete data structures

A concrete data structure (or $c d s$) $\mathrm{M}=(C, V, E, \vdash)$ is given by three sets C, V, and $E \subseteq C \times V$ of cells, values, and events, and a relation \vdash between finite parts of E (or cardinal ≤ 1 for simplicity) and elements of C, called the enabling relation. We write simply $e \vdash c$ for $\{e\} \vdash c$. A cell c such that $\vdash c$ is called initial.
(+ additional conditions : well-foundedness, stability)

Proofs of cells c are sequences in $(C V)^{\star}$ defined recursively as follows : If c is initial, then it has an empty proof. If $\left(c_{1}, v_{1}\right) \vdash c$, and if p_{1} is a proof of c_{1}, then $p_{1} c_{1} v_{1}$ is a proof of c.

Configurations (or strategies, in the game semantics terminology)
A configuration is a subset x of E such that :
(1) $\left(c, v_{1}\right),\left(c, v_{2}\right) \in x \Rightarrow v_{1}=v_{2}$.
(2) If $(c, v) \in x$, then x contains a proof of c.

The conditions (1) and (2) are called consistency and safety, respectively.

The set of configurations of a cds M, ordered by set inclusion, is a partial order denoted by ($D(\mathrm{M}), \leq$) (or $(D(\mathrm{M}), \subseteq)$).

Some terminology

Let x be a set of events of a cds. A cell c is called :

- filled (with v) in x iff $(c, v) \in x$,
- accessible from x iff x contains an enabling of c, and c is not filled in x (notation $c \in A(x)$).

Some examples of cds's

(1) Flat cpo's : for any set \mathbf{X} we have a cds
$\mathbf{X}_{\perp}=(\{?\}, \mathbf{X},\{?\} \times \mathbf{X},\{\vdash ?\}) \quad$ with $D\left(\mathbf{X}_{\perp}\right)=\{\emptyset\} \cup\{(?, x) \mid x \in \mathbf{X}\}$
Typically, we have the flat cpo N_{\perp} of natural numbers.
(2) Any first-order signature Σ gives rise to a cds M_{Σ} :

- cells are occurrences described by words of natural numbers,
- values are the symbols of the signature,
- all events are permitted,
$-\vdash \epsilon$, and $(u, f) \vdash u i$ for all $1 \leq i \leq \operatorname{arity}(f)$.

Product of two cds's

Let \mathbf{M} and \mathbf{M}^{\prime} be two cds's. We define the product $\mathbf{M} \times \mathbf{M}^{\prime}=(C, V, E, \vdash)$ of M and M^{\prime} by :

- $C=\left\{c .1 \mid c \in C_{\mathbf{M}}\right\} \cup\left\{c^{\prime} .2 \mid c^{\prime} \in C_{\mathrm{M}^{\prime}}\right\}$,
- $V=V_{\mathrm{M}} \cup V_{\mathbf{M}^{\prime}}$,
- $E=\left\{(c .1, v) \mid(c, v) \in E_{\mathbf{M}}\right\} \cup\left\{\left(c^{\prime} .2, v^{\prime}\right) \mid\left(c^{\prime}, v^{\prime}\right) \in E_{\mathbf{M}^{\prime}}\right\}$,
- $\left.\left(c_{1} .1, v_{1}\right), \ldots, c_{n} .1, v_{n}\right) \vdash c .1 \Leftrightarrow\left(c_{1}, v_{1}\right), \ldots\left(c_{n}, v_{n}\right) \vdash c$ (and similarly for \mathbf{M}^{\prime}).

Fact : $\mathbf{M} \times \mathbf{M}^{\prime}$ generates $D(\mathbf{M}) \times D\left(\mathbf{M}^{\prime}\right)$.

Sequential algorithms as programs

Morphisms between two cds's M and M^{\prime} are forests described by the following formal syntax :

$$
\begin{aligned}
& F::=\left\{T_{1}, \ldots, T_{n}\right\} \\
& T::=\text { request } c^{\prime} U \\
& U::=\text { valof } \text { is }\left[\ldots v \mapsto U_{v} \ldots\right] \mid \text { output } v^{\prime} F
\end{aligned}
$$

satisfying some well-formedness conditions :

- A request c^{\prime} can occur only if the projection on M^{\prime} of the branch connecting it with the root is a proof of c^{\prime}.
- Along a branch, knowledge concerning the projection on M is accumulated in the form of a configuration x, and a valof c can occur only if c is accessible from the current x. In particular, no repeated valof c !

Exponent of two cds's

If $\mathbf{M}, \mathbf{M}^{\prime}$ are two cds's, the cds $\mathbf{M} \rightarrow \mathbf{M}^{\prime}$ is defined as follows:

- If x is a finite configuration of \mathbf{M} and $c^{\prime} \in C_{\mathbf{M}^{\prime}}$, then $x c^{\prime}$ is a cell of $\mathbf{M} \rightarrow \mathbf{M}^{\prime}$.
- The values and the events are of two types:
- If c is a cell of \mathbf{M}, then valof c is a value of $\mathbf{M} \rightarrow \mathbf{M}^{\prime}$, and ($x c^{\prime}$, valof c) is an event of $\mathbf{M} \rightarrow \mathbf{M}^{\prime}$ iff c is accessible from x;
- if v^{\prime} is a value of \mathbf{M}^{\prime}, then output v^{\prime} is a value of $\mathbf{M} \rightarrow \mathbf{M}^{\prime}$, and ($x c^{\prime}$, output v^{\prime}) is an event of $\mathbf{M} \rightarrow \mathbf{M}^{\prime}$ iff $\left(c^{\prime}, v^{\prime}\right)$ is an event of M^{\prime}.
- The enablings are given by the following rules:

$$
\begin{array}{lcl}
\vdash \emptyset c^{\prime} & \text { iff } & \vdash c^{\prime} \\
\left(y c^{\prime}, \text { valof } c\right) \vdash x c^{\prime} & \text { iff } & x=y \cup\{(c, v)\} \\
\left(x d^{\prime}, \text { output } w^{\prime}\right) \vdash x c^{\prime} & \text { iff } & \left(d^{\prime}, w^{\prime}\right) \vdash c^{\prime}
\end{array}
$$

An example of a sequential algorithm

The following is the intepretation of

$$
\lambda f \text {.case } f \mathrm{TF}[\mathrm{~T} \rightarrow \mathrm{~F}]:\left(\mathrm{bool}_{11} \times \mathrm{bool}_{12} \rightarrow \mathrm{bool}_{1}\right) \rightarrow \text { bool }_{\epsilon}
$$

request $?_{\epsilon}$ valof $\perp \perp ?_{1}\left\{\begin{array}{l}\text { is valof } ?_{11} \text { valof } \mathrm{T} \perp ?_{1}\left\{\text { is valof } ?_{12} \text { valof } \mathrm{TF} ?_{1}\left\{\begin{array}{l}\text { is output } \mathrm{T}_{1} \text { output } \mathrm{F}_{\epsilon} \\ \text { is valof } ?_{12} \text { valof } \perp \mathrm{F} ?_{1} \\ \text { is output } \mathrm{T}_{1} \text { output } \mathrm{F}_{\epsilon}\end{array} \text { is valof } ?_{11} \text { valof } \mathrm{TF} ?_{1}\left\{\text { is output } \mathrm{T}_{1} \text { output } \mathrm{F}_{\epsilon}\right.\right.\right.\end{array}\right.$
to be contrasted with the interpretation of the same term as a set of views in HO semantics :

$$
?_{\epsilon} ?_{1}\left\{\begin{array}{l}
?_{11} \mathrm{~T}_{11} \\
?_{12} \mathrm{~F}_{12} \\
\mathrm{~T}_{1} \mathrm{~F}_{\epsilon}
\end{array}\right.
$$

An example of execution of sequential algorithms

$F^{\prime}: \mathbf{B} \times \mathrm{M}_{\Sigma} \rightarrow \mathbf{B}$ explores successively the root of its second input, its first input, and the first son of its second input (if of the form $(f(\Omega, \Omega)$) to produce F, while $F=\left\langle F_{1}, F_{2}\right\rangle$, where $F_{1}: \mathbf{M}_{\Sigma} \rightarrow \mathbf{B}$ (resp. $F_{2}: \mathbf{M}_{\Sigma} \rightarrow$ M_{Σ}) produces F without looking at its argument (resp. is the identity).

Branch of $F^{\prime \prime}=F^{\prime} \circ F: \mathbf{M}_{\Sigma} \rightarrow \mathbf{B}$ being built :

$$
\{\langle\text { request } \boldsymbol{?}, \mathbf{1}\rangle \text { valof } \epsilon\langle\text { is } f, \mathbf{2}\rangle \text { valof } \mathbf{1}\langle\text { is } f, \mathbf{3}\rangle \text { output } \mathrm{F}
$$

Branch of F^{\prime} being explored:
$\left\{\langle\right.$ request ?, 1.1 \rangle valof $\epsilon_{2}\left\langle\right.$ is $\left.f_{2}, \mathbf{2} .2\right\rangle$ valof $?_{1}\left\langle\right.$ is $\left.F_{1}, \mathbf{2 . 4}\right\rangle$ valof $1_{2}\left\langle\right.$ is $\left.f_{2}, \mathbf{3 . 2}\right\rangle$ output F Branches of F being explored:
$\left\{\begin{array}{l}\left\langle\text { request } \boldsymbol{?}_{1}, \mathbf{2 . 3}\right\rangle \text { output } \mathrm{F}_{1} \\ \left\langle\text { request } \epsilon_{2}, 1.2\right\rangle \text { valof } \epsilon\langle\text { is } f, \mathbf{2 . 1}\rangle \text { output } f_{2}\left\langle\text { request } 1_{2}, 2.5\right\rangle \text { valof } 1\langle\text { is } f, \mathbf{3 . 1}\rangle \text { output } f_{2}\end{array}\right.$
Pointer interaction : 2.5' points to (2.2), hence 2.5 is played under (2.2)'. Pointers are implicit in sequential algorithms, i.e., can be uniquely reconstructed : each valof c points to is v, where is v follows valof d and $(d, v) \vdash c$.

Equivalent definitions of sequential algorithms

We have 3 equivalent definitions of sequential algorithms :

1. as programs (our focus here) \rightsquigarrow ABSTRACT MACHINE
2. as configurations of $\mathrm{M} \rightarrow \mathrm{M}^{\prime} \rightsquigarrow$ CART. CLOSED STRUCTURE
3. as abstract algorithms (or as pairs of a function and a computation strategy for it). Abstract algorithms are the fat version of configurations: if $\left(y c^{\prime}, u\right) \in a, y \leq x$, and $\left(x c^{\prime}, u\right) \in E_{\mathrm{M} \rightarrow \mathrm{M}^{\prime}}$, then we set $a^{+}\left(x c^{\prime}\right)=u$. If we spell this out (for $y \leq x$):

$$
\begin{array}{ll}
\left(y c^{\prime}, \text { valof } c\right) \in a \text { and } c \in A(x) & \Rightarrow a^{+}\left(x c^{\prime}\right)=\text { valof } c \\
\left(y c^{\prime}, \text { output } v^{\prime}\right) \in a & \Rightarrow a^{+}\left(x c^{\prime}\right)=\text { output } v^{\prime}
\end{array}
$$

$\rightsquigarrow ~ " C O N C E P T U A L "$ COMPOSITION

Composing abstract algorithms

Let $\mathbf{M}, \mathbf{M}^{\prime}$ and $\mathbf{M}^{\prime \prime}$ be cds's, and let f and f^{\prime} be two abstract algorithms from M to M^{\prime} and from M^{\prime} to $\mathrm{M}^{\prime \prime}$, respectively. The function g, defined as follows, is an abstract algorithm from M to $\mathrm{M}^{\prime \prime}$:

$$
g\left(x c^{\prime \prime}\right)= \begin{cases}\text { output } v^{\prime \prime} & \text { if } f^{\prime}\left((f \bullet x) c^{\prime \prime}\right)=\text { output } v^{\prime \prime} \\
\text { valof } c & \text { if }\left\{\begin{array}{l}
f^{\prime}\left((f \bullet x) c^{\prime \prime}\right)=\text { valof } c^{\prime} \text { and } \\
f\left(x c^{\prime}\right)=\text { valof } c .
\end{array}\right.\end{cases}
$$

Perspective

Thus, sequential algorithms admit a meager form (as programs or as configurations) and a fat form (as abstract algorithms)

Similarly, innocent strategies as sets of plays are in fat form, while the restriction to their set of views is their meager form

- Fat composition is defined synthetically.
- Meager composition is defined via an abstract machine : the same for both = the Geometric Abstract Machine (with the proviso that the execution of sequential algorithms uses an additional call-by-need mechanism added to the machine).

PCF Böhm trees

$$
\begin{aligned}
& M:=\lambda \vec{x} . W \quad \text { (the length of } \vec{x} \text { may be zero) } \\
& W:=n \mid \text { case } x \vec{M}\left[\ldots m \rightarrow W_{m} \ldots\right]
\end{aligned}
$$

Taking the syntax for PCF types $\sigma::=$ nat $\| \sigma \rightarrow \sigma$, we have the following typing rules:

$$
\begin{gathered}
\Gamma, x_{1}: \sigma_{1}, \ldots x_{n}: \sigma_{n} \vdash W: \text { nat } \\
\\
{\ldots x_{n} W: \sigma_{1} \rightarrow \ldots \rightarrow \sigma_{n} \rightarrow \text { nat }} } \\
\\
\frac{\ldots \Gamma, x: \sigma \vdash M_{i}: \sigma_{i} \ldots \quad \ldots \Gamma, x: \sigma \vdash W_{j}: \text { nat } \ldots}{\Gamma, x: \sigma \vdash \operatorname{case} x M_{1} \ldots M_{p}\left[m_{1} \rightarrow W_{1} \ldots m_{q} \rightarrow W_{q}\right]: \text { nat }}
\end{gathered}
$$ where, in the last rule, $\sigma=\sigma_{1} \rightarrow \ldots \rightarrow \sigma_{p} \rightarrow$ nat

PCF Böhm trees as strategies : an example

All PCF Böhm trees can be transcribed as trees. We decorate PCF types A as $\llbracket A \rrbracket^{\epsilon}$, where each copy of nat is decorated with a word $u \in \mathbb{N}^{*}$:

$$
\llbracket A^{1} \rightarrow \ldots \rightarrow A^{n} \rightarrow \operatorname{nat} \rrbracket_{u}=\llbracket A^{1} \rrbracket_{u 1} \rightarrow \ldots \rightarrow \llbracket A^{n} \rrbracket_{u n} \rightarrow \operatorname{nat}_{u}
$$

All moves in the HO arenas for PCF types are of the form $?_{u}$ or n_{u}.
Moreover ? ${ }_{u}$ has polarity 0 (resp. P) if u is of even (resp. odd) length, while n_{u} has polarity P (resp. O) if u is of even (resp. odd) length.

The PCF Böhm tree λf.case $f 3[4 \rightarrow 7,6 \rightarrow 9]$ reads as follows :

$$
\lambda f \text {. case } f\left\{\begin{array}{l}
(3) \\
4 \rightarrow 7 \\
6 \rightarrow 9
\end{array} \quad h=?_{\epsilon}\left[?_{1}, \stackrel{0}{\hookleftarrow}\right]\left\{\begin{array}{l}
?_{11}\left[3_{11}, \stackrel{0}{\hookleftarrow}\right] \\
4_{1}\left[7_{\epsilon}, \stackrel{\stackrel{1}{\hookleftarrow}]}{ }\right. \\
6_{1}\left[9_{\epsilon}, \stackrel{1}{\hookleftarrow}\right]
\end{array}\right.\right.
$$

PCF Böhm trees as strategies : full compilation

We need an auxiliary functions

$$
\begin{aligned}
& \operatorname{arity}(A, \epsilon)=n \quad \operatorname{arity}(A, i u)=\operatorname{arity}\left(A^{i}, u\right) \\
& \operatorname{access}(x,(\vec{x}, u) \cdot L, i)= \begin{cases}{[? u j, i} \\
\operatorname{access}(x, L, i+1) & \text { if } x \in \vec{x} \text { with } x=A_{j} \\
\operatorname{acc}(x)\end{cases}
\end{aligned}
$$

We translate $M: A$ to $\llbracket M \rrbracket_{\epsilon}^{[]}$, where

$$
\begin{aligned}
& \llbracket \lambda \vec{x} \cdot W \rrbracket_{u}^{L}=?_{u} \llbracket W \rrbracket_{u}^{(\vec{x}, u) \cdot L} \\
& \llbracket n \rrbracket_{u}^{L}=n_{u} \quad(\text { pointer reconstructed by well-bracketing) } \\
& \vdots \\
& \llbracket \text { case } x \vec{M}\left[\ldots m \rightarrow W_{m} \ldots\right] \rrbracket_{u}^{L}=\left[?_{v j},,_{\hookleftarrow}^{i}\right]\left\{\begin{array}{l}
\llbracket M_{l} \rrbracket_{v j l}^{L} \\
\vdots \\
\vdots \\
m_{v j} \llbracket W_{m} \rrbracket_{u}^{L} \\
\vdots
\end{array}\right. \\
& \text { where } \operatorname{access}(x, L, 0)=\left[?_{v j}, \stackrel{i}{\hookleftarrow}\right] \text { and } 1 \leq l \leq \operatorname{arity}(A, v j) .
\end{aligned}
$$

An example of execution of HO strategies : the strategies

$$
\text { Kierstead }_{1}=\lambda f . \text { case } f(\lambda x . \text { case } f(\lambda y . \text { case } x))
$$

applied to

$$
\begin{aligned}
& \lambda g . \text { case } g(\text { case } g T[T \rightarrow T, F \rightarrow F])[T \rightarrow F, F \rightarrow T]
\end{aligned}
$$

An example of execution of HO strategies : the execution

A form of conclusion

Sequential algorithms and HO innocent strategies differ in at least two respects :

- Sequential algorithms are intensional even for purely functional programs, cf. example λf.case $f \mathrm{TF}[\mathrm{T} \rightarrow \mathrm{F}]$
- Sequential algorithms have memory (or work in call-by-need manner), e.g. the model "normalises"

$$
\lambda x . \text { case } x[3 \rightarrow \text { case } x[3 \rightarrow 4]]
$$

into

$$
\text { request } ?_{\epsilon} \text { valof } ?_{1}\left\{\text { is } 3_{1} \text { output } 4_{\epsilon}\right.
$$

As for the second aspect, one could think of a multiset version of the exponent of two cds' (cf. the two familiar "bangs" in the relational and coherent semantics of linear logic).

