
Explicit Substitutions

M. Abadi� L. Cardelli� P.-L. Curieny J.-J. L�evyz

May 31, 1991

Abstract

The ��-calculus is a re�nement of the �-calculus where substitu-

tions are manipulated explicitly. The ��-calculus provides a setting

for studying the theory of substitutions, with pleasant mathematical

properties. It is also a useful bridge between the classical �-calculus

and concrete implementations.

�Digital Equipment Corporation, Systems Research Center.
yEcole Normale Sup�erieure; part of this work was completed while at Digital Equipment

Corporation, Systems Research Center.
zINRIA Rocquencourt; part of this work was completed while at Digital Equipment

Corporation, Systems Research Center and Paris Research Laboratory.

1

1 Introduction

Substitution is the �eminence grise of the �-calculus. The classical � rule,

(�x:a)b!� afb=xg

uses substitution crucially though informally. Here a and b denote two

terms, and afb=xg represents the term a where all free occurrences of x are

replaced with b. This substitution does not belong in the calculus proper,

but rather in an informal meta-level. Similar situations arise in dealing with

all binding constructs, from universal quanti�ers to type abstractions.

A naive reading of the � rule suggests that the substitution of b for

x should happen at once, when the rule is applied. In implementations,

substitutions invariably happen in a more controlled way. This is due to

practical considerations, relevant in the implementation of both logics and

programming languages. The term afb=xg may contain many copies of b

(for instance, if a = xxxx); without sophisticated structure-sharing mecha-

nisms [18], performing substitutions immediately causes a size explosion.

Therefore, in practice, substitutions are delayed and explicitly recorded;

the application of substitutions is independent, and not coupled with the

� rule. The correspondence between the theory and its implementations

becomes highly nontrivial, and the correctness of the implementations can

be di�cult to establish.

In this paper we study the ��-calculus, a re�nement of the �-calculus [1]

where substitutions are manipulated explicitly. Substitutions have syntactic

representations, and if a is a term and s is a substitution then the term a[s]

represents a with the substitution s. We can now express a � rule with

delayed substitution, called Beta:

(�x:a)b!Beta a[(b=x) � id]

where (b=x) � id is syntax for the substitution that replaces x with b and

a�ects no other variable (\�" represents extension and id the identity substi-

tution). Of course, additional rules are needed to distribute the substitution

later on.

The ��-calculus is a suitable setting for studying the theory of substi-

tutions, where we can express and prove desirable mathematical properties.

For example, the calculus is Church-Rosser and is a conservative extension

of the �-calculus. Moreover, the ��-calculus is strongly connected with the

categorical understanding of the �-calculus, where a substitution is inter-

preted as a composition [4].

1

We propose the ��-calculus as a step in closing the gap between the

classical �-calculus and concrete implementations. The calculus is a vehicle

for designing, understanding, verifying, and comparing implementations of

the �-calculus, from interpreters to machines. Other applications are in the

analysis of typechecking algorithms for higher-order languages and, poten-

tially, in the mechanization of logical systems.

When one considers weak reduction strategies, the treatment of substi-

tutions can remain quite simple|and then our approach may seem overly

general. Weak reduction strategies do not compute in the scope of �'s.

Then, there arise neither nested substitutions nor substitutions in the scope

of �'s. All substitutions are at the top level, as simple environments. An

ancestor of the ��-calculus, the ��-calculus, su�ces for the treatment of

weak reduction [4].

However, strong reduction strategies are useful in general, both in log-

ics and in the typechecking of higher-order programming languages. In fact,

strong reduction strategies are useful in all situations where symbolic match-

ing has to be conducted in the scope of binders. Thus, a general treatment

of substitutions is required, where substitutions may occur at the top level

and deep inside terms.

In some respects, the ��-calculus resembles the calculi of combinators,

including those of categorical combinators [9]. The ��-calculus and the

combinator calculi all give full formal accounts of the process of computation,

without su�ering from unpleasant complications in the (informal) handling

of variables. They all make it easy to derive machines for the �-calculus

and to show the correctness of these machines. From our perspective, the

advantage of the ��-calculus over combinator calculi is that it remains closer

to the original �-calculus.

There are actually several versions of the calculus of substitutions. We

start out by discussing an untyped calculus. The main value of the untyped

calculus is for studying evaluation methods. We give reduction rules that

extend those of the classical �-calculus and investigate their con
uence. We

concentrate on a presentation that relies on De Bruijn's numbering for vari-

ables [2], and brie
y discuss presentations with more traditional variable

names.

Then we proceed to consider typed calculi of substitutions, in De Bruijn

notation. We discuss typing rules for a �rst-order system and for a higher-

order system; we prove some of their central properties. The typing rules

are meant to serve in designing typechecking algorithms. In particular, their

study has been of help for both soundness and e�ciency in the design of the

2

typechecking algorithm for the Quest programming language [3].

We postpone discussion of the untyped calculi to section 3 and of the

typed calculi to sections 4 and 5. We now proceed with a general technical

overview.

2 Overview

The technical details of the ��-calculus can be quite intricate, and hence a

gentle informal introduction seems in order. We start with a brief review of

De Bruijn notation, since most of our calculi rely on it. Then we preview

untyped, �rst-order, and second-order calculi of substitutions.

2.1 De Bruijn notation

In De Bruijn notation, variable occurrences are replaced with positive in-

tegers (called De Bruijn indices); binding occurrences of variables become

unnecessary. The positive integer n refers to the variable bound by the n-th

surrounding � binder, for example:

�x:�y:xy becomes ��2 1

In �rst-order typed systems, the binder types must be preserved, for exam-

ple:

�x:A:�y:B:xy becomes �A:�B: 2 1

In second-order systems, type variables too are replaced with De Bruijn

indices:

�A:�x:A:x becomes ��1:1

Although De Bruijn notation is unreadable, it leads to simple formal sys-

tems. Therefore, we use indices in inference rules, but variable names in

examples.

Classical � reduction and substitution must be adapted for De Bruijn

notation. In order to reduce (�a)b, it does not su�ce to substitute b into

a in the appropriate places. If there are occurrences of 2, 3, 4, : : : in a,

these become \one o�," since one of the � binders surrounding a has been

removed. Hence, all the remaining free indices in a must be decremented;

the desired e�ect is obtained with an in�nite substitution:

(�x:a)b!� afb=xg becomes (�a)b!� afb=1; 1=2; 2=3; : : :g

3

When pushing this substitution inside a, we may come across a � term

(�c)fb=1; 1=2;2=3; : : :g. In this case, we must be careful to avoid replacing

the occurrences of 1 in c with b, since these occurrences correspond to a

bound variable and the substitution should not a�ect them. Hence, we

must \shift" the substitution. Thus, we may try:

(�c)fb=1;1=2;2=3; : : :g
?
=�cf1=1; b=2;2=3;3=4; : : :g

But this is not yet correct: now b has an additional surrounding binder, and

we must prevent capture of free indices of b. Suppose b contains the index

1, for example. We do not want the � of (�c) to capture this index. Hence

we must \lift" all the indices of b:

(�c)fb=1; 1=2;2=3; : : :g = �cf1=1; bf2=1;3=2; : : :g=2; 2=3; : : :g

This informal introduction to De Bruijn notation should su�ce to give

the
avor of things to come.

2.2 An untyped calculus

We shall study a simple set of algebraic operators that perform all these

index manipulations|without ellipses (\: : :"s), even though we treat in�nite

substitutions that replace all indexes. If s represents the in�nite substitution

fa1=1; a2=2; a3=3; : : :g, we write a[s] for a with the substitution s. A term

of the form a[s] is called a closure. The change from f g's to []'s emphasizes

that the substitution is no longer a meta-level operation.

The syntax of the untyped ��-calculus is:

Terms a; b ::= 1 j ba j�a ja[s]

Substitutions s; t ::= id j " j a � s j s � t

This syntax corresponds to the index manipulations described in the

previous section, as follows:

� id is the identity substitution f1=1; 2=2; : : :g, which we may write

fi=ig.

� " (shift) is the substitution f(i+1)=ig; for example, 1["] = 2. We need

only the index 1 in the syntax of terms; De Bruijn's n+1 is coded as

1["n], where "n is the composition of n shifts, " � : : :� ". Sometimes we

write "0 for id .

4

� i[s] is the value of the De Bruijn index i in the substitution s, also

informally written s(i) when s is viewed as a function.

� a � s (the cons of a onto s) is the substitution fa=1; s(i)=(i+ 1)g; for

example,

a � id = fa=1; 1=2; 2=3; : : :g

and

1 � " = f1=1; "(1)=2; "(2)=3; : : :g = id

� s � t (the composition of s and t) is the substitution such that

a[s � t] = a[s][t]

hence

s � t = fs(i)=ig � t = fs(i)[t]=ig

and, for example,

id � t = fid(i)[t]=ig= ft(i)=ig = t

" � (a � s) = f"(i)[a � s]=ig

= f(i+ 1)fa=1; s(i)=(i+ 1)g=ig = fs(i)=ig= s

At this point, we have shown most of the algebraic properties of the sub-

stitution operations. In addition, composition is associative and distributes

over cons (that is, (a �s)� t = a[t] � (s� t)). Moreover, the last example above

indicates that " � s is the \rest" of s, without the �rst component of s; thus,

1[s] � (" � s) = s.

Using this new notation, we can write the Beta rule as

(�a)b!Beta a[b � id]

To complement this rule, we can write rules to evaluate 1, for instance

1[c � s]! c

and rules to push substitution inwards, for instance

(cd)[s]! (c[s])(d[s])

5

In particular, we can derive a law for the distribution of substitution over �:

(�c)[s] = (�c)fs(i)=ig

= �(cf1=1; s(i)f(i+ 1)=ig=(i+ 1)g) (by previous discussion)

= �(cf1=1; s(i)["]=(i+ 1)g) (by de�nition of ")

= �(c[1 � fs(i)["]=ig]) (by de�nition of �)

= �(c[1 � (s � ")]) (by de�nition of �)

that is,

(�c)[s]! �(c[1 � (s � ")])

This last rule uses all the operators (except id), and suggests that this choice

of operators is natural, perhaps inevitable. In fact, there are many possible

variations, but we shall not discuss them here.

Explicit substitutions complicate the structure of bindings somewhat.

For example, consider the term

(�(1[2 � id]))[a � id]

We may be tempted to think that 1 is bound by �, as it would be in a

standard De Bruijn reading. However, the substitution [2 � id] intercepts the

index, giving the value 2 to 1. Then, after crossing over �, the index 2 is

renamed to 1 and receives the value a. One should keep these complica-

tions in mind in examining �� formulas|for example, in deciding whether

a formula is closed, in the usual sense. A precise de�nition of bindings is as

follows.

First, we associate statically (without reduction) a length with each sub-

stitution. The length is actually a pair of two integers (m;n). For a substi-

tution of the form a1 � : : : � am � (" � : : : � "), we have that m is the number of

consed terms and n is the number of "'s. The full de�nition of the length is:

j id j = (0; 0)

j " j = (0; 1)

j a � s j = (m+ 1; n) where j s j = (m;n)

j s � t j = (m+ p� n; q) where j s j = (m;n); j t j = (p; q); p� n

j s � t j = (m; q + n� p) where j s j = (m;n); j t j = (p; q); p < n

Then, in order to �nd where a variable n is bound in an expression, we

go towards the root of the expression parse tree. We initialize a counter p

to n. We decrement it when we cross a �. If it becomes 0, the � is the

6

wanted binder. When we reach an a in a closure a[s], with j s j = (ms; ns),

we compare p with ms. If p � ms, the variable is bound in s. Otherwise,

we continue upwards, setting the counter to p�ms + ns.

2.3 A �rst-order calculus

When we move to a typed calculus, we introduce types both in terms and

in substitutions. For the typed �rst-order ��-calculus, the syntax becomes:

Types A;B ::= K jA! B

Environments E ::= nil jA;E

Terms a; b ::= 1 j ba j�A:a ja[s]

Substitutions s; t ::= id j " j a:A � s j s � t

The environments are used in the type inference rules, as is commonly

done, to record the types of the free variables of terms. Naturally, in this

setting, environments are indexed by De Bruijn numbers. The environment

A1; A2; : : : ; An; nil associates type Ai with index i. For example, the typing

axiom for 1 is:

A;E ` 1 : A

and the typing rule for � abstraction is:

A;E ` b : B

E ` �A:b : A! B

In the ��-calculus, environments have a further function: they serve as

the \types" of substitutions. We write s . E to say that the substitution s

\has" the environment E. For example, the typing rule for cons is:

E ` a : A E ` s . E0

E ` (a:A � s) . A;E0

The main use of this new notion is in typing closures. Since s provides the

context in which a should be understood, the approach is to compute the

environment E0 of s, and then type a in that environment:

E ` s . E0 E0
` a : A

E ` a[s] : A

An instance of this rule is:

nil ` a:A � id . A; nil A; nil ` 1 : A

nil ` 1[a:A � id] : A

7

2.4 A second-order calculus

When we move to a second-order system, new subtleties appear because

substitutions may contain types and environments may contain place-holders

for types; for example,

(Bool ::Ty � id) . Ty; nil

The typing rules become more complex because types may contain type

variables, which must be looked up in the appropriate environments. (The

problem arises in full generality with dependent types [17], and some readers

may �nd it helpful to think about calculi of substitutions with dependent

types.) In particular, the typing axiom for 1 shown above becomes the rule:

E ` A :: Ty

A;E ` 1 : A["]

The extra shift is required because A is understood in the environment E

in the hypothesis, while it is understood in A;E in the conclusion. An

alternative (but heavy) solution would be to have separate index sets for

ordinary term variables and for type variables, and to manipulate separate

term and type environments as well.

Another instance of this phenomenon is in the rule for � abstraction,

which we have also seen above:

A;E ` b : B

E ` �A:b : A! B

Notice that previously A must have been proved to be a type in the envi-

ronment E, while B is understood in A;E in the assumption. Then A! B

is understood in E in the conclusion. This means that the indices of B are

\one o�" in A ! B. The rule for application takes this into account; a

substitution is applied to B to \unshift" its indices:

E ` b : A! B E ` a : A

E ` ba : B[a:A � id]

The B[a:A � id] part is reminiscent of the rule found in calculi for dependent

types, and this is the correct technique for the version of such calculi with

explicit substitutions. However, since here we do not deal with dependent

types, B will never contain the index 1, and hence a will never be substituted

in B. The substitution is still necessary to shift the other indices in B.

8

The main di�culty in our second-order calculus arises in typing closures.

The approach described for the �rst-order calculus, while still viable, is not

su�cient. For example, if not is the usual negation on Bool, we certainly

want to be able to type the term

(�1:not(1))[Bool � id]

or, in a more familiar notation,

Let X = Bool in �x:X:not(x)

(We interpret Let via substitution, not via �.) Our strategy for the �rst-

order calculus was to type the substitution, obtaining an environment

(X :: Ty) � id , and then type the term �x:X:not(x) in this environment.

Unfortunately, to type this term, it does not su�ce to know that X is a

type; we must know that X is Bool. To solve this di�culty in the second-

order system, we have rules to push a substitution inside a term and then

type the result. As in calculi with dependent types, the tasks of deriving

types and applying substitutions are inseparable.

Finally, as discussed below, surprises arise in writing down the precise

rules; for example the rule for typing conses has to be modi�ed. Even the

form of the judgment E ` s . E0 must be reconsidered.

Higher-order systems, possibly with dependent constructions, are also

of theoretical and practical importance. We do not discuss them formally

below, however, for we believe that the main complications arise already at

the second order.

3 The untyped ��-calculus

In this section we present the untyped ��-calculus. We propose a basic set of

equational axioms for the ��-calculus in De Bruijn notation. The equations

induce a rewriting system; this rewriting system su�ces for the purposes of

computation. We show that the rewriting system is con
uent, and thus pro-

vides a convenient theoretical basis for more deterministic implementations

of the ��-calculus.

We also consider some variants of the axiom system. Restrictions bring

us closer to implementations, as they make evaluation more deterministic.

An extension of the system is suggested by Knuth-Bendix computations.

Finally, we discuss a ��-calculus using variable names.

9

As in the classical �-calculus, actual implementations would resort to

particular rewriting strategies. We discuss a normal-order strategy for ��

evaluation. Then we focus on a more specialized reduction system, still

based on normal order, which provides a suitable basis for abstract �� ma-

chines. We describe one machine, which extends Krivine's weak reduction

machine [16] with strong reduction.

In her study of categorical combinators, Hardin proposed systems similar

to ours [11]. In particular, Hardin's system E + (Beta) is a homomorphic

image of our basic system. We rely on some of her techniques to prove our

results, and not surprisingly we �nd con
uence properties similar, but not

equivalent, to those she found. (We come back to this point below.)

The main di�erence between the approaches is that in Hardin's work

there is a unique sort for terms and substitutions. The distinction between

terms and substitutions is central in our work. This distinction is important

to a simple understanding of con
uence properties and to the practicality

of the ��-calculus.

Simultaneously with our work, Field developed a system almost identical

to our basic system, too, and claimed some of the same results [10]. Thus,

we share a starting point. However, Field's paper is an investigation of

optimality properties of reduction schemes, so for example Field went on

to consider a labelled calculus. In contrast, we are more concerned with

questions of con
uence and with typechecking issues.

3.1 The basic rewriting system

The syntax of the untyped ��-calculus is the one given in the informal

overview,

Terms a; b ::= 1 j ba j�a ja[s]

Substitutions s; t ::= id j " j a � s j s � t

Notice that we have not included metavariables over the sorts of terms and

substitutions|we consider only closed terms, and this su�ces for our pur-

poses. (In De Bruijn notation, 1; 2; : : : are constant symbols rather than

metavariables, and so for example the expression 1 is closed, although it

represents an open lambda term.)

In this notation, we now de�ne an equational theory for the ��-calculus,

by proposing a set of equations as axioms. When they are all oriented

from left to right, the equations become rewrite rules and give rise to a

rewriting system. The equations fall into two subsets: a singleton Beta,

10

which is the equivalent of the classical � rule, and ten rules for manipulating

substitutions, which we call � collectively.

Beta (�a)b = a[b � id]

VarId 1[id] = 1

VarCons 1[a � s] = a

App (ba)[s] = (b[s])(a[s])

Abs (�a)[s] = �(a[1 � (s � ")])

Clos a[s][t] = a[s � t]

IdL id � s = s

ShiftId " � id = "

ShiftCons " � (a � s) = s

Map (a � s) � t = a[t] � (s � t)

Ass (s1 � s2) � s3 = s1 � (s2 � s3)

As usual, the equational theory follows from these axioms together with

the inference rules for replacing equals for equals.

Our choice of presentation is guided by the structure of terms and substi-

tutions. The Beta rule eliminates �'s and creates substitutions; the function

of the other rules is to eliminate substitutions. Two rules deal with the eval-

uation of 1. The next three deal with pushing substitutions inwards. The

remaining �ve express substitution computations. We prove below that the

substitution rules always produce unique normal forms; we denote the �

normal form of a by �(a).

The classical � rule is not directly included, but it can be simulated,

as we now argue. The precise de�nition of � reduction, in the style of De

Bruijn [2], is as follows:

(�a)b!� afb=1; 1=2; : : :n=n+1; : : :g

where the meta-level substitution f: : :g is de�ned inductively by using the

rules:

nfa1=1; : : : ; an=n; : : :g = an

11

afa1=1; : : : ; an=n; : : :g = a0 bfa1=1; : : : ; an=n; : : :g = b0

(ab)fa1=1; : : : ; an=n; : : :g = a0b0

aif2=1; : : : ;n+1=n; : : :g = a0i af1=1; a01=2; : : : ; a
0

n=n+1; : : :g = a0

(�a)fa1=1; : : : ; an=n; : : :g = �a0

If a1; : : : ; an; : : : is a sequence of consecutive integers after some point (the

only useful case), then the meta-level substitution fa1=1; : : : ; an=n; : : :g cor-

responds closely to an explicit substitution:

Proposition 3.1 If there existm and p such that am+q = p+q for all q � 1,

and afa1=1; : : : ; an=n; : : :g = b is provable in the formal system presented

above, then �(a[a1 � a2 � : : : � am � "p]) = b.

Proof The argument is by induction on the length of the proof of

afa1=1; : : : ; an=n; : : :g = b; we strengthen the claim, and argue that all in-

termediate terms in the proof satisfy the hypothesis. We omit the easy

application case.

Case nfa1=1; : : : ; an=n; : : :g = an: If n � m, then n[a1 �a2 � : : :�am �"
p]!�

�
an; if n > m, then n[a1 � a2 � : : : � am � "p]!�

� n �m+ p. But by hypothesis

an = an�m+m = n�m+ p.

Case (�a)fa1=1; : : : ; an=n; : : :g = �a0: By induction on the ai's (choosing

m and p to be 0 and 1), we get by induction �(ai["]) = a0i. This allows us

to apply induction on a for m+ 1 and p+ 1:

�(a[1 � a01 � : : : � a
0

m � "
p+1]) = a0

On the other hand our desired conclusion reduces to showing

�(a[1 � ((a1 � : : : � am � "p) � ")]) = a0

which holds since

(a1 � : : : � am � "
p) � "!�

� a1["] � : : : � am["] � "
p+1

2

Therefore, the simulation of the � rule consists in �rst applying Beta

and then � until a � normal form is reached.

As usual, we want a con
uence theorem for the calculus. This theorem

will guarantee that all rewrite sequences yield identical results, and thus

that the strategies used by di�erent implementations are equivalent:

12

Theorem 3.2 Beta + � is con
uent.

The proof does not rely on standard rewriting techniques, as Beta + �

does not pass the Knuth-Bendix test (but � does). We come back to this

subtle point below.

Instead, the proof relies on the termination and con
uence of �, the con-

uence of the classical �-calculus, and Hardin's interpretation technique [11].

The rest of this subsection is devoted to proving Theorem 3.2.

First we show that � is noetherian (that is, � reductions always termi-

nate) and con
uent.

Proposition 3.3 � is noetherian and con
uent.

Proof We have an indirect proof of noetherianity, as follows. The ��-

calculus translates into categorical combinators [5], by merging the two sorts

of terms and substitutions and collapsing the operations [] and � into one.

Under this translation, a one-step rewriting in � is mapped to a one-step

rewriting of a system SUBST of categorical rewriting rules (the exact trans-

lation of the largest variant considered in 3.2). Hardin and Laville have

established the termination of SUBST [12].

Noetherianity simpli�es the proof of con
uence. By a well-known lemma,

local con
uence su�ces [14]; it can be checked by examining critical pairs,

according to the Knuth-Bendix test. For example, for the critical pair

(1[id])[s]! 1[s] and (1[id])[s]! 1[id � s]

local con
uence is ensured through the IdL rule.

A di�erent proof of termination for SUBST and � has been found re-

cently [7]. 2

Since � is noetherian, let us examine the form of � normal forms. A

substitution in normal form is necessarily in the form

a1 � (a2 � (: : :(am � U) : : :))

where U is either id or a composition " � (: : :(" � ") : : :). A term in normal

form is entirely free of substitutions, except in subterms such as 1["n], which

codes the De Bruijn index n+1. Thus, a term in normal form is a classical

�-calculus term (modulo the equivalence of 1["n] and n+1).

In summary, the syntax of � normal forms is:

13

Terms a; b ::= 1 j 1["n] j ba j�a

Substitutions s ::= id j "n j a � s

After these remarks on �, we can apply Hardin's interpretation technique

to show that the full �� system is con
uent.

First, we review Hardin's method. Let X be a set equipped with two

relations R and S. Suppose that R is noetherian and con
uent, and denote

by R(x) the R normal form of x; that SR is a relation included in (R[S)�

on the set of R normal forms; and that, for any x and y in X , if S(x; y) then

S�

R(R(x); R(y)). An easy diagram chase yields that if SR is con
uent then

so is (R[S)�.

In our case, we take R to be the relation induced by the � rules; that is,

R(x; y) holds if x reduces to y with the � rules. We take SR to be classical

� conversion; that is, SR(x; y) holds if y is obtained from x by replacing a

subterm of the form (�a)b with �(a[b � id]).

Thus the proof of con
uence reduces to the two following lemmas:

Lemma 3.4 � is con
uent on � normal forms.

Proof Notice that, on terms, � reduction is the original � reduction, by

Proposition 3.1. As for substitutions, since only normal forms are involved,

the � reductions are independent � reductions on the components of the

substitutions. 2

Lemma 3.5

1. If a!Beta b then �(a)!�

� �(b).

2. If s!Beta t then �(s)!�

� �(t).

Proof We prove the statement for a and s, together. Let u stand for either

a or s; v for either b or t. We proceed by induction on (depth(u); size(u)),

where depth(u) is the maximal length of a � reduction out of u (see Proposi-

tion 3.3) and size(u) is the size of u, that is, the number of symbols occurring

in it. We distinguish cases according to the structure of u, with several sub-

cases for closures and compositions. We start with terms:

� If a is an application a1a2 and if the Beta redex is in a1 or a2, then the

result follows easily from the induction hypothesis, since �(a1a2) =

�(a1)�(a2). We proceed likewise if a is an abstraction �a1.

14

� If the Beta redex is a = (�a1)a2, then b = a1[a2 � id] and �(a) =

(��(a1))�(a2). By de�nition of �, we have

�(a)!� �(�(a1)[�(a2) � id])

that is,

�(a)!� �(b):

� If a is a closure, we decompose the term part of the closure:

{ a = (a1a2)[s1]: Suppose �rst that the Beta redex is in a1 or

a2. Then we can apply the induction hypothesis to the �-reduct

(a1[s1])(a2[s1]) of a. Similarly, when the Beta redex is in s1,

we can apply the induction hypothesis to a1[s1] and to a2[s1],

separately. Finally, when a1 = �a3 and (�a3)a2 is the Beta redex,

we have b = a3[a2 � id][s1], and �(a) = (�(a3[1 � (s1 � ")]))(a2[s1]).

We obtain, by easy calculations:

�(b) = �(a3[a2[s1] � s1])

and

�(a)!� �(a3[a2[s1] � (s1 � id)]):

Lemma 3.6, given below, completes the argument for this case.

{ a = (�a1)[s1]: Like in the previous case (�rst alternative), we

apply the induction hypothesis to �(a1[1 � (s1 � ")]).

{ a = a1[s1][s2]: This case is handled similarly.

{ a = 1[s1]: The Beta redex must be in s1. Thus, b = 1[t1] and

�(s1) !
�

� �(t1), by the induction hypothesis. Because of the

structure of substitutions in � normal form, �(s1) is of the form

id , "n, or a2 � s2. In the �rst two cases, �(t1) must be the same as

�(s1), and the result follows trivially. In the third case, �(t1) =

b2 � t2 where a2 !
�

� b2, and the result follows since �(a) = a2 and

�(b) = b2.

The cases for substitutions are analogous to those for terms: the case

for a1 � s1 is identical to the one for �a1, while the case for compositions is

similar to the one for closures. 2

It remains to prove a lemma:

15

Lemma 3.6 For any term a, �(a[id]) = �(a). For any substitution s,

�(s � id) = �(s).

Proof We prove a more general statement by induction. In formulating this

statement, we use the derived unary operator * de�ned by * (s) = 1 � (s�").

The statement is:

For any term a and for any n, �(a[*n (id)]) = �(a). For any

substitution s and for any n, �(s� *n (id)) = �(s).

Since �(a[*n (id)]) = �(�(a)[*n (id)]), it is enough to prove the statement

for a in normal form (and similarly for s). We proceed by induction on the

structure of � normal forms.

� If a = a1a2, then �((a1a2)[*
n (id)]) = �(a1[*

n (id)])�(a2[*
n (id)]),

and the result follows by the induction hypothesis.

� If a = �b, then �((�b)[*n (id)]) = �(�(b[*n+1 (id)])), and the result

follows by the induction hypothesis.

� If a = 1 and n = 0, then the result follows by VarId. If a = 1 and

n > 0, then a[*n (id)] = 1[1 � (*n�1 (id) � ")] reduces to a = 1 by

VarCons.

� If a = 1["m], we prove the result by induction on n. If n = 0, then the

result follows by making use of Clos, Ass, and ShiftId. If n > 0, then

a[*n (id)] = �(1["m][1 � (*n�1 (id)�")]) = �(1["m�1][*n�1 (id)]["]). By

the induction hypothesis, we have �(1["m�1][*n�1 (id)]) = 1["m�1],

and the result follows.

Now we turn to substitutions. If s = id , the result follows obviously by

IdL. The two other cases are proved like the cases a = 1["m] and a = a1a2,

respectively. 2

This completes the proof of Theorem 3.2.

3.2 Variants

Some subsystems of � are reasonable �rst steps to deterministic evaluation

algorithms. We can restrict � in three di�erent ways. The rule Clos can be

removed. The inference rule

s = s0 t = t0

s � t = s0 � t0

16

can be removed, and the inference rule for the closure operator can be re-

stricted to
s = s0

1[s] = 1[s0]

These restrictions (even cumulated) do not prevent us from obtaining � nor-

mal forms and con
uence. A general result enables us to derive con
uence

for these subsystems:

Lemma 3.7 If S is a subrelation of a noetherian and con
uent relation

R, and if S normal forms are R normal forms, then S is also con
uent.

Moreover, the smallest equivalence relations containing R and S coincide.

Proof If S�(a; b) and S�(a; c) then b and c have the same R normal form d,

since S � R. However, an S normal form of b (or c) is also an R normal form

of b, and thus coincides with d. An almost identical argument establishes

the second claim. 2

Here we take R and S to be the relations induced by � and by �'s

restriction, respectively. Thus, we easily obtain that the restricted substitu-

tion rules are noetherian and con
uent, and we can apply the interpretation

technique, through exactly the same steps as before. (In fact, the lemmas

proved above apply directly, with no modi�cation.)

Con
uence properties suggest a second kind of variant. Although Beta +

� is con
uent, when we view it as a standard rewriting system on �rst-order

terms it is not even locally con
uent. The subtle point is that we have proved

con
uence on closed �� terms, that is, on terms exclusively constructed

from the operators of the ��-calculus. In contrast, checking critical pairs

involves considering open terms over this signature, with metavariables (that

is, variables x and u ranging over terms and substitutions, di�erent from De

Bruijn indexes 1; 2; : : :).

Consider, for example, the critical pair:

((�a)b)[u] !
? a[b[u] � u]

((�a)b)[u] !
? a[b[u] � (u � id)]

For local con
uence, we would want the equation (s � id) = s, but this

equation is not a theorem of �. Similar critical pair considerations suggest

the addition of four new rules:

Id a[id] = a

17

IdR s � id = s

VarShift 1 � " = id

SCons 1[s] � (" � s) = s

These additional rules are well justi�ed from a theoretical point of view.

However, con
uence on closed terms can be established without them, and

they are not computationally signi�cant. Moreover, some of them are ad-

missible (that is, every closed instance is provable). More precisely Id and

IdR are admissible in �, and SCons is admissible in � + VarShift.

We should particularly draw attention to the last rule, SCons. It ex-

presses that a substitution is equal to its �rst element appended in front

of the rest. This rule is reminiscent of the surjective-pairing rule, which

deserved much attention in the classical �-calculus. Klop has shown that

surjective pairing destroys con
uence for the �-calculus [15].

Similarly, the system � + Id + IdR + VarShift + SCons is not con
uent

when we have metavariables for both terms and substitutions, although it

is locally con
uent. The following term, inspired by Klop's counterexample

[15], works as a counterexample to con
uence:

Y (Y (��x[1[u � (1 � id)] � (" � (u � ((21) � id)))]))

where Y is a �xpoint combinator, x is a term metavariable, and u is a

substitution metavariable. The proof appears in [6]. Let us just summarize

the informal argument. Call b = Y (c) the term above. It reduces to both

x[u�((cb) � id)] and c(x[u�((cb) � id)]). To get a common reduct of these two

terms, we need to apply SCons at some stage, and this requires �nding a

common reduct of the very same terms. Klop uses standardization to turn

this informal circularity argument into a reductio ad absurdum, starting

with a minimal length standard reduction to such a common reduct.

The reader may wonder what thwarts the techniques used in the last

subsection. The point is that Lemma 3.6 depends crucially on the syntax of

substitutions in normal form, which is not so simple any more. (The syntax

allows in particular expressions of the form u � (1 � id), as in the suggested

counterexample.)

We can go half way in adding metavariables. If we add only term

metavariables, the syntax of substitution � normal forms is unchanged. This

protects us from the counterexample. There are two additional cases for

term � normal forms, the cases for metavariables:

18

Terms a; b ::= 1 j 1["n] j ba j�a jx jx[s]

We believe that con
uence can be proved in this case by the interpre-

tation technique. Con
uence on normal forms would be obtained through

an encoding of the normal forms in the �-calculus extended with constants,

which is known to be con
uent (x becomes a constant; x[s] becomes a con-

stant applied to the elements of s).

Hardin's results on con
uence bear some similarity with ours. In [11],

Hardin has shown that various systems are con
uent on a set D of closed

terms, which includes the representation of all the usual � expressions; she

found problems with con
uence for non-closed terms, too. However, her

di�culties and ours di�er somewhat, and in particular the counterexamples

to con
uence di�er.

Recently, Hardin and L�evy have succeeded in obtaining con
uence with

metavariables for both terms and substitutions, by slightly changing the

syntax and the set of equations. These results are reported in [13, 6].

3.3 The ��-calculus with names

Let us discuss a more traditional formulation of the calculus, with variable

names x; y; z; : : : , as a small digression. Two ways seem viable.

In one approach, we consider the following syntax:

Terms a; b ::= x j ba j�x:a ja[s]

Substitutions s; t ::= id j (a=x) � s j s � t

The corresponding theory includes equations such as:

Beta (�x:a)b = a[(b=x) � id]

Var1 x[(a=x) � s] = a

Var2 x[(a=y) � s] = x[s] (x 6= y)

Var3 x[id] = x

App (ba)[s] = (b[s])(a[s])

Abs (�x:a)[s] = �y:(a[(y=x) � s]) (y occurs in neither a nor s)

The rules correspond closely to the basic ones presented in De Bruijn nota-

tion. The Abs rule does not require a shift operator, but involves a condition

on variable occurrences. (The side condition could be weakened, from y not

occurring at all in a and s, to y not occurring free, in a precise technical

19

sense that we do not de�ne here.) The consideration of the critical pairs

generated by the previous rules immediately suggests new rules, such as:

OccT a[(b=x) � t] = a[t] (x does not occur in a)

OccS s � ((a=x) � t) = (a=x) � (s � t) (x does not occur in s)

Comm (a=x) � ((b=y) � s) = (b=y) � ((a=x) � s) (x 6= y)

Alpha �x:a = �y:(a[(y=x) � id]) (y does not occur in a)

This is an unpleasant set of rules. The Comm rule destroys the existence of

substitution normal forms and the Alpha rule expresses renaming of bound

variables. Intuitively, we may take this as a hint that this calculus with

names does not really enjoy nice con
uence features. In this respect, the

calculus in De Bruijn notation seems preferable.

There is an alternative solution, with the shift operator. The syntax is

now:

Terms a; b ::= x j ba j�x:a ja[s]

Substitutions s; t ::= id j " j (a=x) � s j s � t

In this notation, intuitively, x["] refers to x after the �rst binder. The

equations are the ones of the ��-calculus in De Bruijn notation except for:

Beta (�x:a)b = a[(b=x) � id]

Var1 x[(a=x) � s] = a

Var2 x[(a=y) � s] = x[s] (x 6= y)

Var3 x[id] = x

Abs (�x:a)[s] = �x:(a[(x=x) � (s � ")])

This framework may be useful for showing the di�erences between dynamic

and lexical scopes in programming languages. The rules here correspond

to lexical binding, but dynamic binding is obtained by erasing the shift

operator in rule Abs.

20

3.4 A normal-order strategy

As usual, we want a complete rewriting strategy|a deterministic method

for �nding a normal form whenever one exists. Here we study normal-

order strategies, that is, the leftmost-outermost redex is chosen at each

step. Completeness is established via the completeness of the normal-order

strategy for the �-calculus.

The normal-order algorithm naturally decomposes into two parts: a rou-

tine for obtaining weak head normal forms, and recursive calls on this rou-

tine. In our setting, weak head normal forms are de�ned as follows:

De�nition 3.8 A weak head normal form (whnf for short) is a �� term of

the form �a or na1 � � �am.

As a starting point, we take the classical de�nition of (one step) weak

normal-order � reduction
n
!� in the �-calculus:

(�a)b
n
!� �(a[b � id])

b
n
!� b

0

ba
n
!� b0a

There are several possibilities for implementing recursive calls, in order to

obtain full normal forms; the simplest one consists in adding two rules:

ai
n
!� a

0

i (aj in normal form for j < i)

na1 : : : ai : : : am
n
!� na1 : : :a

0

i : : : am

a
n
!� a

0

�a
n
!� �a0

We do not include these rules, and from now on focus on weak head normal

forms|though it is routine to extend the results below to normal forms.

The analogous reduction mechanism for the ��-calculus is:

(�a)b
n
! a[b � id]

b
n
! b0

ba
n
! b0a

1[id]
n
! 1

21

1[a � s]
n
! a

s
n
! s0

1[s]
n
! 1[s0]

(ba)[s]
n
! (b[s])(a[s])

(�a)[s]
n
! �(a[1 � (s � ")])

a[s][t]
n
! a[s � t]

id � s
n
! s

" � id
n
! "

" � (a � s)
n
! s

s
n
! s0

" � s
n
! " � s0

(a � s) � t
n
! a[t] � (s � t)

(s � s0) � s00
n
! s � (s0 � s00)

Clearly,
n
!� and

n
! are closely related:

Proposition 3.9 If a
n
! b then either �(a)

n
!� �(b) or �(a) and �(b) are

identical. The
n
! reduction of a terminates (with a weak head normal form)

i� the
n
!� reduction of �(a) terminates.

Proof As for the �rst part, let a
n
! b. If the underlying redex is a

� redex, then obviously �(a) = �(b). If the underlying redex is a Beta

redex, then a is of the form (�a1)a2 : : : an, and from �((�a1)a2 : : : an) =

(��(a1))�(a2) : : :�(an) we can derive �(a)
n
!� �(b).

As for the second part, notice that a
n
! reduction stops exactly when a

weak head normal form is reached. Thus, for the \if" part of the claim, it

su�ces to check that the
n
! reduction of a terminates. We de�ne

n
!

1

� as the

re
exive closure of
n
!� . Let

a
n
! a1

n
! : : : ak

n
! : : :

22

be a
n
! reduction sequence. Then

�(a)
n
!

1

� �(a1)
n
!

1

� : : :
n
!

1

� �(ak)
n
!

1

� : : :

is a
n
!

1

� reduction sequence, which cannot have in�nitely many consecutive

re
exive steps because these re
exive steps correspond to � reductions.

Conversely, suppose that b is a weak head normal form, then �(b) is a

weak head normal form. 2

Corollary 3.10
n
! is a complete strategy.

Proof This follows from the completeness of the
n
!� strategy. (See [1] for

a proof in the classical notation.) 2

With the same approach, we can also de�ne a system
wn
!, which incor-

porates some slight optimizations (present also in our abstract machine,

below). In
wn
!, the rule

((�a)[s])b
wn
! a[b � s]

replaces the rules

(�a)b
n
! a[b � id]

(�a)[s]
n
! �(a[1 � (s � ")])

The new rule is an optimization justi�ed by the � + IdR reduction steps

((�a)[s])b ! (�(a[1 � (s � ")]))b! a[1 � (s � ")][b � id]

! a[(1 � (s � ")) � (b � id)]!? a[b � s]

which is not allowed in
n
!.

Both
n
! and

wn
! are weak in the sense that they do not reduce under �'s.

In addition,
wn
! is also weak in the sense that substitutions are not pushed

under �'s. In this respect,
wn
! models environment machines, while

n
! is

closer to combinator reduction machines.

We do not exactly obtain weak head normal forms|in particular,
wn
!

does not reduce even (�11)(�11) or (1[(�11) � id])(�11). This motivates

a syntactic restriction which entails no loss of generality: we start with

closures, and all conses have the form a[s] � t. Under this restriction, we

cannot start with (�11)(�11), but instead have to write ((�11)(�11))[id],

which has the expected, nonterminating behavior. The correctness of
wn
!

with respect to normal-order weak head normal form reduction in the �-

calculus can now be proved as in Proposition 3.9.

23

Proposition 3.11 If a
wn
! b then either �(a)

n
!� �(b) or �(a) and �(b) are

identical. The
wn
! reduction terminates (with a term of the form (�a)[s] or

na1 : : : am) i� the
n
!� reduction of �(a) terminates.

Proof The proof goes exactly as in Proposition 3.9. The only slight di�-

culty is in establishing that the
wn
! reduction terminates exactly on the terms

of the form indicated in the statement. The following invariant of the
wn
!

reduction is useful:

For each term b in the
wn
! reduction sequence starting from a[s],

1. b is a term of the restricted syntax, that is, all subexpressions b00 in

contexts b00 � s00 are closures;

2. the �rst node on the spine of b (the leftmost branch of the tree rep-

resentation of b) that is not an application can only be a closure b0[s]

or 1, and all the right arguments of the application nodes above are

closures.

We �rst prove this invariant. We show that if the properties stated hold for

b and b
wn
! c then they hold for c. Notice that the properties are proved

together. If the node mentioned in the claim is 1, then the
wn
! reduction is

terminated. If it is a closure b0[s], the proof goes by cases on the structure

of b0, and if b0 is 1 by cases on the structure of s. We detail only two crucial

cases, one for each part of the claim. When b0[s] has the form (�a0)[s]

and is not the root of b, then its immediate context in b has the form

((�a0)[s])(a00[s00]) (by induction hypothesis), and becomes a0[a00[s00] �s]. When

b0[s] has the form 1[a0[s0] � t], then c is b where b0[s] is replaced with a0[s0],

another closure. (The restriction on the syntax is crucial here.)

Now we derive the claim about
wn
! normal forms. Suppose that b and

b0[s] are as in the statement of the invariant, and that moreover b is not

reducible by
wn
!. An easy checking of the rules allows us to exclude the

possibility that b0 be an application or a closure. It can be 1 only if s0 is not

further
wn
! reducible and is not a cons, which forces s0 to have the form "k.

Finally, b0 can be an abstraction only if b = b0[s]. 2

Other results on normal-order reduction strategies for weak calculi of

explicit substitutions can be found in [6].

3.5 Towards an implementation

As a further re�nement towards an implementation, we adapt
wn
!, to ma-

nipulate only expressions of the forms a[t] and s � t. The substitution t

24

corresponds to the \global environment," whereas substitutions deeper in a

or s correspond to \local declarations." In de�ning our machine, we take

the view that the linear representation of a can be read as a sequence of

machine instructions acting on the graph representation of t.

In this approach, some of the original rules are no longer acceptable,

since they do not yield expressions of the desired forms. For example, the

reduct of the App rule, (b[s])(a[s]), is not a closure. In order to reduce

(ba)[s], we have to reduce b[s] to a weak head normal form �rst. In the

machine discussed below, we use a stack for storing a[s].

The following reducer whnf () embodies these modi�cations to
wn
!. The

reducer takes a pair of arguments, the term a and the substitution s of a

closure, and returns another pair, of the form (na1 � � �am; id) or (�a
0; s0). To

compute whnf (), the following axioms and rules should be applied, in the

order of their listing. We proceed by cases on the structure of a, and when

a is n by cases on the structure of s, and when s is a composition t � t0 by

cases on the structure of t.

whnf (�a; s) = (�a; s)

whnf (b; s) = (�b0; s0)

whnf (ba; s) = whnf (b0; a[s] � s0)

whnf (b; s) = (b0; id) (b0 not an abstraction)

whnf (ba; s) = (b0(a[s]); id)

whnf (n; id) = (n; id)

whnf (n; ") = (n+1; id)

whnf (1; a[s] � t) = whnf (a; s)

whnf (n+1; a � s) = whnf (n; s)

whnf (n; s � s0) = whnf (n[s]; s0)

whnf (n[id]; s) = whnf (n; s)

whnf (n["]; s) = whnf (n+1; s)

whnf (1[a � s]; s0) = whnf (a; s0)

whnf (n+1[a � s]; s0) = whnf (n[s]; s0)

whnf (n[s � s0]; s00) = whnf (n[s]; s0 � s00)

whnf (a[s]; s0) = whnf (a; s � s0)

25

A simple extension of these rules yields full normal forms:

whnf (a; s) = (�a0; t)

nf (a; s) = �(nf (a0; 1 � (t � ")))

whnf (a; s) = (n(a1[s1]) : : :(am[sm]); id)

nf (a; s) = n(nf (a1; s1)) : : :(nf (am; sm))

The precise soundness property of whnf () is:

Proposition 3.12 The equation whnf (a; s) = (a0; s0) is provable if and only

if �(a0[s0]) is the weak head normal form of �(a[s]).

Proof It is routine to check the correctness of whnf () with respect to
wn
!.

Speci�cally, whnf (n; s) = (a0; s0) is provable i� a0[s0] is the
wn
! normal form

of 1[(" � (: : : (" � s) : : :))] (with n � 1 "'s); whnf (n[t]; s) = (a0; s0) is provable

i� a0[s0] is the
wn
! normal form of 1[(" � (: : :(" � (t � s)) : : :))] (with n � 1 "'s);

in all other cases, whnf (a; s) = (a0; s0) is provable i� a0[s0] is the
wn
! normal

form of a[s]. 2

The last step we consider is the derivation of a transition machine from

the rules for whnf (). One basic idea is to implement the recursive call on

b[s] during the evaluation of (ba)[s] by using a stack to store the argument

a[s]. Thus, the stack contains closures.

The following table represents an extension of Krivine's abstract ma-

chine [16, 4]. The �rst column represents the \current state," the second

one represents the \next state." Each line has to be read as a transition

from a triple (Subst, Term, Stack) to a triple of the same nature. To evalu-

ate a program a in the global environment s, the machine is started in state

(s; a; h i), where h i is the empty stack. The machine repeatedly uses the

�rst applicable rule. The machine stops when no transition is applicable

any more. These termination states have one of the forms (id ; n; a1 � � � � �am)

and (s; �a; h i), which represent na1 � � �am and (�a)[s], respectively.

The machine can be restarted when it stops, and then we have a full

normal form � reducer. Speci�cally, when the machine terminates with the

triple (s; �a; h i), we restart it in the initial state (1 � (s � "); a; h i), and when

the machine terminates with the triple (id ; n; a1[s1] � : : : � an[sn] � h i), we

restart n copies of the machine in the states (s1; a1; h i); : : : ; (sn; an; h i).

The correctness of the machine can be stated as follows. (We omit the

simple proof.)

26

Subst Term Stack Subst Term Stack

" n S id n+1 S

a[s] � t 1 S s a S

a � s n+1 S s n S

s � s0 n S s0 n[s] S

s ba S s b a[s] � S

s �a b[t] � S b[t] � s a S

s n[id] S s n S

s n["] S s n+1 S

s0 1[a � s] S s0 a S

s0 n+1[a � s] S s0 n[s] S

s00 n[s � s0] S s0 � s00 n[s] S

s0 a[s] S s � s0 a S

Proposition 3.13 Starting in the state (s; a; h i), the machine terminates

in (id ; n; a1 � : : : � am) i� whnf (a; s) = (na1 : : :am; id), and terminates in

(s; �a; h i) i� whnf (a; s) = (�a; s).

By now, we are far away from the wildly nondeterministic basic rewriting

system of Section 3.1. However, through the derivations, we have managed

to keep some understanding of the successive re�nements and to guarantee

their correctness. This has been possible because the ��-calculus is more

concrete than the �-calculus, and hence an easier starting point.

4 First-order theories

In the previous section, we have seen how to derive a machine that can be

used as a sensible implementation of the untyped ��-calculus, and in turn

of the untyped �-calculus. Di�erent implementation issues arise in typed

systems. For typed calculi, we need not just an execution machine, but

also a typechecker. As will become apparent when we discuss second-order

systems, explicit substitutions can also help in deriving typecheckers. Thus,

we want a typechecker for the ��-calculus.

At the �rst order, the typechecker does not present much di�culty. In

addition to the usual rules for a classical system L1, we must handle the

typechecking of substitutions. Inspection of the rules of L1 shows that this

can be done easily, since the rules are deterministic.

27

In this section we describe the �rst-order typed ��-calculus. We prove

that it preserves types under reductions, and that it is sound with respect to

the �-calculus. We move on to the second-order calculus in the next section.

We start by recalling the syntax and the type rules of the �rst-order

�-calculus with De Bruijn's notation.

Types A;B ::= K j A! B

Environments E ::= nil j A;E

Terms a; b ::= n j ba j �A:a

There is a single judgment:

E ` a : A a has type A in environment E

De�nition 4.1 (Theory L1)

(L1-var) A;E ` 1 : A

(L1-varn)
E ` n : B

A;E ` n+1 : B

(L1-lambda)
A;E ` b : B

E ` �A:b : A! B

(L1-app)
E ` b : A! B E ` a : A

E ` ba : B

We do not include the � rule, because we now focus on typechecking|rather

than on evaluation.

The �rst-order ��-calculus has the following syntax:

Types A;B ::= K jA! B

Environments E ::= nil jA;E

Terms a; b ::= 1 j ba j�A:a ja[s]

Substitutions s; t ::= id j " j a:A � s j s � t

We add a judgment:

E ` s . E0 s \has environment" E0 in environment E

The type rules come in two groups, one for giving types to terms, and one

for giving environments to substitutions. The two groups interact through

the rule for closures.

28

De�nition 4.2 (Theory S1)

(S1-var) A;E ` 1 : A

(S1-lambda)
A;E ` b : B

E ` �A:b : A! B

(S1-app)
E ` b : A! B E ` a : A

E ` ba : B

(S1-clos)
E ` s . E0 E0

` a : A

E ` a[s] : A

(S1-id) E ` id . E

(S1-shift) A;E ` " . E

(S1-cons)
E ` a : A E ` s . E0

E ` a:A � s . A;E0

(S1-comp)
E ` s00 . E00 E00

` s0 . E0

E ` s0 � s00 . E0

In S1, we include neither the Beta axiom nor the � axioms.

Clearly, typechecking is decidable in S1. Furthermore, the fact that we

can separate typing of terms from typing of substitutions is quite pleasant;

as we have seen, this property does not extend to the second order.

We proceed to show that S1 is sound. As a preliminary, we prove two

lemmas. The �rst lemma relies on the notion of � normal form, which was

de�ned in the previous section. We use a modi�ed version of the � rules, in

order to deal with typed terms; four of the rules change.

VarCons 1[a:A � s] = a

Abs (�A:a)[s] = �A:(a[1:A � (s � ")])

ShiftCons " � (a:A � s) = s

Map (a:A � s) � t = a[t]:A � (s � t)

29

The typed version of � enjoys the properties of the untyped version.

A term in � normal form is typeable in S1 i� it is typeable in L1:

Lemma 4.3 (Same theory on normal forms) Let a be in � normal

form. Then E S̀1 a:A i� E L̀1 a:A.

Proof The argument is an easy induction on the length of proofs. The

only delicate case is the one that deals with the rules L1-varn and S1-clos.

First, we assume that A;E L̀1 n+1 : B, and show thatA;E S̀1 n+1 : B.

Since A;E L̀1 n+1 : B, it must be that E L̀1 n : B. By induction

hypothesis, E S̀1 n : B. Unless n is 1 (a trivial case), the last rule in the

S1 proof could only be S1-clos, and then it must be that E S̀1 "n�1 . E0

and E0

S̀1 1 : B for some E0. In fact, it must be that E S̀1 "n�1 . B;E 00

and B;E00

S̀1 1 : B for some E00. Then S1-shift and S1-comp yield

A;E S̀1 "n . B;E 00, and S1-clos yields A;E S̀1 1["n] : B, the desired

result.

For the converse, we assume that E S̀1 n+1 : B, in order to show that

E L̀1 n+1 : B. Since E S̀1 n+1 : B, it must be that E S̀1 "n . E0 and

E0

S̀1 1 : B for some E0 (unless n is 1, a trivial case). Further analysis

shows that E must be of the form C;E00 and that E00

S̀1 "n�1 : B;E0, and

hence E00

S̀1 n : B. The proof of this last theorem is shorter than the proof

of E S̀1 n+1 : B. By induction hypothesis, it follows that E00

L̀1 n : B,

and then C;E00

L̀1 n+1 : B, that is, E L̀1 n+1 : B. 2

Let!� denote one-step reduction with the � rules; � reductions preserve

typings in S1.

Lemma 4.4 (Subject reduction) If a !� a0 and E S̀1 a : A, then

E S̀1 a0:A. Similarly, if s!� s0 and E0

S̀1 s . E00, then E0

S̀1 s0 . E00.

Proof We inspect the � rules one by one; we abbreviate S̀1 as ` .

Var : Let 1[b:B � s] !� b. Suppose E ` 1[b:B � s] : A. By S1-clos,

E ` b:B � s . E1 and E1 ` 1:A, for some E1. Furthermore, by

S1-cons, E ` b:B � s . B;E2, with E1 = B;E2, with E ` b:B, and

with E ` s . E2. By S1-var, B;E2 ` 1:A implies B = A, and thus

E ` b:A.

App: Let ba[s]!� (b[s])(a[s]). Suppose (ba)[s] : B. By S1-clos, E ` s.E1

and E1 ` ba : B, and hence E1 ` b : A ! B and E1 ` a : A. By

S1-clos, moreover, E ` b[s] : A ! B and E ` a[s] : A. Therefore,

E ` (b[s])(a[s]) : B.

30

Abs : Let (�A:b)[s] !� �A:(b[1 :A � (s � ")]). Suppose (�A:b)[s] : C. By

S1-clos, E ` s .E1 and E1 ` �A:b : C. By S1-lambda, C = A! B

and A;E1 ` b : B. Now, we apply S1-shift and S1-comp to obtain

A;E ` " . E. and then A;E ` s � " . E1. Since A;E ` 1 :A

by S1-var, S1-cons gives us A;E ` 1:A � s � " . A;E1. Finally, since

A;E1 ` b : B, S1-clos yields A;E ` b[1:A � s � "] : B, and therefore,

�A:(b[1:A � (s � ")]) : A! B by S1-lambda.

Clos : Let (b[s])[t]!� b[s� t]. Suppose E ` (b[s])[t] : B. Then E ` t .E1

and E1 ` b[s] : B, that is, E1 ` s . E2 and E2 ` b : B. S1-comp

tells us E ` s � t . E2, and then E ` b[s � t] : B by S1-clos.

IdL: Let id � s !� s. Suppose E ` id � s . E0. Then E ` s . E00 and

E00
` id.E0, by S1-comp, and E00 = E0 by S1-id. Finally, E ` s.E0.

ShiftCons : Let " � (a:A � s) !� s. Suppose E ` " � (a:A � s) . E0. Then

E ` a:A �s.E00 and E00
` ".E0, by S1-comp. S1-cons says E ` a:A

and E ` s . E1, with E00 = A;E1. By S1-shift, we have E00 = A;E0.

Therefore, E1 = E0 and E ` s . E0.

Ass : Let (s1 � s2) � s3 !� s1 � (s2 � s3). To solve this case, we simply use

S1-comp twice.

Map: Let (a :A � s) � t !� A[t] � (s � t). Suppose E ` (a :A � s) � t . E0.

Then E ` t . E00 and E00
` a :A � s . E0, by S1-comp. Hence, by

S1-cons, E00
` a :A and E00

` s . E1, with E0 = A;E1. Then

E ` s � t . E1 by S1-comp, and E ` a[t] :A by S1-clos. Finally,

E ` a[t]:A � (s � t) . A;E1, by S1-cons.

IdR: Let s � id!� s. This case is similar to the case for IdL.

Id : Let a[id] !� a. Suppose E ` a[id] : A. Then E ` id . E0 and

E0
` a:A by S1-clos. S1-id implies E0 = E. Thus, E ` a:A.

VarShift : Let 1 :A � " !� id. Suppose E ` 1 :A � " . E0. By S1-cons,

E ` 1:A and E ` ".E00, with E0 = A;E00. S1-var yields E = A;E1,

and S1-shift yields E1 = E00. Finally, by S1-id, A;E1 ` id : A;E1,

that is, E : id . E0.

SCons : Let (1:A)[s] � ("� s)!� s. This case is similar to the previous one.

2

Together, the two lemmas immediately give us soundness:

31

Proposition 4.5 (Soundness) If E S̀1 a : A, then E L̀1 �(a) : A.

One may wonder whether a completeness result holds, as a converse to

our soundness result. Unfortunately, the answer is no. For instance, if L1

gives a type to a but not to b, then S1 cannot give a type to 1[a:A �(b:B �id)],

while L1 gives a type to �(1[a :A � (b :B � id)]), that is, to a. However,

L1 gives a type to c = (�A:((�B:1)b))a if and only if S1 gives a type to

1[a:A � (b:B � id)]. To obtain c from 1[a:A � (b:B � id)], we have reconstructed

Beta redexes from closures, by undoing Beta steps. This reconstruction

can be performed in a systematic way with a suitable rewriting system;

soundness and completeness results follow. We refer the interested reader

to [8].

5 Second-order theories

Type rules and typecheckers are also needed for second-order calculi. Unfor-

tunately, the situation is more complex than at the �rst order, because types

include binding constructs (quanti�ers). These interact with substitutions

in the same subtle ways in which � interacts with substitutions. (We have

no equivalent of � reduction here, but this too reappears in higher-order

typed systems.)

In implementing a typechecker (or proofchecker) for the second or higher

orders, we face the same concerns of e�cient handling of substitution and

correctness of implementation that pushed us from the untyped �-calculus

to the untyped ��-calculus. These are important concerns in typechecking

programs in the Quest language [3], for example. It is nice to discover that

we can apply the same concept of explicit substitutions to tackle typecheck-

ing problems as well.

In order to carry out this plan, we must �rst obtain a second-order system

with explicit substitutions, which already incurs several di�culties. Then

we must re�ne the system, and obtain an actual typechecking algorithm.

During this long enterprise, where many steps are interesting for their own

sake, we should keep in mind the goal of deriving an algorithm that is correct

and close to a sensible implementation by virtue of handling substitutions

explicitly.

Second-order theories are considerably more complex than untyped or

�rst-order theories, both in number of rules and in subtlety. The compli-

cation is already apparent in the De Bruijn formulation of the ordinary

second-order �-calculus (L2, below). The complication intensi�es in the

32

second-order ��-calculus (S2) because of unexpected di�culties. (We have

mentioned some of them in the informal overview.)

We begin with a description of L2, then we de�ne S2 and prove that it

is sound with respect to L2. Unlike L1, L2, and even S1, the new system S2

is not deterministic. Therefore, we also de�ne a second-order typechecking

algorithm S2alg, and prove that it is sound with respect to S2.

The syntax for the second-order �-calculus is:

Types A;B ::= n j A! B j 8A

Environments E ::= nil j A;E j Ty; E

Terms a; b ::= n j ba j bA j �A:a j �a
The judgments are:

` E env E is a well-formed environment

E ` A :: Ty A is a well-formed type in environment E

E ` a : A a has type A in environment E

The system L2 consists of the type rules for the second-order �-calculus:

De�nition 5.1 (Theory L2)

(L2-nil) ` nil env

(L2-ext)
` E env E ` A :: Ty

` A;E env

(L2-ext2)
` E env

` Ty; E env

(L2-tvar)
` E env

Ty; E ` 1 :: Ty

(L2-tvarn)
E ` n :: Ty E ` A :: Ty

A;E ` n+1 :: Ty

(L2-tvarn2)
E ` n :: Ty

Ty; E ` n+1 :: Ty

(L2-tfun)
E ` A :: Ty A;E ` B :: Ty

E ` A! B :: Ty

33

(L2-tgen)
Ty; E ` B :: Ty

E ` 8B :: Ty

(L2-var)
E ` A :: Ty

A;E ` 1 : Af"g

(L2-varn)
E ` n : B E ` A :: Ty

A;E ` n+1 : Bf"g

(L2-varn2)
E ` n : B

Ty; E ` n+1 : Bf"g

(L2-lambda)
A;E ` b : B

E ` �A:b : A! B

(L2-Lambda)
Ty; E ` b : B

E ` �b : 8B

(L2-app)
E ` b : A! B E ` a : A

E ` ba : Bfa:A � idg

(L2-App)
E ` b : 8B E ` A :: Ty

E ` bA : BfA::Ty � idg

We now move on to the S2 system, with the following syntax:

Types A;B ::= 1 j A! B j 8A j A[s]

Environments E ::= nil j A;E j Ty; E

Terms a; b ::= 1 j ba j bA j �A:a j �a j a[s]

Substitutions s; t ::= id j " j a:A � s j A::Ty � s j s � t

In the previous section, we have seen how to formulate a �rst-order ��-

calculus (S1) by adding one closure rule and a group of substitution rules

to the �rst-order �-calculus (L1). Unfortunately, this approach fails for

second-order systems, as it would not provide a satisfactory treatment of

de�nitional equality. In L1, we can simply de�ne a let construct in terms of

either abstraction and application, or substitution:

34

let x:A = a in b =def (�x:A:b)a or bfa=xg

In L2, we can accept this de�nition of let, and also de�ne a Let construct

for giving names to types, by substitution:

Let X = A in b =def bfA=Xg

However, it is not adequate to de�ne Let as an abbreviation for ab-

straction and application. For instance, recall the example given in the

informal overview: Let X = Bool in �x:X:not(x) cannot be typed if it is

interpreted as (�X:�x :X:not(x))Bool. Here the body of Let can only be

typechecked by knowing that X = Bool ; it does not su�ce to have X ::Ty.

Thus, we must interpret Let with a substitution.

Unfortunately, this strategy does not carry over to S2. First, we cannot

de�ne Let in S2 with a meta-level substitution, because the whole point of

S2 is to deal with explicit substitutions. Second, if we de�ne Let with an

explicit substitution, we obtain:

Let X = A in b =def b[(A::Ty=X) � id]

and, for example,

Let X = Bool in �x : X:not(x) =def (�x:X:not(x))[(Bool::Ty=X) � id]

We still cannot type the body of Let independently, before pushing the

substitution into it. We are in no better shape than with the encoding of

Let via �. Hence, it does not su�ce to deal with terms and substitutions

separately, as we did in the S1-clos rule of the previous section. The task

of deriving types cannot be separated from the task of applying substitu-

tions. The rules of S2 described below are structured in such a way that

substitutions are automatically pushed inside terms during typechecking, so

that typing can occur as expected in the example above. The unfortunate

side e�ect is a small explosion in the number of rules. We do not include an

analogue for S1-clos (in fact, we conjecture that it is admissible).

After having settled on a general approach, let us discuss the form of

judgments. The theory S2 is formulated with equivalence judgments, for

example judgments of the form E ` a � b : A. This judgment means

that in the environment E the terms a and b both have type A and are

equivalent. We can recover the standard judgments, with de�nitions such

as

E ` a : A =def E ` a � a : A

35

In S2, equivalence judgments are needed because it is not always possible

to prove directly E ` a : A, but only E ` b : A for a term b that is

�-equivalent to a (as in the example above). Formally, in order to prove

E ` a � a : A, we �rst prove E ` a � b : A, and then use symmetry and

transitivity. Similarly, it is not always possible to prove directly E ` a : A,

but instead we may have to prove E ` a : B for a type B that is �-

equivalent to A, and then we need to \retype" a from B to A.

We have seen in section 2 how the typing axiom for 1 has to be modi�ed.

Similar considerations show that the rule for conses, S1-cons, needs to be

modi�ed as well, and suggest the following, tentative rule:

E ` a � b : A[s] E ` s � t . E0 E ` A[s] � B[t] :: Ty

E ` (a:A � s) � (b:B � t) . A;E0

Note that, in the hypothesis, we require that a have type A[s] rather than A:

the reason is that A is well-formed in E0 rather than in E. Furthermore, we

require that s and t be equivalent substitutions of type E0, but in truth their

type is irrelevant. This suggests a new approach: we deal with judgments

of the form

E ` s � t substp

where p records the length j E0
j of E0. (The precise relation between envi-

ronment lengths, and substitutions sizes, as de�ned in section 2, obeys the

invariant: if E ` s substp and j s j = (m;n) then p = m+ j E j � n � 0.)

In fact, we could hardly do more than keep track of the lengths of sub-

stitutions. As the following example illustrates, the type of a substitution

cannot be determined satisfactorily. In the tentative rule above, let E = nil ,

s = t = Bool ::Ty � id , a = b = true , A = 1, and B = Bool . We obtain

nil ` (true :1 � s) � (true :Bool � t) . (1::Ty; nil)

where we would more naturally expect the type Bool ::Ty; nil. The informa-

tion that 1 is Bool is not found in the environment: the substitution s has

to be used to check that 1 is indeed Bool . It seems thus that the type of a

substitution cannot be intrinsically de�ned.

With these explanations in mind, the reader should be able to approach

the rules of the theory S2 (though some may �nd it preferable to understand

S2alg at the same time).

De�nition 5.2 (Theory S2) See appendix 7.

36

We now prove the soundness of S2 with respect to L2.

Proposition 5.3 (Soundness)

1. If E S̀2 a � b : A

then �(E) L̀2 �(a) : �(A) and �(a) = �(b).

2. If E S̀2 A � B :: Ty

then �(E) L̀2 �(A) :: Ty and �(A) = �(B).

3. If S̀2 E � E0 env

then L̀2 �(E) env and �(E) = �(E0).

4. If E S̀2 s � s0 substp
then there exist m and n such that

� �(s) = G1 � : : : �Gm � "n and �(s0) = G0

1 � : : : �G
0

m � "n,

� for all q � m, either Gq=G
0

q=A ::Ty and �(E) L̀2 A :: Ty for

some A, or Gq = a :A, G0

q = a :A0, �(A["q � s]) = �(A0["q � s0]),

and �(E) L̀2 a : �(A["q � s]) for some a, A, and A0,

� p = m+ j E j � n.

.

Proof The proof is by induction on the rules of S2. We omit the checking

of the numeric invariant in the last part of the claim. The cases for the

EqReenving rules are trivial. The symmetric character of the claim settles

the cases for the Symm and Trans rules, as well as that for EqRetyping.

Other easy cases are those for rules that express typing through rewrit-

ing, and where one of the sides of the underlying rewrite rule appears in

the premise. This concerns EqTyClosVarId, EqTyClosPi, EqTyClosClos,

EqClosVarId, EqClosApp, EqClosAbs, EqClosClos, EqCompId, EqComp-

ShiftId, EqCompShiftCons, EqCompCons, EqCompComp, and their vari-

ants (such as EqClosApp2). Now we brie
y examine the remaining cases:

EqTyVar: by the induction hypothesis and L2-tvar.

EqTyPi: by the induction hypothesis, L2-tfun, and the observation that

�(A! B) = �(A)! �(B).

EqTyPi2, EqTyClosVarShift, EqVar, EqAbs, EqApp, EqClosVarShift,

EqNil, EqExt, and their variants (such as EqTyClosVarShiftN2): sim-

ilar to EqTyVar and EqTyPi.

37

EqTyClosVarCons: by the induction hypothesis (with q = 1).

EqTyClosVarCong: we exploit the induction hypothesis on the �rst

premise. There are two cases. If m = 0, then s and s0 coincide,

and the conclusion is identical to the second premise. If m > 1 and

�(s) = G�s1, then G cannot have the form a:A, because we would get a

contradiction from the induction hypothesis (on the second premise).

Hence, G = A :: Ty, and the conclusion follows from the induction

hypothesis on the �rst premise (with q = 1).

EqClosVarCons: similar to EqTyClosVarCons, noting that �(A[s]) =

�(A[" � (a:A � s)]).

EqClosVarCong: similar to EqTyClosVarCong, except that the second

premise forces G to have now the other form a:A.

EqId, EqShift, EqShift2: since in these cases s and s0 coincide and m = 0,

the property holds vacuously for the conclusion.

EqCons, EqCons2: by the induction hypothesis, noting that �(a :A � s) =

�(a):�(A) � �(s).

EqCompShiftCong: we exploit the induction hypothesis on the premise.

If m = 0, then s and s0 coincide, and we can use the argument of

case EqId. If m > 0, the conclusion follows immediately from the

assumption, since �(" � s) = �(s1), where �(s) = G � s1 for some G.

2

We speculate that the soundness claim for S2 can be strengthened as for

S1, and that a converse completeness result then holds.

We now provide a typechecking algorithm S2alg for the second-order

calculus. The algorithm is formulated as a set of inference rules, for easy

comparison with S2. As we will see, each rule of S2alg is an admissible rule

for S2; this shows the soundness of S2alg.

For terms that are not closures, S2alg and L2 operate identically. How-

ever, these are the least interesting cases: an actual implementation would

manipulate only closures (as in subsection 3.5). In order to typecheck a

term a[s], the basic strategy is to analyze simpler and simpler components

of a while accumulating more and more complex substitutions in s. When

we �nally reach an index, we extract the relevant information from the sub-

stitution or from the environment.

38

Informally, the algorithmic
ow of control for each rule is: start with the

given parts of the conclusion, recursively do what the assumptions on top

require, accumulate the results, and from them produce the unknown parts

of the conclusion. For example, if we want to type a in the environment E,

we select an inference rule of S2alg by inspecting the shape of its conclusion.

Then we move on to the assumptions of this rule, recursively; we solve

the typing problems presented by each of them, and collect the results to

produce a type for the original term a.

Some of the rules involve tests for type equivalence; two auxiliary \re-

duction" judgments are used for this:

E ` s; s0 substp and E ` A; A0::Ty

In these judgments, s0 and A0 are in a sort of weak head normal form,

namely: s0 is never a composition and if A0 is a closure then it has the form

1["n].

De�nition 5.4 (Algorithm S2alg) See appendix 8.

To show that S2alg really de�nes an algorithm, we �rst notice that only

one rule can be applied bottom-up in each situation. For the judgments

E ` A ::Ty and E ` A ; A0 ::Ty, we test applicability by cases on A;

when A = B[s], by cases on B; and when B = 1 by cases on the reduction of

s. ForE ` a : A, we proceed by cases on a; when a = b[s], by cases on b; and

when b = 1 by cases on the reduction of s. For E ` s substp, we proceed

by cases on s, and when s = t � u by cases on t. For E ` s ; s0 substp,

we proceed by cases on s; when s = t � u, by cases on t; and when t = " by

cases on the reduction of u. Finally, E ` A$ B :: Ty is handled by cases

on the reductions of A and B.

The following invariants can be used to show that the algorithm considers

all the cases that may arise when the input terms are well-typed:

If E ` s; s0 substp then s0 is one of

id

"n (n � 1)

a:A � t (for some a, A, and t)

A::Ty � t (for some A and t)

39

If E ` A; A0 :: Ty then A0 is one of
1

1["n] (n � 1)

B ! C (for some B and C)

8B (for some B)

Finally, the algorithm can be shown to always terminate, with success

or failure, because every rule either reduces the size of terms or moves terms

towards a normal form.

The algorithm S2alg is sound with respect to S2:

Proposition 5.5

1. If E S̀2alg A :: Ty then E S̀2 A � A :: Ty.

2. If E S̀2alg a : A then E S̀2 a � a : A.

3. If E S̀2alg s substp then E S̀2 s � s substp.

4. If E S̀2alg s; s0 substp then E S̀2 s � s0 substp.

5. If E S̀2alg A; A0 :: Ty then E S̀2 A � A0 :: Ty.

6. If E S̀2alg A$ A0 :: Ty then E S̀2 A � A0 :: Ty.

7. If S̀2alg E env then S̀2 E � E env.

Proof The proof is a simple case analysis, with an extensive use of the

Symm and Trans rules. 2

We conjecture that the algorithm is also complete, in the following sense:

Conjecture 5.6

1. If E S̀2 A � A0 :: Ty then E S̀2alg A :: Ty.

2. If E S̀2 a � b : A

then E S̀2alg a : A0 and E S̀2alg A0
$ A :: Ty for some A0.

3. If E S̀2 s � s0 substp then E S̀2alg s substp.

4. If S̀2 E � E env then S̀2alg E env.

Unfortunately, it seems unlikely that one could simply prove the conjec-

ture by induction on proofs (for example, the presence of A0
$ A in the

second part of the statement gives rise to complications).

40

6 Conclusion

The usual presentations of the �-calculus discreetly play down the handling

of substitutions. This helps in studying the meta-theory of the �-calculus,

at a suitable level of abstraction. We hope to have demonstrated the bene-

�ts of a more explicit treatment of substitutions, both for untyped systems

and typed systems. The theory and the manipulation of explicit substitu-

tions can be delicate, but useful for the development of correct and e�cient

implementations.

Acknowledgements We have bene�ted from discussions with P. Cr�egut,

T. Hardin, E. Muller, A. R��os, and A. Su�arez. C. Hibbard and J. Mitchell

provided many useful comments on the presentation.

41

7 Appendix: Theory S2

7.1 Type equivalence

(TypeSymm)
E ` A � B :: Ty

E ` B � A :: Ty

(TypeTrans)
E ` A � B :: Ty E ` B � C :: Ty

E ` A � C :: Ty

(EqTyVar)
` E env

Ty; E ` 1 � 1 :: Ty

(EqTyPi)
E ` A � A0 :: Ty A;E ` B � B0 :: Ty

E ` A! B � A0
! B0 :: Ty

(EqTyPi2)
Ty; E ` B � B0 :: Ty

E ` 8B � 8B0 :: Ty

(EqTyClosVarId)
` E env

E ` 1[id] � 1 :: Ty

(EqTyClosVarShift)
E ` 1 :: Ty E ` A :: Ty

A;E ` 1["] � 1["] :: Ty

(EqTyClosVarShift2)
E ` 1 :: Ty

Ty; E ` 1["] � 1["] :: Ty

(EqTyClosVarShiftN)
E ` 1["n] :: Ty E ` A :: Ty

A;E ` 1["n+1] � 1["n+1] :: Ty

(EqTyClosVarShiftN2)
E ` 1["n] :: Ty

Ty; E ` 1["n+1] � 1["n+1] :: Ty

42

(EqTyClosVarCons)
E ` A::Ty � s substp

E ` 1[A::Ty � s] � A :: Ty

(EqTyClosVarCong)
E ` s � s0 substp E ` 1[s0] :: Ty

E ` 1[s] � 1[s0] :: Ty

(EqTyClosPi)
E ` A[s]! B[1:A:(s � ")] :: Ty

E ` (A! B)[s] � A[s]! B[1:A � (s � ")] :: Ty

(EqTyClosPi2)
E ` 8(B[1 :: Ty � (s � ")]) :: Ty

E ` (8B)[s] � 8(B[1::Ty � (s � ")]) :: Ty

(EqTyClosClos)
E ` A[s � t] :: Ty

E ` A[s][t] � A[s � t] :: Ty

(EqTypeReenving)
E ` A � B :: Ty ` E � E0 env

E0
` A � B :: Ty

7.2 Term equivalence

(TermSymm)
E ` a � b : A

E ` b � a : A

(TermTrans)
E ` a � b : A E ` b � c : A

E ` a � c : A

(EqVar)
E ` A :: Ty

A;E ` 1 � 1 : A["]

(EqAbs)
E ` A � A0 :: Ty A;E ` b � b0 : B

E ` �A:b � �A0:b0 : A! B

(EqAbs2)
Ty; E ` b � b0 : B

E ` �b � �b0 : 8B

43

(EqApp)
E ` b � b0 : A! B E ` a � a0 : A

E ` ba � b0a0 : B[a:A � id]

(EqApp2)
E ` b � b0 : 8B E ` A � A0 :: Ty

E ` bA � b0A0 : B[A::Ty � id]

(EqClosVarId)
E ` 1 : A

E ` 1[id] � 1 : A

(EqClosVarShift)
E ` 1 : A E ` B :: Ty

B;E ` 1["] � 1["] : A["]

(EqClosVarShift2)
E ` 1 : A

Ty; E ` 1["] � 1["] : A["]

(EqClosVarShiftN)
E ` 1["n] : A E ` B :: Ty

B;E ` 1["n+1] � 1["n+1] : A["]

(EqClosVarShiftN2)
E ` 1["n] : A

Ty; E ` 1["n+1] � 1["n+1] : A["]

(EqClosVarCons)
E ` a:A � s substp

E ` 1[a:A � s] � a : A[s]

(EqClosVarCong)
E ` s � s0 substp E ` 1[s0] : A

E ` 1[s] � 1[s0] : A

(EqClosAbs)
E ` �A[s]:b[1:A � (s � ")] : B

E ` (�A:b)[s]� �A[s]:b[1:A � (s � ")] : B

(EqClosAbs2)
E ` �(b[1::Ty � (s � ")) : B

E ` (�b)[s]� �(b[1::Ty � (s � ")]) : B

(EqClosApp)
E ` (b[s])(a[s]) : A

E ` ba[s] � (b[s])(a[s]) : A

44

(EqClosApp2)
E ` (b[s])(A[s]) : B

E ` bA[s] � (b[s])(A[s]) : B

(EqClosClos)
E ` a[s � t] : A

E ` a[s][t] � a[s � t] : A

(EqRetyping)
E ` a � b : A E ` A � B :: Ty

E ` a � b : B

(EqTermReenving)
E ` a � b : A ` E � E0 env

E0
` a � b : A

As in S1, we do not include Beta rules in S2:

(Beta)
E ` a : A A;E ` b : B

E ` (�A:b)(a)� b[a:A � id] : B[a:A � id]

(Beta2)
E ` A :: Ty Ty; E ` b : B

E ` (�b)(A)� b[A::Ty � id] : B[A::Ty � id]

7.3 Substitution equivalence

(SubsSymm)
E ` s � t substp

E ` t � s substp

(SubsTrans)
E ` s � t substp E ` t � u substp

E ` s � u substp

(EqId)
` E env

E ` id � id subst
jEj

(EqShift)
E ` A :: Ty

A;E ` " � " subst jEj

(EqShift2)
` E env

Ty; E ` " � " subst
jEj

45

(EqCons)

E ` s � t substp E ` A[s] � B[t] :: Ty

E ` a � b:A[s]

E ` a:A � s � b:B � t substp+1

(EqCons2)
E ` A � B :: Ty E ` s � t substp

E ` A::Ty � s � B ::Ty � t substp+1

(EqCompId)
E ` s � s0 substp

E ` id � s � s0 substp

(EqCompShiftId)
E ` " substp

E ` " � id � " substp

(EqCompShiftCons)
E ` s � s0 substp E ` a : A[s]

E ` " � (a:A � s) � s0 substp

(EqCompShiftCons2)
E ` s � s0 substp E ` A :: Ty

E ` " � (A::Ty � s) � s0 substp

(EqCompShiftCong)
E ` s � s0 substp+1

E ` " � s � " � s0 substp

(EqCompCons)
E ` a[t]:A � (s � t) substp

E ` (a:A � s) � t � a[t]:A � (s � t) substp

(EqCompCons2)
E ` A[t]::Ty � (s � t) substp

E ` (A::Ty � s) � t � A[t]::Ty � (s � t) substp

(EqCompComp)
E ` s � (t � u) substp

E ` (s � t) � u � s � (t � u) substp

(EqSubstReenving)
E ` s � t substp ` E � E0 env

E0
` s � t substp

46

7.4 Environment equivalence

(EnvSymm)
` E � E0 env

` E0
� E env

(EnvTrans)
` E � E0 env ` E0

� E00 env

` E � E00 env

(Eqnil) ` nil � nil env

(EqExt)
` E � E0 env E ` A � B :: Ty

` A;E � B;E0 env

(EqExt2)
` E � E0 env

` Ty; E � Ty; E0 env

47

8 Appendix: Algorithm S2alg

8.1 Inference for types

(TyVar)
` E env

Ty; E ` 1 :: Ty

(TyPi)
E ` A :: Ty A;E ` B :: Ty

E ` A! B :: Ty

(TyPi2)
Ty; E ` B :: Ty

E ` 8B :: Ty

(TyClosVarId)
Ty; E ` s; id substp

Ty; E ` 1[s] :: Ty

(TyClosVarShift)
E ` 1 :: Ty E ` A :: Ty

A;E ` 1["] :: Ty

(TyClosVarShift2)
E ` 1 :: Ty

Ty; E ` 1["] :: Ty

(TyClosVarShiftN)
E ` 1["n] :: Ty E ` A :: Ty

A;E ` 1["n+1] :: Ty

(TyClosVarShiftN2)
E ` 1["n] :: Ty

Ty; E ` 1["n+1] :: Ty

(TyClosVarCons)
E ` s; A::Ty � t substp

E ` 1[s] :: Ty

(TyClosVarCong)
E ` s; "n substp E ` 1["n] :: Ty

E ` 1[s] :: Ty

48

(TyClosPi)

E ` A[s] :: Ty

A[s]; E ` B[1 : A � (s � ")] :: Ty

E ` (A! B)[s] :: Ty

(TyClosPi2)
Ty; E ` B[1::Ty � (s � ")] :: Ty

E ` (8B)[s] :: Ty

(TyClosClos)
E ` A[s � t] :: Ty

E ` A[s][t] :: Ty

8.2 Inference for terms

(Var)
E ` A :: Ty

A;E ` 1 : A["]

(Abs)
E ` A :: Ty A;E ` b : B

E ` �A:b : A! B

(Abs2)
Ty; E ` b : B

E ` �b : 8B

(App)
E ` b : A! B E ` a : A

E ` ba : B[a:A � id]

(App2)
E ` b : 8B E ` A :: Ty

E ` bA : B[A::Ty � id]

(ClosVarId)
A;E ` s; id substp

A;E ` 1[s] : A["]

(ClosVarShift)
E ` 1 : A E ` B :: Ty

B;E ` 1["] : A["]

(ClosVarShift2)
E ` 1 : A

Ty; E ` 1["] : A["]

49

(ClosVarShiftN)
E ` 1["n] : A E ` B :: Ty

B;E ` 1["n+1] : A["]

(ClosVarShiftN2)
E ` 1["n] : A

Ty; E ` 1["n+1] : A["]

(ClosVarCons)
E ` s; a:A � t substp

E ` 1[s] : A[t]

(ClosVarCong)
E ` s; "n substp E ` 1["n] : A

E ` 1[s] : A

(ClosAbs)
A[s]; E ` b[1 : A � (s � ")] : B

E ` (�A:b)[s] : A[s]! B

(ClosAbs2)
Ty; E ` b[1::Ty � (s � ")] : B

E ` (�b)[s] : 8B

(ClosApp)

E ` b[s] : A! B E ` a[s] : A0

E ` A$ A0 :: Ty

E ` (ba)[s] : B[a[s] : A � id]

(ClosApp2)
E ` b[s] : 8B E ` A[s] :: Ty

E ` (bA)[s] : B[A[s]::Ty � id]

(ClosClos)
E ` a[s � t] : A

E ` a[s][t] : A

8.3 Inference for substitutions

(Id)
` E env

E ` id subst
jEj

(Shift)
E ` A :: Ty

A;E ` " subst
jEj

50

(Shift2)
` E env

Ty; E ` " subst
jEj

(Cons)

E ` a : B E ` s substp
E ` A[s]$ B :: Ty

E ` a : A � s substp+1

(Cons2)
E ` A :: Ty E ` s substp

E ` A::Ty � s substp+1

(CompId)
E ` s substp

E ` id � s substp

(CompShift)
E ` s substp+1

E ` " � s substp

(CompCons)
E ` a[t] : A � (s � t) substp

E ` (a : A � s) � t substp

(CompCons2)
E ` A[t]::Ty � (s � t) substp

E ` (A::Ty � s) � t substp

(CompComp)
E ` s � (t � u) substp

E ` (s � t) � u substp

8.4 Substitution reduction

(RedId)
` E env

E ` id; id subst
jEj

(RedShift)
E ` A :: Ty

A;E ` "; " subst
jEj

(RedShift2)
` E env

Ty; E ` "; " subst
jEj

51

(RedCons)

E ` A[s] :: Ty E ` a : B

E ` B $ A[s] :: Ty E ` s substp

E ` a : A � s; a : A � s substp+1

(RedCons2)
E ` A :: Ty E ` s substp

E ` A::Ty � s; A::Ty � s substp+1

(RedCompId)
E ` s; s0 substp

E ` id � s; s0 substp

(RedCompShiftId)
E ` s; id substp+1

E ` " � s; " substp

(RedCompShiftShiftN)
E ` s; "n substp+1

E ` " � s; "n+1 substp

(RedCompShiftCons)

E ` s; a : A � s0 substp+1
E ` s0 ; s00 substp

E ` " � s; s00 substp

(RedCompShiftCons2)

E ` s; A::Ty � s0 substp+1
E ` s0 ; s00 substp

E ` " � s; s00 substp

(RedCompCons)
E ` a[t] : A � (s � t) substp

E ` (a : A � s) � t; a[t] : A � (s � t) substp

(RedCompCons2)
E ` A[t]::Ty � (s � t) substp

E ` (A::Ty � s) � t; A[t]::Ty � (s � t) substp

(RedCompComp)
E ` s � (t � u); v substp

E ` (s � t) � u; v substp

52

8.5 Type reductions

(RedTyVar)
` E env

Ty; E ` 1; 1 :: Ty

(RedTyPi)
E ` A :: Ty A;E ` B :: Ty

E ` A! B ; A! B :: Ty

(RedTyPi2)
Ty; E ` B :: Ty

E ` 8B ; 8B :: Ty

(RedTyClosVarId)
Ty; E ` s; id substp

Ty; E ` 1[s]; 1 :: Ty

(RedTyClosVarShiftN)
E ` s; "n substp E ` 1["n] :: Ty

E ` 1[s]; 1["n] :: Ty

(RedTyClosVarCons)

E ` s; A::Ty � s0 substp
E ` A; B :: Ty

E ` 1[s]; B :: Ty

(RedTyClosPi)

E ` A[s] :: Ty

A[s]; E ` B[1 : A � (s � ")] :: Ty

E ` (A! B)[s]; A[s]! B[1 : A � (s � ")] :: Ty

(RedTyClosPi2)
Ty; E ` B[1::Ty � (s � ")] :: Ty

E ` (8B)[s]; 8(B[1::Ty � (s � ")]) :: Ty

(RedTyClosClos)
E ` A[s � t]; B :: Ty

E ` A[s][t]; B :: Ty

8.6 Type equivalence

(EqTyVar)
E ` A; 1 :: Ty E ` A0

; 1 :: Ty

E ` A$ A0 :: Ty

53

(EqTyPi)

E ` A; B ! C :: Ty

E ` A0
; B0

! C0 :: Ty

E ` B $ B0 :: Ty

B;E ` C $ C0 :: Ty

E ` A$ A0 :: Ty

(EqTyPi2)

E ` A; 8B :: Ty E ` A0
; 8B0 :: Ty

Ty; E ` B $ B0 :: Ty

E ` A$ A0 :: Ty

(EqTyClos)
E ` A; 1["n] :: Ty E ` A0

; 1["n] :: Ty

E ` A$ A0 :: Ty

8.7 Inference for environments

(Nil) ` nil env

(Ext)
` E env E ` A :: Ty

` A;E env

(Ext2)
` E env

` Ty; E env

54

References

[1] H.P. Barendregt, The Lambda Calculus: Its Syntax and Semantics,

North Holland, 1985.

[2] N. De Bruijn, Lambda-calculus Notation with Nameless Dummies, a

Tool for Automatic Formula Manipulation, Indag. Mat. 34, pp. 381{

392, 1972.

[3] L. Cardelli, Typeful Programming, SRC Report No. 45, Digital Equip-

ment Corporation, 1989.

[4] P.-L. Curien, The ��-calculi: an Abstract Framework for Closures, un-

published (preliminary version printed as LIENS report, 1988).

[5] P.-L. Curien, Categorical Combinators, Sequential Algorithms and

Functional Programming, Pitman, 1986.

[6] P.-L. Curien, T. Hardin, J.-J. L�evy, Con
uence Properties of Weak and

Strong Calculi of Explicit Substitutions, draft, 1991.

[7] P.-L. Curien, T. Hardin, A. R��os, Normalisation Forte des Substitu-

tions, draft, 1991.

[8] P.-L. Curien, A. R��os, Un R�esultat de Compl�etude pour les Substitu-

tions Explicites, Comptes Rendus de l'Acad�emie des Sciences de Paris,

t. 312, S�erie I, pp. 471{476, 1991.

[9] H.P. Curry and R. Feys, Combinatory Logic, Vol. 1, North Holland,

1958.

[10] J. Field, On Laziness and Optimality in Lambda Interpreters: Tools for

Speci�cation and Analysis, in the Conference Record of the Seventeenth

Annual ACM Symposium on Principles of Programming Languages,

pp. 1{15, San Francisco, January 1990.

[11] T. Hardin, Con
uence Results for the Pure Strong Categorical Combi-

natory Logic CCL: �-calculi as Subsystems of CCL, Theoretical Com-

puter Science 65, pp. 291{342, 1989.

[12] T. Hardin, A. Laville, Proof of Termination of the Rewriting System

SUBST on CCL, Theoretical Computer Science 46, pp. 305{312, 1986.

55

[13] T. Hardin, J.-J. L�evy, A Con
uent Calculus of Substitutions, France-

Japan Arti�cial Intelligence and Computer Science Symposium, Izu,

December 1989.

[14] G. Huet, D.C. Oppen, Equations and Rewrite Rules: A Survey, in

Formal Languages Theory: Perspectives and Open Problems (R. Book,

editor), pp. 349{393, Academic Press, 1980.

[15] J.W. Klop, Combinatory Reduction Systems, Mathematical Center

Tracts 129, Amsterdam, 1980.

[16] J.-L. Krivine, unpublished.

[17] P. Martin-L�of, Intuitionistic Type Theory, notes by G. Sambin of a

series of lectures given in Padova in 1980, Bibliopolis, 1984.

[18] C.P. Wadsworth, Semantics and Pragmatics of the Lambda Calculus,

Dissertation, Oxford University, 1971.

56

