
Eliminating Higher Truncations via Constancy

Paolo Capriotti
joint work with Nicolai Kraus

Functional Programming Lab
University of Nottingham

TYPES, 13th May 2014



Truncation levels

Types in HoTT are organised in a hierarchy

I level -1 (propositions): types with trivial equality

isprop(A) :≡ Π(x , y : A). x =A y

I level 0 (sets): types whose equality is a proposition

isset(A) :≡ Π(x , y : A). isprop(x =A y)

I ...

I level n (n-types): types whose equality is in level n − 1

isleveln(X ) :≡ Π(x , y : A). isleveln−1(x =A y)



Truncations in HoTT

Given any type A, the n-truncation of A gives us:

I an n-type ‖A‖n
I a “projection” function [−] : A→ ‖A‖n
I a universal property/eliminator: given any n-type B and a

function f : A→ B, we can factor f through [−]

A
f //

[−]

��

B

‖A‖n

==

and the factorisation is unique up to homotopy



Eliminating to higher types

What if B is not an n-type?

A
f //

[−]

��

B

‖A‖n
?

==

The eliminator doesn’t help us.



Eliminating to a set

Let’s focus on the -1 truncation (denoted ‖ − ‖).

Consider this diagram again:

A
f //

[−]

��

B

‖A‖
f̄

>>

If f̄ does exist, then we have, for any x , y : A:

f (x) = f̄ [x ] = f̄ [y ] = f (y)

so f is “constant”.



Constancy

We define:

const0(f ) :≡ Π(x , y : A). f (x) =B f (y)

So const0(f ) is a necessary condition for f : A→ B to factor
through ‖A‖.

If B is a set, const0(f ) is also sufficient.



Factoring 0-constant functions

Define a 0-truncated higher inductive type P given by:

I h : A→ P

I Π(x , y : A). h(x) =P h(y)

I isset(P)

Clearly f factors through h by construction, so we only need to
show that P is a proposition.

For that, we assume x0 : A, and show that

Π(p : P). [x0] =P p

using the eliminator of P.

This proves A→ contr(P), from which it easily follows that P is a
proposition.



Notions of higher constancy

What if B is not a set?

Given:

I A 1-type B

I f : A→ B

I A 0-constancy proof: c1 : const0(f )

in order for f to factor through ‖A‖ we need the following extra
condition:

c2 : Π(x1, x2, x3 : A). c1(x1, x2) · c1(x2, x3) = c1(x1, x3)

In general, if B is an n-type, we need a tower of conditions
c1, . . . , cn+1 involving higher paths.

Can we express this tower uniformly in n?



Constancy conditions as maps of simplices

I A function f : A→ B maps points of A to points of B

I A term like c1 maps pairs of points of A to paths in B

I A term like c2 maps triples of points of A to triangles in B

I . . .

In general, the n-th condition cn should give a mapping from An+1

to a type Eqn(B) of n-simplices in B, compatible with the previous
conditions.



Constancy as a semi-simplicial map

We can give Eq(B) the structure of a (Reedy fibrant)
semi-simplicial type.

The tower of conditions c1, . . . , cn then becomes a map of
semi-simplicial types:

...

��������

...

��������
A3 c2 //

������

Eq2(B)

������
A2 c1 //

����

Eq1(B)

����
A

f // B



Conclusion

I we give an elimination property of truncations that can be
applied to all types

I the formulation and the proof of this result are carried out
externally

I for fixed values of n and m, the eliminator of the m-truncation
into n-types can be expressed internally and used e.g. in
formalised proofs


