Eliminating Higher Truncations via Constancy

Paolo Capriotti
joint work with Nicolai Kraus

Functional Programming Lab
University of Nottingham

TYPES, 13th May 2014

Truncation levels

Types in HoTT are organised in a hierarchy
> level -1 (propositions): types with trivial equality
isprop(A) :=M(x,y : A). x =a y
> level 0 (sets): types whose equality is a proposition
isset(A) :=MN(x,y : A). isprop(x =4 y)

> ...

> level n (n-types): types whose equality is in level n — 1

islevel,(X) :=MN(x,y : A). islevel,_1(x =4 y)

Truncations in HoTT

Given any type A, the n-truncation of A gives us:
> an n-type || Al
» a “projection” function [—] : A — ||A|lA

> a universal property/eliminator: given any n-type B and a
function f : A — B, we can factor f through [—]

f

A——B

7
[]i v g
7

1Al

and the factorisation is unique up to homotopy

Eliminating to higher types

What if B is not an n-type?

A;B

7
[_]l /7/
!

1Al

The eliminator doesn’t help us.

Eliminating to a set

Let's focus on the -1 truncation (denoted || — ||).

Consider this diagram again:

f

A——B

/1
Hl VT

1A

If f does exist, then we have, for any x, y : A:

f(x) = flx] = fly] = f(y)

so f is “constant”.

Constancy

We define:

consto(f) :=M(x,y : A). f(x) =g f(y)

So constg(f) is a necessary condition for f : A — B to factor
through ||A|l.

If B is a set, consty(f) is also sufficient.

Factoring 0-constant functions

Define a 0-truncated higher inductive type P given by:

» h:A—> P
> N(x,y : A). h(x) =p h(y)
> isset(P)
Clearly f factors through h by construction, so we only need to

show that P is a proposition.

For that, we assume xg : A, and show that
M(p:P). [x]=pp

using the eliminator of P.

This proves A — contr(P), from which it easily follows that P is a
proposition.

Notions of higher constancy

What if B is not a set?
Given:

> A 1l-type B

» f:A—= B

» A 0-constancy proof: ¢; : consto(f)

in order for f to factor through ||A|| we need the following extra
condition:

Co |_|(X1,X2,X3 . A) C1(X1,X2) . C1(X2,X3) = C1(X1,X3)

In general, if B is an n-type, we need a tower of conditions
Ci,-.-,Cnt1 involving higher paths.

Can we express this tower uniformly in n?

Constancy conditions as maps of simplices

v

A function f : A — B maps points of A to points of B

v

A term like ¢; maps pairs of points of A to paths in B

v

A term like ¢ maps triples of points of A to triangles in B

> ..

In general, the n-th condition ¢, should give a mapping from A"+1
to a type Eq,(B) of n-simplices in B, compatible with the previous
conditions.

Constancy as a semi-simplicial map

We can give Eq(B) the structure of a (Reedy fibrant)
semi-simplicial type.

The tower of conditions ¢y,

..., Cp then becomes a map of
semi-simplicial types:

n

- EQ2(B)

.

*)qu(B)

|

S %18

f

e ——

Conclusion

» we give an elimination property of truncations that can be
applied to all types

» the formulation and the proof of this result are carried out
externally

» for fixed values of n and m, the eliminator of the m-truncation
into n-types can be expressed internally and used e.g. in
formalised proofs

