New Extensional Type Theory

Andrew Polonsky

May 12, 2014
$A, t, e::=*_{n}|x| \Pi x: A \cdot B|\Sigma x: A \cdot B| A \simeq B \mid a \sim_{e} b$

$$
|\lambda x: A . t| s t|(s, t)| \pi_{1} t \mid \pi_{2} t
$$

$$
\left|*^{*}\right| \Pi^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}\left|\Sigma^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}\right| \simeq^{*} A^{*} B^{*}
$$

$$
|\mathrm{r}(t)| \rho_{t}|e(t)| \bar{e}(t)\left|t_{e}\right| t^{e}
$$

λe
$A, t, e::=*_{n}|x| \Pi x: A . B \mid \Sigma x: A . B$
$|\lambda x: A . t| s t|(s, t)| \pi_{1} t \mid \pi_{2} t$
$A, t, e::=*_{n}|x| \Pi x: A \cdot B|\Sigma x: A \cdot B| A \simeq B \mid a \sim_{e} b$
$|\lambda x: A . t| s t|(s, t)| \pi_{1} t \mid \pi_{2} t$
$\left|*^{*}\right| \Pi^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}\left|\Sigma^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}\right| \simeq^{*} A^{*} B^{*}$

$$
\begin{aligned}
A, t, e::=*_{n} & |x| \Pi x: A \cdot B|\Sigma x: A \cdot B| A \simeq B \mid a \sim_{e} b \\
& |\lambda x: A \cdot t| s t|(s, t)| \pi_{1} t \mid \pi_{2} t \\
& \left|*^{*}\right| \Pi^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}\left|\Sigma^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}\right| \simeq^{*} A^{*} B^{*} \\
& |r(t)| \rho_{t}
\end{aligned}
$$

$$
\begin{aligned}
A, t, e::=*_{n} & |x| \Pi x: A \cdot B|\Sigma x: A \cdot B| A \simeq B \mid a \sim_{e} b \\
& |\lambda x: A \cdot t| s t|(s, t)| \pi_{1} t \mid \pi_{2} t \\
& \left|*^{*}\right| \Pi^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}\left|\Sigma^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}\right| \simeq^{*} A^{*} B^{*} \\
& |r(t)| \unrhd_{t}|e(t)| \bar{e}(t)\left|t_{e}\right| t^{e}
\end{aligned}
$$

$A, t, e::=*_{n}|x| \Pi x: A \cdot B|\Sigma x: A \cdot B| A \simeq B \mid a \sim_{e} b$

$$
|\lambda x: A . t| s t|(s, t)| \pi_{1} t \mid \pi_{2} t
$$

$$
\left|*^{*}\right| \Pi^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}\left|\Sigma^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}\right| \simeq^{*} A^{*} B^{*}
$$

$$
|\mathrm{r}(t)| \rho_{t}|e(t)| \bar{e}(t)\left|t_{e}\right| t^{e}
$$

Outline

- Extensionality: the problem.
- Extensionality and dependent types.
- The system $\lambda \simeq$.
- The system λe.

Outline

- Extensionality: the problem.
- Extensionality and dependent types.
- The system $\lambda \simeq$.
- The system λe.

Extensionality

- A central difficulty of formalizing constructive mathematics in type theory is that the equality relation is intensional: two objects are only considered equal if they can be converted into one another by a finite sequence of local syntactic transformations.
- A given function could be implemented by two different algorithms; even if they give the same input-output behavior, they would be considered different objects in type theory.

Equality in type theory

- The Martin-Löf identity type $I d_{A}$ reifies the conversion relation into the type structure. It is intensional, and the ground type $I d_{\mathbb{N} \rightarrow \mathbb{N}}(\lambda n . n+1)(\lambda n .1+n)$ is not inhabited.

Equality in type theory

- The Martin-Löf identity type $I d_{A}$ reifies the conversion relation into the type structure. It is intensional, and the ground type $I d_{\mathbb{N} \rightarrow \mathbb{N}}(\lambda n . n+1)(\lambda n .1+n)$ is not inhabited.
- Martin-Löf proposed to reflect this type back into the conversion relation, so that type-theoretic constructions could be used in the proofs that two terms are convertible. This choice leads to type theory becoming undecidable.

Equality in type theory

- The Martin-Löf identity type $I d_{A}$ reifies the conversion relation into the type structure. It is intensional, and the ground type $I d_{\mathbb{N} \rightarrow \mathbb{N}}(\lambda n . n+1)(\lambda n .1+n)$ is not inhabited.
- Martin-Löf proposed to reflect this type back into the conversion relation, so that type-theoretic constructions could be used in the proofs that two terms are convertible. This choice leads to type theory becoming undecidable.
- Voevodsky proposed to add Univalence Axiom which is a form of universe extensionality and implies function extensionality. Without computational interpretation, assuming this axiom leads to the failure of canonicity property.

What is extensional equality?

- Things are extensionally equal if they appear the same "on the outside". A more precise statement of this intuition is: extensional equality is concerned with how things are observed, how they can be used.
- In particular, the extensional equality associated to a given type constructor should be given in terms of elimination forms for that type.

$$
\begin{aligned}
f \simeq_{A \rightarrow B} g & =\Pi x: A \cdot f x \simeq_{B} g x \\
f \simeq_{A \rightarrow B} g & =\Pi x x^{\prime}: A \cdot x \simeq_{A} x^{\prime} \rightarrow f x \simeq_{B} g x^{\prime} \\
(a, b) \simeq_{A \times B}\left(a^{\prime}, b^{\prime}\right) & =\left(a \simeq_{A} a^{\prime}\right) \times\left(b \simeq_{B} b^{\prime}\right) \\
p \simeq_{A \times B} p^{\prime} & =\left(\pi_{1} p \simeq_{A} \pi_{1} p^{\prime}\right) \times\left(\pi_{2} p \simeq_{B} \pi_{2} p^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f \simeq_{A \rightarrow B} g=\Pi x x^{\prime}: A . x \simeq_{A} x^{\prime} \rightarrow f x \simeq_{B} g x^{\prime} \\
& p \simeq_{A \times B} p^{\prime}=\left(\pi_{1} p \simeq_{A} \pi_{1} p^{\prime}\right) \times\left(\pi_{2} p \simeq_{B} \pi_{2} p^{\prime}\right)
\end{aligned}
$$

- If two terms of type T are extensionally equal after applying every possible eliminator to the type, then the two terms are extensionally equal at that type.
- Equality should also form a (higher-dimensional) equivalence relation, and be preserved by every construction of type theory (substitution of equals-for-equals).

Coquand's axioms

$$
\begin{array}{rll}
(a: A) & \mathrm{r}(a) & : \quad a \simeq_{A} a \\
(x: A \vdash B(x): *) & \text { transp } & : B(a) \rightarrow\left(a \simeq_{A} a^{\prime}\right) \rightarrow B\left(a^{\prime}\right) \\
(b: B(a)) & \text { Jcomp } & : \operatorname{transp} b r(a) \simeq_{B(a)} b \\
(a: A) & \pi_{a} & : \text { isContr }\left(\sum x: A \cdot a \simeq_{A} x\right) \\
\text { FA: } & (\Pi x: A) f x \simeq_{B(x)} g x \rightarrow f \simeq_{\Pi x: A \cdot B(x)} g
\end{array}
$$

Voevodsky has shown that the last axiom is implied by
UA: The canonical map $A \simeq{ }_{*} B \rightarrow$ Weq $A B$ is an equivalence

Our plan

1. Define $a \simeq_{A} a^{\prime}$ by induction on A making sure it is a congruence with respect to all constructions of type theory:

$$
\frac{x: A \vdash t(x): T \quad \vdash a^{*}: a \simeq_{A} a^{\prime}}{\vdash t\left(a^{*}\right): t(a) \simeq_{T} t\left(a^{\prime}\right)}
$$

2. By taking $x \notin \mathrm{FV}(t)$, get $t(): t \simeq T t$ to define $r(t)$.
3. Get transp from

$$
a \simeq_{A} a^{\prime} \rightarrow B(a) \simeq_{*} B\left(a^{\prime}\right)
$$

by adding operators for transporting back and forth along $B\left(a^{*}\right): B(a) \simeq_{*} B\left(a^{\prime}\right)$.
4. Use these same operators for higher-dimensional analogues of symmetry and transitivity (the Kan filling conditions).

$$
\frac{x: A \vdash t(x): T \quad \vdash a^{*}: a \simeq_{A} a^{\prime}}{\vdash t\left(a^{*}\right): t(a) \simeq_{T} t\left(a^{\prime}\right)}
$$

- In dependent type theory, the types of $b(a)$ and $b\left(a^{\prime}\right)$ might be different:

$$
\begin{array}{lc}
\Gamma, x: A \vdash B(x): * & \Gamma \vdash a: A \\
\Gamma, x: A \vdash b(x): B(x) & \Gamma \vdash b(a): B(a)
\end{array}
$$

- If $(a, b),\left(a^{\prime}, b^{\prime}\right) \in \sum x: A \cdot B(x)$, then we can have $a^{*}: a \simeq_{A} a^{\prime}$, but b and b^{\prime} cannot be compared directly: $b: B(a), b^{\prime}: B\left(a^{\prime}\right)$, and $B(a) \neq B\left(a^{\prime}\right)$.
- To reason about extensional equality in the dependent setting, we need a notion of dependent equality.

Outline

- Extensionality: the problem.
- Extensionality and dependent types.
- The system $\lambda \simeq$.
- The system λe.

Dependent equality

- When $a^{*}: a \simeq_{A} a^{\prime}$, and $x: A \vdash b(x): B(x)$, we first consider $B\left(a^{*}\right): B(a) \simeq B\left(a^{\prime}\right)$.
- Assumption.

Every type equality e: $T \simeq T^{\prime}$ induces a relation

$$
\sim e: T \rightarrow T^{\prime} \rightarrow *
$$

- In particular, for $B\left(a^{*}\right): B(a) \simeq B\left(a^{\prime}\right)$, we have

$$
\sim B\left(a^{*}\right): B(a) \rightarrow B\left(a^{\prime}\right) \rightarrow *
$$

- We now type $b\left(a^{*}\right)$ as $\sim B\left(a^{*}\right) b(a) b\left(a^{\prime}\right)$, which we write as

$$
b\left(a^{*}\right): b(a) \sim_{B\left(a^{*}\right)} b\left(a^{\prime}\right)
$$

The relation on the universe

- We want to define an equality relation on every type by induction on type structure, and we want to prove that every term of type theory preserves this relation.
- The definition of the system will set out by assuming that there is a binary relation on the universe of all types, and that every type constructor preserves this relation (the relation is a congruence wrt type structure).
- This relation is denoted by $A \simeq B$. It is a new type constructor.
- The eliminator of this type is the relation $\sim e: A \rightarrow B \rightarrow *$.
- The constructors are the congruence axioms.
$A, t, e::=*_{n}|x| \Pi x: A \cdot B\left|\sum x: A \cdot B\right| A \simeq B \mid a \sim_{e} b$

$$
|\lambda x: A . t| s t|(s, t)| \pi_{1} t \mid \pi_{2} t
$$

$$
\left|*^{*}\right| \Pi^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}\left|\Sigma^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}\right| \simeq^{*} A^{*} B^{*}
$$

$\frac{A: *_{n} B: *_{n}}{A \simeq B: *_{n}}$

$$
\frac{e: A \simeq B \quad a: A \quad b: B}{a \sim_{e} b: *_{n}}
$$

- We have $*_{n}^{*}: *_{n} \simeq *_{n}$.
- If $A^{*}: A \simeq A^{\prime}$, and $x^{*}: x \sim A^{*} x^{\prime} \vdash B^{*}: B \simeq B^{\prime}$, then $\Pi x: A . B \simeq \Pi x^{\prime}: A^{\prime} . B^{\prime}$, and $\Sigma x: A . B \simeq \Sigma x^{\prime}: A^{\prime} . B^{\prime}$.
- If $A^{*}: A \simeq A^{\prime}$ and $B^{*}: B \simeq B^{\prime}$, then $\simeq^{*} A^{*} B^{*}:(A \simeq B) \simeq\left(A^{\prime} \simeq B^{\prime}\right)$.
$A, t, e::=*_{n}|x| \Pi x: A \cdot B|\Sigma x: A \cdot B| A \simeq B \mid a \sim_{e} b$

$$
\begin{aligned}
& |\lambda x: A . t| s t|(s, t)| \pi_{1} t \mid \pi_{2} t \\
& \left|*^{*}\right| \Pi^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}\left|\Sigma^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} . B^{*}\right| \simeq^{*} A^{*} B^{*}
\end{aligned}
$$

The logical conditions are captured by the rewrite rules:

$$
\begin{aligned}
& f \sim_{\Pi^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}} f^{\prime} \longrightarrow \prod_{a: A} \prod_{a^{\prime}: A^{\prime}} \prod_{a^{*}: a \sim_{A^{*}} a^{\prime}} f a \sim_{B^{*}\left(a, a^{\prime}, a^{*}\right)} f^{\prime} a^{\prime} \\
& (a, b) \sim_{\Sigma^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} . B^{*}}\left(a^{\prime}, b^{\prime}\right) \longrightarrow \sum_{a^{*}: a \sim_{A^{*}} a^{\prime}} b \sim_{B^{*}\left(a, a^{\prime}, a^{*}\right)} b^{\prime} \\
& e \sim_{\simeq^{*} * A^{*} B^{*}} e^{\prime} \longrightarrow \prod\left(\begin{array}{l}
a: A \\
a^{\prime}: A^{\prime} \\
a^{*}: a \sim A^{*} a^{\prime}
\end{array}\right) \prod\left(\begin{array}{l}
b: B \\
b^{\prime}: B^{\prime} \\
b^{*}: b \sim B^{*} b^{\prime}
\end{array}\right) \\
& \left(a \sim_{e} b\right) \simeq\left(a^{\prime} \sim_{e^{\prime}} b^{\prime}\right) \\
& A \sim_{*_{*}} B \quad \longrightarrow \quad A \simeq B
\end{aligned}
$$

Theorem

Suppose $\Gamma \vdash t\left(x_{1}, \ldots, x_{n}\right): T\left(x_{1}, \ldots, x_{n}\right)$, where

$$
\Gamma=x_{1}: A_{1}, \ldots, x_{n}: A_{n}\left(x_{1}, \ldots, x_{n-1}\right)
$$

There exists a term $t^{*}=t\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ such that

$$
\begin{aligned}
& \left(\begin{array}{lll}
x_{1}: A_{1} & \cdots & x_{n}: A_{n}\left(x_{1}, \ldots, x_{n-1}\right) \\
x_{1}^{\prime}: A_{1} & \cdots & x_{n}^{\prime}: A_{n}\left(x_{1}^{\prime}, \ldots, x_{n-1}^{\prime}\right) \\
x_{1}^{*}: x_{1} \sim A_{1}^{*} x_{1}^{\prime} & \cdots & x_{n}^{*}: x_{n} \sim A_{n}^{*} x_{n}^{\prime}
\end{array}\right) \\
& \\
& \qquad \vdash t^{*}: t\left(x_{1}, \ldots, x_{n}\right) \sim T^{*} t\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
\end{aligned}
$$

In particular, for a closed term $\vdash t: T$, there are closed terms

$$
\begin{aligned}
\mathrm{r}(t) & :=t^{*} \quad: \quad t \sim_{\mathrm{r}(T)} t \\
\mathrm{r}(T) & :=T^{*}: T \sim_{r(*)} T \\
\mathrm{r}\left(*_{n}\right) & :=*^{*}: *_{n} \sim_{r\left(*_{n+1}\right)} *_{n}
\end{aligned}
$$

The extensional identity type

- For a closed type A, the type equality $\mathrm{r}(A): A \simeq A$ is the identity equivalence on A.
- The relation $A^{\simeq}: A \rightarrow A \rightarrow *$ associated to this equivalence is the extensional identity type on A. It is denoted as

$$
a \simeq_{A} a^{\prime} \quad:=a \sim_{r(A)} a^{\prime}
$$

Outline

- Extensionality: the problem.
- Extensionality and dependent types.
- The system $\lambda \simeq$.
- The system λe.
$A, t, e::=*_{n}|x| \Pi x: A \cdot B\left|\sum x: A \cdot B\right| A \simeq B \mid a \sim_{e} b$

$$
|\lambda x: A . t| s t|(s, t)| \pi_{1} t \mid \pi_{2} t
$$

$$
\left|*^{*}\right| \Pi^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} \cdot B^{*}\left|\Sigma^{*}\left[x, x^{\prime}, x^{*}\right]: A^{*} . B^{*}\right| \simeq^{*} A^{*} B^{*}
$$

$$
|r(t)| P_{t}|e(t)| \bar{e}(t)\left|t_{e}\right| t^{e}
$$

$$
\frac{a: A}{r(a): a \sim_{r(A)} a}
$$

$$
\begin{aligned}
& \frac{e: A \simeq B \quad a: A}{e(a): B} \quad \frac{e: A \simeq B \quad b: B}{\bar{e}(b): A} \\
& a_{e}: a \sim_{e} e(a) \\
& b^{e}: \bar{e}(b) \sim_{e} b
\end{aligned}
$$

Higher substitution

The system admits higher-dimensional cell substitution operations. In the one-dimensional case, it is typed as follows:

$$
\begin{aligned}
& \Gamma, x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: T \\
& \Gamma \vdash a_{1}^{*}: a_{1} \sim_{r}\left(A_{1}\right) a_{1}^{\prime} \\
& \Gamma \vdash a_{2}^{*}: a_{2} \sim_{A_{2}\left[a_{1}^{*} / / x_{1}\right]} a_{2}^{\prime} \\
& \vdots \\
& \Gamma \vdash a_{n}^{*}: a_{n} \sim A_{n}\left[a_{1}^{*}, \ldots, a_{n-1}^{*} / / x_{1}, \ldots, x_{n-1}\right] a_{n}^{\prime} \\
& \Gamma \vdash \vdash t\left[a_{1}^{*}, \ldots, a_{n}^{*} / / x_{1}, \ldots, x_{n}\right]: t[\vec{a} / \vec{x}] \sim T\left[\vec{a}^{*} / / \vec{x}\right] t\left[\vec{a}^{\prime} / \vec{x}\right]
\end{aligned}
$$

Example

We can define the mapOnPaths operator

$$
\frac{\Gamma \vdash f: \Pi x: A \cdot B \quad \Gamma \vdash a^{*}: a \simeq_{A} a^{\prime}}{\Gamma \vdash f \cdot a^{*}: f a \sim_{B\left[a^{*} / / x\right]} f a^{\prime}}
$$

It is defined by taking

$$
f . a^{*}:=\quad r(f) a a^{\prime} a^{*}
$$

which computes as

$$
(\lambda x: A \cdot t) \cdot a^{*}=t\left[a^{*} / / x\right]
$$

Composition and Symmetry

Let $\alpha: a_{1} \simeq_{A} a_{2}$.
$\dot{\alpha}(x): \quad\left(x \simeq_{A} a_{1}\right) \simeq\left(x \simeq_{A} a_{2}\right) \quad \alpha_{0}(y): \quad\left(a_{1} \simeq_{A} y\right) \simeq\left(a_{2} \simeq_{A} y\right)$
$\stackrel{\circ}{\alpha}(x):=\left(x \simeq_{A} y\right)[\alpha / / y] \quad \alpha_{0}(y):=\left(x \simeq_{A} y\right)[\alpha / / x]$
Let $a_{01}: a_{0} \simeq_{A} a_{1}$. Let $a_{23}: a_{2} \simeq_{A} a_{3}$.

$$
\begin{array}{lll}
\alpha^{\circ} a_{01} & : a_{0} \simeq_{A} a_{2} & \alpha_{0} a_{23} \\
\alpha^{\circ} a_{01} & := & a_{1} \simeq_{A} a_{3} \\
\alpha\left(a_{0}\right)\left(a_{01}\right) & \alpha_{\circ} a_{23} & :=\overline{\alpha_{\circ}\left(a_{3}\right)}\left(a_{23}\right)
\end{array}
$$

(Also, $a_{01 \circ} \alpha: a_{0} \simeq_{A} a_{2}$ and $a_{23}{ }^{\circ} \alpha: a_{1} \simeq_{A} a_{3}$. .)

$$
\begin{array}{lll}
\bar{\alpha}:=\overline{\alpha\left(a_{2}\right)}\left(r\left(a_{2}\right)\right) & : & a_{2} \simeq_{A} a_{1} \\
\underline{\alpha}:=\alpha_{\circ}\left(a_{1}\right)\left(r\left(a_{1}\right)\right) & : & a_{2} \simeq_{A} a_{1}
\end{array}
$$

Proving the axioms

- $r(a): a \sim_{r(A)} a:=a \simeq_{A} a$

Proving the axioms

- $r(a): a \sim_{r(A)} a:=a \simeq_{A} a$
- $\operatorname{transp}_{B(x)} b_{0} a_{01}:=B\left(a_{01}\right)(p)$, where

$$
B\left(a_{01}\right)=B\left[a_{01} / / x\right]: B\left(a_{0}\right) \simeq B\left(a_{1}\right)
$$

Proving the axioms

- $r(a): a \sim_{r(A)} a:=a \simeq_{A} a$
- $\operatorname{transp}_{B(x)} b_{0} a_{01}:=B\left(a_{01}\right)(p)$, where

$$
B\left(a_{01}\right)=B\left[a_{01} / / x\right]: B\left(a_{0}\right) \simeq B\left(a_{1}\right)
$$

- $\operatorname{transp}_{B(x)} \operatorname{br}(a):=B(r(a))(b)=r(B(a))(b)$, since

$$
t[r(a) / / x]=r(t(a))
$$

always holds. Now $b_{r(B(a))}: b \simeq_{B(a)} r(B(a))(b)$.

Proving the axioms

- $r(a): a \sim_{r(A)} a:=a \simeq_{A} a$
- $\operatorname{transp}_{B(x)} b_{0} a_{01}:=B\left(a_{01}\right)(p)$, where

$$
B\left(a_{01}\right)=B\left[a_{01} / / x\right]: B\left(a_{0}\right) \simeq B\left(a_{1}\right)
$$

- $\operatorname{transp}_{B(x)} b r(a):=B(r(a))(b)=r(B(a))(b)$, since

$$
t[r(a) / / x]=r(t(a))
$$

always holds. Now $b_{r(B(a))}: b \simeq_{B(a)} r(B(a))(b)$.

- Given $a: A$, for any $\alpha: a \simeq_{A} X$, put

$$
\begin{aligned}
& p_{x, \alpha}:=(r(r(A)) a \operatorname{ar}(a) a x \alpha)(r(a)) \\
& P_{x, \alpha}:=\operatorname{Pr}_{r}(a)_{r(r(A)) a \operatorname{ar}(a) a \times \alpha}
\end{aligned}
$$

Then $\lambda x \lambda \alpha$. $\left(p_{x, \alpha}, P_{x, \alpha}\right)$ shows $(a, r(a))$ to be a center of contraction of type $\Sigma x: A . a \simeq_{A} x$.

Proving the axioms

- $r(a): a \sim_{r(A)} a:=a \simeq_{A} a$
- transp ${ }_{B(x)} b_{0} a_{01}:=B\left(a_{01}\right)(p)$, where

$$
B\left(a_{01}\right)=B\left[a_{01} / / x\right]: B\left(a_{0}\right) \simeq B\left(a_{1}\right)
$$

- $\operatorname{transp}_{B(x)} b r(a):=B(r(a))(b)=r(B(a))(b)$, since

$$
t[r(a) / / x]=r(t(a))
$$

always holds. Now $b_{r(B(a))}: b \simeq_{B(a)} r(B(a))(b)$.

- Given $a: A$, for any $\alpha: a \simeq_{A} X$, put

$$
\begin{aligned}
& p_{x, \alpha}:=(r(r(A)) a \operatorname{ar}(a) a x \alpha)(r(a)) \\
& P_{x, \alpha}:=\operatorname{Pr}_{r}(a)_{r(r(A)) a \operatorname{ar}(a) a \times \alpha}
\end{aligned}
$$

Then $\lambda x \lambda \alpha$. $\left(p_{x, \alpha}, P_{x, \alpha}\right)$ shows $(a, r(a))$ to be a center of contraction of type $\sum x: A . a \simeq_{A} x$.

- Function extensionality: by construction.

Conclusion

- We have defined a type system with a natural type-theoretic construction of the extensional equality type.
- We conjecture that the system satisfies strong normalization and hence has decidable type checking.
- The system provides a lambda calculus for computing with higher cells.
- Future work includes univalence, higher inductive types, and homotopy reflection principles.

