New Extensional Type Theory

Andrew Polonsky

May 12, 2014

e

Atien=sx,|x|MxAB|IZxAB|A~B|a~b
| Ac:At | st | (s, t) | mit]|mat
| % | M [x,x", x*:A*.B* | *[x, x', x*]:A*.B* | ~* A*B*
[r(e) | e[e(t) [&(t) | te | £°

e

Atiex=x,|x|NxA.B|Lx:A.B
| Ac:A.t | st | (s, t) | mit]|mot

e

Atien=sx, | x| [IxAB|ExAB|A~B|la~eb
| Ac:At | st | (s, t) | it | mot
| % | M [x,x", x*:A*.B* | *[x, x', x*]:A*.B* | ~* A*B*

e

Atien=x,|x|MNxAB|LxAB|A~B|a~eb
| Ac:At | st | (s, t) | it | mot
| % | M [x,x", x*:A*.B* | ¥ [x, x', x*]:A*.B* | ~* A*B*
[r(t) [

e

Atien=x,|x|MNxAB|LxAB|A~B|a~eb
| Ac:At | st | (s, t) | it | mot
| % | M [x,x", x*:A*.B* | ¥ [x, x', x*]:A*.B* | ~* A*B*
r(6) [e(t) [&(t) | te | t°

e

Atien=sx,|x|MxAB|IZxAB|A~B|a~b
| Ac:At | st | (s, t) | mit]|mat
| % | M [x,x", x*:A*.B* | *[x, x', x*]:A*.B* | ~* A*B*
[r(e) | e[e(t) [&(t) | te | £°

Outline

» Extensionality: the problem.

» Extensionality and dependent types.
» The system Ax.

» The system \e.

Outline

» Extensionality: the problem.

» Extensionality and dependent types.
» The system Ax.

» The system \e.

Extensionality

» A central difficulty of formalizing constructive mathematics in
type theory is that the equality relation is intensional: two
objects are only considered equal if they can be converted into
one another by a finite sequence of local syntactic
transformations.

» A given function could be implemented by two different
algorithms; even if they give the same input—output behavior,
they would be considered different objects in type theory.

Equality in type theory

» The Martin-Lof identity type Id4 reifies the conversion
relation into the type structure. It is intensional, and the
ground type Idnon(An.n+1)(An.1+n) is not inhabited.

Equality in type theory

» The Martin-Lof identity type Id4 reifies the conversion
relation into the type structure. It is intensional, and the
ground type Idnon(An.n+1)(An.1+n) is not inhabited.

» Martin-Lof proposed to reflect this type back into the
conversion relation, so that type-theoretic constructions could
be used in the proofs that two terms are convertible. This
choice leads to type theory becoming undecidable.

Equality in type theory

» The Martin-Lof identity type Id4 reifies the conversion
relation into the type structure. It is intensional, and the
ground type Idn_n(An.n+1)(An.1+n) is not inhabited.

» Martin-Lof proposed to reflect this type back into the
conversion relation, so that type-theoretic constructions could
be used in the proofs that two terms are convertible. This
choice leads to type theory becoming undecidable.

» Voevodsky proposed to add Univalence Axiom which is a form
of universe extensionality and implies function extensionality.
Without computational interpretation, assuming this axiom
leads to the failure of canonicity property.

What is extensional equality?

» Things are extensionally equal if they appear the same “on
the outside”. A more precise statement of this intuition is:
extensional equality is concerned with how things are
observed, how they can be used.

» In particular, the extensional equality associated to a given
type constructor should be given in terms of elimination forms
for that type.

f ~“A->B 8 = MNx:A. x ~B 8X
fﬁA—»Bg = nXX,IA.XﬁAX,efszgX'
(aa b) ~AxB (alu b,) = (a ~A a,) X (b ~p bl)

paxg P = (mp=amp')x(mp=gmp)

Mxx": A x~p x" — fx =g gx’

(mip=amp') x (map =p m2p")

f ~“A->B 8
P =AxB P'

» If two terms of type T are extensionally equal after applying
every possible eliminator to the type, then the two terms are
extensionally equal at that type.

» Equality should also form a (higher-dimensional) equivalence
relation, and be preserved by every construction of type theory
(substitution of equals-for-equals).

Coquand’s axioms

(a: A) r(a) : a=~aa
(x:Ar-B(x):*) transp : B(a)—>(azaad)— B(d)
(b:B(a)) Jcomp : transpbr(a)=pg) b
(a: A) T, @ isContr(Xx:A.a~x x)
FA: (Mx:A) fx 2p) 8x = f 2nueaB(x) &

Voevodsky has shown that the last axiom is implied by

UA: The canonical map A ~, B - WegAB is an equivalence

Our plan

1. Define a ~4 a’ by induction on A making sure it is a
congruence with respect to all constructions of type theory:

x:Art(x): T Fat:a~yad
Ft(a*):t(a) ~7 t(a)
2. By taking x ¢ FV(t), get t() : t ~7 t to define r(t).
3. Get transp from

axpa - B(a)~. B(a)
by adding operators for transporting back and forth along
B(a*):B(a) ~. B(a).

4. Use these same operators for higher-dimensional analogues of
symmetry and transitivity (the Kan filling conditions).

x:Art(x): T Fat:ranyad
Ft(a*):t(a) 21 t(a)

» In dependent type theory, the types of b(a) and b(a’) might
be different:
Mx:Ar B(x):* Mla:A
Mx:Arb(x):B(x) T+ b(a):B(a)

» If (a,b),(a',b") € Lx:A.B(x), then we can have a* :a~y a',
but b and b’ cannot be compared directly:
b:B(a), b':B(a"), and B(a) + B(a").

» To reason about extensional equality in the dependent setting,
we need a notion of dependent equality.

Outline

» Extensionality: the problem.

» Extensionality and dependent types.
» The system Ax.

» The system \e.

Dependent equality

» When a*:a~4 a, and x: Ar b(x) : B(x), we first consider
B(a*): B(a) ~ B(a").

» ASSUMPTION.
Every type equality e : T ~ T' induces a relation

ve: T > T =%

v

In particular, for B(a*) : B(a) ~ B(a'), we have

~B(a"): B(a) > B(a') > *

v

We now type b(a*) as ~B(a*)b(a)b(a’), which we write as

b(a*): b(a) ~B(a%) b(a")

The relation on the universe

» We want to define an equality relation on every type by
induction on type structure, and we want to prove that every
term of type theory preserves this relation.

» The definition of the system will set out by assuming that
there is a binary relation on the universe of all types, and that
every type constructor preserves this relation
(the relation is a congruence wrt type structure).

» This relation is denoted by A~ B. It is a new type constructor.
» The eliminator of this type is the relation ~e: A - B — x*.

» The constructors are the congruence axioms.

Atiex=x,|x|MxAB|ZxAB|A~B|a~cb
| Ax:A.t | st| (s, t) | mit|mat
| * | M*[x,x", x*]:A*.B* | *[x,x", x*:A*.B* | ~* A*B*

A:*ﬂ B:*n e:A~B

a: b:B
A~B:x, a~ebiw

n

» We have # : %, ~ %,.
» fA* A~ A and x* i x ~vpe X - B*: B~ B/,
then Mx:A.B ~Nx":A’.B’, and ¥x:A.B ~ Y x":A’.B’.
» If A*:A~ A" and B*: B~ B/,
then ~*A*B*: (A~ B) ~ (A"~ B').

Atiex=x,|x|MxAB|EZx:AB|A~B|a~.b
| Ax:A.t | st| (s, t) | mit|mat
|+ | [x, X', X :A*.B* | £*[x, X', x*] A*.B* | ~* A* B

The logical conditions are captured by the rewrite rules:

H H H fa ~B*(a,a’,a*) f’a’

a:A a:Al a*:a~ s a’

/
f I [x,x! x* :A* .B* f

(aa b) ~rH[x,x! x*:A* .B* (ala b,)

€ ~ox A% B¥ e,

A~ B

—

>

a*:a~

|

A~B

b "‘B*(a7a/7a*) b/

a’

a:A b:B
A H b : B

atta~ps a b* :b~pgs b

(a~eb) = (al ~el b,)

|

Theorem

Suppose I+ t(x1,...,%n) s T(x1,...,Xn), where
M=x1:A1,...,xnt An(X1, .oy Xno1)
There exists a term t* = t(x{,...,x;) such that

x1: A1 Xnt An(X1,s .. Xn-1)
I . I . A !
X1+ A1 o Xt Ap(XYy X 1)
. /) /
Xl*.Xl ~ A} X1 o X;.Xn ~AY Xp

Ft i t(Xe, e Xn) v E(X], ey X))

In particular, for a closed term + t: T, there are closed terms

r(t) = t° ¢ teqqyt
r(T) = T . T ~r(%) T

r(*p) = % 1 %, “r(%mi1) *n

The extensional identity type

» For a closed type A, the type equality r(A): A~ A is the
identity equivalence on A.

» The relation A®: A - A — % associated to this equivalence is
the extensional identity type on A. It is denoted as

! o !
a~aad = a~r(A) a

Outline

» Extensionality: the problem.

» Extensionality and dependent types.
» The system Ax.

» The system \e.

e

Atien=x,|x|MNx:AB|IxAB|A~B|a~eb
| Ax:A.t| st | (s, t) | mit | mat
| % | M [x, x", x*:A*.B* | ¥ [x, x', x*]:A*.B* | ~* A* B*
[r(8) [$e[e(t) [&(t) | te | £°

a:A
r(a):a~ya a
e:A~B a:A e:A~B b:B
e(a) : B é(b) : A

3. : a~ee(a) b® : &(b)~eb

Higher substitution

The system admits higher-dimensional cell substitution operations.
In the one-dimensional case, it is typed as follows:

Mx1:A,...,xn Ay 1t T
. !
r r—a’{.al~r(A1) ay
%, /
M- ay a2 ~aa//x] 22

* . o ’
M- ap:an Anlaf,..,ar_i /X1, xn-1] an

I+ t[a{,.. .,a;//Xl,. . .,Xn] H t[é/)?] ~T[3*//%] t[é’/)?]

Example

We can define the mapOnPaths operator

M~f:MNxA.B la*:a~ya

M- f.a": fa~pra s fa
It is defined by taking
f.a* = r(f)ada*
which computes as

(Ax:At).a® = t[a"//x]

Composition and Symmetry

Let a: a1 ~4 ar.

&(x) : (xmpar)~(x~pa0) ao(y) :+ (ar=ay)=~(a2=ay)
&(x) = (x=ay)la/ly] a(y) = (x=ay)|a//x]
Let ag1 : ag ~4 a1. Let ax3: ar ~4 as.

aapr ¢ ap A @ Qod23 ¢ d1 ~A a3

aapr = &(ao)(ao1) Qo3 = ao(asz)(ax3)

(Also, apior: ag ~4 az and ax3°a: a3 ~p a3.)

= 4(22)(r(2)) L mEaa

a:=as(ar)(r(a1)) Poaxmaar

Proving the axioms

> r(a):a~r(A) a=a~pa

Proving the axioms

> r(a) :aNr(A) a=a~pa
> transpg(y) bo ao1 := B(ap1)(p), where

B(a01) = 3[301//X] : B(ao) ~ B(al)

Proving the axioms

> r(a) :aNr(A) a=a~pa
> transpg(y) bo ao1 := B(ap1)(p), where

B(ao1) = Blao1//x] : B(ao) ~ B(a1)
> transpp,) br(a):= B(r(a))(b) = r(B(a))(b), since
tfr(a)//x] =r(t(a))
always holds. Now by(s(s)) b =5(s) r(B(a))(b).

Proving the axioms
»r(a):a~aya=azga
> transpg(y) bo ao1 = B(ao1)(p), where
B(ao1) = Blao1//x] : B(ao) ~ B(a1)
> transpp,) br(a):= B(r(a))(b) = r(B(a))(b), since

t{r(a)//x] = r(t(a))
always holds. Now by(g(a)) : b ~p(a) r(B(a))(b).

» Given a: A, for any a:a~p x, put

Px.o = (r(r(A))aar(a) axa)(r(a))

PX7a = _R'(a)r(r(A)) aar(a)axa

Then AxAa.(px,a, Px,a) shows (a,r(a)) to be a center of
contraction of type x:A.a ~4 x.

Proving the axioms

>

>

r(a):a~aya=azpa
transpg) bo o1 = B(aor)(p), where
B(ao1) = Blao1//x] : B(ao) ~ B(a1)
transpp,) br(a) = B(r(a))(b) = r(B(a))(b), since
tfr(a)//x] =r(t(a))
always holds. Now by(s(s)) b =5(s) r(B(a))(b).

Given a: A, for any a1 a~p x, put

Px.o = (r(r(A))aar(a) axa)(r(a))

PX7a = _R'(a)r(r(A)) aar(a)axa

Then AxAa.(px,a, Px,a) shows (a,r(a)) to be a center of
contraction of type x:A.a ~4 x.

Function extensionality: by construction.

Conclusion

» We have defined a type system with a natural type-theoretic
construction of the extensional equality type.

» We conjecture that the system satisfies strong normalization
and hence has decidable type checking.

» The system provides a lambda calculus for computing with
higher cells.

» Future work includes univalence, higher inductive types, and
homotopy reflection principles.

