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λe

A, t, e ∶∶= ∗n ∣ x ∣ Πx ∶A.B ∣ Σx ∶A.B ∣ A ≃ B ∣ a ∼e b
∣ λx ∶A.t ∣ st ∣ (s, t) ∣ π1t ∣ π2t

∣ ∗∗ ∣ Π∗[x , x ′, x∗]∶A∗.B∗ ∣ Σ∗[x , x ′, x∗]∶A∗.B∗ ∣ ≃∗A∗B∗

∣ r(t) ∣

↬

t ∣ e(t) ∣ ē(t) ∣ te ∣ te
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Extensionality

▸ A central difficulty of formalizing constructive mathematics in
type theory is that the equality relation is intensional: two
objects are only considered equal if they can be converted into
one another by a finite sequence of local syntactic
transformations.

▸ A given function could be implemented by two different
algorithms; even if they give the same input–output behavior,
they would be considered different objects in type theory.



Equality in type theory

▸ The Martin-Löf identity type IdA reifies the conversion
relation into the type structure. It is intensional, and the
ground type Id N→N(λn.n+1)(λn.1+n) is not inhabited.

▸ Martin-Löf proposed to reflect this type back into the
conversion relation, so that type-theoretic constructions could
be used in the proofs that two terms are convertible. This
choice leads to type theory becoming undecidable.

▸ Voevodsky proposed to add Univalence Axiom which is a form
of universe extensionality and implies function extensionality.
Without computational interpretation, assuming this axiom
leads to the failure of canonicity property.
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▸ Martin-Löf proposed to reflect this type back into the
conversion relation, so that type-theoretic constructions could
be used in the proofs that two terms are convertible. This
choice leads to type theory becoming undecidable.

▸ Voevodsky proposed to add Univalence Axiom which is a form
of universe extensionality and implies function extensionality.
Without computational interpretation, assuming this axiom
leads to the failure of canonicity property.



Equality in type theory
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What is extensional equality?

▸ Things are extensionally equal if they appear the same “on
the outside”. A more precise statement of this intuition is:
extensional equality is concerned with how things are
observed, how they can be used.

▸ In particular, the extensional equality associated to a given
type constructor should be given in terms of elimination forms
for that type.

f ≃A→B g = Πx ∶ A. fx ≃B gx

f ≃A→B g = Πxx ′ ∶ A. x ≃A x ′ → fx ≃B gx ′

(a,b) ≃A×B (a′,b′) = (a ≃A a′) × (b ≃B b′)
p ≃A×B p′ = (π1p ≃A π1p

′) × (π2p ≃B π2p
′)



f ≃A→B g = Πxx ′ ∶ A. x ≃A x ′ → fx ≃B gx ′

p ≃A×B p′ = (π1p ≃A π1p
′) × (π2p ≃B π2p

′)

▸ If two terms of type T are extensionally equal after applying
every possible eliminator to the type, then the two terms are
extensionally equal at that type.

▸ Equality should also form a (higher-dimensional) equivalence
relation, and be preserved by every construction of type theory
(substitution of equals-for-equals).



Coquand’s axioms

(a ∶ A) r(a) ∶ a ≃A a

(x ∶ A ⊢ B(x) ∶ ∗) transp ∶ B(a) → (a ≃A a′) → B(a′)
(b ∶ B(a)) Jcomp ∶ transp b r(a) ≃B(a) b

(a ∶ A) πa ∶ isContr(Σx ∶A.a ≃A x)
FA: (Πx ∶A) fx ≃B(x) gx → f ≃Πx ∶A.B(x) g

Voevodsky has shown that the last axiom is implied by

UA: The canonical map A ≃∗ B →WeqAB is an equivalence



Our plan

1. Define a ≃A a′ by induction on A making sure it is a
congruence with respect to all constructions of type theory:

x ∶ A ⊢ t(x) ∶ T ⊢ a∗ ∶ a ≃A a′

⊢ t(a∗) ∶ t(a) ≃T t(a′)
2. By taking x ∉ FV(t), get t() ∶ t ≃T t to define r(t).

3. Get transp from

a ≃A a′ → B(a) ≃∗ B(a′)

by adding operators for transporting back and forth along
B(a∗) ∶ B(a) ≃∗ B(a′).

4. Use these same operators for higher-dimensional analogues of
symmetry and transitivity (the Kan filling conditions).



x ∶ A ⊢ t(x) ∶ T ⊢ a∗ ∶ a ≃A a′

⊢ t(a∗) ∶ t(a) ≃T t(a′)

▸ In dependent type theory, the types of b(a) and b(a′) might
be different:

Γ, x ∶ A ⊢ B(x) ∶ ∗
Γ, x ∶ A ⊢ b(x) ∶ B(x)

Γ ⊢ a ∶ A
Γ ⊢ b(a) ∶ B(a)

▸ If (a,b), (a′,b′) ∈ Σx ∶A.B(x), then we can have a∗ ∶ a ≃A a′,
but b and b′ cannot be compared directly:
b ∶ B(a), b′ ∶ B(a′), and B(a) ≠ B(a′).

▸ To reason about extensional equality in the dependent setting,
we need a notion of dependent equality.
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Dependent equality

▸ When a∗ ∶ a ≃A a′, and x ∶ A ⊢ b(x) ∶ B(x), we first consider
B(a∗) ∶ B(a) ≃ B(a′).

▸ Assumption.
Every type equality e ∶ T ≃ T ′ induces a relation

∼e ∶ T → T ′ → ∗

▸ In particular, for B(a∗) ∶ B(a) ≃ B(a′), we have

∼B(a∗) ∶ B(a) → B(a′) → ∗

▸ We now type b(a∗) as ∼B(a∗)b(a)b(a′), which we write as

b(a∗) ∶ b(a) ∼B(a∗) b(a′)



The relation on the universe

▸ We want to define an equality relation on every type by
induction on type structure, and we want to prove that every
term of type theory preserves this relation.

▸ The definition of the system will set out by assuming that
there is a binary relation on the universe of all types, and that
every type constructor preserves this relation
(the relation is a congruence wrt type structure).

▸ This relation is denoted by A ≃ B. It is a new type constructor.

▸ The eliminator of this type is the relation ∼e ∶ A→ B → ∗.

▸ The constructors are the congruence axioms.



λ≃

A, t, e ∶∶= ∗n ∣ x ∣ Πx ∶A.B ∣ Σx ∶A.B ∣ A ≃ B ∣ a ∼e b
∣ λx ∶A.t ∣ st ∣ (s, t) ∣ π1t ∣ π2t

∣ ∗∗ ∣ Π∗[x , x ′, x∗]∶A∗.B∗ ∣ Σ∗[x , x ′, x∗]∶A∗.B∗ ∣ ≃∗A∗B∗

A ∶ ∗n B ∶ ∗n
A ≃ B ∶ ∗n

e ∶ A ≃ B a ∶ A b ∶ B
a ∼e b ∶ ∗n

▸ We have ∗∗n ∶ ∗n ≃ ∗n.

▸ If A∗ ∶ A ≃ A′, and x∗ ∶ x ∼A∗ x ′ ⊢ B∗ ∶ B ≃ B ′,
then Πx ∶A.B ≃ Πx ′∶A′.B ′, and Σx ∶A.B ≃ Σx ′∶A′.B ′.

▸ If A∗ ∶ A ≃ A′ and B∗ ∶ B ≃ B ′,
then ≃∗A∗B∗ ∶ (A ≃ B) ≃ (A′ ≃ B ′).
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The logical conditions are captured by the rewrite rules:

f ∼Π∗[x,x ′,x∗]∶A∗.B∗ f
′ Ð→ ∏

a∶A

∏
a′∶A′

∏
a∗∶a∼A∗a

′

fa ∼B∗(a,a′,a∗) f ′a′

(a,b) ∼Σ∗[x,x ′,x∗]∶A∗.B∗ (a′,b′) Ð→ ∑
a∗∶a∼A∗a

′

b ∼B∗(a,a′,a∗) b′

e ∼≃∗A∗B∗ e′ Ð→ ∏
⎛
⎝

a ∶ A
a′ ∶ A′
a∗ ∶ a ∼A∗ a′

⎞
⎠∏

⎛
⎝

b ∶ B
b′ ∶ B ′
b∗ ∶ b ∼B∗ b′

⎞
⎠

(a ∼e b) ≃ (a′ ∼e′ b′)
A ∼∗∗ B Ð→ A ≃ B



Theorem
Suppose Γ ⊢ t(x1, . . . , xn) ∶ T (x1, . . . , xn), where

Γ = x1 ∶ A1, . . . , xn ∶ An(x1, . . . , xn−1)

There exists a term t∗ = t(x∗1 , . . . , x∗n ) such that

⎛
⎜
⎝

x1 ∶ A1 ⋯ xn ∶ An(x1, . . . , xn−1)
x ′1 ∶ A1 ⋯ x ′n ∶ An(x ′1, . . . , x ′n−1)
x∗1 ∶ x1 ∼A∗1 x ′1 ⋯ x∗n ∶ xn ∼A∗n x ′n

⎞
⎟
⎠

⊢ t∗ ∶ t(x1, . . . , xn) ∼T∗ t(x ′1, . . . , x ′n)
In particular, for a closed term ⊢ t ∶ T , there are closed terms

r(t) ∶= t∗ ∶ t ∼r(T) t

r(T ) ∶= T ∗ ∶ T ∼r(∗) T

r(∗n) ∶= ∗∗ ∶ ∗n ∼r(∗n+1)
∗n



The extensional identity type

▸ For a closed type A, the type equality r(A) ∶ A ≃ A is the
identity equivalence on A.

▸ The relation A≃ ∶ A→ A→ ∗ associated to this equivalence is
the extensional identity type on A. It is denoted as

a ≃A a′ ∶= a ∼r(A) a
′
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λe

A, t, e ∶∶= ∗n ∣ x ∣ Πx ∶A.B ∣ Σx ∶A.B ∣ A ≃ B ∣ a ∼e b
∣ λx ∶A.t ∣ st ∣ (s, t) ∣ π1t ∣ π2t
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↬

t ∣ e(t) ∣ ē(t) ∣ te ∣ te

a ∶ A
r(a) ∶ a ∼r(A) a

e ∶ A ≃ B a ∶ A
e(a) ∶ B
ae ∶ a ∼e e(a)

e ∶ A ≃ B b ∶ B
ē(b) ∶ A
be ∶ ē(b) ∼e b



Higher substitution

The system admits higher-dimensional cell substitution operations.
In the one-dimensional case, it is typed as follows:

Γ, x1 ∶ A1, . . . , xn ∶ An ⊢ t ∶ T
Γ ⊢ a∗1 ∶ a1 ∼r(A1)

a′1
Γ ⊢ a∗2 ∶ a2 ∼A2[a∗1 //x1]

a′2
⋮

Γ ⊢ a∗n ∶ an ∼An[a∗1 ,...,a
∗
n−1//x1,...,xn−1]

a′n

Γ ⊢ t[a∗1 , . . . , a∗n//x1, . . . , xn] ∶ t[a⃗/x⃗] ∼T [a⃗∗//x⃗] t[a⃗′/x⃗]



Example

We can define the mapOnPaths operator

Γ ⊢ f ∶ Πx ∶A.B Γ ⊢ a∗ ∶ a ≃A a′

Γ ⊢ f .a∗ ∶ fa ∼B[a∗//x] fa
′

It is defined by taking

f .a∗ ∶= r(f )aa′a∗

which computes as

(λx ∶A.t).a∗ = t[a∗//x]



Composition and Symmetry

Let α ∶ a1 ≃A a2.

α̊(x) ∶ (x ≃A a1) ≃ (x ≃A a2) α○(y) ∶ (a1 ≃A y) ≃ (a2 ≃A y)
α̊(x) ∶= (x ≃A y)[α//y] α○(y) ∶= (x ≃A y)[α//x]

Let a01 ∶ a0 ≃A a1. Let a23 ∶ a2 ≃A a3.

α○a01 ∶ a0 ≃A a2 α○a23 ∶ a1 ≃A a3

α○a01 ∶= α̊(a0)(a01) α○a23 ∶= α○(a3)(a23)

(Also, a01○α ∶ a0 ≃A a2 and a23
○α ∶ a1 ≃A a3.)

α ∶= α̊(a2)(r(a2)) ∶ a2 ≃A a1

α ∶= α○(a1)(r(a1)) ∶ a2 ≃A a1



Proving the axioms

▸ r(a) ∶ a ∼r(A) a ∶= a ≃A a

▸ transpB(x) b0 a01 ∶= B(a01)(p), where

B(a01) = B[a01//x] ∶ B(a0) ≃ B(a1)

▸ transpB(x) b r(a) ∶= B(r(a))(b) = r(B(a))(b), since

t[r(a)//x] = r(t(a))

always holds. Now br(B(a)) ∶ b ≃B(a) r(B(a))(b).

▸ Given a ∶ A, for any α ∶ a ≃A x , put

px ,α ∶= (r(r(A)) a a r(a) a x α)(r(a))
Px ,α ∶=

↬
r(a)r(r(A)) a a r(a) a x α

Then λxλα.(px ,α,Px ,α) shows (a, r(a)) to be a center of
contraction of type Σx ∶A.a ≃A x .

▸ Function extensionality: by construction.
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Conclusion

▸ We have defined a type system with a natural type-theoretic
construction of the extensional equality type.

▸ We conjecture that the system satisfies strong normalization
and hence has decidable type checking.

▸ The system provides a lambda calculus for computing with
higher cells.

▸ Future work includes univalence, higher inductive types, and
homotopy reflection principles.


