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Once upon a time...

Cataclysm: Gödel's incompleteness theorem (1931)

We do not �ght alienation with an alienated logic.

Justifying arithmetic di�erently

... Intuitionistic logic!

Double-negation translation (1933)
Dialectica (30's, published in 1958)
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Overview

What is Dialectica?

A translation from HA into HAω

That preserves intuitionistic content

But o�ers two semi-classical principles:

¬(∀n ∈ N.¬P n)
MP ∃n ∈ N. P n

(∀n ∈ N. P n)→ ∃m ∈ N. Qm
IP∃m ∈ N. (∀n ∈ N. P n)→ Qm
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Parental advisory required

For the sake of exhaustivity, we'll take a glimpse at the historical

presentation of Dialectica.

Warning! Dusty logic inside

Translation acting on formulæ

Prevalence of negative connectives

First-order logic

Lots of arithmetic encoding

Does not preserve β-reduction
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Dusty logics

Dialectica, Dawn of Curry-Howard:

` A 7→ ` AD ≡ ∃~u.∀~x.AD[~u, ~x]

A ∧B ∃~u~v. ∀~x ~y. AD[~u, ~x] ∧BD[~v, ~y]

A ∨B ∃~u~v b. ∀~x ~y. (b = 0 ∧AD[~u, ~x]) ∨ (b = 1 ∧BD[~v, ~y])

A→ B ∃~ϕ ~ψ. ∀~u ~y. AD[~u, ~ψ(~u, ~y)]→ BD[~ϕ(~u), ~y]

∀n.A[n] ∃~ϕ. ∀~xn. AD[~ϕ(n), ~x, n]

∃n.A[n] ∃~un. ∀~x. AD[~u, n, ~x]

Sound translation, blah blah blah.
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A step into modernity

Let us forget the 50's, and rather jump directly to the 90's.

Take seriously the computational content

Dialectica as a typed object

Works of De Paiva, Hyland, etc.
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Types, types, types!

A proof ` u : A is a term ` u : W(A) such that ∀x : C(A). u ⊥A x
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Linearized Dialectica

We could give a computational content right now

But it would be ad-hoc, inheriting from the encodings of Dialectica

Let us use our our favorite tool: Linear Logic!

Call-by-name decomposition of the arrow:

A→ B ≡ !A( B

Now we will be translating LL formulæ into LJ ones.
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Requirements

We will be interpreting the formulæ of linear logic:

A,B ::= A⊗B | A`B | !A | ?A | A⊕B | A&B

Su�cient to de�ne W(A), C(A) and ⊥A
Duality for free:

W(A⊥) ≡ C(A) and conversely
Orthogonal by complementation:

u 6⊥A x
x ⊥A⊥ u
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Linear decomposition

W C

A→ B

{
W(A)→W(B)

C(B)→W(A)→ C(A)
W(A)× C(B)

A( B

{
W(A)→W(B)
C(B)→ C(A)

W(A)× C(B)

!A W(A) W(A)→ C(A)

u ⊥A ψ y → ϕu ⊥B y

(ϕ,ψ) ⊥A(B (u, y)

u ⊥A z u
u ⊥!A z
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Intepretation of the call-by-name λ-calculus

We're now trying to translate the λ-calculus through Dialectica.

First through the call-by-name linear decomposition into LL;

Then into LJ with the linear Dialectica.
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Brief reminder

We recall here the call-by-name translation of the λ-calculus into LL:

[[A→ B]] ≡ ![[A]]( [[B]]

[[A×B]] ≡ ![[A]]⊗ ![[B]]

[[A+B]] ≡ ![[A]]⊕ ![[B]]

[[Γ ` A]] ≡
⊗

![[Γ]] ` [[A]]
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Prolegomena

In order to interpret the λ-calculus, we need the following:

Dummy term

For all type A, there exists ` ∅A : W(A).

Decidability of the orthogonality

The ⊥A relation is decidable. In particular, there must exist some λ-term

@A : W(A)→W(A)→ C(A)→W(A)

with the following behaviour:

u1@
A
x u2
∼= if u1 ⊥A x then u2 else u1
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Did you solve the organization issue?

If we were to use the translation as is, we would bump up into an

unbearable bureaucracy. Instead, we are going to use the following

isomorphism.

[[x1 : Γ1, . . . xn : Γn ` t : A]] ∼= W(Γ)→


W(A)
C(A)→ C(Γ1)
...

C(A)→ C(Γn)

Which results in the following translations:

[[~x : Γ ` t : A]] ≡



~x : W(Γ) ` t• : W(A)

~x : W(Γ) ` tx1 : C(A)→ C(Γ1)
...

~x : W(Γ) ` txn : C(A)→ C(Γn)
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Translation

For (−)• :

x• ≡ x

(λx. t)• ≡
{
λx. t•

λπx. tx π

(t u)• ≡ (fst t•)u•
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Translation II

For tx :

xx ≡ λπ. π

: C(A)→ C(A)

yx ≡ λπ.∅

: C(A)→ C(Γi)

(λy. t)x ≡ λ(y, π). tx π

: W(A)× C(B)→ C(Γi)

(t u)x ≡ λπ. ux ((snd t•)π u•) @π tx (u•, π)

: C(B)→ C(Γi)
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It just works... Does it?

Soundness

If ` t : A, then ` t• : W(A), and in addition, for all π : C(A), t• ⊥A π.

Sadness

The translation is still not stable by β-reduction.

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 17 / 29



It just works... Does it?

Soundness

If ` t : A, then ` t• : W(A), and in addition, for all π : C(A), t• ⊥A π.

Sadness

The translation is still not stable by β-reduction.

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 17 / 29



Almost there

Using ∅ and @ is another encoding of Dialectica.

We want multisets M (think of lists)!

We just change:

C(!A) ≡ W(A)→ C(A)
C(!A) ≡ W(A)→M C(A)

Term interpretation is almost unchanged:

∅ becomes the empty set;
@ becomes union
. . . plus a bit of monadic boilerplate

We do not need orthogonality anymore...
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What about the computational content?

This gives us the following types for the translation:

[[~x : Γ ` t : A]] ≡



~x : W(Γ) ` t• : W(A)

~x : W(Γ) ` tx1 : C(A)→M C(Γ1)
...

~x : W(Γ) ` txn : C(A)→M C(Γn)

t• is clearly the lifting of t;

What on earth is txi?
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An unbearable suspense

A small interlude of advertisement de�nitions to introduce you to the

KAM.

Closures c ::= (t, σ)
Environments σ ::= ∅ | σ + (x := c)
Stacks π ::= ε | c · π
Processes p ::= 〈c | π〉

Push 〈(t u, σ) | π〉 → 〈(t, σ) | (u, σ) · π〉
Pop 〈(λx. t, σ) | c · π〉 → 〈(t, σ + (x := c)) | π〉
Grab 〈(x, σ + (x := c)) | π〉 → 〈c | π〉
Garbage 〈(x, σ + (y := c)) | π〉 → 〈(x, σ) | π〉

The Krivine Machine™
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Closures all the way down

Let:

a term ~x : Γ ` t : A

a closure σ ` Γ

a stack ` π : A⊥ (i.e. π• : C(A))

Then txi π
• is the multiset made of the stacks encountered by xi while

evaluating 〈(t, σ) | π〉, i.e.

(txi{~x := σ})π• = [ρ•1; . . . ; ρ
•
m]

〈(t, σ) | π〉 −→∗ 〈(xi, σ1) | ρ1〉
...

...

−→∗ 〈(xi, σm) | ρm〉

Otherwise said, Dialectica tracks the Grab rule.
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Look

xx ≡ λπ. [π]

: C(A)→M C(A)

yx ≡ λπ. [ ]

: C(A)→M C(Γi)

(λy. t)x ≡ λ(y, π). tx π

: W(A)× C(B)→M C(Γi)

(t u)x ≡ λπ. (((snd t•)π u•) >>= ux) @ tx (u•, π)

: C(B)→M C(Γi)

(We can generalize this interpretation to algebraic datatypes.)
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Dialectica Reloaded

The standard Dialectica only returns one stack

 the �rst correct stack, dynamically tested

This is somehow a weak form of delimited control

 Inspectable stacks: ∼A vs. ¬A
 First class access to those stacks with (−)x
 Or through a control operator

D : (A→ B)→ A→ ∼B →M(∼A)

We can do the same thing with other calling conventions

 The protohistoric Dialectica was call-by-name
 Choose your favorite translation into LL!
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Something �shy

Actually, there is a subtle issue.

Produced stacks are the right ones...

They have the right multiplicity...

But we lost the sequential order of the KAM!

Because we used multisets (vs. lists)!

Alas, no way to solve it without changing totally Dialectica.

The faulty one is the application case (more generally duplication).

(t u)x ≡ λπ. (((snd t•)π u•) >>= ux) @ tx (u•, π)
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Towards CCω

What about more expressive systems?

We follow the computation intuition we presented

... and we apply Dialectica to dependent types

 subsuming �rst-order logic;
 a proof-relevant ∀;
 towards CCω and further!
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Main lines

We keep the CBN λ-calculus

 it can be lifted readily to dependent types
 A→ B becomes Πx : A.B
 A×B becomes Σx : A.B
 nothing special to do!

Design choice: types have no computational content (e�ect-free):

 a bit disappointing;
 but it works...
 and the usual CC presentation does not help much!
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Type translation

Idea: if A is a type,

A• ≡ (W(A),C(A)) : Type× Type

Ax ≡ λπ. [] (e�ect-free)

We get:

Type• ≡ (Type× Type, 1)

Typex ≡ λπ. [ ]

(Πy : A.B)• ≡

 (Πy : W(A).W(B))
×

(Πy : W(A).C(B)→M C(A))
,Σy : W(A).C(B)


(Πy : A.B)x ≡ λπ. [ ]

(We can obtain inductives + dependent destruction quite easily.)
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Conclusion

Actually, Dialectica is quite simple.

 ... at least once we removed encoding artifacts

It is an approximation of one two side-e�ects:

 A bit of delimited control (the (−)x part)
 (A form of exceptions (with ∅))

But is is partially wrong:

 it is oblivious of sequentiality
 how can we �x it?

The delimited control part can be lifted seamlessly to CCω

 as soon as we have a little bit more than CC
 we need a more computation-relevant presentation of CC
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Scribitur ad narrandum, non ad probandum

Thanks for your attention.
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