
From Gödel to Curry-Howard

Pierre-Marie Pédrot

PPS/πr2

TYPES 2014

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 1 / 29

Once upon a time...

Cataclysm: Gödel's incompleteness theorem (1931)

We do not �ght alienation with an alienated logic.

Justifying arithmetic di�erently

... Intuitionistic logic!

Double-negation translation (1933)
Dialectica (30's, published in 1958)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 2 / 29

Once upon a time...

Cataclysm: Gödel's incompleteness theorem (1931)

We do not �ght alienation with an alienated logic.

Justifying arithmetic di�erently

... Intuitionistic logic!

Double-negation translation (1933)
Dialectica (30's, published in 1958)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 2 / 29

Once upon a time...

Cataclysm: Gödel's incompleteness theorem (1931)

We do not �ght alienation with an alienated logic.

Justifying arithmetic di�erently

... Intuitionistic logic!

Double-negation translation (1933)
Dialectica (30's, published in 1958)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 2 / 29

Overview

What is Dialectica?

A translation from HA into HAω

That preserves intuitionistic content

But o�ers two semi-classical principles:

¬(∀n ∈ N.¬P n)
MP ∃n ∈ N. P n

(∀n ∈ N. P n)→ ∃m ∈ N. Qm
IP∃m ∈ N. (∀n ∈ N. P n)→ Qm

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 3 / 29

Overview

What is Dialectica?

A translation from HA into HAω

That preserves intuitionistic content

But o�ers two semi-classical principles:

¬(∀n ∈ N.¬P n)
MP ∃n ∈ N. P n

(∀n ∈ N. P n)→ ∃m ∈ N. Qm
IP∃m ∈ N. (∀n ∈ N. P n)→ Qm

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 3 / 29

Overview

What is Dialectica?

A translation from HA into HAω

That preserves intuitionistic content

But o�ers two semi-classical principles:

¬(∀n ∈ N.¬P n)
MP ∃n ∈ N. P n

(∀n ∈ N. P n)→ ∃m ∈ N. Qm
IP∃m ∈ N. (∀n ∈ N. P n)→ Qm

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 3 / 29

Parental advisory required

For the sake of exhaustivity, we'll take a glimpse at the historical

presentation of Dialectica.

Warning! Dusty logic inside

Translation acting on formulæ

Prevalence of negative connectives

First-order logic

Lots of arithmetic encoding

Does not preserve β-reduction

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 4 / 29

Parental advisory required

For the sake of exhaustivity, we'll take a glimpse at the historical

presentation of Dialectica.

Warning! Dusty logic inside

Translation acting on formulæ

Prevalence of negative connectives

First-order logic

Lots of arithmetic encoding

Does not preserve β-reduction

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 4 / 29

Dusty logics

Dialectica, Dawn of Curry-Howard:

` A 7→ ` AD ≡ ∃~u.∀~x.AD[~u, ~x]

A ∧B ∃~u~v. ∀~x ~y. AD[~u, ~x] ∧BD[~v, ~y]

A ∨B ∃~u~v b. ∀~x ~y. (b = 0 ∧AD[~u, ~x]) ∨ (b = 1 ∧BD[~v, ~y])

A→ B ∃~ϕ ~ψ. ∀~u ~y. AD[~u, ~ψ(~u, ~y)]→ BD[~ϕ(~u), ~y]

∀n.A[n] ∃~ϕ. ∀~xn. AD[~ϕ(n), ~x, n]

∃n.A[n] ∃~un. ∀~x. AD[~u, n, ~x]

Sound translation, blah blah blah.

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 5 / 29

A step into modernity

Let us forget the 50's, and rather jump directly to the 90's.

Take seriously the computational content

Dialectica as a typed object

Works of De Paiva, Hyland, etc.

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 6 / 29

Types, types, types!

A proof ` u : A is a term ` u : W(A) such that ∀x : C(A). u ⊥A x

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 7 / 29

Linearized Dialectica

We could give a computational content right now

But it would be ad-hoc, inheriting from the encodings of Dialectica

Let us use our our favorite tool: Linear Logic!

Call-by-name decomposition of the arrow:

A→ B ≡ !A(B

Now we will be translating LL formulæ into LJ ones.

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 8 / 29

Linearized Dialectica

We could give a computational content right now

But it would be ad-hoc, inheriting from the encodings of Dialectica

Let us use our our favorite tool: Linear Logic!

Call-by-name decomposition of the arrow:

A→ B ≡ !A(B

Now we will be translating LL formulæ into LJ ones.

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 8 / 29

Linearized Dialectica

We could give a computational content right now

But it would be ad-hoc, inheriting from the encodings of Dialectica

Let us use our our favorite tool: Linear Logic!

Call-by-name decomposition of the arrow:

A→ B ≡ !A(B

Now we will be translating LL formulæ into LJ ones.

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 8 / 29

Requirements

We will be interpreting the formulæ of linear logic:

A,B ::= A⊗B | A`B | !A | ?A | A⊕B | A&B

Su�cient to de�ne W(A), C(A) and ⊥A
Duality for free:

W(A⊥) ≡ C(A) and conversely
Orthogonal by complementation:

u 6⊥A x
x ⊥A⊥ u

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 9 / 29

Linear decomposition

W C

A→ B

{
W(A)→W(B)

C(B)→W(A)→ C(A)
W(A)× C(B)

A(B

{
W(A)→W(B)
C(B)→ C(A)

W(A)× C(B)

!A W(A) W(A)→ C(A)

u ⊥A ψ y → ϕu ⊥B y

(ϕ,ψ) ⊥A(B (u, y)

u ⊥A z u
u ⊥!A z

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 10 / 29

Linear decomposition

W C

A→ B

{
W(A)→W(B)

C(B)→W(A)→ C(A)
W(A)× C(B)

A(B

{
W(A)→W(B)
C(B)→ C(A)

W(A)× C(B)

!A W(A) W(A)→ C(A)

u ⊥A ψ y → ϕu ⊥B y

(ϕ,ψ) ⊥A(B (u, y)

u ⊥A z u
u ⊥!A z

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 10 / 29

Intepretation of the call-by-name λ-calculus

We're now trying to translate the λ-calculus through Dialectica.

First through the call-by-name linear decomposition into LL;

Then into LJ with the linear Dialectica.

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 11 / 29

Brief reminder

We recall here the call-by-name translation of the λ-calculus into LL:

[[A→ B]] ≡ ![[A]]([[B]]

[[A×B]] ≡ ![[A]]⊗ ![[B]]

[[A+B]] ≡ ![[A]]⊕ ![[B]]

[[Γ ` A]] ≡
⊗

![[Γ]] ` [[A]]

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 12 / 29

Prolegomena

In order to interpret the λ-calculus, we need the following:

Dummy term

For all type A, there exists ` ∅A : W(A).

Decidability of the orthogonality

The ⊥A relation is decidable. In particular, there must exist some λ-term

@A : W(A)→W(A)→ C(A)→W(A)

with the following behaviour:

u1@
A
x u2
∼= if u1 ⊥A x then u2 else u1

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 13 / 29

Did you solve the organization issue?

If we were to use the translation as is, we would bump up into an

unbearable bureaucracy. Instead, we are going to use the following

isomorphism.

[[x1 : Γ1, . . . xn : Γn ` t : A]] ∼= W(Γ)→

W(A)
C(A)→ C(Γ1)
...

C(A)→ C(Γn)

Which results in the following translations:

[[~x : Γ ` t : A]] ≡

~x : W(Γ) ` t• : W(A)

~x : W(Γ) ` tx1 : C(A)→ C(Γ1)
...

~x : W(Γ) ` txn : C(A)→ C(Γn)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 14 / 29

Did you solve the organization issue?

If we were to use the translation as is, we would bump up into an

unbearable bureaucracy. Instead, we are going to use the following

isomorphism.

[[x1 : Γ1, . . . xn : Γn ` t : A]] ∼= W(Γ)→

W(A)
C(A)→ C(Γ1)
...

C(A)→ C(Γn)

Which results in the following translations:

[[~x : Γ ` t : A]] ≡

~x : W(Γ) ` t• : W(A)

~x : W(Γ) ` tx1 : C(A)→ C(Γ1)
...

~x : W(Γ) ` txn : C(A)→ C(Γn)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 14 / 29

Translation

For (−)• :

x• ≡ x

(λx. t)• ≡
{
λx. t•

λπx. tx π

(t u)• ≡ (fst t•)u•

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 15 / 29

Translation II

For tx :

xx ≡ λπ. π

: C(A)→ C(A)

yx ≡ λπ.∅

: C(A)→ C(Γi)

(λy. t)x ≡ λ(y, π). tx π

: W(A)× C(B)→ C(Γi)

(t u)x ≡ λπ. ux ((snd t•)π u•) @π tx (u•, π)

: C(B)→ C(Γi)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 16 / 29

It just works... Does it?

Soundness

If ` t : A, then ` t• : W(A), and in addition, for all π : C(A), t• ⊥A π.

Sadness

The translation is still not stable by β-reduction.

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 17 / 29

It just works... Does it?

Soundness

If ` t : A, then ` t• : W(A), and in addition, for all π : C(A), t• ⊥A π.

Sadness

The translation is still not stable by β-reduction.

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 17 / 29

Almost there

Using ∅ and @ is another encoding of Dialectica.

We want multisets M (think of lists)!

We just change:

C(!A) ≡ W(A)→ C(A)
C(!A) ≡ W(A)→M C(A)

Term interpretation is almost unchanged:

∅ becomes the empty set;
@ becomes union
. . . plus a bit of monadic boilerplate

We do not need orthogonality anymore...

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 18 / 29

Almost there

Using ∅ and @ is another encoding of Dialectica.

We want multisets M (think of lists)!

We just change:

C(!A) ≡ W(A)→ C(A)
C(!A) ≡ W(A)→M C(A)

Term interpretation is almost unchanged:

∅ becomes the empty set;
@ becomes union
. . . plus a bit of monadic boilerplate

We do not need orthogonality anymore...

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 18 / 29

What about the computational content?

This gives us the following types for the translation:

[[~x : Γ ` t : A]] ≡

~x : W(Γ) ` t• : W(A)

~x : W(Γ) ` tx1 : C(A)→M C(Γ1)
...

~x : W(Γ) ` txn : C(A)→M C(Γn)

t• is clearly the lifting of t;

What on earth is txi?

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 19 / 29

What about the computational content?

This gives us the following types for the translation:

[[~x : Γ ` t : A]] ≡

~x : W(Γ) ` t• : W(A)

~x : W(Γ) ` tx1 : C(A)→M C(Γ1)
...

~x : W(Γ) ` txn : C(A)→M C(Γn)

t• is clearly the lifting of t;

What on earth is txi?

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 19 / 29

What about the computational content?

This gives us the following types for the translation:

[[~x : Γ ` t : A]] ≡

~x : W(Γ) ` t• : W(A)

~x : W(Γ) ` tx1 : C(A)→M C(Γ1)
...

~x : W(Γ) ` txn : C(A)→M C(Γn)

t• is clearly the lifting of t;

What on earth is txi?

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 19 / 29

An unbearable suspense

A small interlude of advertisement de�nitions to introduce you to the

KAM.

Closures c ::= (t, σ)
Environments σ ::= ∅ | σ + (x := c)
Stacks π ::= ε | c · π
Processes p ::= 〈c | π〉

Push 〈(t u, σ) | π〉 → 〈(t, σ) | (u, σ) · π〉
Pop 〈(λx. t, σ) | c · π〉 → 〈(t, σ + (x := c)) | π〉
Grab 〈(x, σ + (x := c)) | π〉 → 〈c | π〉
Garbage 〈(x, σ + (y := c)) | π〉 → 〈(x, σ) | π〉

The Krivine Machine™

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 20 / 29

An unbearable suspense

A small interlude of advertisement de�nitions to introduce you to the

KAM.

Closures c ::= (t, σ)
Environments σ ::= ∅ | σ + (x := c)
Stacks π ::= ε | c · π
Processes p ::= 〈c | π〉

Push 〈(t u, σ) | π〉 → 〈(t, σ) | (u, σ) · π〉
Pop 〈(λx. t, σ) | c · π〉 → 〈(t, σ + (x := c)) | π〉
Grab 〈(x, σ + (x := c)) | π〉 → 〈c | π〉
Garbage 〈(x, σ + (y := c)) | π〉 → 〈(x, σ) | π〉

The Krivine Machine™

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 20 / 29

Closures all the way down

Let:

a term ~x : Γ ` t : A

a closure σ ` Γ

a stack ` π : A⊥ (i.e. π• : C(A))

Then txi π
• is the multiset made of the stacks encountered by xi while

evaluating 〈(t, σ) | π〉, i.e.

(txi{~x := σ})π• = [ρ•1; . . . ; ρ
•
m]

〈(t, σ) | π〉 −→∗ 〈(xi, σ1) | ρ1〉
...

...

−→∗ 〈(xi, σm) | ρm〉

Otherwise said, Dialectica tracks the Grab rule.

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 21 / 29

Closures all the way down

Let:

a term ~x : Γ ` t : A

a closure σ ` Γ

a stack ` π : A⊥ (i.e. π• : C(A))

Then txi π
• is the multiset made of the stacks encountered by xi while

evaluating 〈(t, σ) | π〉, i.e.

(txi{~x := σ})π• = [ρ•1; . . . ; ρ
•
m]

〈(t, σ) | π〉 −→∗ 〈(xi, σ1) | ρ1〉
...

...

−→∗ 〈(xi, σm) | ρm〉

Otherwise said, Dialectica tracks the Grab rule.

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 21 / 29

Look

xx ≡ λπ. [π]

: C(A)→M C(A)

yx ≡ λπ. []

: C(A)→M C(Γi)

(λy. t)x ≡ λ(y, π). tx π

: W(A)× C(B)→M C(Γi)

(t u)x ≡ λπ. (((snd t•)π u•) >>= ux) @ tx (u•, π)

: C(B)→M C(Γi)

(We can generalize this interpretation to algebraic datatypes.)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 22 / 29

Dialectica Reloaded

The standard Dialectica only returns one stack

 the �rst correct stack, dynamically tested

This is somehow a weak form of delimited control

 Inspectable stacks: ∼A vs. ¬A
 First class access to those stacks with (−)x
 Or through a control operator

D : (A→ B)→ A→ ∼B →M(∼A)

We can do the same thing with other calling conventions

 The protohistoric Dialectica was call-by-name
 Choose your favorite translation into LL!

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 23 / 29

Dialectica Reloaded

The standard Dialectica only returns one stack

 the �rst correct stack, dynamically tested

This is somehow a weak form of delimited control

 Inspectable stacks: ∼A vs. ¬A
 First class access to those stacks with (−)x
 Or through a control operator

D : (A→ B)→ A→ ∼B →M(∼A)

We can do the same thing with other calling conventions

 The protohistoric Dialectica was call-by-name
 Choose your favorite translation into LL!

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 23 / 29

Dialectica Reloaded

The standard Dialectica only returns one stack

 the �rst correct stack, dynamically tested

This is somehow a weak form of delimited control

 Inspectable stacks: ∼A vs. ¬A
 First class access to those stacks with (−)x
 Or through a control operator

D : (A→ B)→ A→ ∼B →M(∼A)

We can do the same thing with other calling conventions

 The protohistoric Dialectica was call-by-name
 Choose your favorite translation into LL!

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 23 / 29

Something �shy

Actually, there is a subtle issue.

Produced stacks are the right ones...

They have the right multiplicity...

But we lost the sequential order of the KAM!

Because we used multisets (vs. lists)!

Alas, no way to solve it without changing totally Dialectica.

The faulty one is the application case (more generally duplication).

(t u)x ≡ λπ. (((snd t•)π u•) >>= ux) @ tx (u•, π)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 24 / 29

Something �shy

Actually, there is a subtle issue.

Produced stacks are the right ones...

They have the right multiplicity...

But we lost the sequential order of the KAM!

Because we used multisets (vs. lists)!

Alas, no way to solve it without changing totally Dialectica.

The faulty one is the application case (more generally duplication).

(t u)x ≡ λπ. (((snd t•)π u•) >>= ux) @ tx (u•, π)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 24 / 29

Something �shy

Actually, there is a subtle issue.

Produced stacks are the right ones...

They have the right multiplicity...

But we lost the sequential order of the KAM!

Because we used multisets (vs. lists)!

Alas, no way to solve it without changing totally Dialectica.

The faulty one is the application case (more generally duplication).

(t u)x ≡ λπ. (((snd t•)π u•) >>= ux) @ tx (u•, π)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 24 / 29

Something �shy

Actually, there is a subtle issue.

Produced stacks are the right ones...

They have the right multiplicity...

But we lost the sequential order of the KAM!

Because we used multisets (vs. lists)!

Alas, no way to solve it without changing totally Dialectica.

The faulty one is the application case (more generally duplication).

(t u)x ≡ λπ. (((snd t•)π u•) >>= ux) @ tx (u•, π)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 24 / 29

Something �shy

Actually, there is a subtle issue.

Produced stacks are the right ones...

They have the right multiplicity...

But we lost the sequential order of the KAM!

Because we used multisets (vs. lists)!

Alas, no way to solve it without changing totally Dialectica.

The faulty one is the application case (more generally duplication).

(t u)x ≡ λπ. (((snd t•)π u•) >>= ux) @ tx (u•, π)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 24 / 29

Something �shy

Actually, there is a subtle issue.

Produced stacks are the right ones...

They have the right multiplicity...

But we lost the sequential order of the KAM!

Because we used multisets (vs. lists)!

Alas, no way to solve it without changing totally Dialectica.

The faulty one is the application case (more generally duplication).

(t u)x ≡ λπ. (((snd t•)π u•) >>= ux) @ tx (u•, π)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 24 / 29

Towards CCω

What about more expressive systems?

We follow the computation intuition we presented

... and we apply Dialectica to dependent types

 subsuming �rst-order logic;
 a proof-relevant ∀;
 towards CCω and further!

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 25 / 29

Main lines

We keep the CBN λ-calculus

 it can be lifted readily to dependent types
 A→ B becomes Πx : A.B
 A×B becomes Σx : A.B
 nothing special to do!

Design choice: types have no computational content (e�ect-free):

 a bit disappointing;
 but it works...
 and the usual CC presentation does not help much!

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 26 / 29

Main lines

We keep the CBN λ-calculus

 it can be lifted readily to dependent types
 A→ B becomes Πx : A.B
 A×B becomes Σx : A.B
 nothing special to do!

Design choice: types have no computational content (e�ect-free):

 a bit disappointing;
 but it works...
 and the usual CC presentation does not help much!

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 26 / 29

Type translation

Idea: if A is a type,

A• ≡ (W(A),C(A)) : Type× Type

Ax ≡ λπ. [] (e�ect-free)

We get:

Type• ≡ (Type× Type, 1)

Typex ≡ λπ. []

(Πy : A.B)• ≡

 (Πy : W(A).W(B))
×

(Πy : W(A).C(B)→M C(A))
,Σy : W(A).C(B)

(Πy : A.B)x ≡ λπ. []

(We can obtain inductives + dependent destruction quite easily.)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 27 / 29

Type translation

Idea: if A is a type,

A• ≡ (W(A),C(A)) : Type× Type

Ax ≡ λπ. [] (e�ect-free)

We get:

Type• ≡ (Type× Type, 1)

Typex ≡ λπ. []

(Πy : A.B)• ≡

 (Πy : W(A).W(B))
×

(Πy : W(A).C(B)→M C(A))
,Σy : W(A).C(B)

(Πy : A.B)x ≡ λπ. []

(We can obtain inductives + dependent destruction quite easily.)

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 27 / 29

Conclusion

Actually, Dialectica is quite simple.

 ... at least once we removed encoding artifacts

It is an approximation of one two side-e�ects:

 A bit of delimited control (the (−)x part)
 (A form of exceptions (with ∅))

But is is partially wrong:

 it is oblivious of sequentiality
 how can we �x it?

The delimited control part can be lifted seamlessly to CCω

 as soon as we have a little bit more than CC
 we need a more computation-relevant presentation of CC

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 28 / 29

Conclusion

Actually, Dialectica is quite simple.

 ... at least once we removed encoding artifacts

It is an approximation of one two side-e�ects:

 A bit of delimited control (the (−)x part)
 (A form of exceptions (with ∅))

But is is partially wrong:

 it is oblivious of sequentiality
 how can we �x it?

The delimited control part can be lifted seamlessly to CCω

 as soon as we have a little bit more than CC
 we need a more computation-relevant presentation of CC

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 28 / 29

Conclusion

Actually, Dialectica is quite simple.

 ... at least once we removed encoding artifacts

It is an approximation of one two side-e�ects:

 A bit of delimited control (the (−)x part)
 (A form of exceptions (with ∅))

But is is partially wrong:

 it is oblivious of sequentiality
 how can we �x it?

The delimited control part can be lifted seamlessly to CCω

 as soon as we have a little bit more than CC
 we need a more computation-relevant presentation of CC

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 28 / 29

Conclusion

Actually, Dialectica is quite simple.

 ... at least once we removed encoding artifacts

It is an approximation of one two side-e�ects:

 A bit of delimited control (the (−)x part)
 (A form of exceptions (with ∅))

But is is partially wrong:

 it is oblivious of sequentiality
 how can we �x it?

The delimited control part can be lifted seamlessly to CCω

 as soon as we have a little bit more than CC
 we need a more computation-relevant presentation of CC

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 28 / 29

Scribitur ad narrandum, non ad probandum

Thanks for your attention.

Pierre-Marie Pédrot (PPS/πr2) From Gödel to Curry-Howard 14/05/2014 29 / 29

	Historical presentation
	A step into modernity
	Enters Linear Logic
	A syntactic presentation
	Towards CC

