
On the Complexity of Negative
Quantification

Aleksy Schubert, Paweł Urzyczyn, Konrad Zdanowski

Types 2014, Paris, May 14th, 2014

Prenex normal form

In classical logic:

Every formula is classically equivalent to one of the form:

Q1x1Q2x2 . . .Qkxk .Body(x,x2, . . . , xk),

where Body has no quantifiers.

Classification:

Formulas may be classified according to the quantifier prefix,
e.g. universal (∀∗) formulas are in Π1, and Π2 is ∀∗∃∗, etc.

In intuitionistic logic:

The prenex fragment is decidable in Pspace.

◦

Mints Hierarchy

Can we restore the prenex classification in intuitionistic logic?

Grigori Mints (1968): Yes, consider the quantifier prefix
a formula would get, if classically normalized.
(What counts is the alternation of quantifiers.)

For example, ∀ quantifiers occurring at positive positions
will remain ∀ in the prefix.

◦

Positive and Negative

+

– +

+ – – +

– + + – + – – +

◦

Mints Hierarchy

Π1 – All quantifiers at positive positions.
Σ1 – All quantifiers at negative positions.
Π2 – One alternation: some negative quantifiers

in scope of some positive ones.
Σ2 – One alternation: some positive quantifiers

in scope of some negative ones.

And so on.

◦

The language we study

To make things simpler, we consider first-order formulas
I with universal quantifiers and implications;
I without function symbols.

This fragment is known to be undecidable.

◦

Examples

(∀x P(x))→ Q is a Σ1 (negative) formula;

((∀x P(x))→ Q)→ R is a Π1 (positive) formula;

(∀x (∀y P(x)→ ∀z S(y , z)))→ R is a Σ2 formula.

◦

Complexity of Mints Hierarchy

I Π2 and Σ2 are undecidable.

I Π1 is co-2-NExptime-hard
(conjecture: super-elementary)

I Σ1 (this talk):

– Expspace-complete in general;

– co-Nexptime-complete with monadic predicates.

◦

Σ1 decision problem

Negative formulas are of shape

ϕ1 → · · · → ϕn → σ,

where σ is an atomic formula and ϕ1, . . . , ϕn are positive.

A Σ1 decision problem can be seen as

ϕ1, . . . , ϕn ` σ

(Derive an atom from positive assumptions.)

◦

Upper bound for Σ1

Proofs in Σ1 may use universal assumptions, which can
be instantiated. But introducing new variables is of no use.

If there is a proof then there is one where all eigenvariables are
free variables of the original formula ϕ.

Such proof can be constructed in exponential space.
(Every subformula of ϕ of size n has at most nn instances.)

◦

Towards the lower bound

Assumptions:

∀xyz (P(x, y , z, 1)→P(x, y , z, 0)),

∀xy (P(x, y , 1, 0)→P(x, y , 0, 1)),

∀x (P(x, 1, 0, 0)→P(x, 0, 1, 1)),

P(1, 0, 0, 0)→P(0, 1, 1, 1).

Goal: P(0, 0, 0, 0)

Towards the lower bound

Assumptions:

∀xyz (P(x, y , z, 1)→P(x, y , z, 0)),

∀xy (P(x, y , 1, 0)→P(x, y , 0, 1)),

∀x (P(x, 1, 0, 0)→P(x, 0, 1, 1)),

P(1, 0, 0, 0)→P(0, 1, 1, 1).

Goal: P(0, 0, 0, 1)

Towards the lower bound

Assumptions:

∀xyz (P(x, y , z, 1)→P(x, y , z, 0)),

∀xy (P(x, y , 1, 0)→P(x, y , 0, 1)),

∀x (P(x, 1, 0, 0)→P(x, 0, 1, 1)),

P(1, 0, 0, 0)→P(0, 1, 1, 1).

Goal: P(0, 0, 1, 0)

Towards the lower bound

Assumptions:

∀xyz (P(x, y , z, 1)→P(x, y , z, 0)),

∀xy (P(x, y , 1, 0)→P(x, y , 0, 1)),

∀x (P(x, 1, 0, 0)→P(x, 0, 1, 1)),

P(1, 0, 0, 0)→P(0, 1, 1, 1).

Goal: P(0, 0, 1, 1)

Towards the lower bound

Assumptions:

∀xyz (P(x, y , z, 1)→P(x, y , z, 0)),

∀xy (P(x, y , 1, 0)→P(x, y , 0, 1)),

∀x (P(x, 1, 0, 0)→P(x, 0, 1, 1)),

P(1, 0, 0, 0)→P(0, 1, 1, 1).

Goal: P(0, 1, 0, 0)

Towards the lower bound

Assumptions:

∀xyz (P(x, y , z, 1)→P(x, y , z, 0)),

∀xy (P(x, y , 1, 0)→P(x, y , 0, 1)),

∀x (P(x, 1, 0, 0)→P(x, 0, 1, 1)),

P(1, 0, 0, 0)→P(0, 1, 1, 1).

Goal: P(0, 1, 0, 1)

Towards the lower bound

Assumptions:

∀xyz (P(x, y , z, 1)→P(x, y , z, 0)),

∀xy (P(x, y , 1, 0)→P(x, y , 0, 1)),

∀x (P(x, 1, 0, 0)→P(x, 0, 1, 1)),

P(1, 0, 0, 0)→P(0, 1, 1, 1).

Goal: a few more steps. . .

Towards the lower bound

Assumptions:

∀xyz (P(x, y , z, 1)→P(x, y , z, 0)),

∀xy (P(x, y , 1, 0)→P(x, y , 0, 1)),

∀x (P(x, 1, 0, 0)→P(x, 0, 1, 1)),

P(1, 0, 0, 0)→P(0, 1, 1, 1).

Goal: P(1, 1, 1, 1)

Towards the lower bound

Assumptions:

∀xyz (P(x, y , z, 1)→P(x, y , z, 0)),

∀xy (P(x, y , 1, 0)→P(x, y , 0, 1)),

∀x (P(x, 1, 0, 0)→P(x, 0, 1, 1)),

P(1, 0, 0, 0)→P(0, 1, 1, 1).

Goal:

The proof search is as difficult as rewriting 0000 into 1111.

Another example:

∀xyzx ′y ′z ′ (D(x , x ′)→ D(y , y ′)→ D(z , z ′)→
((P(x ′, y ′, z ′, 3)→P(x ′, y ′, z ′, 2))→P(x , y , z , 1))→P(x , y , z , 0))

∀xyx ′y ′ (D(x , x ′)→ D(y , y ′)→
((P(x ′, y ′, 3, 2)→P(x ′, y ′, 2, 3))→P(x , y , 1, 0))→P(x , y , 0, 1))

∀xx ′ (D(x , x ′)→
((P(x ′, 3, 2, 2)→P(x ′, 2, 3, 3))→P(x , 1, 0, 0))→P(x , 0, 1, 1))

(P(3, 2, 2, 2)→ (2, 3, 3, 3))→ P(1, 0, 0, 0)→P(0, 1, 1, 1),

P(2, 2, 2, 2)→P(1, 1, 1, 1), P(3, 3, 3, 3), D(2, 0), D(3, 1).

Goal: P(0, 0, 0, 0)

◦

Another example:

∀xyzx ′y ′z ′ (D(x , x ′)→ D(y , y ′)→ D(z , z ′)→
((P(x ′, y ′, z ′, 3)→P(x ′, y ′, z ′, 2))→P(x , y , z , 1))→P(x , y , z , 0))

∀xyx ′y ′ (D(x , x ′)→ D(y , y ′)→
((P(x ′, y ′, 3, 2)→P(x ′, y ′, 2, 3))→P(x , y , 1, 0))→P(x , y , 0, 1))

∀xx ′ (D(x , x ′)→
((P(x ′, 3, 2, 2)→P(x ′, 2, 3, 3))→P(x , 1, 0, 0))→P(x , 0, 1, 1))

(P(3, 2, 2, 2)→ (2, 3, 3, 3))→ P(1, 0, 0, 0)→P(0, 1, 1, 1),

P(2, 2, 2, 2)→P(1, 1, 1, 1), P(3, 3, 3, 3), D(2, 0), D(3, 1).

Goal: P(0, 0, 0, 1)

New assumptions: P(2, 2, 2, 3)→ P(2, 2, 2, 2),

◦

Another example:

∀xyzx ′y ′z ′ (D(x , x ′)→ D(y , y ′)→ D(z , z ′)→
((P(x ′, y ′, z ′, 3)→P(x ′, y ′, z ′, 2))→P(x , y , z , 1))→P(x , y , z , 0))

∀xyx ′y ′ (D(x , x ′)→ D(y , y ′)→
((P(x ′, y ′, 3, 2)→P(x ′, y ′, 2, 3))→P(x , y , 1, 0))→P(x , y , 0, 1))

∀xx ′ (D(x , x ′)→
((P(x ′, 3, 2, 2)→P(x ′, 2, 3, 3))→P(x , 1, 0, 0))→P(x , 0, 1, 1))

(P(3, 2, 2, 2)→ (2, 3, 3, 3))→ P(1, 0, 0, 0)→P(0, 1, 1, 1),

P(2, 2, 2, 2)→P(1, 1, 1, 1), P(3, 3, 3, 3), D(2, 0), D(3, 1).

Goal: P(0, 0, 1, 0)

New assumptions: P(2, 2, 2, 3)→ P(2, 2, 2, 2),
P(2, 2, 3, 2)→ P(2, 2, 2, 3),

◦

Another example:

∀xyzx ′y ′z ′ (D(x , x ′)→ D(y , y ′)→ D(z , z ′)→
((P(x ′, y ′, z ′, 3)→P(x ′, y ′, z ′, 2))→P(x , y , z , 1))→P(x , y , z , 0))

∀xyx ′y ′ (D(x , x ′)→ D(y , y ′)→
((P(x ′, y ′, 3, 2)→P(x ′, y ′, 2, 3))→P(x , y , 1, 0))→P(x , y , 0, 1))

∀xx ′ (D(x , x ′)→
((P(x ′, 3, 2, 2)→P(x ′, 2, 3, 3))→P(x , 1, 0, 0))→P(x , 0, 1, 1))

(P(3, 2, 2, 2)→ (2, 3, 3, 3))→ P(1, 0, 0, 0)→P(0, 1, 1, 1),

P(2, 2, 2, 2)→P(1, 1, 1, 1), P(3, 3, 3, 3), D(2, 0), D(3, 1).

Goal: P(0, 0, 1, 1)

New assumptions: P(2, 2, 2, 3)→ P(2, 2, 2, 2),
P(2, 2, 3, 2)→ P(2, 2, 2, 3), P(2, 3, 2, 2)→ P(3, 2, 2, 2),

◦

Another example:

∀xyzx ′y ′z ′ (D(x , x ′)→ D(y , y ′)→ D(z , z ′)→
((P(x ′, y ′, z ′, 3)→P(x ′, y ′, z ′, 2))→P(x , y , z , 1))→P(x , y , z , 0))

∀xyx ′y ′ (D(x , x ′)→ D(y , y ′)→
((P(x ′, y ′, 3, 2)→P(x ′, y ′, 2, 3))→P(x , y , 1, 0))→P(x , y , 0, 1))

∀xx ′ (D(x , x ′)→
((P(x ′, 3, 2, 2)→P(x ′, 2, 3, 3))→P(x , 1, 0, 0))→P(x , 0, 1, 1))

(P(3, 2, 2, 2)→ (2, 3, 3, 3))→ P(1, 0, 0, 0)→P(0, 1, 1, 1),

P(2, 2, 2, 2)→P(1, 1, 1, 1), P(3, 3, 3, 3), D(2, 0), D(3, 1).

Goal: P(0, 1, 0, 0)

New assumptions: P(2, 2, 2, 3)→ P(2, 2, 2, 2),
P(2, 2, 3, 2)→ P(2, 2, 2, 3), P(2, 3, 2, 2)→ P(3, 2, 2, 2),
P(3, 2, 2, 2)→ P(2, 3, 3, 3),

◦

Another example:

∀xyzx ′y ′z ′ (D(x , x ′)→ D(y , y ′)→ D(z , z ′)→
((P(x ′, y ′, z ′, 3)→P(x ′, y ′, z ′, 2))→P(x , y , z , 1))→P(x , y , z , 0))

∀xyx ′y ′ (D(x , x ′)→ D(y , y ′)→
((P(x ′, y ′, 3, 2)→P(x ′, y ′, 2, 3))→P(x , y , 1, 0))→P(x , y , 0, 1))

∀xx ′ (D(x , x ′)→
((P(x ′, 3, 2, 2)→P(x ′, 2, 3, 3))→P(x , 1, 0, 0))→P(x , 0, 1, 1))

(P(3, 2, 2, 2)→ (2, 3, 3, 3))→ P(1, 0, 0, 0)→P(0, 1, 1, 1),

P(2, 2, 2, 2)→P(1, 1, 1, 1), P(3, 3, 3, 3), D(2, 0), D(3, 1).

Goal: P(0, 1, 0, 1)

New assumptions: P(2, 2, 2, 3)→ P(2, 2, 2, 2),
P(2, 2, 3, 2)→ P(2, 2, 2, 3), P(2, 3, 2, 2)→ P(3, 2, 2, 2),
P(3, 2, 2, 2)→ P(2, 3, 3, 3), P(3, 2, 2, 3)→ P(3, 2, 2, 2),

◦

Another example:

∀xyzx ′y ′z ′ (D(x , x ′)→ D(y , y ′)→ D(z , z ′)→
((P(x ′, y ′, z ′, 3)→P(x ′, y ′, z ′, 2))→P(x , y , z , 1))→P(x , y , z , 0))

∀xyx ′y ′ (D(x , x ′)→ D(y , y ′)→
((P(x ′, y ′, 3, 2)→P(x ′, y ′, 2, 3))→P(x , y , 1, 0))→P(x , y , 0, 1))

∀xx ′ (D(x , x ′)→
((P(x ′, 3, 2, 2)→P(x ′, 2, 3, 3))→P(x , 1, 0, 0))→P(x , 0, 1, 1))

(P(3, 2, 2, 2)→ (2, 3, 3, 3))→ P(1, 0, 0, 0)→P(0, 1, 1, 1),

P(2, 2, 2, 2)→P(1, 1, 1, 1), P(3, 3, 3, 3), D(2, 0), D(3, 1).

Goal: a few more steps. . .

New assumptions: P(2, 2, 2, 3)→ P(2, 2, 2, 2),
P(2, 2, 3, 2)→ P(2, 2, 2, 3), P(2, 3, 2, 2)→ P(3, 2, 2, 2),
P(3, 2, 2, 2)→ P(2, 3, 3, 3), P(3, 2, 2, 3)→ P(3, 2, 2, 2),
. ,

◦

Another example:

∀xyzx ′y ′z ′ (D(x , x ′)→ D(y , y ′)→ D(z , z ′)→
((P(x ′, y ′, z ′, 3)→P(x ′, y ′, z ′, 2))→P(x , y , z , 1))→P(x , y , z , 0))

∀xyx ′y ′ (D(x , x ′)→ D(y , y ′)→
((P(x ′, y ′, 3, 2)→P(x ′, y ′, 2, 3))→P(x , y , 1, 0))→P(x , y , 0, 1))

∀xx ′ (D(x , x ′)→
((P(x ′, 3, 2, 2)→P(x ′, 2, 3, 3))→P(x , 1, 0, 0))→P(x , 0, 1, 1))

(P(3, 2, 2, 2)→ (2, 3, 3, 3))→ P(1, 0, 0, 0)→P(0, 1, 1, 1),

P(2, 2, 2, 2)→P(1, 1, 1, 1), P(3, 3, 3, 3), D(2, 0), D(3, 1).

Goal: P(1, 1, 1, 1)

New assumptions: P(2, 2, 2, 3)→ P(2, 2, 2, 2),
P(2, 2, 3, 2)→ P(2, 2, 2, 3), P(2, 3, 2, 2)→ P(3, 2, 2, 2),
P(3, 2, 2, 2)→ P(2, 3, 3, 3), P(3, 2, 2, 3)→ P(3, 2, 2, 2),
. , P(3, 3, 3, 3)→ P(3, 3, 3, 2)

◦

Σ1 and Expspace

Theorem
The problem to decide if a given Σ1 formula is derivable in
intuitionistic predicate calculus is Expspace-complete.

Unary and multi-ary predicates (a diggression)

Can we translate this example to a monadic signature?

Not really: it is essential that the goals to prove represent
strings being rewritten.

What counts are the targets of non-atomic formulas.
More precisely: if Γ ` σ is a decision problem where

– all targets of non-atomic formulas in Γ are unary or nullary,

then one can find an equivalent monadic problem Γ′ ` σ′.

◦

Alternation

Existential choice
because there may be more than one usable assumption.

Universal choice
because an assumption may have more than one premise.

(To derive P from ϕ→ ψ → P
one has to prove both ϕ and ψ.)

◦

The monadic case

Theorem: The decision problem for Σ1 with at most unary
predicates is co-Nexptime-complete.

Proof:

1. A Σ1 formula can express the halting problem for
a Branching Turing Machine (alternating Turing Machine
without existential states) working in exponential time.

2. A non-provable Σ1 formula has an exponential size
refutation.

◦

Branching Turing Machine (BTM)

A branching Turing Machine only has deterministic and
universal states. Its computation is a tree which may consist
of many branches, but there is only one computation for any
given input.

This means that a BTM is like a deterministic tree automaton.

Yet differently: the problem of finding an accepting
computation of a BTM has at most one solution.

◦

Branching Turing Machine (BTM)

A computation of BTM is a tree of machine configurations,
each configuration consisting of a number of tape cells.

It can be seen as a finite graph of tape cells.
For a given input this graph is unique.

Such a graph can be reconstructed using a nondeterministic
loop (after constructing an initial node):

1. Add a new node n to the graph;
2. Nondeterministically set the label of n;
3. Verify the correctness of the label;
4. If n is the last node then stop else go to 1.

◦

Simulating a BTM

Reconstruction of a computation of BTM:

1. Add a new node n to the graph;
2. Nondeterministically set the label of n;
3. Verify the correctness of the guess;
4. If n is the last node then stop else go to 1.

This can be simulated by a proof-construction process
for a Σ1 decision problem, where all non-atomic formulas
have the same nullary target loop.

With no multi-ary targets, the decision problem can be
designed as a unary decision problem.

◦

Monadic lower bound

The decision problem for monadic Σ1 is hard for the class of
languages recognized by exponential time bounded branching
Turing machines. In other words, it is co-Nexptime-hard.

NB: the positive assumption formulas use in the coding
are actually universal formulas (all quantifiers occur at
the beginning).

◦

Towards monadic upper bound

The process of deciding a judgment Γ ` φ can be seen as
a game between an existential player E, trying to prove the
judgment, and a universal player A, trying to refute it.

Player E attempts to construct a long normal proof. At every
step he chooses an assumption ψ ∈ Γ to be used in the next
step. Player A then determines the next goal, choosing one of
the premises of ψ. Player E wins when A has no choice.

◦

Example

For example, suppose in position Γ ` P(x) player E chooses
the formula ∀y((R(z)→ Q(y))→ R(y)→ P(y)) from Γ.

Then player A chooses the next position.
It is either Γ ` R(x), or Γ,R(z) ` Q(x).

◦

Refutations

The game is determined. One of the players must have
a strategy: there is either a proof or a refutation.

What is a refutation?

It is an infinite tree of judgments representing
a strategy of player A. Every node has as many children
as there are possible choices of E. Each child represents
a move of A in response to some choice of E.

◦

The size of a refutation

I If a judgment Γ ` σ occurs in a refutation of an initial
formula of size n then the size of Γ is exponential in n.

I There is at most n2 possible choices of σ.

I Every node has at most exponentially many children.

I A refutation is infinite but can be trimmed to a finite
tree, of at most exponential depth...

I ...with only polynomial number of branchings.

◦

Conclusions

I The decision problem for Σ1 is Exspspace-complete.
I Important: only free variables in the original formula are

used.
I Important: the number of targets is exponential.
I The decision problem for Σ1 with at most unary

predicates is co-Nexptime-complete.
I Important: small number of targets.

◦

