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Definition (Markov’s Principle, MP)

For any decidable predicate:

¬¬∃n : N,P(n)→ ∃n : N,P(n).



Definition (Limited Principle of Omniscience (LPO))

For any decidable predicate P, we have

(∀n : N,P(n)) ∨ (∃n : N,¬P(n)).

Definition (Weak Limited Principle of Omniscience (WLPO))

For any decidable predicate P, we have

(∀n : N,P(n)) ∨ (¬∀n : N,P(n)).



Fact

(MP ∧WLPO) ⇐⇒ LPO



Definition (Eventually always false (Eaf))

∃n : N, ∀m : N,m ≥ n→ f (m) = 0.

0 1 0 0 1 0 1 0 0 . . .



Definition (Bounded(f ))

∃n : N,∀k : N, NrOf1f k ≤ n.

E.g with n = 5 :

0 1 0 0 1 0 1 0 0 . . .



Definition (Sb)

∃n : N, (∀k : N, NrOf1f k ≤ n ∧ ¬∀k : N, NrOf1f k ≤ n − 1)

E.g with n = 5:

0 1 0 0 1 0 1 0 0 . . .
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