Some Varieties of Constructive Finiteness

Erik Parmann

University of Bergen

Presented at: TYPES 2014

May 12, 2014

围 Thierry Coquand and Arnaud Spiwack.
Constructively finite?
In Contribuciones científicas en honor de Mirian Andrés Gómez, pages 217-230. Universidad de La Rioja, 2010.

R Marc Bezem, Keiko Nakata, and Tarmo Uustalu. On streams that are finitely red. Logical Methods in Computer Science, 8(4), 2012.

Enumerated (Kuratowski finite)

Enumerated (Kuratowski finite)
Sum and Product

Enumerated (Kuratowski finite) $\left.\right|_{\text {Bounded Size }}$

Sum and Product

Sum and Product

Noetherian

Streamless

Enumerated (Kuratowski finite) $\underbrace{}_{\text {Bounded Size }}$

Noetherian

Streamless

Sum and Product

Sum and Product

Sum and Product (decidable eq)

Enumerated (Kuratowski finite) $\left.\right|_{\text {Bounded Size }}$

Noetherian

Streamless

Sum and Product

Sum and Product

Sum and Product (decidable eq)

Sum and Product (decidable eq)

Streamless is closed under product (given decidable equality):

Streamless is closed under product (given decidable equality):

Producing n equal elements:

Producing n equal elements:

Producing n equal elements:

Producing n equal elements:

Producing n equal elements:

Producing n equal elements:

Producing n equal elements:

Producing n equal elements:

Producing n equal elements:

Streamless is closed under product (given decidable equality):

Streamless and function extensionality implies decidable equality:

$$
0=0
$$

Streamless and function extensionality implies decidable equality:

$$
\text { (1) } \stackrel{?}{=} \quad 2
$$

Streamless and function extensionality implies decidable equality:

$$
(1) \stackrel{?}{=} \quad 2
$$

Streamless and function extensionality implies decidable equality:

$$
\text { (1) } \stackrel{?}{=} \quad 2
$$

Streamless and function extensionality implies decidable equality:

$$
(1) \stackrel{?}{=} \quad 2
$$

Streamless and function extensionality implies decidable equality:

$$
(1 \stackrel{?}{=} \quad 2
$$

TODO:

- Can it work withouth decidable equality?
- With Markov's Principle?
- If one of the sets are Noetherian?

TODO:

- Can it work withouth decidable equality?
- With Markov's Principle?
- If one of the sets are Noetherian?
- Look into natural definitions of finiteness which does not give decidable equality with function extensionality.

> Thanks,
> http://folk.uib.no/epa095/

Definition (Markov's Principle, MP)

For any decidable predicate:

$$
\neg \neg \exists n: \mathbb{N}, P(n) \rightarrow \exists n: \mathbb{N}, P(n)
$$

Definition (Limited Principle of Omniscience (LPO))

For any decidable predicate P, we have

$$
(\forall n: \mathbb{N}, P(n)) \vee(\exists n: \mathbb{N}, \neg P(n))
$$

Definition (Weak Limited Principle of Omniscience (WLPO))

For any decidable predicate P, we have

$$
(\forall n: \mathbb{N}, P(n)) \vee(\neg \forall n: \mathbb{N}, P(n))
$$

Fact
$(M P \wedge W L P O) \Longleftrightarrow L P O$

Definition (Eventually always false (Eaf))

$$
\exists n: \mathbb{N}, \forall m: \mathbb{N}, m \geq n \rightarrow f(m)=0
$$

Definition (Bounded (f))

$\exists n: \mathbb{N}, \forall k: \mathbb{N}, \operatorname{NrOf} 1_{f} k \leq n$.

E.g with $n=5$:

0	1	0	0	1	0	1	0	0	\cdots

Definition (Sb)

$$
\exists n: \mathbb{N},\left(\forall k: \mathbb{N}, \operatorname{NrOf} 1_{f} k \leq n \wedge \neg \forall k: \mathbb{N}, \operatorname{NrOf} 1_{f} k \leq n-1\right)
$$

E.g with $n=5$:

0	1	0	0	1	0	1	0	0	\cdots

$$
\exists n: \mathbb{N}, \forall m: \mathbb{N}, m \geq n \rightarrow f(m)=0
$$

$$
\exists n: \mathbb{N}, \forall k: \mathbb{N}, \operatorname{NrOf} 1_{f} k \leq n .
$$

Definition (Limited Principle of Omniscience, LPO)

$$
(\forall n: \mathbb{N}, P(n)) \vee(\exists n: \mathbb{N}, \neg P(n))
$$

$$
\begin{gathered}
\exists n: \mathbb{N}, \forall m: \mathbb{N}, m \geq n \rightarrow f(m)=0 . \\
\exists n: \mathbb{N},\left(\forall k: \mathbb{N}, \operatorname{NrOf} 1_{f} k \leq n \wedge \neg \forall k: \mathbb{N}, \operatorname{NrOf} 1_{f} k \leq n-1\right) \\
\exists n: \mathbb{N}, \forall k: \mathbb{N}, \operatorname{NrOf} 1_{f} k \leq n .
\end{gathered}
$$

$$
\exists n: \mathbb{N}, \forall m: \mathbb{N}, m \geq n \rightarrow f(m)=0
$$

$$
\exists n: \mathbb{N}, \forall k: \mathbb{N}, \operatorname{NrOf} 1_{f} k \leq n .
$$

Definition (Markov's Principle, MP)

$$
\neg \neg \exists n: \mathbb{N}, P(n) \rightarrow \exists n: \mathbb{N}, P(n)
$$

$$
\exists n: \mathbb{N}, \forall m: \mathbb{N}, m \geq n \rightarrow f(m)=0
$$

$$
\exists n: \mathbb{N}, \forall k: \mathbb{N}, \operatorname{NrOf} 1_{f} k \leq n .
$$

Definition (Weak Limited Principle of Omniscience (WLPO))

$$
(\forall n: \mathbb{N}, P(n)) \vee(\neg \forall n: \mathbb{N}, P(n))
$$

