
Type system for automated generation of

reversible circuits

Benôıt Valiron, PPS, Paris Diderot, France

TYPES 2014

Plan of the talk

• Reversible circuits.

• Compiling a PCF-like language into reversible circuits.

• The proposed type system.

• Future Work.

Benot Valiron – TYPES 2014 2

Reversible circuits

• Booleans flow on wires from left to right;

• gates modifies the booleans as they moved through;

• gates are “reversible”: to reverse, have the time flow backward;

• no loops, no conditional escape.

• Very useful as quantum oracles.

Benot Valiron – TYPES 2014 3

The building blocks

x x

Benot Valiron – TYPES 2014 4

The building blocks

x not(x)

Benot Valiron – TYPES 2014 4

The building blocks

x x + 1

Benot Valiron – TYPES 2014 4

The building blocks

x

y

x

x + y

Benot Valiron – TYPES 2014 4

The building blocks

y

z

x

y

z

x + yz

Benot Valiron – TYPES 2014 4

The building blocks

y

z

t

x

y

z

t

x + yzt

Benot Valiron – TYPES 2014 4

The building blocks

0 0

Benot Valiron – TYPES 2014 4

They can be combined

x

0

?

?

Benot Valiron – TYPES 2014 5

They can be combined

x

0

x

x

Benot Valiron – TYPES 2014 5

The problem

A circuit is a linear list of gates (no loop!).

Given a function {0, 1}n → {0, 1}m, can you find a circuit that

“compute” the function?

Hopefully as automatically as possible as quantum oracles can be quite

large and complex.

Benot Valiron – TYPES 2014 6

A compositional approach

Landauer embeddings: circuits of the form

computing f : Input −→ Output.

Benot Valiron – TYPES 2014 7

A compositional approach

Landauer embeddings can be composed

x
f−−−−→ f(x)

g−−−−→ g(f(x))

corresponds to

Benot Valiron – TYPES 2014 8

A compositional approach

Two elementary Landauer embeddings for not and and:

Benot Valiron – TYPES 2014 9

A compositional approach

Example: the disjunction

(x, y) 7−→ not (and (notx) (not y))

gives the circuit

Benot Valiron – TYPES 2014 10

Circuits as operational semantics

Consider a lambda-calculus

M,N ::= x | λx.M | MN | and | not | · · ·
A,B ::= bit | A → B

An abstract machine is

(C,L,M)

• C: a circuit ;

• M : a term ;

• L: a function mapping free variables (of type bit) of M to wires.

Benot Valiron – TYPES 2014 11

Circuits as operational semantics

Example: the abstract machine for the term

x, y : bit ⊢ (((λz.λt.λs.s (and t z))(not x))(not y)) not : bit

is initialized with

M = (((λz.λt.λs.s (and t z))(not x))(not y)) not

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = (((λz.λt.λs.s (and t z))(not x))(not y)) not

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = (((λz.λt.λs.s (and t z))(not x))(not y)) not

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = (((λz.λt.λs.s (and t z)) z1)(not y)) not

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = (((λz.λt.λs.s (and t z)) z1)(not y)) not

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = ((λt.λs.s (and t z1))(not y)) not

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = ((λt.λs.s (and t z1))(not y)) not

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = ((λt.λs.s (and t z1)) z2) not

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = ((λt.λs.s (and t z1)) z2) not

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = (λs.s (and z2 z1)) not

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = (λs.s (and z2 z1)) not

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = not (and z2 z1)

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = not (and z2 z1)

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = not z3

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = not z3

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Evaluating the machine in call-by-value. . .

M = z4

C is

Benot Valiron – TYPES 2014 12

Circuits as operational semantics

Note:

• this is the same circuit for not (and (notx) (not y)),

• the wire z3 is not visible to the program.

Benot Valiron – TYPES 2014 13

Verbosity

can then be replaced with

Benot Valiron – TYPES 2014 14

Verbosity

In general, if D[−] is in evaluation position:

• If the wire z is used more than once in the program(
, D[not z]

)
−→

(
, D[z′]

)
• Else:(

, D[not z]

)
−→

(
, D[z]

)
Easy to track for not (and (notx) (not y)),

not so much for (((λz.λt.λs.s (and t z))(not x))(not y)) not.

Benot Valiron – TYPES 2014 15

Typing wires

The problem comes from the fact that wire occupancy by a control is

not monitored. Types can be used for that purpose.

Idea: Wires are described as sorts for the type bit, and sorts are

themselves typed with the “occupancy level” of the wire.

M,N ::= x | λx.M | MN | and | notα . . .

A,B ::= α | A → B

τ ::= 0 | 1 | +.

and sorts enjoy a transitive relation:

0

<

�� < // 1
< // +

<

��

Benot Valiron – TYPES 2014 16

Typing wires

α1 : τ1 . . . αn : τn | x1 : A1 . . . xm : Am ⊢ M : B

|∆| = |A|
∆ | x : A ⊢ x : A

∆ | Γ, x : A ⊢ M : B

∆ | Γ ⊢ λx.M : A → B

Γ1 | ∆ ⊢ N : A

Γ2 | ∆ ⊢ M : A → B

Γ1 ∪ Γ2 | ∆ ⊢ MN : B

(plus weakening) where

(α1 : τ1 . . . αn : τn, β1 : σ1 . . . βm : σm) ∪
(α1 : τ ′1 . . . αn : τ ′n, βm+1 : σm+1 . . . βk : σk)

= (α1 : max(τ1, τ
′
1) . . . αn : max(τn, τ

′
n), β1 : σ1 . . . βk : σk)

with max(τ, τ ′) = min(σ | τ, τ ′ ≤ σ, σ > τ or σ > τ ′).

Benot Valiron – TYPES 2014 17

Typing wires

Example:

α : 0 | x : α ⊢ M : A → B α : 0 | x : α ⊢ N : A

α : max(0, 0) | x : α ⊢ MN : B

Benot Valiron – TYPES 2014 18

Typing wires

Example:

α : 0 | x : α ⊢ M : A → B α : 0 | x : α ⊢ N : A

α : 0 | x : α ⊢ MN : B

Since 0 ≤ 0 and 0 > 0.

That is, the wire α is not used in the circuit generated by MN .

Benot Valiron – TYPES 2014 18

Typing wires

Example:

α : 1 | x : α ⊢ M : A → B α : 0 | x : α ⊢ N : A

α : max(1, 0) | x : α ⊢ MN : B

Benot Valiron – TYPES 2014 19

Typing wires

Example:

α : 1 | x : α ⊢ M : A → B α : 0 | x : α ⊢ N : A

α : 1 | x : α ⊢ MN : B

Since 0, 1 ≤ 1 and 1 > 0.

That is, the wire α is used only once in the circuit generated by MN .

Benot Valiron – TYPES 2014 19

Typing wires

Example:

α : 1 | x : α ⊢ M : A → B α : 1 | x : α ⊢ N : A

α : max(1, 1) | x : α ⊢ MN : B

Benot Valiron – TYPES 2014 20

Typing wires

Example:

α : 1 | x : α ⊢ M : A → B α : 1 | x : α ⊢ N : A

α : + | x : α ⊢ MN : B

Since 1 ≤ +, 1 ̸< 1 and + > 1.

The wire α is used more than once in the circuit generated by MN .

Benot Valiron – TYPES 2014 20

Types and constant terms

τ1 ≥ 1

α : τ1, β : τ2 | ∅ ⊢ notα : α → β

τ1, τ2 ≥ 1

α : τ1, β : τ2, γ : τ3 | ∅ ⊢ and : α → β → γ

Benot Valiron – TYPES 2014 21

Using types in the reduction

Suppose that ∆, β : τ | Γ ⊢ M : α, and that M = D[notβ z] is in

evaluation position.

• If τ = +, then(
, D[notβ z]

)
−→

(
, D[z′]

)
• Else:(

, D[notβ z]

)
−→

(
, D[z]

)

Benot Valiron – TYPES 2014 22

Revisiting the example

Both of the terms notϵ (and (notα x) (notβ y))

and (((λz.λt.λs.s (and t z))(notα x))(notβ y)) notϵ

can be typed with the context

. . . , α : +, β : +, ϵ : 1, γ : 0 | x : α, y : β ⊢ − : γ

and the circuit is

Benot Valiron – TYPES 2014 23

Revisiting the example

Both of the terms notϵ (and (notα x) (notβ y))

and (((λz.λt.λs.s (and t z))(notα x))(notβ y)) notϵ

can also be typed with the context

. . . , α : 1, β : 1, ϵ : 1, γ : 0 | x : α, y : β ⊢ − : γ

and the circuit is instead

but note that we use the fact that x and y are only used once each.

Benot Valiron – TYPES 2014 24

The result

For a function x1 : bit, . . . xn : bit ⊢ M : bit, we therefore have

three operational semantics:

• Regular call-by-value beta-reduction when x1 . . . xn are fed with

concrete booleans.

• Verbose circuit-generation.

• Smart circuit-generation.

They all correspond to the same boolean function, and the verbose

circuit is obviously always larger than the smart one.

Benot Valiron – TYPES 2014 25

Conclusion and future steps

• A step towards automation in the design of quantum oracle.

• Possible extensions:

– parametricity in wire naming;

– lists (e.g. of bits);

– in general: complete PCF.

• It does not however capture all possible optimizations:

– eta-conversion (code factorization);

– evaluation of constants (e.g. not true).

• How to measure ”smartness” ?

Benot Valiron – TYPES 2014 26

