
Inductive Construction in NuprlType

Theory using Bar Induction

Mark Bickford, Robert Constable

May 12, 2014

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 1/67

Introduction: Two questions

What are the fundamental induction principles?

What are the fundamental type constructors?

We are giving two talks on Nuprl and the type theory it
implements (CTT 2014). In CTT14 we can reason about
untyped computation using a version of Kleene equality. We
reason about partial recursive functions using partial types
that contain divergent terms.

This talk is about why we have added Brouwer’s Bar
Induction and how it answers the first question.

The talk tomorrow proposes an answer to the second
question and shows how we can define the CTT14 types,
including the partial types, from a few very basic type
constructors.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 2/67

Introduction: Two questions

What are the fundamental induction principles?

What are the fundamental type constructors?

We are giving two talks on Nuprl and the type theory it
implements (CTT 2014). In CTT14 we can reason about
untyped computation using a version of Kleene equality. We
reason about partial recursive functions using partial types
that contain divergent terms.

This talk is about why we have added Brouwer’s Bar
Induction and how it answers the first question.

The talk tomorrow proposes an answer to the second
question and shows how we can define the CTT14 types,
including the partial types, from a few very basic type
constructors.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 3/67

Introduction: Two questions

What are the fundamental induction principles?

What are the fundamental type constructors?

We are giving two talks on Nuprl and the type theory it
implements (CTT 2014). In CTT14 we can reason about
untyped computation using a version of Kleene equality. We
reason about partial recursive functions using partial types
that contain divergent terms.

This talk is about why we have added Brouwer’s Bar
Induction and how it answers the first question.

The talk tomorrow proposes an answer to the second
question and shows how we can define the CTT14 types,
including the partial types, from a few very basic type
constructors.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 4/67

Introduction: Two questions

What are the fundamental induction principles?

What are the fundamental type constructors?

We are giving two talks on Nuprl and the type theory it
implements (CTT 2014). In CTT14 we can reason about
untyped computation using a version of Kleene equality. We
reason about partial recursive functions using partial types
that contain divergent terms.

This talk is about why we have added Brouwer’s Bar
Induction and how it answers the first question.

The talk tomorrow proposes an answer to the second
question and shows how we can define the CTT14 types,
including the partial types, from a few very basic type
constructors.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 5/67

Introduction: Two questions

What are the fundamental induction principles?

What are the fundamental type constructors?

We are giving two talks on Nuprl and the type theory it
implements (CTT 2014). In CTT14 we can reason about
untyped computation using a version of Kleene equality. We
reason about partial recursive functions using partial types
that contain divergent terms.

This talk is about why we have added Brouwer’s Bar
Induction and how it answers the first question.

The talk tomorrow proposes an answer to the second
question and shows how we can define the CTT14 types,
including the partial types, from a few very basic type
constructors.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 6/67

What is CTT14?

Starts with terms of an untyped computation system:

Canonical terms (values) include integers, tokens, λx .t,
〈t1, t2〉, inl(t), inr(t), and Ax.

Non-canonical terms include (lazy) application, t1t2, (eager)
“call-by-value”, let x := t1 in t2, and general recursion,
fix(t), as well as “spread”, “decide”, arithmetic operators, and
others.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 7/67

What is CTT14?

Starts with terms of an untyped computation system:

Canonical terms (values) include integers, tokens, λx .t,
〈t1, t2〉, inl(t), inr(t), and Ax.

Non-canonical terms include (lazy) application, t1t2, (eager)
“call-by-value”, let x := t1 in t2, and general recursion,
fix(t), as well as “spread”, “decide”, arithmetic operators, and
others.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 8/67

What is CTT14?

Starts with terms of an untyped computation system:

Canonical terms (values) include integers, tokens, λx .t,
〈t1, t2〉, inl(t), inr(t), and Ax.

Non-canonical terms include (lazy) application, t1t2, (eager)
“call-by-value”, let x := t1 in t2, and general recursion,
fix(t), as well as “spread”, “decide”, arithmetic operators, and
others.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 9/67

Howe’s version of Kleene equality

From term evaluation, Howe (1996) defined a co-inductive
approximation relation, t1 ≤ t2, on terms.

Computational equivalence ∼ (a congruence) is
a ∼ b , a ≤ b & b ≤ a.

Examples:

For all terms t, ⊥ ≤ t.

(λx .x + 1) 2 ∼ 3.

⊥ ∼ fix(λx .x).

The proposition “t has a value” is defined using approx and
call-by-value: halts(t) , Ax ≤ (let x := t in Ax)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 10/67

Howe’s version of Kleene equality

From term evaluation, Howe (1996) defined a co-inductive
approximation relation, t1 ≤ t2, on terms.

Computational equivalence ∼ (a congruence) is
a ∼ b , a ≤ b & b ≤ a.

Examples:

For all terms t, ⊥ ≤ t.

(λx .x + 1) 2 ∼ 3.

⊥ ∼ fix(λx .x).

The proposition “t has a value” is defined using approx and
call-by-value: halts(t) , Ax ≤ (let x := t in Ax)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 11/67

Howe’s version of Kleene equality

From term evaluation, Howe (1996) defined a co-inductive
approximation relation, t1 ≤ t2, on terms.

Computational equivalence ∼ (a congruence) is
a ∼ b , a ≤ b & b ≤ a.

Examples:

For all terms t, ⊥ ≤ t.

(λx .x + 1) 2 ∼ 3.

⊥ ∼ fix(λx .x).

The proposition “t has a value” is defined using approx and
call-by-value: halts(t) , Ax ≤ (let x := t in Ax)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 12/67

Howe’s version of Kleene equality

From term evaluation, Howe (1996) defined a co-inductive
approximation relation, t1 ≤ t2, on terms.

Computational equivalence ∼ (a congruence) is
a ∼ b , a ≤ b & b ≤ a.

Examples:

For all terms t, ⊥ ≤ t.

(λx .x + 1) 2 ∼ 3.

⊥ ∼ fix(λx .x).

The proposition “t has a value” is defined using approx and
call-by-value: halts(t) , Ax ≤ (let x := t in Ax)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 13/67

Nuprl Type System

is built on top of the untyped computation system.

Allen (1987) A type is a partial equivalence relation on
closed terms.

Equality: a =T b
Dependent function: a:A→ B[a]
Dependent product: a:A× B[a]
Disjoint union: A + B
Universe: Ui i = 0, 1, 2, . . .
Subtype: A v B
Quotient: T//E
Intersection:

⋂
a:A .B[a]

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 14/67

Nuprl Type System

is built on top of the untyped computation system.

Allen (1987) A type is a partial equivalence relation on
closed terms.

Equality: a =T b
Dependent function: a:A→ B[a]
Dependent product: a:A× B[a]
Disjoint union: A + B
Universe: Ui i = 0, 1, 2, . . .
Subtype: A v B
Quotient: T//E
Intersection:

⋂
a:A .B[a]

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 15/67

More Nuprl Types

Kopylov,Nogin (2006) Image: image(T , f)

Subset: {a : A | B[a]} , image(a:A× B[a], π1)
squash: ↓ P , {a : Unit | P}

Union:
⋃

a:A B[a] , image(a:A× B[a], π2)

Smith (1989), Crary (1998) Partial types: T
contains all members of T as well as all divergent terms

Allen’s PER semantics (extended by Smith, Crary, et.al.)
defines an inductive construction of universes closed under all
of these type constructors. (Defined in Coq by V. Rahli & A.
Anand, ITP 2014)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 16/67

More Nuprl Types

Kopylov,Nogin (2006) Image: image(T , f)

Subset: {a : A | B[a]} , image(a:A× B[a], π1)
squash: ↓ P , {a : Unit | P}

Union:
⋃

a:A B[a] , image(a:A× B[a], π2)

Smith (1989), Crary (1998) Partial types: T
contains all members of T as well as all divergent terms

Allen’s PER semantics (extended by Smith, Crary, et.al.)
defines an inductive construction of universes closed under all
of these type constructors. (Defined in Coq by V. Rahli & A.
Anand, ITP 2014)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 17/67

More Nuprl Types

Kopylov,Nogin (2006) Image: image(T , f)

Subset: {a : A | B[a]} , image(a:A× B[a], π1)
squash: ↓ P , {a : Unit | P}

Union:
⋃

a:A B[a] , image(a:A× B[a], π2)

Smith (1989), Crary (1998) Partial types: T
contains all members of T as well as all divergent terms

Allen’s PER semantics (extended by Smith, Crary, et.al.)
defines an inductive construction of universes closed under all
of these type constructors. (Defined in Coq by V. Rahli & A.
Anand, ITP 2014)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 18/67

Inductive types in CTT14

Types A and B are extensionally equal, A ≡ B , if A v B &
B v A.

Type T is a fixedpoint of F if T ≡ F (T) and is the least
fixedpoint if T v A when A is a fixedpoint of F .

Equivalently, T is the least fixedpoint of F when the
appropriate induction principle holds.

Rather than add least fixedpoints (for suitable functions F) to
the universes as primitive types, we can construct them as
subtypes of co-recursive types (which we also construct.)

The needed induction principle follows from Brouwer’s Bar
Induction.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 19/67

Inductive types in CTT14

Types A and B are extensionally equal, A ≡ B , if A v B &
B v A.

Type T is a fixedpoint of F if T ≡ F (T) and is the least
fixedpoint if T v A when A is a fixedpoint of F .

Equivalently, T is the least fixedpoint of F when the
appropriate induction principle holds.

Rather than add least fixedpoints (for suitable functions F) to
the universes as primitive types, we can construct them as
subtypes of co-recursive types (which we also construct.)

The needed induction principle follows from Brouwer’s Bar
Induction.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 20/67

Inductive types in CTT14

Types A and B are extensionally equal, A ≡ B , if A v B &
B v A.

Type T is a fixedpoint of F if T ≡ F (T) and is the least
fixedpoint if T v A when A is a fixedpoint of F .

Equivalently, T is the least fixedpoint of F when the
appropriate induction principle holds.

Rather than add least fixedpoints (for suitable functions F) to
the universes as primitive types, we can construct them as
subtypes of co-recursive types (which we also construct.)

The needed induction principle follows from Brouwer’s Bar
Induction.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 21/67

Inductive types in CTT14

Types A and B are extensionally equal, A ≡ B , if A v B &
B v A.

Type T is a fixedpoint of F if T ≡ F (T) and is the least
fixedpoint if T v A when A is a fixedpoint of F .

Equivalently, T is the least fixedpoint of F when the
appropriate induction principle holds.

Rather than add least fixedpoints (for suitable functions F) to
the universes as primitive types, we can construct them as
subtypes of co-recursive types (which we also construct.)

The needed induction principle follows from Brouwer’s Bar
Induction.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 22/67

Inductive types in CTT14

Types A and B are extensionally equal, A ≡ B , if A v B &
B v A.

Type T is a fixedpoint of F if T ≡ F (T) and is the least
fixedpoint if T v A when A is a fixedpoint of F .

Equivalently, T is the least fixedpoint of F when the
appropriate induction principle holds.

Rather than add least fixedpoints (for suitable functions F) to
the universes as primitive types, we can construct them as
subtypes of co-recursive types (which we also construct.)

The needed induction principle follows from Brouwer’s Bar
Induction.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 23/67

Intersection Types and Corecursive Types

All the co-recursive types we need can be constructed using
intersection and induction on N

Top ,
⋂

a:Void .Void
This is the PER λx , y .True, so for all types T , T v Top

corec(G) =
⋂
n:N

.fix(λP .λn.if n = 0 then Top

else G (P (n − 1))
) n

i.e.
⋂

n:N .G
n(Top)

This is the greatest fixedpoint of G if G “preserves ω-limits”.

Aside:
⋂

x :T .P(x) is “uniform” all quantifier, ∀[x :T].P(x).
We showed completeness for intuitionistic minimal logic:
`IML φ⇔ ∀[M].M |= φ.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 24/67

Intersection Types and Corecursive Types

All the co-recursive types we need can be constructed using
intersection and induction on N

Top ,
⋂

a:Void .Void
This is the PER λx , y .True, so for all types T , T v Top

corec(G) =
⋂
n:N

.fix(λP .λn.if n = 0 then Top

else G (P (n − 1))
) n

i.e.
⋂

n:N .G
n(Top)

This is the greatest fixedpoint of G if G “preserves ω-limits”.

Aside:
⋂

x :T .P(x) is “uniform” all quantifier, ∀[x :T].P(x).
We showed completeness for intuitionistic minimal logic:
`IML φ⇔ ∀[M].M |= φ.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 25/67

Intersection Types and Corecursive Types

All the co-recursive types we need can be constructed using
intersection and induction on N

Top ,
⋂

a:Void .Void
This is the PER λx , y .True, so for all types T , T v Top

corec(G) =
⋂
n:N

.fix(λP .λn.if n = 0 then Top

else G (P (n − 1))
) n

i.e.
⋂

n:N .G
n(Top)

This is the greatest fixedpoint of G if G “preserves ω-limits”.

Aside:
⋂

x :T .P(x) is “uniform” all quantifier, ∀[x :T].P(x).
We showed completeness for intuitionistic minimal logic:
`IML φ⇔ ∀[M].M |= φ.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 26/67

Algebraic Datatypes

For the least fixedpoint DT ≡ F (DT) of an “algebraic”
function F , there is a natural size function size ∈ DT → N.

On coDT = corec(F) the same function has type
coDT → N.

Termination: t ∈ T , halts(t) |= t ∈ T

So we can construct DT as {t : coDT | halts(size(t))} and
get the induction on DT from induction on size.

The definition of list(T) in Nuprl is now
{L : colist(T) | halts(length(L))}
where
colist(T) , corec(λL.Unit ∪ T × L)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 27/67

Algebraic Datatypes

For the least fixedpoint DT ≡ F (DT) of an “algebraic”
function F , there is a natural size function size ∈ DT → N.

On coDT = corec(F) the same function has type
coDT → N.

Termination: t ∈ T , halts(t) |= t ∈ T

So we can construct DT as {t : coDT | halts(size(t))} and
get the induction on DT from induction on size.

The definition of list(T) in Nuprl is now
{L : colist(T) | halts(length(L))}
where
colist(T) , corec(λL.Unit ∪ T × L)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 28/67

Algebraic Datatypes

For the least fixedpoint DT ≡ F (DT) of an “algebraic”
function F , there is a natural size function size ∈ DT → N.

On coDT = corec(F) the same function has type
coDT → N.

Termination: t ∈ T , halts(t) |= t ∈ T

So we can construct DT as {t : coDT | halts(size(t))} and
get the induction on DT from induction on size.

The definition of list(T) in Nuprl is now
{L : colist(T) | halts(length(L))}
where
colist(T) , corec(λL.Unit ∪ T × L)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 29/67

Algebraic Datatypes

For the least fixedpoint DT ≡ F (DT) of an “algebraic”
function F , there is a natural size function size ∈ DT → N.

On coDT = corec(F) the same function has type
coDT → N.

Termination: t ∈ T , halts(t) |= t ∈ T

So we can construct DT as {t : coDT | halts(size(t))} and
get the induction on DT from induction on size.

The definition of list(T) in Nuprl is now
{L : colist(T) | halts(length(L))}
where
colist(T) , corec(λL.Unit ∪ T × L)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 30/67

Algebraic Datatypes

For the least fixedpoint DT ≡ F (DT) of an “algebraic”
function F , there is a natural size function size ∈ DT → N.

On coDT = corec(F) the same function has type
coDT → N.

Termination: t ∈ T , halts(t) |= t ∈ T

So we can construct DT as {t : coDT | halts(size(t))} and
get the induction on DT from induction on size.

The definition of list(T) in Nuprl is now
{L : colist(T) | halts(length(L))}
where
colist(T) , corec(λL.Unit ∪ T × L)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 31/67

W-types and parameterized families of W-types

We want to construct least fixedpoints
W (A; a.B[a]) ≡ a:A× (B[a]→ W (A; a.B[a])

and, more generally, a parameterized family of W-types:

pW (p.A[p]; p, a.B[p, a]; p, a, b.C [p, a, b]) ≡
λp. a:A[p]× (b:B[p, a]→ pW (C [p.a.b]))

We can’t define a size function and use induction on N, but
we can make an “analogous” construction and get the
induction principle from Bar Induction.
(For simplicity, we discuss W rather than pW .)

Basic idea: W = {w : co-W | paths starting at w are finite}

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 32/67

W-types and parameterized families of W-types

We want to construct least fixedpoints
W (A; a.B[a]) ≡ a:A× (B[a]→ W (A; a.B[a])

and, more generally, a parameterized family of W-types:

pW (p.A[p]; p, a.B[p, a]; p, a, b.C [p, a, b]) ≡
λp. a:A[p]× (b:B[p, a]→ pW (C [p.a.b]))

We can’t define a size function and use induction on N, but
we can make an “analogous” construction and get the
induction principle from Bar Induction.
(For simplicity, we discuss W rather than pW .)

Basic idea: W = {w : co-W | paths starting at w are finite}

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 33/67

W-types and parameterized families of W-types

We want to construct least fixedpoints
W (A; a.B[a]) ≡ a:A× (B[a]→ W (A; a.B[a])

and, more generally, a parameterized family of W-types:

pW (p.A[p]; p, a.B[p, a]; p, a, b.C [p, a, b]) ≡
λp. a:A[p]× (b:B[p, a]→ pW (C [p.a.b]))

We can’t define a size function and use induction on N, but
we can make an “analogous” construction and get the
induction principle from Bar Induction.
(For simplicity, we discuss W rather than pW .)

Basic idea: W = {w : co-W | paths starting at w are finite}

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 34/67

W-types and parameterized families of W-types

We want to construct least fixedpoints
W (A; a.B[a]) ≡ a:A× (B[a]→ W (A; a.B[a])

and, more generally, a parameterized family of W-types:

pW (p.A[p]; p, a.B[p, a]; p, a, b.C [p, a, b]) ≡
λp. a:A[p]× (b:B[p, a]→ pW (C [p.a.b]))

We can’t define a size function and use induction on N, but
we can make an “analogous” construction and get the
induction principle from Bar Induction.
(For simplicity, we discuss W rather than pW .)

Basic idea: W = {w : co-W | paths starting at w are finite}

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 35/67

W-type picture

<a,f> a in A

f(b) = <a',g> f(b') = <a'',h>

b,b',.. in B(a)

h(c) = <a,f'> h(c') = <a',f''>

c,c',... in B(a'')

W (A; a.B[a]) ≡ a:A× (B[a]→ W (A; a.B[a]))

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 36/67

Bar Induction in pictures

nil

[t] [t']

[t',c] [t',c']

c,c',..s.t R [t'] c

t,t' s.t. R nil t

R is the spread law.

If (1) every path is barred.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 37/67

Bar Induction in pictures

nil

[t] [t']

[t',c] [t',c']

c,c',..s.t R [t'] c

t,t' s.t. R nil t

R is the spread law. If (1) every path is barred.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 38/67

Bar Induction in pictures

nil

[t] [t']

[t',c] [t',c']

c,c',..s.t R [t'] c

t,t' s.t. R nil t

And if Base case: B(s)⇒ Q(s)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 39/67

Bar Induction in pictures

nil

[t] [t']

[t',c] [t',c']

c,c',..s.t R [t'] c

t,t' s.t. R nil t

And if Base case: B(s)⇒ Q(s)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 40/67

Bar Induction in pictures

nil

[t] [t']

[t',c] [t',c']

c,c',..s.t R [t'''] c

t,t' s.t. R nil t

Q Q Q

Q([t])

Q([t'.c']

Q Q

and if Induction step: (∀t.R(s, t)⇒ Q(s ⊕ t))⇒ Q(s)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 41/67

Bar Induction in pictures

nil

[t] [t']

[t',c] [t',c']

c,c',..s.t R [t'''] c

t,t' s.t. R nil t

Q Q Q

Q([t])

Q([t'.c']

Q Q

and if Induction step: (∀t.R(s, t)⇒ Q(s ⊕ t))⇒ Q(s)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 42/67

Bar Induction in pictures

nil

[t] [t']

[t',c] [t',c']

c,c',..s.t R [t'] c

t,t' s.t. R nil t

Q([t])

Q([t'.c']

Q QQ

Induction step: (∀t.R(s, t)⇒ Q(s ⊕ t))⇒ Q(s)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 43/67

Bar Induction in pictures

nil

[t] [t']

[t',c] [t',c']

c,c',..s.t R [t']

t,t' s.t. R nil t

Q([t])

Q([t'.c']Q(t',s'])

c

Induction step: (∀t.R(s, t)⇒ Q(s ⊕ t))⇒ Q(s)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 44/67

Bar Induction in pictures

nil

[t] [t']

[t',c] [t',c']

c,c',..s.t R [t']

t,t' s.t. R nil t

Q([t])
Q([t'])

c

Induction step: (∀t.R(s, t)⇒ Q(s ⊕ t))⇒ Q(s)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 45/67

Bar Induction in pictures

nil

[t] [t']

[t',c] [t',c']

c,c',..s.t R [t'] c

t,t' s.t. R nil tQ(nil)

Then: Q(nil)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 46/67

Bar Induction in pictures

nil

[t] [t']

[t',c] [t',c']

c,c',..s.t R [t'] c

t,t' s.t. R nil tQ(nil)

Then: Q(nil)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 47/67

Bar Induction, preliminaries

Brouwer’s bar induction principle, (explicated by Kleene), is
about “spreads” of finite sequences (of some type T).

We use s ∈ Vk(T) , {i :N | i < k} → T for a sequence s of
length k , and s ⊕k t for the sequence of length k + 1 with t
appended.

A relation R ∈ k :N→ Vk(T)→ T → P is a “spread law” and
s is consistent, con(R , k , s), if ∀i < k . R(i , s, s(i)). A function
f ∈ N→ T is a path, Path(R , f), if ∀i . R(i , f , f (i)).

We state the bar induction rule only for expressions Q(k , s) of
the form a(k , s) ∈ X (k , s) with witness Ax.

Bar Induction works “toward the root” from the hypothesis
ind(R ,T ,Q, k , s) , ∀t:{t : T | R(k , s, t)}. Q(k + 1, s ⊕ t)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 48/67

Bar Induction, preliminaries

Brouwer’s bar induction principle, (explicated by Kleene), is
about “spreads” of finite sequences (of some type T).

We use s ∈ Vk(T) , {i :N | i < k} → T for a sequence s of
length k , and s ⊕k t for the sequence of length k + 1 with t
appended.

A relation R ∈ k :N→ Vk(T)→ T → P is a “spread law” and
s is consistent, con(R , k , s), if ∀i < k . R(i , s, s(i)). A function
f ∈ N→ T is a path, Path(R , f), if ∀i . R(i , f , f (i)).

We state the bar induction rule only for expressions Q(k , s) of
the form a(k , s) ∈ X (k , s) with witness Ax.

Bar Induction works “toward the root” from the hypothesis
ind(R ,T ,Q, k , s) , ∀t:{t : T | R(k , s, t)}. Q(k + 1, s ⊕ t)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 49/67

Bar Induction, preliminaries

Brouwer’s bar induction principle, (explicated by Kleene), is
about “spreads” of finite sequences (of some type T).

We use s ∈ Vk(T) , {i :N | i < k} → T for a sequence s of
length k , and s ⊕k t for the sequence of length k + 1 with t
appended.

A relation R ∈ k :N→ Vk(T)→ T → P is a “spread law” and
s is consistent, con(R , k , s), if ∀i < k . R(i , s, s(i)). A function
f ∈ N→ T is a path, Path(R , f), if ∀i . R(i , f , f (i)).

We state the bar induction rule only for expressions Q(k , s) of
the form a(k , s) ∈ X (k , s) with witness Ax.

Bar Induction works “toward the root” from the hypothesis
ind(R ,T ,Q, k , s) , ∀t:{t : T | R(k , s, t)}. Q(k + 1, s ⊕ t)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 50/67

Bar Induction, preliminaries

Brouwer’s bar induction principle, (explicated by Kleene), is
about “spreads” of finite sequences (of some type T).

We use s ∈ Vk(T) , {i :N | i < k} → T for a sequence s of
length k , and s ⊕k t for the sequence of length k + 1 with t
appended.

A relation R ∈ k :N→ Vk(T)→ T → P is a “spread law” and
s is consistent, con(R , k , s), if ∀i < k . R(i , s, s(i)). A function
f ∈ N→ T is a path, Path(R , f), if ∀i . R(i , f , f (i)).

We state the bar induction rule only for expressions Q(k , s) of
the form a(k , s) ∈ X (k , s) with witness Ax.

Bar Induction works “toward the root” from the hypothesis
ind(R ,T ,Q, k , s) , ∀t:{t : T | R(k , s, t)}. Q(k + 1, s ⊕ t)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 51/67

Bar Induction, preliminaries

Brouwer’s bar induction principle, (explicated by Kleene), is
about “spreads” of finite sequences (of some type T).

We use s ∈ Vk(T) , {i :N | i < k} → T for a sequence s of
length k , and s ⊕k t for the sequence of length k + 1 with t
appended.

A relation R ∈ k :N→ Vk(T)→ T → P is a “spread law” and
s is consistent, con(R , k , s), if ∀i < k . R(i , s, s(i)). A function
f ∈ N→ T is a path, Path(R , f), if ∀i . R(i , f , f (i)).

We state the bar induction rule only for expressions Q(k , s) of
the form a(k , s) ∈ X (k , s) with witness Ax.

Bar Induction works “toward the root” from the hypothesis
ind(R ,T ,Q, k , s) , ∀t:{t : T | R(k , s, t)}. Q(k + 1, s ⊕ t)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 52/67

Bar Induction Rule

H ` T ∈ Type H, k :N, s:Vk(T), t:T ` R(k, s, t) ∈ Type
H, k :N , s:Vk(T), con(R, k, s) ` B(k, s) ∨ ¬B(k , s)

H, f :N→ T , Path(R, f) `↓∃n:N. B(n, f)
H, k:N , s:Vk(T), con(R, k , s), B(k, s) ` Q(k , s)

H, k:N , s:Vk(T), con(R, k , s), ind(R,T ,Q, k, s) ` Q(k , s)

H ` Q(0, z)

The first two premises prove that R is a spread law. The next
two premises prove that B is a decidable bar on the spread.
The fifth and sixth premises are the base and induction steps
of the proof by bar induction for the term Q(0, z).

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 53/67

The construction

Let cW = co-W (A, a.B[a])
For w ∈ cW , w = 〈a, f 〉 where a ∈ A, f ∈ B[a]→ cW

A path will have steps of type
TA,B , 〈a, f 〉:cW × (B(a) + Unit)

The spread law R(k , s, t) is defined to hold when, if the last
step in s is 〈〈a, f 〉, inl(b)〉 then π1(t) = f (b).

A path g ∈ N→ TA,B starts at w if π1(g(0)) = w .

The path is barred if ↓ ∃n : N. isr(π2(g(n))).

So, we define
W , {w : cW | every path g stating at w is barred}

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 54/67

The construction

Let cW = co-W (A, a.B[a])
For w ∈ cW , w = 〈a, f 〉 where a ∈ A, f ∈ B[a]→ cW

A path will have steps of type
TA,B , 〈a, f 〉:cW × (B(a) + Unit)

The spread law R(k , s, t) is defined to hold when, if the last
step in s is 〈〈a, f 〉, inl(b)〉 then π1(t) = f (b).

A path g ∈ N→ TA,B starts at w if π1(g(0)) = w .

The path is barred if ↓ ∃n : N. isr(π2(g(n))).

So, we define
W , {w : cW | every path g stating at w is barred}

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 55/67

The construction

Let cW = co-W (A, a.B[a])
For w ∈ cW , w = 〈a, f 〉 where a ∈ A, f ∈ B[a]→ cW

A path will have steps of type
TA,B , 〈a, f 〉:cW × (B(a) + Unit)

The spread law R(k , s, t) is defined to hold when, if the last
step in s is 〈〈a, f 〉, inl(b)〉 then π1(t) = f (b).

A path g ∈ N→ TA,B starts at w if π1(g(0)) = w .

The path is barred if ↓ ∃n : N. isr(π2(g(n))).

So, we define
W , {w : cW | every path g stating at w is barred}

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 56/67

The construction

Let cW = co-W (A, a.B[a])
For w ∈ cW , w = 〈a, f 〉 where a ∈ A, f ∈ B[a]→ cW

A path will have steps of type
TA,B , 〈a, f 〉:cW × (B(a) + Unit)

The spread law R(k , s, t) is defined to hold when, if the last
step in s is 〈〈a, f 〉, inl(b)〉 then π1(t) = f (b).

A path g ∈ N→ TA,B starts at w if π1(g(0)) = w .

The path is barred if ↓ ∃n : N. isr(π2(g(n))).

So, we define
W , {w : cW | every path g stating at w is barred}

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 57/67

The construction

Let cW = co-W (A, a.B[a])
For w ∈ cW , w = 〈a, f 〉 where a ∈ A, f ∈ B[a]→ cW

A path will have steps of type
TA,B , 〈a, f 〉:cW × (B(a) + Unit)

The spread law R(k , s, t) is defined to hold when, if the last
step in s is 〈〈a, f 〉, inl(b)〉 then π1(t) = f (b).

A path g ∈ N→ TA,B starts at w if π1(g(0)) = w .

The path is barred if ↓ ∃n : N. isr(π2(g(n))).

So, we define
W , {w : cW | every path g stating at w is barred}

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 58/67

The construction

Let cW = co-W (A, a.B[a])
For w ∈ cW , w = 〈a, f 〉 where a ∈ A, f ∈ B[a]→ cW

A path will have steps of type
TA,B , 〈a, f 〉:cW × (B(a) + Unit)

The spread law R(k , s, t) is defined to hold when, if the last
step in s is 〈〈a, f 〉, inl(b)〉 then π1(t) = f (b).

A path g ∈ N→ TA,B starts at w if π1(g(0)) = w .

The path is barred if ↓ ∃n : N. isr(π2(g(n))).

So, we define
W , {w : cW | every path g stating at w is barred}

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 59/67

The result

The induction principle Ind(W ,P) for W is

(∀a:A. ∀f :B[a]→ W .
(∀b:B[a]. P(f (b)))⇒ P(〈a, f 〉))⇒ (∀w :W . P(w))

We use the Bar Induction Rule to prove that
λH .λw . fix(λG .λw . let a, f = w in H(a, f , λb.G (f (b))))w
∈ Ind(W ,P)

(suitably generalized for the more general case of the
parameterized family pW (A,B ,C))

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 60/67

The result

The induction principle Ind(W ,P) for W is

(∀a:A. ∀f :B[a]→ W .
(∀b:B[a]. P(f (b)))⇒ P(〈a, f 〉))⇒ (∀w :W . P(w))

We use the Bar Induction Rule to prove that
λH .λw . fix(λG .λw . let a, f = w in H(a, f , λb.G (f (b))))w
∈ Ind(W ,P)

(suitably generalized for the more general case of the
parameterized family pW (A,B ,C))

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 61/67

The result

The induction principle Ind(W ,P) for W is

(∀a:A. ∀f :B[a]→ W .
(∀b:B[a]. P(f (b)))⇒ P(〈a, f 〉))⇒ (∀w :W . P(w))

We use the Bar Induction Rule to prove that
λH .λw . fix(λG .λw . let a, f = w in H(a, f , λb.G (f (b))))w
∈ Ind(W ,P)

(suitably generalized for the more general case of the
parameterized family pW (A,B ,C))

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 62/67

Primitive Inductive types not needed
In the abstract we wrote: “we could replace all the primitive
rec-types”

Since then, we have constructed all recursive types with one of
these two constructions (that use a subtype of a co-recursive
type).

We redefined the necessary tactics for induction and our code
for generating algebraic datatypes.

Then we “deactivated” the rules for the primitive rec-type
(Nuprl is a logical framework and interprets the rules in its
library).
Everything in the library (about 15K lemmas) was rebuilt.
About two weeks work.

So, induction on N and Bar Induction are the only induction
principles we need.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 63/67

Primitive Inductive types not needed
In the abstract we wrote: “we could replace all the primitive
rec-types”

Since then, we have constructed all recursive types with one of
these two constructions (that use a subtype of a co-recursive
type).

We redefined the necessary tactics for induction and our code
for generating algebraic datatypes.

Then we “deactivated” the rules for the primitive rec-type
(Nuprl is a logical framework and interprets the rules in its
library).
Everything in the library (about 15K lemmas) was rebuilt.
About two weeks work.

So, induction on N and Bar Induction are the only induction
principles we need.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 64/67

Primitive Inductive types not needed
In the abstract we wrote: “we could replace all the primitive
rec-types”

Since then, we have constructed all recursive types with one of
these two constructions (that use a subtype of a co-recursive
type).

We redefined the necessary tactics for induction and our code
for generating algebraic datatypes.

Then we “deactivated” the rules for the primitive rec-type
(Nuprl is a logical framework and interprets the rules in its
library).
Everything in the library (about 15K lemmas) was rebuilt.
About two weeks work.

So, induction on N and Bar Induction are the only induction
principles we need.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 65/67

Primitive Inductive types not needed
In the abstract we wrote: “we could replace all the primitive
rec-types”

Since then, we have constructed all recursive types with one of
these two constructions (that use a subtype of a co-recursive
type).

We redefined the necessary tactics for induction and our code
for generating algebraic datatypes.

Then we “deactivated” the rules for the primitive rec-type
(Nuprl is a logical framework and interprets the rules in its
library).
Everything in the library (about 15K lemmas) was rebuilt.
About two weeks work.

So, induction on N and Bar Induction are the only induction
principles we need.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 66/67

Primitive Inductive types not needed
In the abstract we wrote: “we could replace all the primitive
rec-types”

Since then, we have constructed all recursive types with one of
these two constructions (that use a subtype of a co-recursive
type).

We redefined the necessary tactics for induction and our code
for generating algebraic datatypes.

Then we “deactivated” the rules for the primitive rec-type
(Nuprl is a logical framework and interprets the rules in its
library).
Everything in the library (about 15K lemmas) was rebuilt.
About two weeks work.

So, induction on N and Bar Induction are the only induction
principles we need.

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 67/67

Further Reading
S.C. Kleene and R. E. Vesley, Foundations of Inuitionistic
Mathematics. 1966 (breakthrough document that inspired
Martin-Lof, and others)

Stuart F. Allen, A Non-Type-Theoretic Semantics for
Type-Theoretic Language. 1987

Karl Crary, Type-Theoretic Methodology for Practical
Programming Languages. 1998

Scott F Smith, Partial Objects in Type Theory. 1989

Constable & Smith. Computational Foundations of Basic
Recursive function Theory. 1993

Stuart F. Allen, An Abstract Semantics for Atoms in Nuprl.
2006

(last five can be found on Nuprl website, under Publications)

Mark Bickford, Robert Constable TYPES 2014 May 12, 2014 68/67

