A Type Theory with Partial Equivalence Relations as Types

Abhishek Anand Mark Bickford Robert L. Constable Vincent Rahli

May 13, 2014

PRL Group

Abhishek Anand

Richard Eaton

Mark Bickford

Vincent Rahli

Robert L. Constable

Stuart Allen's Thesis

This work started with a careful reading of:

Stuart Allen's PhD thesis [All87]:
A Non-Type-Theoretic Semantics for Type-Theoretic Language

It describes a semantics for Nuprl where types are defined as Partial Equivalence Relations on terms (the PER semantics).

Stuart Allen's Thesis

Among others, Nuprl has the following types:

Equality: $a=b \in T$
Dependent function: $a: A \rightarrow B[a]$
Dependent product: $a: A \times B[a]$
Intersection: $\cap a: A . B[a]$
Partial: \bar{A}
Universe: \mathbb{U}_{i}
Subset: $\{a: A \mid B[a]\}$
Quotient: $T / / E$
where E has to be an equivalence relation w.r.t. T.

Stuart Allen's Thesis

In his thesis, the following page was misplaced:

forming an $n=A$ sucts that B a'st is inkabised: two equal canonical members are formed by forming $a, u^{\prime} \in\left\{x E^{-}-A B\right\}$ such thal $E^{\prime} a, u^{\prime}, u, v^{\prime}$ is inhahited. The sel type and quotient type constructors could have been unified in a simgle constructor $x . y=\frac{1}{-1} \Gamma_{2,3}$, whicia is like usubtient except thal, ratier than requiring (the :nhabitation of) $E_{x, y}$ the be an equivalence relation, we re!uire only that it be transitive and symmetric over. A_{1} s.e., its restrection to A shisuld be a partial equivaleace selation. The equal members are the marmbers of 1 that tuaxe $E_{\text {wis }}$ inhabiled. Thus, a typc $x-y=A / / F_{\mathrm{x}-\mathrm{y}}$ is fx . tensionally equal to , $e, y \in A / E_{r, v}$, and a type $\left\{z C A B_{z}\right\}$ is cxtensionally rqual to $x, y \div A=(B,=I(A, x, y i)$.

We mome now to N'upil's treatuent of assumptions. Niuprl nses one form of judgement:

$$
x_{1} \div A_{:}, x_{n} \leftarrow A_{n} \gg t \in T^{2 n}
$$

Let us start by considering Nuprl judgements with one aisumption. The \#reaning of $x: A \gg t \in T$ is that, for any a and a^{\prime}, if $a=a^{\prime}-A$ then $T^{\prime} a ; x_{;}^{\prime}$ $T e^{\prime}|x|$ and $t^{\prime}|n / x|-t\left|a^{\prime}\right| z^{\prime} \div T^{\prime \prime} n_{i}^{\prime}|x|$. Notjce that, rather than implying or presupposing that A is a type, the typehood of A in part of the assumption (siace the typehood of A is implied by $e=a^{\prime}(\underline{-} A$). Thus, if A cannot be detined as a type, because it has no value, say, then we may infer for any z, T, and t that $x-A \gg t-T$. In montrast, we nanot infer $t \in T(w \in$ 1) undess we also know shat A is a type. Since we are iliscussing two forms of axsuruption, it will be fonvenient in introdicer a distingushing nomenclat ure; there will be no ueed tu wake the general application of the terminolggy precike. We shall say an arsuuption at -1 is posidive within the judgernents that, by virtue of that assumption, imply the cypelwod of A. and we shall say the assumption is negative witi.in the julgements in which the typehood of A is a part of what is being assumed. The assumption $x \in A$ is positive within $t \subset T(x ; A)$ and ncgat.ive within $+-A>t-T$. The use ul uegatite ass amplitons allows one tn express the nasumption that n is A member of .1 as a negative assumption $x-I(A, a, n)$. A positive assumption of this form would be vacuous since for [(A, a, a) to be a type A must be a ;ype with member a.

Now we shall consider judgement.s that use twn negative asaumptinns. The treaning intended for judgements using more assumptiona ahould be clear in light of the explatation for two assimptions. A coarsc reading: one
${ }^{2}$ Th The notation uxed in Constable at al 88

$$
2: A_{1} \ldots A_{n}: d_{n} \gg \tau_{n \times 1} t .
$$

The part "ext t " is not displayed by the Xuprl syblem when in otcurs in provef, but tather, it is ixtracted foun a fotupleted yroot. Muot prowfy arr cenalructed withuat the uzer kouling precisply what reem is in ha rxteariod.

Stuart Allen's Thesis

What does it say?

It suggests that the quotient and subset types could be replaced by a quotient-like type that only requires a partial equivalence relation.

Our Proposal

Here is our proposal-redefining Nuprl's type theory around an extensional "Partial Equivalence Relation" type constructor that turns PERs into types.

The domain: the closed terms of Nuprl's computation system.

Base is the type that contains all closed terms and whose equality ~ is Howe's computational equivalence relation [How89].

Our Proposal

Now, the per type constructor:

- $\operatorname{per}(R)$ is a type if R is a PER on Base.
- $a=b \in \operatorname{per}(R)$ if R a b.
$-\operatorname{per}\left(R_{1}\right)=\operatorname{per}\left(R_{2}\right) \in \mathbb{U}_{i}$ if R_{1} and R_{2} are equivalent relations.

We'll need universes as well.

Our type theory now has: Base, \mathbb{U}_{i}, per.

Our Proposal

per types are now part of our implementation of Nuprl in Coq [AR14]. We verified:

```
\(H \vdash \operatorname{per}(R)=\operatorname{per}\left(R^{\prime}\right) \in\) Type
    BY [pertypeEquality]
    \(H, x\) : Base, \(y\) : Base \(\vdash R x y \in\) Type
    \(H, x\) : Base, \(y\) : Base \(\vdash R^{\prime} \times y \in\) Type
    \(H, x\) : Base, \(y\) : Base, \(z: R \times y \vdash R^{\prime} \times y\)
    \(H, x\) : Base, \(y\) : Base, \(z: R^{\prime} \times y \vdash R \times y\)
    \(H, x\) : Base, \(y\) : Base, \(z: R \times y \vdash R y x\)
    \(H, x\) : Base, \(y\) : Base, \(z:\) Base, \(u: R \times y, v: R y z \vdash R \times z\)
\(H, x: t_{1}=t_{2} \in \operatorname{per}(R) \vdash C\lfloor\) ext \(e\rfloor\)
    BY [pertypeElimination]
    \(H, x: t_{1}=t_{2} \in \operatorname{per}(R),\left[y: R t_{1} t_{2}\right] \vdash C\lfloor\) ext \(e\rfloor\)
\(H \vdash t_{1}=t_{2} \in \operatorname{per}(R)\)
    BY [pertypeMemberEquality]
    \(H \vdash \operatorname{per}(R) \in\) Type
    \(H \vdash R t_{1} t_{2}\)
    \(H \vdash t_{1} \in\) Base
    \(H \vdash t_{2} \in\) Base
```


Examples

Let us start with simple examples:

$$
\begin{aligned}
& \text { Void }=\operatorname{per}\left(\lambda_{-}, . .1 \preceq 0\right) \\
& \text { Unit }=\operatorname{per}\left(\lambda_{-}, .0 \preceq 0\right)
\end{aligned}
$$

These use \preceq, Howe's computational approximation relation [How89].

Our type theory now has: Base, \mathbb{U}_{i}, per, \preceq.

Examples

Integers:

$$
\mathbb{Z}=\operatorname{per}(\lambda a \cdot \lambda b \cdot a \sim b \sqcap \Uparrow(i \operatorname{sint}(a, t t, f f)))
$$

where

$$
A \sqcap B=\cap x: \text { Base. } \cap y: \text { halts }(x) \text {.isaxiom }(x, A, B)
$$

$$
\Uparrow(a)=\mathrm{tt} \preceq a
$$

$$
\operatorname{halts}(t)=\mathrm{Ax} \preceq(\operatorname{let} x:=t \text { in } \mathrm{Ax})
$$

Our type theory now has: Base, \mathbb{U}_{i}, per, \preceq, \sim, \cap.

Examples

Quotient types:

$$
T / / E=\operatorname{per}(\lambda x, y .(x \in T) \sqcap(y \in T) \sqcap(E x y))
$$

This is the definition we are using in Nuprl now-no longer a primitive.

The partial type constructor is a quotient type-no longer a primitive.

Our type theory now has: Base, \mathbb{U}_{i}, per, \preceq, \sim, \cap, ${ }_{-}={ }_{-} \in$.

Examples

What about the subset type?

$$
\{a: A \mid B[a]\}=\operatorname{per}(\lambda x, y \cdot(x=y \in A) \sqcap B[x])
$$

Examples

What about the subset type?

$$
\{a: A \mid B[a]\}=\operatorname{per}(\lambda x, y \cdot(x=y \in A) \sqcap B[x])
$$

This does not work!

We do not get that B is functional over A.

Examples

one solution-annotate families with levels:
$\{a: A \mid B[a]\}_{i}=\operatorname{per}(\lambda x, y .(x=y \in A) \sqcap B[x] \sqcap \operatorname{Fam}(A, B, i))$
where

$$
\operatorname{Fam}(A, B, i)=\cap a, b: A \cdot\left(B[a]=B[b] \in \mathbb{U}_{i}\right)
$$

One drawback: the annotations.

Examples

another solution-introduce a type of type equalities $(T=U)$:
$\{a: A \mid B[a]\}=\operatorname{per}(\lambda x, y \cdot(x=y \in A) \sqcap B[x] \sqcap \operatorname{Fam}(A, B))$
where

$$
\operatorname{Fam}(A, B)=\cap a, b: A .(B[a]=B[b])
$$

This requires a more intensional version of our per type.

Examples

Using this method, we can also define the other type families such as: dependent functions, dependent products, ...

Both per and its intensional version are part of our implementation of Nuprl in Coq [AR14].

We proved, e.g., that the elimination rule for the per version of our function type is valid.

Inductive types

We saw how to build inductive types in yesterday's talk.

- Algebraic datatypes: $\{t:$ coDT | halts(size $(t))\}$.
- Inductive types using Bar Induction.

Conclusion

D Conciseness

- A small core of primitive types.
- Simple rules.

う Flexibility

- Lets user define even more types.
- No need to modify/update the meta-theory.

D Practicality?

- We're already using it.
- We're still experimenting with the intensional per type.

References I

Stuart F. Allen.
A Non-Type-Theoretic Semantics for Type-Theoretic Language.
PhD thesis, Cornell University, 1987.
Abhishek Anand and Vincent Rahli.
Towards a formally verified proof assistant.
Accepted to ITP 2014, 2014.
Douglas J. Howe.
Equality in lazy computation systems.
In Proceedings of Fourth IEEE Symposium on Logic in Computer Science, pages 198-203. IEEE Computer Society, 1989.

