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Stuart Allen’s Thesis

This work started with a careful reading of:

Stuart Allen’s PhD thesis [All87]:
A Non-Type-Theoretic Semantics

for Type-Theoretic Language

It describes a semantics for Nuprl where types are defined as
Partial Equivalence Relations on terms (the PER semantics).
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Stuart Allen’s Thesis

Among others, Nuprl has the following types:

Equality: a = b ∈ T

Dependent function: a:A → B[a]

Dependent product: a : A× B[a]

Intersection: ∩a:A.B[a]

Partial: A

Universe: Ui

Subset: {a : A | B[a]}

Quotient: T//E
where E has to be an equivalence relation w.r.t. T .

PER types May 13, 2014 4/20



Stuart Allen’s Thesis
In his thesis, the following page was misplaced:
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Stuart Allen’s Thesis

What does it say?

It suggests that the quotient and subset types could be
replaced by a quotient-like type that only requires a partial
equivalence relation.
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Our Proposal

Here is our proposal—redefining Nuprl’s type theory around
an extensional “Partial Equivalence Relation” type

constructor that turns PERs into types.

The domain: the closed terms of Nuprl’s computation system.

Base is the type that contains all closed terms and whose
equality ∼ is Howe’s computational equivalence
relation [How89].
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Our Proposal

Now, the per type constructor:

◮ per(R) is a type if R is a PER on Base.

◮ a = b ∈ per(R) if R a b.

◮ per(R1) = per(R2) ∈ Ui if R1 and R2 are equivalent
relations.

We’ll need universes as well.

Our type theory now has: Base, Ui , per.
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Our Proposal
per types are now part of our implementation of Nuprl in
Coq [AR14]. We verified:

H ⊢ per(R) = per(R′) ∈ Type

BY [pertypeEquality]
H, x : Base, y : Base ⊢ R x y ∈ Type

H, x : Base, y : Base ⊢ R′ x y ∈ Type

H, x : Base, y : Base, z : R x y ⊢ R′ x y

H, x : Base, y : Base, z : R′ x y ⊢ R x y

H, x : Base, y : Base, z : R x y ⊢ R y x

H, x : Base, y : Base, z : Base, u : R x y , v : R y z ⊢ R x z

H, x : t1 = t2 ∈ per(R) ⊢ C ⌊ext e⌋

BY [pertypeElimination]
H, x : t1 = t2 ∈ per(R), [y : R t1 t2] ⊢ C ⌊ext e⌋

H ⊢ t1 = t2 ∈ per(R)

BY [pertypeMemberEquality]
H ⊢ per(R) ∈ Type

H ⊢ R t1 t2
H ⊢ t1 ∈ Base

H ⊢ t2 ∈ Base
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Examples

Let us start with simple examples:

Void = per(λ , .1 � 0)

Unit = per(λ , .0 � 0)

These use �, Howe’s computational approximation
relation [How89].

Our type theory now has: Base, Ui , per, �.
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Examples

Integers:

Z = per(λa.λb.a ∼ b ⊓ ⇑(isint(a, tt, ff)))

where

A ⊓ B = ∩x :Base. ∩ y :halts(x).isaxiom(x ,A,B)

⇑(a) = tt � a

halts(t) = Ax � (let x := t in Ax)

Our type theory now has: Base, Ui , per, �, ∼, ∩.
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Examples

Quotient types:

T//E = per(λx , y .(x ∈ T ) ⊓ (y ∈ T ) ⊓ (E x y ))

This is the definition we are using in Nuprl now—no

longer a primitive.

The partial type constructor is a quotient type—no

longer a primitive.

Our type theory now has: Base, Ui , per, �, ∼, ∩,
= ∈ .

PER types May 13, 2014 12/20



Examples

What about the subset type?

{a : A | B[a]} = per(λx , y .(x = y ∈ A) ⊓ B[x ])
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Examples

What about the subset type?

{a : A | B[a]} = per(λx , y .(x = y ∈ A) ⊓ B[x ])

This does not work!

We do not get that B is functional over A.
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Examples

one solution—annotate families with levels:

{a : A | B[a]}i = per(λx , y .(x = y ∈ A)⊓B[x ]⊓Fam(A,B , i))

where

Fam(A,B , i) = ∩a, b:A.(B[a] = B[b] ∈ Ui)

One drawback: the annotations.
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Examples

another solution—introduce a type of type equalities (T = U):

{a : A | B[a]} = per(λx , y .(x = y ∈ A) ⊓ B[x ] ⊓ Fam(A,B))

where

Fam(A,B) = ∩a, b:A.(B[a] = B[b])

This requires a more intensional version of our per type.
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Examples

Using this method, we can also define the other type families
such as: dependent functions, dependent products, . . .

Both per and its intensional version are part of our
implementation of Nuprl in Coq [AR14].

We proved, e.g., that the elimination rule for the per version
of our function type is valid.
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Inductive types

We saw how to build inductive types in yesterday’s talk.

◮ Algebraic datatypes: {t : coDT | halts(size(t))}.

◮ Inductive types using Bar Induction.
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Conclusion
{ Conciseness

◮ A small core of primitive types.

◮ Simple rules.

{ Flexibility

◮ Lets user define even more types.

◮ No need to modify/update the meta-theory.

{ Practicality?

◮ We’re already using it.

◮ We’re still experimenting with the intensional per type.
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