
A Type Theory with Partial Equivalence

Relations as Types

Abhishek Anand Mark Bickford Robert L. Constable
Vincent Rahli

May 13, 2014

PER types May 13, 2014 1/20



PRL Group

Abhishek Anand Mark Bickford Robert L. Constable

Richard Eaton Vincent Rahli

PER types May 13, 2014 2/20



Stuart Allen’s Thesis

This work started with a careful reading of:

Stuart Allen’s PhD thesis [All87]:
A Non-Type-Theoretic Semantics

for Type-Theoretic Language

It describes a semantics for Nuprl where types are defined as
Partial Equivalence Relations on terms (the PER semantics).

PER types May 13, 2014 3/20



Stuart Allen’s Thesis

Among others, Nuprl has the following types:

Equality: a = b ∈ T

Dependent function: a:A → B[a]

Dependent product: a : A× B[a]

Intersection: ∩a:A.B[a]

Partial: A

Universe: Ui

Subset: {a : A | B[a]}

Quotient: T//E
where E has to be an equivalence relation w.r.t. T .

PER types May 13, 2014 4/20



Stuart Allen’s Thesis
In his thesis, the following page was misplaced:

PER types May 13, 2014 5/20



Stuart Allen’s Thesis

What does it say?

It suggests that the quotient and subset types could be
replaced by a quotient-like type that only requires a partial
equivalence relation.

PER types May 13, 2014 6/20



Our Proposal

Here is our proposal—redefining Nuprl’s type theory around
an extensional “Partial Equivalence Relation” type

constructor that turns PERs into types.

The domain: the closed terms of Nuprl’s computation system.

Base is the type that contains all closed terms and whose
equality ∼ is Howe’s computational equivalence
relation [How89].

PER types May 13, 2014 7/20



Our Proposal

Now, the per type constructor:

◮ per(R) is a type if R is a PER on Base.

◮ a = b ∈ per(R) if R a b.

◮ per(R1) = per(R2) ∈ Ui if R1 and R2 are equivalent
relations.

We’ll need universes as well.

Our type theory now has: Base, Ui , per.

PER types May 13, 2014 8/20



Our Proposal
per types are now part of our implementation of Nuprl in
Coq [AR14]. We verified:

H ⊢ per(R) = per(R′) ∈ Type

BY [pertypeEquality]
H, x : Base, y : Base ⊢ R x y ∈ Type

H, x : Base, y : Base ⊢ R′ x y ∈ Type

H, x : Base, y : Base, z : R x y ⊢ R′ x y

H, x : Base, y : Base, z : R′ x y ⊢ R x y

H, x : Base, y : Base, z : R x y ⊢ R y x

H, x : Base, y : Base, z : Base, u : R x y , v : R y z ⊢ R x z

H, x : t1 = t2 ∈ per(R) ⊢ C ⌊ext e⌋

BY [pertypeElimination]
H, x : t1 = t2 ∈ per(R), [y : R t1 t2] ⊢ C ⌊ext e⌋

H ⊢ t1 = t2 ∈ per(R)

BY [pertypeMemberEquality]
H ⊢ per(R) ∈ Type

H ⊢ R t1 t2
H ⊢ t1 ∈ Base

H ⊢ t2 ∈ Base

PER types May 13, 2014 9/20



Examples

Let us start with simple examples:

Void = per(λ , .1 � 0)

Unit = per(λ , .0 � 0)

These use �, Howe’s computational approximation
relation [How89].

Our type theory now has: Base, Ui , per, �.

PER types May 13, 2014 10/20



Examples

Integers:

Z = per(λa.λb.a ∼ b ⊓ ⇑(isint(a, tt, ff)))

where

A ⊓ B = ∩x :Base. ∩ y :halts(x).isaxiom(x ,A,B)

⇑(a) = tt � a

halts(t) = Ax � (let x := t in Ax)

Our type theory now has: Base, Ui , per, �, ∼, ∩.

PER types May 13, 2014 11/20



Examples

Quotient types:

T//E = per(λx , y .(x ∈ T ) ⊓ (y ∈ T ) ⊓ (E x y ))

This is the definition we are using in Nuprl now—no

longer a primitive.

The partial type constructor is a quotient type—no

longer a primitive.

Our type theory now has: Base, Ui , per, �, ∼, ∩,
= ∈ .

PER types May 13, 2014 12/20



Examples

What about the subset type?

{a : A | B[a]} = per(λx , y .(x = y ∈ A) ⊓ B[x ])

PER types May 13, 2014 13/20



Examples

What about the subset type?

{a : A | B[a]} = per(λx , y .(x = y ∈ A) ⊓ B[x ])

This does not work!

We do not get that B is functional over A.

PER types May 13, 2014 14/20



Examples

one solution—annotate families with levels:

{a : A | B[a]}i = per(λx , y .(x = y ∈ A)⊓B[x ]⊓Fam(A,B , i))

where

Fam(A,B , i) = ∩a, b:A.(B[a] = B[b] ∈ Ui)

One drawback: the annotations.

PER types May 13, 2014 15/20



Examples

another solution—introduce a type of type equalities (T = U):

{a : A | B[a]} = per(λx , y .(x = y ∈ A) ⊓ B[x ] ⊓ Fam(A,B))

where

Fam(A,B) = ∩a, b:A.(B[a] = B[b])

This requires a more intensional version of our per type.

PER types May 13, 2014 16/20



Examples

Using this method, we can also define the other type families
such as: dependent functions, dependent products, . . .

Both per and its intensional version are part of our
implementation of Nuprl in Coq [AR14].

We proved, e.g., that the elimination rule for the per version
of our function type is valid.

PER types May 13, 2014 17/20



Inductive types

We saw how to build inductive types in yesterday’s talk.

◮ Algebraic datatypes: {t : coDT | halts(size(t))}.

◮ Inductive types using Bar Induction.

PER types May 13, 2014 18/20



Conclusion
{ Conciseness

◮ A small core of primitive types.

◮ Simple rules.

{ Flexibility

◮ Lets user define even more types.

◮ No need to modify/update the meta-theory.

{ Practicality?

◮ We’re already using it.

◮ We’re still experimenting with the intensional per type.

PER types May 13, 2014 19/20



References I

Stuart F. Allen.

A Non-Type-Theoretic Semantics for Type-Theoretic Language.
PhD thesis, Cornell University, 1987.

Abhishek Anand and Vincent Rahli.

Towards a formally verified proof assistant.
Accepted to ITP 2014, 2014.

Douglas J. Howe.

Equality in lazy computation systems.
In Proceedings of Fourth IEEE Symposium on Logic in Computer Science, pages 198–203. IEEE Computer
Society, 1989.

PER types May 13, 2014 20/20


