A Type Theory with Partial Equivalence
Relations as Types

Abhishek Anand Mark Bickford Robert L. Constable
Vincent Rahli

May 13, 2014

PER types May 13, 2014

1/20

PRL Group

Abhishek Anand Mark Bickford Robert L. Constable

Richard Eaton Vincent Rahli

PER types May 13, 2014 2/20

Stuart Allen’s Thesis

This work started with a careful reading of:

Stuart Allen’s PhD thesis [AlI87]:
A Non-Type-Theoretic Semantics
for Type-Theoretic Language

It describes a semantics for Nuprl where types are defined as
Partial Equivalence Relations on terms (the PER semantics).

PER types May 13, 2014 3/20

Stuart Allen’s Thesis

Among others, Nuprl has the following types:

Equality: a=be T

Dependent function: a:A — B3]
Dependent product: a: A x B[a]
Intersection: Na:A.B|3]

Partial: A

Universe: U;

Subset: {a: A | Bla]}

Quotient: T//E
where E has to be an equivalence relation w.r.t. T.

PER types May 13, 2014 4/20

Stuart Allen’s Thesis

In his thesis, the following page was misplaced:

e aape sameer oo 12

frming An = A such Uhat B g’ s inkabited: bwo cqual eanonical membrts
are formed by forwing o.’ £ {wC A B} ouch thal £o, 'y is inhahited
The set type and quotient trpe wwnstouctors conld have been unified in a
sitigle comslructor 3.y 2 47 Frpy whi ke uotient except that, ratker
than srequisig (the habitation of] Fay w he an equiveleace relation, we
eeuice ouly thet i1 be Lransitice and syrametric avee 4, ., ity restriction
104 should Uz w partial equivalenee selation. The cqual members ars the
members of 3 that wiske E,, ihabited. Thos, 2 type 2.9 Afi Py y is ex
temsionally ezal to o,y 2 47 E, . and 2 type {224 B} isc
cqual ter gt A7 Byx [z p)).

W eothe oW b Yuprl's treatment of assmuptions. Knprl nses one form
af judgement:

ensionally

IPYIeIr X

Let us stact by considering Nuprl judgranenis wirh ous assunptinn, The
aand a'yif e =al-d then T/
|- Wotice chat, rarler than uplying or
presupposing chis 4 is & wype, the (rpehood of 4 is part o the sssnmprion
{sinwce the 1y pehuod of 1 is implied by « = o ¢ 4} Thus, 3 4 cannot be
detined ne a type, besouse it biss 1o value, suy, then wo may infer for soy o, T,
and ¢ that 2= 452t T Tn comrast, o cannot infee € T (€ 4 wnlkes we
also know shar 4 is » type. Since we are discussing two forus of axsumption,
it will be cmavenient o introdce a fistinguishing nomenclat uces there will be
wo ured L wabe the geacral application of the terminology precise. We saall
S8y 20 semouption L is pesitive within the fudgemants that, by virtue of
that assuoption, inuply the typebood of 4. aod we shall ssy the assumption s

negative wittin the julgenvents in which he Lypehiood of s a part of what
ia heing asumed. Tl asaumption £ 4 is positive witkin £ T iz 4) and
negative wirhin £ 37 (e T. The use of urgative asamplions alkows one
tn expresa the nssumpr'an that # i3 & tmember uf .1 a5 & negative sssumption
2 T2, A pasitive sssuroption of this fueru would be vacuaus sinee for
I[4,a,4] to be & type 4 must he & tppe with meniber a.

Now we shall consider judgements shat use tan negative assnmptions.
The tneaning intended for judgements using more assnmptiona sheuld be
dlear in light of the +xplaation For tvo assmmprions. A eaarse teading, e

FThe cotavion weed in Canstable et al 36 3
i ey don Telt
The pact "ext £ is not displred by the Napal seatenn waen i oveurs in pruufs, bug tather, i

s exteacted foom & zompletad proof. Must peuts ace courtructed withuat che wser kowing
precisely what tem s 40 he extracsed

PER types May 13, 2014 5/20

Stuart Allen’s Thesis

What does it say?

It suggests that the quotient and subset types could be
replaced by a quotient-like type that only requires a partial
equivalence relation.

PER types May 13, 2014 6/20

Our Proposal

Here is our proposal—redefining Nuprl's type theory around
an extensional “Partial Equivalence Relation” type
constructor that turns PERs into types.

The domain: the closed terms of Nuprl's computation system.

Base is the type that contains all closed terms and whose
equality ~ is Howe's computational equivalence
relation [How89].

PER types May 13, 2014 7/20

Our Proposal

Now, the per type constructor:

» per(R) is a type if R is a PER on Base.
» a=beper(R)if R ab.

» per(R;) = per(Ry) € U; if Ry and R, are equivalent
relations.

We'll need universes as well.

Our type theory now has: Base, U;, per.

PER types May 13, 2014

8/20

Our Proposal

per types are now part of our implementation of Nuprl in
Coq [AR14]. We verified:

H + per(R) = per(R’) € Type
BY [pertypeEquality]
:Base,y : Base - R x y € Type
:Base,y :Base - R’ x y € Type
:Base,y :Base,z: RxyFR xy
:Base,y :Base,z: R' xyFRxy
:Base,y :Base,z: RxyFRyx
:Base,y :Base,z:Base,u: Rxy,v: Ry zFR x z

X X X X X X

IIIIIXIT

H,x:tp =t € per(R) F C |ext e]
BY [pertypeElimination]
H,x:t; =ty € per(R),[y : R t1 ta] - C |ext e]

Ht t; = to € per(R)
BY [pertypeMemberEquality]
H + per(R) € Type
HFRt t
HF t; € Base
H F t; € Base

PER types May 13, 2014 9/20

Examples
Let us start with simple examples:

Void = per(A_, _.1 < 0)

Unit = per(A_,_.0 < 0)

These use <, Howe's computational approximation
relation [How89].

Our type theory now has: Base, U;, per, <.

PER types May 13, 2014

10/20

Examples

Integers:

Z = per(Aa.Ab.a ~ b1 (isint(a, tt, ff)))

where
A B = Nx:Base. N y:halts(x).isaxiom(x, A, B)
f(a)=tt < a
halts(t) = Ax < (let x :=t in Ax)

Our type theory now has: Base, U;, per, <, ~, N.

PER types May 13, 2014

11/20

Examples

Quotient types:

T//JE =per(Ax,y.(xe T)N(y € T)M(E x y))

This is the definition we are using in Nuprl now—no
longer a primitive.

The partial type constructor is a quotient type—no
longer a primitive.

Our type theory now has: Base, U;, per, <, ~, N,
=€ .

PER types May 13, 2014 12/20

Examples

What about the subset type?

{a: A | Bla]} =per(Ax,y.(x =y € A Bx])

PER types May 13, 2014 13/20

Examples

What about the subset type?
{a: A | Bla]} =per(\x,y.(x=y € A)N B[x])

This does not work!

We do not get that B is functional over A.

PER types May 13, 2014

14/20

Examples

one solution—annotate families with levels:

{a: A | Bla]}; = per(Ax,y.(x =y € A)NB[x]MFam(A, B, i))

where

Fam(A, B, i) = Na, b:A.(Ba] = B[b] € U;)

One drawback: the annotations.

PER types May 13, 2014 15/20

Examples

another solution—introduce a type of type equalities (T = U):

{a: A | Bla]} =per(Ax,y.(x =y € A)N B[x] 1 Fam(A, B))
where

Fam(A, B) = Na, b:A.(B[a] = B[b])

This requires a more intensional version of our per type.

PER types May 13, 2014 16/20

Examples

Using this method, we can also define the other type families
such as: dependent functions, dependent products, ...

Both per and its intensional version are part of our
implementation of Nuprl in Coq [AR14].

We proved, e.g., that the elimination rule for the per version
of our function type is valid.

PER types May 13, 2014 17/20

Inductive types

We saw how to build inductive types in yesterday's talk.

» Algebraic datatypes: {t: coDT | halts(size(t))}.

» Inductive types using Bar Induction.

PER types May 13, 2014 18/20

Conclusion

2 Conciseness

» A small core of primitive types.

» Simple rules.

2 Flexibility

» Lets user define even more types.

» No need to modify/update the meta-theory.

2 Practicality?

» We're already using it.

» We're still experimenting with the intensional per type.

PER types May 13, 2014 19/20

References |

@ Stuart F. Allen.
A Non-Type-Theoretic Semantics for Type-Theoretic Language.
PhD thesis, Cornell University, 1987.

@ Abhishek Anand and Vincent Rahli.

Towards a formally verified proof assistant.
Accepted to ITP 2014, 2014

ﬁ Douglas J. Howe.
Equality in lazy computation systems.
In Proceedings of Fourth IEEE Symposium on Logic in Computer Science, pages 198-203. IEEE Computer
Society, 1989.

PER types May 13, 2014 20/20

