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Stuart Allen’s Thesis

This work started with a careful reading of:

Stuart Allen’s PhD thesis [AlI87]:
A Non-Type-Theoretic Semantics
for Type-Theoretic Language

It describes a semantics for Nuprl where types are defined as
Partial Equivalence Relations on terms (the PER semantics).
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Stuart Allen’s Thesis

Among others, Nuprl has the following types:

Equality: a=be T

Dependent function: a:A — B3]
Dependent product: a: A x B[a]
Intersection: Na:A.B|3]

Partial: A

Universe: U;

Subset: {a: A | Bla]}

Quotient: T//E
where E has to be an equivalence relation w.r.t. T.
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Stuart Allen’s Thesis

In his thesis, the following page was misplaced:
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Stuart Allen’s Thesis

What does it say?

It suggests that the quotient and subset types could be
replaced by a quotient-like type that only requires a partial
equivalence relation.
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Our Proposal

Here is our proposal—redefining Nuprl's type theory around
an extensional “Partial Equivalence Relation” type
constructor that turns PERs into types.

The domain: the closed terms of Nuprl's computation system.

Base is the type that contains all closed terms and whose
equality ~ is Howe's computational equivalence
relation [How89].
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Our Proposal

Now, the per type constructor:

» per(R) is a type if R is a PER on Base.
» a=beper(R)if R ab.

» per(R;) = per(Ry) € U; if Ry and R, are equivalent
relations.

We'll need universes as well.

Our type theory now has: Base, U;, per.
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Our Proposal

per types are now part of our implementation of Nuprl in
Coq [AR14]. We verified:

H + per(R) = per(R’) € Type
BY [pertypeEquality]
:Base,y : Base - R x y € Type
:Base,y :Base - R’ x y € Type
:Base,y :Base,z: RxyFR xy
:Base,y :Base,z: R' xyFRxy
:Base,y :Base,z: RxyFRyx
:Base,y :Base,z:Base,u: Rxy,v: Ry zFR x z

X X X X X X

IIIIIXIT

H,x:tp =t € per(R) F C |ext e]
BY [pertypeElimination]
H,x:t; =ty € per(R),[y : R t1 ta] - C |ext e]

Ht t; = to € per(R)
BY [pertypeMemberEquality]
H + per(R) € Type
HFRt t
HF t; € Base
H F t; € Base
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Examples
Let us start with simple examples:

Void = per(A_, _.1 < 0)

Unit = per(A_,_.0 < 0)

These use <, Howe's computational approximation
relation [How89].

Our type theory now has: Base, U;, per, <.

PER types May 13, 2014

10/20



Examples

Integers:

Z = per(Aa.Ab.a ~ b1 (isint(a, tt, ff)))

where
A B = Nx:Base. N y:halts(x).isaxiom(x, A, B)
f(a)=tt < a
halts(t) = Ax < (let x :=t in Ax)

Our type theory now has: Base, U;, per, <, ~, N.
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Examples

Quotient types:

T//JE =per(Ax,y.(xe T)N(y € T)M(E x y))

This is the definition we are using in Nuprl now—no
longer a primitive.

The partial type constructor is a quotient type—no
longer a primitive.

Our type theory now has: Base, U;, per, <, ~, N,
_=_€ .

PER types May 13, 2014 12/20



Examples

What about the subset type?

{a: A | Bla]} =per(Ax,y.(x =y € A Bx])
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Examples

What about the subset type?
{a: A | Bla]} =per(\x,y.(x=y € A)N B[x])

This does not work!

We do not get that B is functional over A.
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Examples

one solution—annotate families with levels:

{a: A | Bla]}; = per(Ax,y.(x =y € A)NB[x]MFam(A, B, i))

where

Fam(A, B, i) = Na, b:A.(Ba] = B[b] € U;)

One drawback: the annotations.

PER types May 13, 2014 15/20



Examples

another solution—introduce a type of type equalities (T = U):

{a: A | Bla]} =per(Ax,y.(x =y € A)N B[x] 1 Fam(A, B))
where

Fam(A, B) = Na, b:A.(B[a] = B[b])

This requires a more intensional version of our per type.
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Examples

Using this method, we can also define the other type families
such as: dependent functions, dependent products, ...

Both per and its intensional version are part of our
implementation of Nuprl in Coq [AR14].

We proved, e.g., that the elimination rule for the per version
of our function type is valid.
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Inductive types

We saw how to build inductive types in yesterday's talk.

» Algebraic datatypes: {t: coDT | halts(size(t))}.

» Inductive types using Bar Induction.
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Conclusion

2 Conciseness

» A small core of primitive types.

» Simple rules.

2 Flexibility

» Lets user define even more types.

» No need to modify/update the meta-theory.

2 Practicality?

» We're already using it.

» We're still experimenting with the intensional per type.
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